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Résumé (de 1700 à 4000 caractères espaces compris) 

L'objectif principal de cette thèse est l'étude des problèmes et des applications qu'ils se développent dans 

le domaine de la nanophotonique. Plus précisément, nous considérons les structures de métaux nobles 

où les modèles de dispersion locaux sont insuffisants et la non-localité doit être incluse dans le modèle. 

Ici, le système physique sous-jacent est typiquement modélisé comme des équations de Maxwell 

couplées à des lois de dispersion spatio-temporelles dans le régime des longueurs d'onde optiques. Bien 

que les solutions analytiques puissent être dérivées pour un petit nombre de problèmes, cela n'est 

généralement pas possible pour les dispositifs du monde réel, qui présentent souvent des géométries 

complexes et des compositions de matériaux. Suite à une analyse rigoureuse des propriétés physiques et 

mathématiques du modèle continu original, nous proposons une méthode de type à éléments finis 

d'ordre élevé pour discrétiser le modèle continu dans l'espace et le temps. Les méthodes discontinues 

Galerkin (DG) sont bien établies pour la discrétisation spatiale des équations de Maxwell. Cette thèse 

prolonge les travaux antérieurs sur les systèmes couplés des équations de Maxwell et les lois de 

dispersion spatiale. Nous utilisons des méthodes explicites de Runge-Kutta (RK) d'ordre élevé pour la 

discrétisation temporelle. L'intégration temporelle RK garantit un ordre de convergence espace-temps 

élevé du schéma entièrement discret, qui repose sur un schéma de preuve de convergence. Parallélisme 

MPI (Message Passing Interface), éléments curvilignes et PML (Perfectly Matched Layers) autour des 

aspects d'implémentation et d'évaluation des performances dans le cadre du logiciel développé à Inria 

Sophia Antipolis-Méditerannée (DIOGENES). La méthode développée est appliquée à de nombreuses 

simulations nanophotoniques réelles de dispositifs où des observables tels que la réflexion, la section 

transversale (CS) et la spectroscopie de perte d'énergie électronique (EELS) sont étudiés. Entre autres, 

nous élaborons une feuille de route pour un étalonnage expérimental robuste du modèle de dispersion 

non local linéarisé basé sur la solution de problèmes inverses et la quantification d'incertitude (UQ) des 

paramètres géométriques stochastiques. Nous avons également amélioré les accords de simulations 

numériques non locales et les résultats expérimentaux pour la résonance des plasmons d'espacement des 

nano-cubes d'argent. Cela démontre la pertinence de simulations non locales précises. 
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Abstract (from 1700 to 4000 prints including spaces) 

The main objective of this thesis is the study of problems and applications as they arise in the  eld of 
nanophotonics. More speci cally, we consider noble metal structures where local dispersion models are 
insu cient and nonlocality has to be included in the model. 
Here, the underlying physical system is typically modeled as Maxwell’s equations coupled to spatio- 
temporal dispersion laws in the regime of optical wavelengths. While analytical solutions can be derived 
for a small number of problems, this is typically not possible for real-world devices, which often feature 
complicated geometries and material compositions. 
Following a rigorous analysis of the physical and mathematical properties of the original continuous 
model, we propose a high order  nite element type method for discretizing the continuous model in 
space and time. 
Discontinuous Galerkin (DG) methods are well established for the spatial discretization of Maxwell’s 
equations. This thesis extends previous work on the coupled systems of Maxwell’s equations and spatial 
dispersion laws. We use explicit high-order Runge-Kutta (RK) methods for the subsequent time 
discretiz- ation. RK time integration guarantees a high space-time convergence order of the fully-discrete 
scheme, which is underpinned by a sketch of a convergence proof. 
Message Passing Interface (MPI) parallelization, curvilinear elements and Perfectly Matched Layers 
(PMLs) round o  implementation aspects and performance assessments in the scope of the Software 
developed at Inria Sophia Antipolis-Méditerannée (DIOGENeS). 
The developed method is applied to numerous real-world nanophotonics simulations of devices where 

observables like re ectance, Cross Section (CS) and Electron Energy Loss Spectroscopy (EELS) are 

studied. Inter alia, we elaborate a roadmap for a robust experimental calibration of the linearized 

nonlocal disper- sion model based on the solution of inverse problems and Uncertainty Quanti cation 

