
aldoc — Aldor documentation class for LATEX

extract — Aldor to LATEX utility

aldoc2html — aldoc to HTML utility

Niklaus Mannhart Institute for Scientific Computing
ETH Zürich

E–Mail: mannhart@inf.ethz.ch

url: http://www.inf.ethz.ch/~mannhart

Version: 3.0 Aug 7, 2001

Abstract

aldoc, extract and aldoc2html are utilities that help programmers
document their Aldor programs in an easy way. The LATEX class file
aldoc provides useful macros with a unique manual page layout and op-
tional with hyper-references for xdvi and pdf-files if supported. extract

is a utility that converts documented Aldor programs to LATEX code.
aldoc2html is a utility that converts LATEX code created from extract to
a LATEX format which is well prepared for latex2html conversion.

This manual is divided into two parts. The first part, the user’s guide,
describes the macros in detail and shows how TEX code is produced from
documented Aldor programs by using the extract and aldoc2html utili-
ties. The second part, only compiled by LATEX when a special flag is turned
off, documents the class file itself (only useful for class file hackers).

1 User’s Guide

1.1 Introduction

In order to keep documentation synchronized with code development, it is rec-
ommended for Aldor developers to document all the exported functions from
a type in the actual Aldor source file for that type. Three tools help make this
easier:

• aldoc is a LATEX class file allowing you to write reference manual pages
in a format independent way, even with hyper references if supported by
your previewer (xdvi, pdf previewer), and HTML.

• extract is a documentation extractor that creates .tex files from the
documentation contained in the Aldor sources.

1

• aldoc2html is a documentation converter that creates .tex files which
are optimized for latex2html conversion.

We first explain the aldoc macros before describing the extract and aldoc2html
utilities in detail.
Note: Please report all bugs — yes, even this class file has bugs — to the
author. Comments and suggestions are also welcome!

1.2 The page layout

Manual pages created with aldoc contain a header, a body and a footer. The
header contains the name of the type and the function that is currently de-
scribed, the footer holds the page number.
The underlined header looks as follows: On the left side, the type’s name is
printed; on the right side the function’s name. On even sides of two sided
documents, the name of the type is placed on the right side and the the function’s
name on the left side. In both cases, the page number is centered in the footer.
Figure 1 shows the manual page of the function apply belonging to type
BinaryTreeCategory.

���������
	���
�����������������
	 ��������	

���������
 "!�!�#%$'&�(*),+.-
(/+

0'���'�����213�
�
 4!�!�#5$�6 &87�9:7�)�;<-=9>;

?@���
��AB�C����� �@	���� DE�F�
G"�2�H�I�J���'�
K 7�9:7 L=M�N@(PO�Q�R�+TS%UCQ�+TUE "!�!�#%$�+TU< 2#%#�+.M�N�Q�U�V�N�W
X ; Y[Z�S\Q� "]*$�+.]^N�N

DE���JG4�_�`�I�J�\�I�
a "b2N�W= �R�UC!4$EU2(c+@Z"$� "!�!�#%$CS\Q�de(c+fUg 2#%#'+.M�N�Q�U�V�N�WhUi(c+Jj

ke���213�4�'�
l N�+.O�]fQ�W=+.M�NmQ�N�no#5$�RJ]*NJ 2+TN�V�+.]^N�N"jp+q]*NJr< 2S\Q�WsO�Q�R�M� "Q�d"N�V'j

tou'��Av�����
wyx8z|{
}2}"~J���2�^��x����2�"�
�i�
����x^���2�_�
�"�
���i�2���v���3���,�

]^N�+.O�]fQ�Wh �R�UC!4$gUi(�+=n=S%+.M� 2#%#�Q�UCV�N�W@V�UCO�Z�#%N�V'6

6

4 7

12

8 14

t s

0��������`���
 "!�!�#%$��H&8��S\Q� "]^$�L�]^N�NJ�o 2+TN�d"UC]*$F-�)�R�UC!4$'&8��S�Q� 4]^$FL�]^N�NJ�= i+TN�d"UC]^$�-

�J�

Figure 1: manual page layout of the function apply belonging to type
BinaryTreeCategory

2

The aldoc class file doesn’t specify a manual page structure, except that types
are described before their functions. However, we recommend using the descrip-
tion structure described below so that all aldoc based manuals look similar.
Types are like subsections and functions are subsubsections. Hence types are
described first. If you don’t follow this rule aldoc produces wrong index entries
and some macros such as \this and \name return wrong results.
The description of a type has the following structure:

\thistype[short form]{type name}
[history section]
[usage]
[parameters]
[description]
[exports]
[other sections]

The history section contains information about the author of the type, respec-
tively function, as well as the date and nature of any changes made to the type
or function. This piece of information is useful for software maintenance, es-
pecially when several programmers are working on the same library. However,
this section is not printed in the final document unless you turn on a special
flag.1

Functions belonging to a type are described in a similar way.

\alpage{function name}
[history section]
[usage]
[signatures]
[parameters]
[description]
[return]
[example]
[see also]

1.3 aldoc macros in detail

\thistype[shortform]{type} starts the description of a type (called type). The\thistype

macro starts a new page and puts the type’s name into the index, the table of
contents and the header. The optional argument shortform allows you to define
a short form for the type’s name.