(UQ) of stochastic geometric parameters. We also  nd improved agreements of nonlocal numerical 

simulations and exper- imental results for the gap-plasmon resonance of silver nano-cubes. This 

demonstrates the relevance of accurate nonlocal simulations. 
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�.� Motivation and objectives

Physical and technological context Nanophotonics research has led to astonishing technologies over

the last decades. For example, so-called metasurfaces; arti�cially shaped thin-sheet surfaces, which al-

low for a systemic phase modulation of the re�ected and transmitted waves [��]. Fabrication advances

have permitted high-performance solar cells with e�ciencies up to 44.7% [��]. In medical research,

nano-particles are now used for cancer cell killing thanks to opto-thermal heating [���]. Sophisticated

nano-cube based metasurfaces are now being used for nano-scale holography [��] and extremely precise

molecule sensing [���]. Figure �.� illustrates such a nano-cube metasurface for optical molecule detection

and Figure �.� shows the world record solar cell from ����.

Goal-oriented engineering of nanophotonic devices is a challenging task. In the beginning, simpli�ed

standard geometries like spheres [��], cylinders [���], half-spaces or gap-structures [�, ��, ���], where

analytical or semi-analytical solutions exist, have signi�cantly contributed to the physical understanding

and the design of this type of structures. Nevertheless, the experimentalist’s experience and ‘educated

guess’ have played and will always play an essential role in the design process as well in the interpreta-

tion of measurements [��, ��]. Modern simulation tools now grant access to microscopic insights, which

have been sealed even for most modern measurement equipment. For example, exact �D �eld distribu-

tions, transient wave dynamics and controlled parameter studies or systematic optimizations are almost

inaccessible without numerical models.

Of course, a model is only useful if its reliability is ensured. Electromagnetic wave-optical models in

nanophotonics are based on Maxwell’s equations in vacuum and materials. The considered wavelengths

in the visible spectrum lead to dispersive material laws for dielectrics as well as metals. Accurate ma-

terial models are still an issue today. Historically, Paul Drude proposed a kinetic model for the electron

transport, especially in metals, in the early 20th century [��]. His model was extended by Hendrik Ant-

oon Lorentz, commonly known as the Drude-Lorentz model, shortly after. Measurements by Johnson

and Christy [��] have been the standard reference of the Drude model parameters for decades. Recently,

more speci�c measurements have been realized taking into account the single-crystalline and evaporated

nature of, for example, gold [���].

�



Figure �.� | Molecule sensing with nano-cubes. Artistic image showing the nano-cubes resting on a Na�on �lm interacting

with water molecules. Taken from [���].

High-end fabrication technologies nowadays simultaneously enable a minuratization and accuracy

down to several nanometers [���, �, ��]. Such tiny structures � tend to host very large wave vectors,

which allow thewave to couple incoherently to the free electron gas of themetal. This is since the e�ective

wavelength, which becomes comparable to the mean free path length of the quasi-free electrons. Pauli’s

exclusion principle then starts to impact the system’s response [���, ���, ��]. Clearly, this is a quantum

mechanical e�ect and classical models like Drude, Drude-Lorentz, etc. are insu�cient. Boardman [�]

has proposed a nonlinear hydrodynamic model with a quantum-mechanical pressure term in order to

account for the quantum-mechanical e�ects in an otherwise classical model.� This family of models are

called nonlocal because they include the mutual electron interaction of neighboring electrons. Various

sub-models have been derived since Boardman, e.g. linearized �uid models [��, ���, ���, ���], linearized

�uid models with spill-out [���, ��], i.e. to include the possibility of tunneling, and nonlinear �uid models

[��, ���], all of them being characterized nonlocal.

While numerous theoretical studies of the physical properties and their in�uence on system response

[���, ���, ���, ���, ��, ��] have been conducted and many numerical solution strategies [��, ��, ���, ��,

���, ��, ���, ���] have been developed, only a manageable number of experimental evidence has been

published [���, ��, ���]. All experimentally observed nonlocal e�ects have so far relied either on very

small spherical geometries [���] or gap structures with extremely thin gaps [��]. However, spherical

particles tend to build out a faceted nano-particle shape for radii below 20 nm and gaps below 2 nm
su�er from tunneling (which is not included in most of the �uid models). This renders it di�cult to

properly distinguish nonlocal e�ects from geometric deviations for the sphere setup and from spill-out

e�ects in the gap case. Hence, these results have to be taken with care and may be con�rmed by further

more robust setups.