\thistype{Quotient}

\thistype[BinTree]{BinaryTreeCategory}
1The current version of aldoc (v3.0) doesn’t print the history section at all.

3

The first example starts the description of the type Quotient, the latter of the
type BinaryTreeCategory with the short form BinTree.
During the description of a type and its functions, the macros \this and\this

\shortthis \shortthis return the type’s name and its abbreviated form. If no abbreviated
form was given, then \shortthis returns the same result as \this.

\shortthis\ is the short form for \this. BinTree is the short form for Binary-

TreeCategory.

Sometimes, type names are very long and use too much space in the header.\shortheader

Therefore, you might want to put a short form into the header.
The \shortheader command forces aldoc to put the short form of the type
into the header. If no short form was given then \this is put into the header.

\thistype[BinTree]{BinaryTreeCategory}
\shortheader
The command \alpage{function} starts the description of a new function\alpage

(called function). The macro clears the old page and puts the name of the
function into the header and the index with the name of the type as a subentry.
Note: the names of the functions are not added to the table of contents.

\alpage{apply}

Similar to the \this command, the macro \name returns the name of the func-\name

tions that is currently described.

\name apply

Usually there are two versions of the aldoc command. The first version, starting
with a lowercase letter, is a LATEX environment, the second version, starting
with an uppercase letter, is a LATEX command. Both versions produce the same
output.

\begin{descr} \Descr{Makes a copy of....}
Makes a copy of....

\end{descr}

Of course, the second version is faster to write, but if a long text has to be
printed, then the environment version is easier to debug and uses less memory
during LATEX compilation.
The history section is not used by aldoc yet. Nevertheless we encourage you to\History

use the command already.
The \History command takes three arguments. Argument 1 contains the name
of the author who created or changed the code. The date of the change is passed
in argument 2 and comments are passed in argument 3.

\History{A. Einstein}{1912/3/13}{creation of the Relativity Theory}
\History{G. Lagaffe}{1995/2/28}{improved the theory}
\History{G. Lagaffe}{1995/3/1}{deleted the improvements}

The usage part describes the usage of a function or a type, i.e. how the function,usage

\Usage

4

respectively the type is called by the user. Both commands print the title Usage
in boldface and indent the left margin for the text that follows.

\Usage{apply(f,t)} Usage

apply(f,t)

Parameters are put in a tabular environment that is created automatically. Theparams

\Params tabular contains three columns called Parameter, Type and Description which
are printed in boldface. The & symbol is used as the column separator.

\begin{params}
S & Order & The type of the node \\
t & \% & A binary tree \\
\end{params}

Parameter Type Description

S Order The type of the nodes
t % A binary tree

In the description section the type or function is described in detail. The titledescr

\Descr Description is printed in boldface and the left margin is indented for the text
that follows.

\Descr{Makes a copy of t by applying f

to all the nodes of t.}
Description

Makes a copy of t by applying
f to all the nodes of t.

The exports section is only used for types. The environment creates a threeexports

column tabular. The first column contains the name of the exported function,
the second column contains the signature of the function, and the last column
contains notes describing the exported function. The export description of the
type BinaryTreeCategory might look as follows:

\begin{exports}
apply: & (S \to S, \%) \to \% &

Apply a function to all the nodes \\
\ldots & & \\
\end{exports}

Exports

apply: (S → S, %) → % Apply a function
to all the nodes

. . .

When types have arguments then the export list might depend on them, i.e.
some functions are only exported if the argument has a specific category. Thus,
the exports environment has an optional parameter that contains the condition
under which the functions are exported. The parameter immediately follows the
\begin{exports} environment. (\begin{exports}[condition]) The following
example shows a conditional export list (see also example.as on page 12):

\begin{exports}[if R has

FiniteCharacteristic then]

\category{FiniteCharacteristic}\\
\ldots & & \\
\end{exports}

Exports

if R has FiniteCharacteristic then
FiniteCharacteristic
. . .

For each conditional export list an exports environment has to be used.
Imagine, you can click on types and functions in order to move to related top-hyperlinks

5

ics? For example you look up a type or function in the index section, find the
word and would like to click on it in order to jump to the corresponding page.
Sounds like a web page. Well, formulas are not supported in html pages yet
but we still can offer a similar way by using the LATEX package hyperlink. It
offers link support for xdvi, pdf previewer and latex2html. So with xdvi or
Acrobat Reader2 you are able to link pages. aldoc supports four commands for
hyperlinks: \alfunc, \alexp, \altype and \altarget. We encourage to use
this functions always, even if you don’t plan to use hyperlinks. They can be
turned on or off by a hyperlinks flag. See section 1.4.
With aldoc2html Aldorfiles, documented with aldoc can be converted to\alalias

HTML. In order to support links in HTML documents aldocprovides the com-
mand \alalias{type}{alias}{function}. It creates a link to type:alias and prints
the name function. \alalias is the basic command other commands relay on.
\alfunc{type}{function} prints function and makes it a hyperlinks to the man\alfunc

page for function in the type type. The command is simply an abbreviation of
\alalias{type}{function}{function}.
\begin{exports}
\alfunc{Quotient}{apply}: & (S \to S,

\%) \to \% & Apply a function to all

the nodes \\
\ldots & & \\
\end{exports}

Exports

apply: (S → S, %) → % Apply a function
to all the nodes

. . .

Note: the printed output does not differ from the output of the above example
(\exports). If hyperref is turned on then links for xdvi, pdf previewers and
of course in HTML are put into it.
In the previous example you would have to write the type Quotient for each\alexp

export field. You could also write \alfunc{\this}{function} instead of the type
name itself. aldoc provides a shorthand for this command: \alexp{function} is
the abbreviation of \alfunc{\this}{function}.
Besides making links to functions, one likes to link to types as well. aldoc\altype

\altypes offers the command \altype{type} for that purpose. It prints the name type
and makes it a hyperlinks to the manual page of that type, if defined. The
command \altypes{header} puts the type name header to the table of contents.
This is usefull when types are grouped under a name that should only appear
in the table of contents.

\begin{exports}
\ldots & & \\
\alexp{order}: & (R,Integer) \to
\altype{Partial} \altype{Integer} &

bounded ... \\
\end{exports}

Exports

. . .
order: (R,Integer) → Partial Integer bounded . . .
. . .

2Acrobat Reader is a free pdf previewer from Adobe Systems Incorporated
http://www.adobe.com

6

Both macros are used for external references. \albuiltin{type} is a reference\albuiltin

\alexttype to the builtin type type, \alexttype{library}{type} is a reference of type in the
library library.

\albuiltin{Integer}
\alexttype{Sumit}{Fraction}
\altarget{name} creates an alternative hyper-target name. The command\altarget

is useful when you have to link a page under several names. Exam-
ple: If \alpage{map} documents both map and map!, then add the line
\altarget{map!} right after it. This way, if both \alexp{map} and \alexp{map!}
are in the exports list, they will both point to that page.
Sometimes types export categories. Of course, you could write the category’s\category

name in the first column, but usually the names are very long and, thus, enlarge
the first column of the tabular in such a way that the output looks ugly. To
overcome this problem the macro \category is introduced. It takes a name
as argument and prints it on one line, i.e. three columns are combined to one
column. In fact, \category is an abbreviation for \multicolumn{3}{l}.

\begin{exports}
\ldots & & \\
\category{\altype{CommutativeRing}} \\
\ldots & & \\
\end{exports}

Exports

. . .
CommutativeRing
. . .

If names in export tabulars are too long, then one might whish to abbreviatealwhere

the name and explain it in detail below the tabular. Therefore, aldoc contains
the environment alwhere which usually follows after an export environment. It
prints the name where and creates a three column tabular.

\begin{exports}
\ldots & & \\
order: & (R,Z) \to Partial Z &

bounded order at the place \\
\end{exports}
\begin{alwhere}
Z & == & \altype{Integer} \\
\ldots & & \\
\end{alwhere}

Exports

. . .
order: (R,Z) → Partial Z bounded order at place
. . .

where
Z == Integer
. . .

A signature describes the types of the arguments and the type of the returnsignatures

\Signatures value. Obviously a signature only makes sense to functions and, hence, you will
never use such a command in a type description. The title Signatures is printed
in boldface and the left margin is indented. Both commands open a tabular
environment with two columns (function’s name, signature).

\begin{signatures}
apply: & (S \to S, %) \to \% \\
\end{signatures}

Signatures

apply: (S → S, %) → %

7

Often only one signature has to be printed. Therefore, aldoc has a special\Signature

signature command called \Signature. It prints the title Signature and in-
dents the left margin. Unlike the commands \Signatures and signatures,
\Signature prints the name of the function automatically. Hence, the macro
has only two arguments, the parameter signature (argument 1) and the return
type signature (argument 2). The signature is printed in the following way:
name of the function: #1 → #2 where #1 is the first argument and #2 the
second.

\signature{(S \to S, \%)}{\%} Signature

apply: (S → S, %) → %

Sometimes a constant is defined only. The command \alconstant{type} prints\alconstant

the function name implicitly and puts the type of the constant to the right.
\alconstant{\albuiltin{SingleFloat}} Signature

PI: SingleFloat

This describes the return value of a function. Again, the title Returns is printedretval

\Retval in boldface and the left margin indented for the text that follows.

\begin{retval}
Returns the newly created tree.

t remains unchanged.

\end{retval}

Returns

Returns the newly created
tree. t remains unchanged.

It’s sometimes useful to add examples in a manual page. Therefore, aldoc sup-alex

ports the command \alex. The command prints the title Example in boldface
and indent the left margin.

\begin{alex}
\begin{ttyout}
s:= apply((n:Integer):Integer +-> n+n, t)

\end{ttyout}
returns a copy of t with all nodes

doubled.

\end{alex}

Example

s:= apply((n:Integer):Integer +-> n+n, t)

returns a copy of t with all nodes doubled.