Gap-plasmons are naturally good candidates for nonlocality due to their high wavenumber [���].

Silver nano-cubes on gold substrates have proved to nicely couple incident plane waves to their gap mode

between the cube and the substrate. Moreau et al. [���] have observed increasing discrepancies between

measurements and simulations based on local dispersion models for gap sizes below 5 nm, which is in

line with theoretical predictions. Unfortunately, when these experiments were carried out, no simulation

tool accounting for spatial dispersion was available yet. Such a desired tool requires the capabilities to

�Tiny refers to the overall size or geometric details like gaps.
�Alternatively, Density functional theory (DFT) simulations can be used as a full quantum-mechanical approach. DFT is

unfortunately restricted to very small systems due to heavy computational costs.

�



Figure �.� | Solar cell. Schematic layer structure of the four-junction wafer bonded solar cell (left) indicating the composition

of the subcell materials with bandgap energies, the location of tunnel diodes and the wafer bond. Scanning electron microscopy

image of the concentrator cell design with a designated area of 5.2 mm2 (right). The bonded solar cell had two terminals with

parallel grid �ngers and two rectangular shaped busbars forming the front contact. Taken from [��].

simulate realistic nano-cubes including appropriate material models and rounded corners and edges, well

known to play an important role in the system response [���].

Motivated by the experimental discrepancies between nano-cubes and possibly other systems such as

spherical dimers, grating structures and prisms, this thesis has developed and studied a full-wave �D sim-

ulation algorithm, which permits the numerical investigation of arbitrarily shaped nanophotonic devices

including spatial dispersion material models. Furthermore, if it turned out that the experimental di�er-

ences could be explained by a more complex material law, i.e. nonlocal dispersion model, we immediately

would have a powerful �D tool at hand, whichwas able to predict and quantify the in�uence of nonlocality

in arbitrary systems.

Numericalmethods for computational nanophotonics Systematically tailored nanophotonic devices

require appropriate and reliable models in the design process. Field solutions and cross-section spectra

for basic device components like dielectric and metallic nano-spheres have been developed by Gustav

Mie in the early 20th century [��]. His theory has been extended to more general setups [���] as well

as EELS spectra [��] in the last decades. The clear advantages of analytical solutions are extremely fast

parameter studies and a deep understanding of parameter dependencies.

However, state of the art nanophotonic devices with increasing functionalities exceed the scope of

analytical solutions. The Rigorous CoupledWave Analysis (RCWA) bridges the world of purely analytical

solutions and completely general numerical methods. RCWA has been extensively used in nanophotonics

for last three decades [��] and has paved the way for many ground-breaking contributions.

Plasmonic simulations with RCWA, however, su�er from slow convergence due to the metallic losses

[��] and non-Cartesian geometries. This renders RCWA impractical for curved material interfaces and

motivates alternative numerical methods, which are not limited by this restriction.

Limiting this overview tomesh-based numerical methods, key-features of an ideal numerical method

for Maxwell’s equations in the context of nanoplasmonics would be:

• Locally adaptive mesh-re�nement that accounts for small geometric details on large structures;
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• Boundary conformity allowing a good resolution of surface plasmonic e�ects;

• Parallelization-ready for large and multi-scale devices.

Full-wave Maxwell’s equations can be formulated in the time-domain or in the frequency-domain. Sys-

tems with high quality factors or smallband applications are preferable in frequency-domain. Broadband

applications and nonlinear devices are classically more suited to the time-domain.

Frequency-domain methods Well known frequency-domain methods in nanophotonics are for ex-

ample Finite Element Methods (FEMs) [��, ���, ��, ���] and Boundary Element Methods (BEMs) [���].

These methods have proved to be very e�cient for medium size geometries but become costly for in-

creasing amounts of Degree of Freedoms (DoFs) since they require the solution of a sparse (FEM) or

dense (BEM) linear system. Especially for nonlocal dispersion models, extreme local mesh re�nement

is required and leads to high numbers of DoFs. If the system matrix grows to a certain size, iterative

methods have to be used. Most nanoplasmonic devices operate in a sub-wavelength con�guration and

will hence lead to badly-conditioned matrices with high amounts of DoFs. Unless a good preconditioner

is available, these systems are very expensive or impossible to solve iteratively.