In example sections, you often use the verbatim environment for source code or
output produced by the system. aldoc doesn’t have its own verbatim macros,
but it includes the verbatim package ttyverb3 which has the following advan-
tages over the original verbatim package included in LATEX:

• font and size can by changed,

• the vertical space is narrower than the LATEX version of verbatim

• tabs are converted to as many spaces as you like (default 8)

3Note: ttyverb is the name of the package and ttyout is the name of the environment
defined in ttyverb.

8

Of course, you can use your own verbatim macros, but using ttyverb makes life
easier when you distribute documented Aldor code to other people. A detailed
description of ttyverb is found in the ttyverb.sty style file.
Often one would like to give references to other functions or types containing\alseealso

useful information. Therefore aldoc contains the \alseealso command that
takes the references as argument.

\alseealso{\alexp{apply!}} See Also

apply!

Note: \alseealso is also a place where one likes to have hyper references, ie. links
to the mentioned functions.
Sometimes you want to add remarks to a manual page. It’s especially usefulremarks

\Remarks when limitations in the use of a function or type or bugs that are not fixed
yet. The commands remarks, \Remarks print the title Remarks in boldface
and indent the left margin.

\Remarks{\this\ still crashes when

\ldots
Remarks

BinaryTree still crashes when
. . .

1.4 A word about Hyper-References

We strongly recommend to use the hyper-reference features provided in aldoc,
ie. \alfunc, \alexp, \altype, \albuiltin, \alexttype and \altarget. Even when
the hyperref package is not installed on your system or you do not want to
use latex2html yet, you can produces printed output without any problems.
By default hyper-reference is turned off and the hyper-reference commands pro-
duces the usual output. To turn on hyper-reference you have to set the hyperref
option in the latex file.

\documentclass[hyperref]{aldoc} will turn on hyper-reference

1.5 Putting everything together

In the previous sections we explained the aldoc macros in detail but said nothing
about Aldor files. Before you can create the TEX files using the extract utility,
you must be sure that all documentation lines in your source files are bracketed
between #if marker and #endif statements where marker can by any name.
extract takes as input a Aldor file and the marker and produces the LATEX file
by discarding the code that is not between #if marker and #endif statements.
In each Aldor source file you must add the #unassert marker statement before
the first #if marker statement starts.
The

∑IT library for which this class file originally was written uses ASDOC as
its marker, Aldor uses ALDOC as its marker. We encourage you to use the

9

same marker depending on the library you are working with, because when-
ever sumit.as or aldor.as is included, ASDOC, ALDOC respectively is already
unasserted and hence, the #unassert ASDOC or #unassert ALDOC statement
can be omitted.
#unassert ALDOC % can be omitted if you include aldor.as
...
#if ALDOC
This is some documentation which will be ignored by
the A# compiler.
...
#endif
[A# code]
#if ALDOC
This is again documentation.
#endif
[A# code again]

In the documentation parts, i.e. between #if marker and #endif statements,
you can use any aldoc or LATEX command.

1.6 extract option

The general usage of extract is:

extract -m marker [-h] [-o outputfile] [-r] [-t] [-v] sourcefile[.as]

where the various options are:

-h Help: displays a short help text (causes all the other arguments to be
ignored).

-m marker Defined marker in the sourcefile. Note: No default value is defined.

-o outputfile Names the output file, default is sourcefile.tex

-r Reverse operation: the output file contains all the lines which are not
bracketed between #if marker and #endif statements.

-t Test: adds an appropriate LATEX prologue and epilogue so that the output
file can be run through LATEX independently.

-v Verbose: shows progress (number of documentation blocks processed.)

1.7 The manual LATEX file

When your Aldor programs are documented and extract has created the
LATEX files then you are ready to write the final “manual” file. This LATEX file
turns some aldoc features on or off and contains text you want to add to the
manual pages. A “manual” file might look like this:

10

\documentclass[options]{aldoc}
packages
\pagestyle{fancyhdr} % header creation turned on
\makeindex % create index
\begin{document}
introduction, table of contents, table of figures and so on
\input{...}
other imports
\printindex % print index
\end{document}

options can be any valid option under LATEX such as twoside, 12pt, a4paper and
so on. If you want to use the hyper-reference features from aldoc then you have
to set the hyperref option! In the packages part you can include additional
packages that are used in your document. However, the packages fancyhdr,
epsfig, supertabular, ttyverb and makeidx don’t have to be loaded because
aldoc loads them automatically.
If you want to print your document using the standard aldoc header then
you have to call pagestyle with fancyplain. If you omit this command then no
header is printed. An index is created by LATEX when makeindex is called in the
preamble. If you comment out the command no index is generated. A detailed
description of the makeindex and the fancyhdr packages is found in [1].
One last thing you have to keep in mind is that the command \thistype is
the same as a subsection but without a subsection number. Of course, you can
create sections and subsections, but the latter does not get a subsection number.

1.8 Aldoc2HTML

Version 3 of aldoc has better html support. The utility aldoc2html converts
.tex files created with the extract utility to new .tex files which are optimized
for the latex2html utility.
The general usage of aldoc2html is:

aldoc2html [-h] [-o outputfile] [-x] [-v] sourcefile[.tex]

where the various options are:

-h Help: displays a short help text (causes all the other arguments to be
ignored).