Time-domain methods Time-domain methods with explicit time integration circumvent the solu-

tion of a large linear system and immediately provide a broadband solution. Working in time-domain is

only advantageous if the time-domain simulation is more e�cient thanN frequency-domain solver calls,

where N is the number of frequency samples. Additionally, nonlinear e�ects can be directly addressed

in the time-domain.

Finite Di�erences Time-Domain (FDTD) [���, ��] and Finite Integration Technique (FIT) [���, ���]

methods are well established in the microwave regime and also used for optical frequencies. However,

these methods su�er from staircase e�ects at domain interfaces making a boundary conformity more

di�cult [���]. Additionally, the staggered allocation of primal and dual �elds requires extreme mesh-

re�nements at metal boundaries where the �elds are discontinuous.

Discontinuous Galerkin Time-Domain method Local mesh re�nement, boundary conformity and

broadband simulations can bewell treated byDiscontinuousGalerkinTime-Domain (DGTD)methods [��,

���, ��, ���, ���]. Based on a local Finite Element (FE) ansatz that leads to block-diagonal mass matrices

(easily invertible), they inherit advantages of a FE framework and permit explicit time integration. In

direct comparison with FDTD, DGTD further shows improved numerical dispersion properties due to the

high order nature of the formulation. The local formulation, which is responsible for the desired block-

diagonal matrix, claims doubled DoFs at the interface of mesh cells as depicted in Figure �.� (a). This

increases the number of DoFs, which obviously is disadvantageous but naturally allows discontinuous

�eld solutions similar to Finite Volume (FV) methods [��, ��].

Managing discontinuous solutions (see Figure �.� (b)) is especially important for nonlinear problems

where shocks can build up. We predominantly exploit this property at material interfaces in the scope of

linear nanophotonics. Additionally to this physically motivated aspect, DGTD is intrinsically suitable for

parallel computing due to its local basis functions, i.e. element-wise formulation.

State of the art numerical methods for nonlocal dispersion models Various publications dealing

with linear nonlocal dispersion models for nanophotonics in the frequency-domain can be found in liter-

ature. All of them consider �D problems. Most publications rely on COMSOLMultiphysics computations,

e.g. [���]. Nevertheless, there are some papers that present a detailed FEM (Nédélec) approach for the

�



(a) Tetrahedra with DoF on the element

interface. Each DoF on the cell interface is

doubled for DGTD.

(b) Discontinuous solution. The �eld solution is obviously

discontinuous at the mesh cell interfaces even beyond the ma-

terial interface.

Figure �.� | Discontinuous Galerkin illustration.

hydrodynamic model, e.g. [��]. Beyond volume based methods, BEM has also been successfully applied

to nonlocal dispersion models [���, ��]. In the time-domain, a FDTD method has been proposed in [��].

In the DGTD framework, more attention has been given to the nonlinear nonlocal model by Hille et

al. [��] and more recently by Moeferdt [���].

Still, to the best of our knowledge a comprehensive numerical analysis together with performance

considerations and rigorous comparisons to experimental data has not yet been addressed in the com-

munity. These are leading motivations for this thesis.

Challenges and Goals The general goal of this work is the development, analysis, implementation,

and application of a robust DGTD method for Maxwell’s equations coupled to nonlocal dispersion laws.

Classical challenges are to �nd a stable and convergent formulation. These characteristics have to be

proved and accompanied by implementation and validation. Real world simulations that include nonlocal

dispersion are very sensitive to inaccurately resolved material interfaces, which we want to tackle with

an isoparametric curvilinear formulation.

Physically, the nonlocal model depends on material parameters, which have not yet been thoroughly

measured. Our goal is the proposition of a roadmap for a robust calibration strategy based on experiments.

Aiming for realistic simulations and experimental evidence of nonlocal e�ects, the ultimate benchmark

of our numerical scheme will be the comparison with experimental data.

�.� Outline

The remainder of this thesis is structured as follows. We recall the main principles of electrodynamics

in Chapter �. A particular focus is put on the context and motivation of di�erent dispersion models for

metals in the visible spectrum. Complementary to a discussion of the physical properties of the mod-

els, we have also investigated mathematical aspects of the models. Chapter � conducts the derivation

and numerical analysis of the DGTD scheme, which we have applied to Maxwell’s equations that are

simultaneously coupled to a generalized local dispersion model and spatial dispersion model. Towards a

simulation tool that is capable of simulating realistic nanophotonic devices, Chapter � recalls well known
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�eld sources, domain-truncation techniques and observables. It also proposes and discusses some new

aspects of domain-truncation for in�nite half-space scattering problems.