-o outputfile Names the output file, default is standard output.

-x Input: expands only \input statements.

-v Verbose: shows progress.

In order to create a HTML version of the documentation do the following:

11

1. Create Aldor source files documentend with the aldoc style file.

2. Extract the documentation .tex by using the extract utility.

3. Create HTML optimized LATEX files by using the aldoc2html utility.

4. Run latex2html to create the HTML files.

1.9 Example

In this section we create the manual pages of the example.as file. The described
type is called Quotient. The following code fragment shows the documented
Aldor file. Note: example.as is shipped with this package but it cannot be
compiled with Aldor because it contains a category not provided by the stan-
dard library. However, it can be used as a template for your own documentation
(extract can create the LATEX file, which can then be processed).

#include "aldor.as"
#unassert ALDOC

#if ALDOC

\thistype{Quotient}
\History{G.~Lagaffe}{1/12/94}{created}

\Usage{import from \this~R}

\Params{ \emph{R} & \altype{IntegralDomain}
& an integral domain\\

}

\Descr{\this~R forms the quotient field of the
integral domain \emph{R}}

\begin{exports}
\category{\altype{Field}}\\
\category{\altype{DifferentialExtension} R}\\
$/$: & (R,R) \to \% & take the quotient of two
ring elements\\
\alexp{coerce}: & R \to \% & coercion from R to \this\\
\alexp{denominator}: & \% \to R & get the denominator of a quotient\\
\alexp{numerator}: & \% \to R & get the numerator of a quotient\\
\end{exports}
\begin{exports}[if R has \altype{FiniteCharacteristic} then]
\category{\altype{FiniteCharacteristic}}\\
\end{exports}
\begin{exports}[if R has \altype{GcdDomain} then]
\alexp{normalize}: & \% \to \% & normalize a quotient\\

12

\end{exports}
#endif

Quotient(R: IntegralDomain):
Join(Field, DifferentialExtension R) with {

/: (R, R) -> %;

#if ALDOC
\alpage{/}

\Usage{n~\name~d}
\Signature{(R,R)}{\%}
\Params{
\emph{n} & R & An element of the ring.\\
\emph{d} & R & An element of the ring.\\
}
\Retval{Returns the quotient \emph{n} over \emph{d}.}
#endif

if R has FiniteCharacteristic then
FiniteCharacteristic;

coerce: R -> %;

#if ALDOC
\alpage{coerce}

\Usage{\name~x}
\Signature{R}{\%}
\Params{ \emph{x} & R & An element of the ring\\ }
\Retval{Returns the quotient with numerator \emph{x} and

denominator 1.
}
#endif

denominator: % -> R;

#if ALDOC
\alpage{denominator}

\Usage{\name~x}
\Signature{\%}{R}
\Params{ \emph{x} & \% & A quotient\\ }
\Retval{Returns the denominator of a quotient.}
\alseealso{\alexp{numerator}
#endif

13

if R has GcdDomain then
normalize: % -> %;

#if ALDOC
\alpage{normalize}
\Usage{\name~x}
\Signature{\%}{\%}
\Params{ \emph{x} & \% & An quotient\\ }
\Descr{Normalize x by eliminating common divisors of

the numerator and denominator.
}
#endif

numerator: % -> R;

#if ALDOC
\alpage{numerator}

\Usage{\name~x}
\Signature{\%}{R}
\Params{ \emph{x} & \% & A quotient\\ }
\Retval{Returns the numerator of a quotient.}
\alseealso{\alexp{denominator}}
#endif
} == add { implementation }

First we produce the corresponding LATEX file by using the extract utility.
extract -m ALDOC example.as

The extract utility creates the file example.tex. Now we have to create the
“manual” LATEX file that looks as follows:

% manual.tex
\documentclass[12pt,hyperref]{aldoc}
\pagestyle{fancyplain}
\makeindex
\begin{document}
\input{example.tex}
\printindex
\end{document}

In the last step we have to compile manual.tex, create the index with makeindex
and compile the manual again.

latex manual.tex
makeindex manual.idx
latex manual.tex

14

Figure 2 and figure 3 show the manual pages produced.
Run aldoc2html -o manual-html.tex" manual.tex. Next, run latex2html
manual-html.tex which creates the HTML files.

15

���������
	���

��������	
����������!
�"�#�%$'&�������(�)��+*

,'��-���./	0�1	�- 2'3546	 7�	��98:-��
4;���
�<�
= >?)���(9@��BA�CEDF���GAH�I) AH)J�I)��"(9@#�KAHCML��#�GA���)

7�	��98:-��
4;���
�<�
$'&��#�"��(9)��'*N
�����GOP��Q�(SR:&��#�"��(9)��!T<(9CULV�H P�"Q�(W��)���(9@��BA�C5L��#�GA���)X=

YFZ54P�-9���
[��I(9CEL
DF�]\^(���(9)����UAHCE_a`���(9)bOc����)G*
d:e f *hgi*kjml $'&�������(�)�� �BAHn:(o��Q�(SR:&��#�"��(9)��p�H q�sr!�t���I)�@�(9C�(9��(9)��KO
u �:(9� u (e *vl w u �:(9� u ���#)x
�"�#�y*z�"��$'&������I(9)��
L�(9){�#�x�I)<AH�"�#� e w|l * @#(9�p�"Q�(SL�(9)����x��)<A������!�H 6AVR:&��#�"��(9)��
)�&��x(9�KAH����� e w|l * @#(9�p�"Q�(W)�&���(9�BA����#�m�H mAtR:&�������(�)��
�} ~*zQ<A�OF[5��)��I��(#�PQ<A��BA u ��(9�"�EOs��� u ��Q{(9)
[��I)����"(#�PQ<AH�KA u �"(9���UOc�"� u
�} ~*zQ<A�Ok� u L{DF�#�GA���)G��Q{(9)
)������GA�C�����(e w�l w)��#�"�GAHCI���9(oA�R0&������I(9)��

�

���������
	��� �

��������	
�����

�������������� �	
�"! #%$'&($*),+ -
./�� ���01	2��	� 3/4657	 89	��;:< ��=5����
�>�
? $ @/��A�BCA;DEA��<F7G�HIFKJ�AMLONP��Q�R
S $ @/��A�BCA;DEA��<F7G�HIFKJ�AMLONP��Q�R

TE	2���� ��6�
$,A;FOU�LK�>VWFOJXAZY<U�G[FONCA���F\?]G�^<A;L S R

_

���������
	��� ����	�����	

��������	
����� �!���#"

$��%�������&����	
�������'����(*),+ -

./������01	2�&	�� 3/4657	 89	�� �����:5����
�;�
<) =/>���?@� AB��>�C7��DECGF��#�IHJ>�K

LB	2�&�����6�
)M� CIN��G>;OPCIFQ�SR�N��TCIH@��>�CMUMHJCIF9>�NQAB� �'V�CI�T�W<9V�>;XYX���>��ZABHJ>;V�CG�Z�#[T\

]

���������
	��� ��	������������������

��������	
��� �"!$#&%'��(*)+!$,.-

/0�1�������2����	
������!$#&%'��(*)+!$,�35476 8

9:��������	;�2	�� <:=�>?	 @A	�� BC����>0���
���
D 4 EGF;H�!I)J%'� ��)

K&	;�2�������
8.�)JH�,+��LM)JN"�O��� ��!$#P%Q��(�)J!$,.!�RS(TFCH�!$)+%Q� ��) U

/0	�	WV&X
� �
��H�#&� ,Y(*)J!I, Z\[

]

Figure 2: Manual pages from “manual.tex”.

16

���������
	��� �������������
��	

��������	
���! #"%$�&('()�*,+

-.�/�������0����	
���! #"%$�&('1)2*�35476 4

89��������	:�0	�� ;9<>=?	 @%	��2A�����=.���
���
B 4 C9�ED�F��!G#'(*���G

@�	��2A����
=H���
���
I �! #"%$�&('()�*KJ%L�MN*�&('("O'(��$�G#'(�QPSRT�U"O"N�U�OV�'(W�'/XY�U ZX[��\]G_^�*S��F�"O*2 `$�G#�U a$b��VcV�*2���!"N'(�d$bG#�! 2e

f

���������
	��� ������	����������

��������	
����� �"!$#&%(')!+*

,-�.�������/����	
����� �"!$#&%0'1!"24365 7
89��������	:�/	�� ;9<�=>	 ?@	��"AB���C=-���
���
D 3 EGF:��')%(HI�"��%

J 	:�/�������
7K�"%(��!0��L+%(MN�O����� ��!P#&%0'1!K'�QR#�F:�N'1%(HI�"��%"S

,-	�	UT V
�"�
W �"�N'1� HI��#&%0'1!"XZY

[

���������
	

���������������
�����������

��������������
��!�#"%$'&��)(��

���������������*
���"+����$,���!�

��������������-

�.�!�������/���10

0

Figure 3: Manual pages from “manual.tex”. (continued)

17

2 Reference

This section describes the macros alphabetically. #1, #2 refer to argument 1,
argument 2 respectively.
\alalias{type{{alias}{function} creates a link to type:alias and prints the name\alalias

function. \alalias is the basic command where other commands rely on.
\albuiltin{#1} make a reference to the builtin type #1. Not implemented in\albuiltin

the current version of aldoc.

\albuiltin{SingleFloat}

Starts the example part of the manual page. The title Example is printed inalex

boldface and the left margin is indented for the text that follows.

\begin{alex}
\begin{ttyout}
s:= apply((n:Integer):Integer +-> n+n, t)

\end{ttyout}
returns a copy of t with all nodes

doubled.

\end{alex}

Example

s:= apply((n:Integer):Integer +-> n+n, t)

returns a copy of t with all nodes doubled.

\alexp{#1} is shorthand for \alfunc{\this}{#1}.\alexp

\alexp{start!}

\alexttype{#1}{#2} makes a link to type #2 in library #2. Not implemented\alexttype

in the current version of aldoc.