After a proper de�nition of all ingredients and their implementation in the DIOGENeS suite, Chapter

� presents numerical results. These results range from a thorough validation phase to applied simulations

of for example spherical dimers. Beyond pure numerical investigations, a comparison with experiments

is done in Chapter � metallo-dielectric gratings and nano-cubes. Chapter � concludes the main body of

this work with propositions for future extensions and research directions.

Achievements The main achievements and scienti�c contributions of this thesis can be summarized

as follows:

• A theoretical study of the continuous Maxwell-hydrodynamic system;

• The proposition of a DGTD formulation for this system and its numerical stability and convergence

analysis;

• The demonstration of signi�cant performance improvements for curvilinear elements compared to

linear meshes in the context of the linearized �uid model�;

• An investigation of Scattered Field (SF)-Complex Frequency Shifted (CFS)-PMLs in the time-domain

and a workaround with Total Field / Scattered Field (TF/SF)-CFS-PMLs;

• The proposition of a post-fabrication telemetry for metallo-dielectric gratings and a theoretical

prediction of the experimental observations. Special attention was given to geometric uncertainties

and whether their in�uence exceeds the impact of nonlocality;

• The accurate �D simulation of silver nano-cubes and the demonstration of experimental evidence

by means of blueshifts on the gap-plasmon;

• The extension of the DIOGENeS software suite by the numerical treatment of the linearized hydro-

dynamic equations, isoparametric curvilinear elements and MPI parallelization.

�Here, we �xed the error level and used di�erent mesh re�nements for the linear and curvilinear meshes.
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This chapter introduces the physical framework of electrodynamics we will need throughout this thesis.

Maxwell’s equations hereby play a key role and can be considered as the reference framework for all

further investigations. Constitutive relations, accounting for the material responses, are subject to our

particular attention, as they build the physical basis of this work. Beyond these two key ingredients, we

provide a selection of peripheral aspects and consequences ofMaxwell’s equations like the conservation of

charges, the electromagnetic wave equation, the de�nition of electromagnetic energy and Poynting’s the-

orem, and Lorentz’ force. We will rely on those supplementary results for the de�nition and explanation

of hydrodynamic electron model, i.e. the free electron behavior in metals, as well as several observables

like re�ectance, CSs or EELS signals.

After the introduction and physical discussion of the material models, a more mathematics oriented

study of the full set of equations is carried out. Namely, the proof of existence and uniqueness of the Max-

well’s equations, coupled to a linearized �uid model and an energy principle together with hyperbolicity

of the same system of equations.

We conclude this chapter with a rich set of analytical solutions. Those will be later used for di�erent

purposes. For example, the cavity problem will serve as reference solutions for convergence studies and

validation purposes. In the same sense, we use Mie theory in order to provide more complex di�raction

problems, which allows to test our numerical implementation against analytical solutions in a most real-

istic and complex scenario. The free space plane wave solution is also outlined. We conclude with the

analytical solution of the electromagnetic �eld of a moving charge in free space which will be employed

as a source term for EELS simulations, afterwards.

�.� De�nitions and notations

For a given open bounded domain Ω ⇢ R
3, we use standard notations:

• L2(Ω), the space of square integrable real-valued scalar functions with its canonical scalar product

h·, ·iΩ and the associated norm ||·||Ω. L2(Ω) will be its vectorial analogue equipped with the ca-

nonical vectorial scalar product (resp. norm) that will be still denoted by h·, ·iΩ (resp ||·||Ω);
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• H1(Ω) the space of square integrable functions with square integrable gradient, with H1(Ω) its
vectorial analogue;

• H1
0(Ω) the space of square integrable functions with square integrable gradient and vanishing trace

on the boundary, withH1
0(Ω) its vectorial analogue;

• H(curl,Ω) the space of square integrable functions with square integrable curl;

• H0(curl,Ω) the space of square integrable functions with square integrable curl and vanishing

tangential trace on the boundary;

• L2(@Ω) with its canonical scalar product h·, ·i@Ω and the associated norm ||·||@Ω.

Classically, for a given vector �eld A of R3, r⇥A, and r ·A respectively denote the curl and the div

operator applied toA.

�.� Transformations

�.�.� Fourier transformation

The temporal Fourier’s transformation allows insights into the frequency spectrum of an arbitrary time

domain signal f(t) which is at least an element of the functional space L1(Ω). The transformed signal

F (!) is de�ned by

F (!) :=
1p
2⇡

+1
ˆ

−1

f(t) exp (−i!t) dt =: F {f} , (�.�.�)

with the inverse transformation

f(t) :=
1p
2⇡

+1
ˆ

−1

F (!) exp (i!t) d! =: F−1 {F (!)} . (�.�.�)

�.�.� Lorentz transformation

Lorentz’ transformation relates space-time of two inertial frames that are moving relatively to each other

with a constant velocity. Figure �.� depicts relation of the rest (laboratory) frame and the moving frame

for an electron in free space. The moving frame is chosen such that the electron does not move within

the moving frame and is hence a static and non-moving charge. In order to obtain the trajectory and

electromagnetic �elds in the rest frame, a Lorentz transformation is required. Comprehensive and didactic

discussions on special relativity theory can be found in [��]. Assuming a constant motion of the moving

frame v = vex, with (ex, ey, ez) being the canonical basis of R
3, v 2 R

3 and v = |v| 2 R, yields for the

space and time in both frames

t0 =
t− vxp
1− (v/c0)2

, x0 =
x− vtp
1− (v/c0)2

,

y0 = y, z0 = z,

(�.�.�)
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Here, (x, y, z, t) are the coordinates in the rest frame and (x0, y0, z0, t0) their counterpart in the moving

frame. The electromagnetic �elds read similarly

{E0}x = {E}x, {B0}x = {B}x,

{E0}y =
{E+ v ⇥B)}yp

1− (v/c0)2
, {B0}y =

{B− v ⇥E)}yp
1− (v/c0)2

,

{E0}z =
{E+ v ⇥B)}zp

1− (v/c0)2
, {B0}z =

{B− v ⇥E)}zp
1− (v/c0)2

.

(�.�.�)

Having these transformation rules at hand, we are now able to transform the electromagnetic �eld from

inertial frame to a moving frame and vise versa. Please note that these equations do not hold for acceler-

ated moving frames where
d

dt
v 6= 0.

ve

E

vr

EÕ

Figure �.� | Moving frame for Lorentz transformation. The black frame is the laboratory (rest) frame while the gray frame

moves with the relative velocity ve. Here, the origin of the moving frame is set up in a way that it exactly meets the center of

mass of a moving electron. Hence, the electron appears to be at rest in the moving frame.

�.� Maxwell’s equations

The complete set of macroscopic Maxwell’s equations that describe the spatio-temporal evolution of elec-

tromagnetic waves on a domain Ω ⇢ R
3, over a given time interval [0, T ] (T > 0), are de�ned for all

(r, t) 2 Ω⇥ [0, T ] by (see for example [��])

r⇥E(r, t) = −@tB(r, t), r ·D(r, t) = ⇢(r, t),

r⇥H(r, t) = @tD(r, t) + J(r, t), r ·B(r, t) = 0,
(�.�.�)

with E,D,H,B,J : Ω⇥ [0, T ] ! R
3 and ⇢ : Ω⇥ [0, T ] ! R. Here, E andH represent the electric and

magnetic �eld, respectively. The magnetic �ux density is denoted byB and the electric displacement and

current density respectively byD and J, and the charge density by ⇢.
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Applying Stokes’ theorem and Gauss’ theorem to (�.�.�), Maxwell’s equations can be written in in-

tegral form
ˆ

@S

E(r, t) · t dr = −
ˆ

S

@tB(r, t) · n d2r,

ˆ

V

D(r, t) · n d3r =

ˆ

@V

⇢ d2r,

ˆ

@S

H(r, t) · t dr =

ˆ

S

(@tD(r, t) + J(r, t)) · n d2r,

ˆ

V

B(r, t) · n d3r = 0,
(�.�.�)