\alexttype{Sumit}{Fraction}

\alfunc{#1}{#2} prints function #2 and makes it a hyperlink to the aspage for\alfunc

function #2 in the type #1. It is a shorthand for \alalias{#1}{#1}{#2}

\alfunc{Timer}{start!}

\alpage{#1} Starts a new manual page, i.e. the description of a new function.\alpage

The function’s name #1 is stored in an internal variable (see also \name) and
the old page is cleared.

\alpage{apply}

\alwhere prints where and opens a three column tabular. The environment isalwhere

usually used after an export environment.

\begin{exports}
\ldots & & \\
order: & (R,Z) \to \altype{Partial} Z

& bounded order at the place \\
\end{exports}
\begin{alwhere}
Z & == & \altype{Integer} \\
\ldots & & \\
\end{alwhere}

Exports

. . .
order: (R,Z) → Partial Z bounded order at place
. . .

where
Z == Integer
. . .

18

\altarget{#1} creates an alternative hyper-target name. The command is\altarget

useful when you want to link a page under serveral names.
Example: If \alpage{map} documents both map and map!, then add the
line \altarget{map!} right after it. This way, if both \alexp{map} and
\alexp{map!} are in the exports list, they will both point to that page.
\altype{#1} prints type #1 and makes it a hyperlink to the main page of that\altype

type, if defined.

\altype{Timer}

\altypes{#1} puts #1 in the table of contents. This is useful when types are\altypes

grouped and a title should appear in the table of contents.
\category{#1} Combines 3 columns of a tabular. The command is an abbre-\category

viation for \multicolumn{3}{l} and can be used in any tabular environment
but is mainly used in exports sections.

\begin{exports}
\ldots
\category{\altype{CommutativeRing}} \\
\ldots
\end{exports}

Exports

. . . & & \\
CommutativeRing
. . . & & \\

\Descr{#1} Short form for the descr environment.\Descr

\Descr{Makes a copy of t by applying f

to all the nodes of t.}
Description

Makes a copy of t by applying
f to all the nodes of t.

Starts the description part of the manual page. The title Description is printeddescr

in boldface and the left margin is indented for the text that follows.

\Descr{Makes a copy of t by applying f

to all the nodes of t.}
Description

Makes a copy of t by applying
f to all the nodes of t.

\Errors{#1} Short form for the errors environment.\Errors

\Errors{none} Errors

none

Starts the errors part of the manual page. The title Errors is printed in boldfaceerrors

and the left margin is indented for the text that follows.

\begin{errors}
none

\end{errors}

Errors

none

\begin{exports}[#1] The environment opens a tabular environment withexports

three column called export name, signature and description. Optionally, a con-
dition under which the functions are exported can be given.

19

\begin{exports}
apply: & (S \to S, \%) \to \% &

Apply a function to all the nodes \\
\ldots & & \\
\end{exports}

Exports

apply: (S → S, %) → % Apply a function
to all the nodes

. . .

\begin{exports}[if R has

\altype{FiniteCharacteristic} then]

\category{\alstype{FiniteCharacterisic}}\\
\ldots & & \\
\end{exports}

Exports

if R has FiniteCharacteristic then
FiniteCharacteristic
. . .

\History{#1}{#2}{#3} Stores history information belonging to the type or\History

function that is currently described. The author’s name is put in #1, the date
of the change in #2 and any comment in #3.4

\History{A. Einstein}{1912/3/13}{creation of the Relativity Theory}

Returns the name of the described function, i.e. the name that was stored in\name

the \alpage macro. (see also \alpage)

\name apply

\Params{#1} Short form for the params environment.\Params

\Params{S & Order & The type of the

nodes}

Parameter Type Description

S Order The type of the nodes

Starts the Parameter part of the manual page. The title Parameter is printed inparams

boldface and the left margin is indented for the text that follows. Next, a tabular
environment is opened with the columns parameter, type and description. This
column header is printed in boldface.

\begin{params}
S & Order & The type of the node \\
t & \% & A binary tree \\
\end{params}

Parameter Type Description

S Order The type of the nodes
t % A binary tree

\Remarks{#1} Short form for the remarks environment. (see also remarks)\Remarks

\Remarks{\this\ still crashes when

\ldots}
Remarks

BinaryTree still crashes when
. . .

Starts the remarks part of the manual page. The title Remarks is printed inremarks

boldface and the left margin is indented for the text that follows.
4The current version of aldoc doesn’t process this information yet.

20

\begin{remarks}
\this\ still crashes when \ldots
\end{remarks}

Remarks

BinaryTree still crashes when
. . .

\Retval{#1} Short form for the retval environment. (see also retval)\Retval

\Retval{Returns the newly created tree.

t remains unchanged.}
Returns

Returns the newly created
tree. t remains unchanged.

Starts the returns part of the manual page. The title Returns is printed inretval

boldface and the left margin is indented for the text that follows.

\begin{retval}
Returns the newly created tree.

t remains unchanged.

\end{retval}

Returns

Returns the newly created
tree. t remains unchanged.

\alseealso{#1} The title See Also is printed in boldface and the left margin\alseealso

is indented for the text that follows.