Here, the in�nitesimal spatial elements dr, d2r, and d3r represent the scalar line element, the scalar

surface element where the tangential vector t is in direction of the contour, normal vector n points

outwards the volume V ⇢ Ω and S ⇢ R
2. Figure �.� (a) illustrates the geometric relation for Ampère’s

law and Figure �.� (b) for Gauss’ law and the absence of magnetic monopoles. Since Maxwell’s equations

have been discovered individually, they are commonly known as Faraday’s law, Ampère’s law, Gauss’s law

and the absence of magnetic monopoles [��]. These equations are supplemented by material laws linking

n

t dr

S

∂S

J

H

(a) Ampère’s law visualized for an arbitrary sur-

face S. Here, n and dr respectively illustrate the

normal vector and in�nitesimal line element for

the line integral.

n

V

ρ

∂V

dA

(b) Gauss law. Arbitrary volume V with

boundary S (partly marked with a line pat-

tern on the lower side of the volume). The

black dots sketch a charge density and the ar-

rows for A a �eld like D and B for Gauss’

law and the absence of magnetic charges, re-

spectively.

Figure �.� | Ampère’s and Gauss’s law. Figure (a) sketches a geometrical interpretation of Ampère’s law and (b) Gauss’s law,

respectively.

D to E and B to H through the introduction of an electric polarization and a magnetic magnetization

D = "0E+P, B = µ0 (H+M) . (�.�.�)

Here, "0 and µ0 are the vacuum permittivity and permeability, P : Ω⇥ [0, T ] ! R
3 the polarization and

M : Ω ⇥ [0, T ] ! R
3 the magnetization. While we here mainly consider metals, we suppose M ⌘ 0

throughout the following. In contrast, P will be of a major importance for the rest of this work.

�.�.� Conservation of charges

Formally applying the divergence operator r ·A to Faraday’s and Ampère’s law yields

r · r ⇥E(r, t) = −@tr ·B(r, t), r · r ⇥H(r, t) = @tr ·D(r, t) +r · J(r, t), (�.�.�)
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Ω

Ω, @Ω

Ω1, @Ω1 Ω2, @Ω2

n1 7!2

n
∂
Ω

Figure �.� | Boundary value problem for Maxwell’s equations. Total domain Ω consists of two sub domains Ω1 and Ω2.

The schematic sketches at the same time the boundary value problem nature and the interface conditions at a material interface

between two di�erent materials.

making use of r · r ⇥A = 0 leads to

0 = −@tr ·B(r, t), 0 = @tr ·D(r, t) +r · J(r, t). (�.�.�)

If we now combine this with Gauss’s law we get

0 = @t⇢(r, t) +r · J(r, t), (�.�.�)

which represents the balance of charge density and currents, i.e. a change of the total charge in a given

volume is only due to in or out-�owing currents. Equation (�.�.�) is commonly referred to the continuity

equation of electromagnetics [��].

�.�.� Boundary and interface conditions

Considering the entire system of Maxwell’s equations (�.�.�) on a bounded closed domain Ω requires

additional conditions at the boundary and domain interfaces. The boundary conditions are de�ned on

@Ω. Further considering two physically di�erent sub-domains Ω1,Ω2 ⇢ Ω requires a condition on the

shared interface @Ω1,2 = Ω
1 \ Ω

2
. Figure �.� outlines the di�erent domains and interfaces.

Interface conditions A standard derivation [��] readily shows conditions for the tangential compon-

ent of the �eld quantities E andH as well as conditions on the normal component for the �ux quantities

D and B. These interface conditions for the electric and magnetic �eld consequently read

n1!2 ⇥ (E1 −E2) = 0, n1!2 ⇥ (H1 −H2) = Jsurface
1,2 , (�.�.�)

and respectively for the electric and magnetic �ux

n1!2 · (D1 −D2) = σ1,2, n1!2 · (B1 −B2) = 0. (�.�.�)

Here, n1!2 is the normal vector at the interface of two domains pointing from domain 1 to domain 2.
σ1,2 is the surface charge that accumulates exactly at the interface due to the (possible) discontinuity of

the electric �ux. The surface current Jsurface
1,2 is the magnetic analog to σ1,2.
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Figure �.� | Plate capacitor with dielectric. Left: Charges of the opposite sign (blue and orange) displace relatively to each

other. Hence, an additional �eld that is directed oppositely to the initial one weakens the total �eld. Right: Cartoon of a single

atom where the charge separation happens on a microscopic scale.