\alseealso{\alexp{apply}} See Also

apply!

Puts the information in \shortthis instead of \this into the header. If no\shortheader

short form was given, then \this is put into the header. The command must
follow immediately after \thistype.

\thistype[BinTree]{BinaryTreeCategory}
\shortheader
Returns the short form of the type name. \shortthis is set by \thistype\shortthis

command. (see als \thistype)

\shortthis BinTree

\Signature{#1}{#2} This macro is used if only one signature is defined. The\Signature

title Signature is printed in boldface and the left margin is indented for the
signature that is written in the following way: \name: #1 → #2

\Signature{(S \to S, %)}{%} Signature

apply: (S → S, %) → %

\Signatures{#1} Short form for the signatures environment. (see also\Signatures

signatures) Note: if only one signature exists, then use the short form
\Signature. (see also \signature)

\Signatures{apply: & (S \to S, %)

\to \% \\}
Signatures

apply: (S → S, %) → %

Starts the signatures part of the manual page. The title Signatures is printedsignatures

21

in boldface and the left margin is indented for the signatures that follow. Addi-
tionally, a tabular environment is opened with two columns. (name, signature)

\begin{signatures}
apply: & (S \to S, %) \to % \\
\end{signatures}

Signatures

apply: (S → S, %) → %

22

Returns the name of the type that is described. \this is set by \thistype\this

command. (see also \thistype)

\this BinaryTreeCategory

\thistype[#1]{#2} Starts the description of type #2. The name of the type\thistype

(#2) is stored in \this. Optional a short form of the name (#1) that is stored in
\shortthis can be given. \thistype starts a new page and puts the type name
into the header, the table of contents and the index. Note: if \shortheader
is following immediately after a \thistype command, then the short form
(\shortthis) is put into the header.

\thistype[BinTree]{BinaryTreeCategory}

\Usage{#1} Short form for the usage environment. (see also usage)\Usage

\Usage{apply(f,t)} Usage

apply(f,t)

Starts the usage part of the manual page. The title Usage is printed in boldfaceusage

and the left margin is indented for the text that follows.

\begin{usage}
apply(f,t)

\end{usage}

Usage

apply(f,t)

3 How to print this manual

There are two ways to print this document. The first one is to compile this file
with LATEX i.e. latex aldoc.dtx, the second one is by compiling a new LATEX
file that looks as follows:

\documentstyle[]{article}
\usepackage{doc} % include doc package
\usepackage{epsfig} % include epsfig package
\EnableCrossrefs % full index
\CodelineIndex % by line numbers
\RecordChanges % make change history
\OnlyDescription % no code documentation
\setlength{\parindent}{0pt} % no indents
\begin{document}
\DocInput{aldoc.dtx} \PrintIndex \PrintChanges

\end{document}

Remove the command \OnlyDescription if you want to print the aldoc source
code. Note: the documentation of the code is only needed if you are going to
change the class file.

23

In both compilation methods you have to run the following commands in order
to get the aldoc manual:

1. latex aldoc.dtx

2. makeindex -s gind.ist aldoc

3. makeindex -s gglo.ist -o aldoc.gls aldoc.glo

4. latex aldoc.dtx

References

[1] Michael Gossens, Frank Mittelbach, Alexander Samarin, The LATEX Com-
panion, Addison–Wesley, 2nd printing 1994, ISBN 0-201-54199-8.

24

Index

Numbers written in italic refer to the page where the corresponding entry is
described; numbers underlined refer to the code line of the definition; numbers
in roman refer to the code lines where the entry is used.

A
\alalias 6, 18
\albuiltin 7, 18
\alconstant 8
alex (environment) 8, 18
\alexp 6, 18
\alexttype 7, 18
\alfunc 6, 18
\alpage 4, 18
\alseealso 9, 21
\altarget 7, 19
\altype 6, 19
\altypes 6, 19
alwhere (environ-

ment) 7, 18

C
\category 7, 19

D
\Descr 5, 19
descr (environment)

. 5, 19

E
environments:

alex 8, 18

alwhere 7, 18

descr 5, 19

errors 19

exports 5, 19

params 5, 20

remarks 9, 20

retval 8, 21

signatures . . . 7, 21

usage 4, 23

\Errors 19

errors (environment) 19

exports (environ-
ment) 5, 19

H

\History 4, 20

\hyperlinks 5

N

\name 4, 20

P

\Params 5, 20

params (environment)
. 5, 20

R

\Remarks 9, 20

remarks (environ-
ment) 9, 20

\Retval 8, 21

retval (environment)
. 8, 21

S

\shortheader 4, 21

\shortthis 4, 21

\Signature 8, 21

\Signatures 7, 21

signatures (environ-
ment) 7, 21

T

\this 4, 23

\thistype 3, 23

U

\Usage 4, 23

usage (environment)
. 4, 23

Change History

v1.0
General: First Beta release 1

v1.1
General: Fixed some minor bugs . 1

v2.0
General: Renamed it to aldoc and

added hyperref commands . . . 1
V3.0

General: Renamed all commands
from asXXX to alXXX.
Added aldoc2html support for
LATEX2HTML translation . . . 1

25