Boundary conditions Boundary conditions are deduced from the interface conditions. Applying (�.�.�)

on the boundary @Ω and assuming an in�nite conductivity outside Ω (R3|Ω) leads to the Perfect Elec-

trical Conductor (PEC) approximation of metals [�, ��, ��]. Hence, the all �eld quantities vanish outside

Ω. Using (�.�.�) and (�.�.�) yields in this case

n1!2 ⇥E1 = 0, n1!2 ·D1 = σ,

n1!2 ⇥H1 = Jsurface, n1!2 ·B1 = 0.
(�.�.�)

For closed domains, standard boundary conditions can be for example PEC or PerfectMagnetic Conductor

(PMC) conditions.

Radiation conditions Scattering or free space problems, i.e. when Ω is thus not bounded anymore,

require special free space radiation conditions. Imagine a scatterer inside Ω. If the observer is su�ciently

far away from this scatterer, the scattered �elds will converge to a spherical wavefront (exp(−ik·r)/|r|
dependence, k being the wave vector). A �rst order approximation of this condition is well known as

Silver-Müller radiation condition

E⇥ n+ Z0H =
+1

O(1/|r|2), H⇥ n− Y 0E =
+1

O(1/|r|2) (�.�.��)

We refer the interested reader to [���, �, ��] for details.

�.�.� Constitutive equations

Polarization The bound polarization P can be intuitively explained in an electrostatic plate capacitor

setup as shown in Figure �.�. Let the capacitor contain a particle of non-conducting, linear and isotropic

material. The initial electric �eld slightly moves the shell electrons with respect to the positive nucleus

and thus shows a dipole like charge distribution. Since we now have a non-uniform charge distribution,

electric �elds are ’created’. As they are directed in the opposite direction, the total electric �eld in between

the plates is weakened. Casting this e�ect into formulae gives [��, ��]

Pb = "0χbE,

D = "0E+Pb = "0 (1 + χb)| {z }
"b

E. (�.�.��)

Here, χb is the susceptibility of the dielectric material and "b the relative permeability subject to vacuum.

Obviously, if χb equals zero, the material behaves equivalently to vacuum.
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Magnetization Although left out in the course of this work, equivalent steps apply to the magnetic

�ux density and read

M = χmH,

B = µ0(H+M) = µ0 (1 + χm)| {z }
µ∞

H. (�.�.��)

However, we do not consider magnetic materials in throughout this work which leads to χm ⌘ 0.

�.�.� Electromagnetic wave equation

Maxwell’s equations can be brought into a classical wave equation form. For this, we assume the material

to be:

• Non dispersive and isotropic: D = "0"bE;

• Linear: The material characteristics do not change due to the �eld amplitudes.

Neglecting currents and charges, i.e. J ⌘ 0 and ⇢ ⌘ 0, simpli�es (�.�.�) to

D = "0"1E. (�.�.��)

Consequently, (�.�.�) becomes

r⇥E = −µ0@tH

r⇥H = "0"b@tE,
(�.�.��)

and r · E = r ·H ⌘ 0. Applying a standard vector calculus formula r⇥r⇥A = r(r ·A)−r2A

yields the classical wave form of Maxwell’s equations

r2A− 1

c02cr2
@ttA = 0, withA 2 {E,H}. (�.�.��)

Here, we de�ned the speed of light in vacuum c0 := ("0µ0)
−1 and the relative speed of light cr :=

("1µ1)−1

�.�.� Electromagnetic energy and Poynting’s theorem

Poynting’s theorem gives an energy balance between the electromagnetic �eld energy inside a volume V
in relation to the in- or out-�owing energy �ux and the ohmic (thermal) losses. A comprehensive physical

discussion of this phenomenon is given in [��]. The energy �ux density is de�ned by the Poynting vector

S := E⇥H, (�.�.��)

and the energy balance (with we is the electric �eld energy density) equation reads

d

dt

ˆ

V

we d
3r = −

ˆ

@V

S · n d2r −
ˆ

V

E · J d3r. (�.�.��)

Thus, the total change of �eld energy is driven by in- or out-�owing electromagnetic energy (�st term on

the Right Hand Side (RHS)) or by ohmic losses (�nd term on the RHS).
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�.�.� Lorentz force

The force that acts on a single charged particle is called Lorentz force, which is given by

F = q (E+ v ⇥B) . (�.�.��)

Here, q is the charge of the particle and v its velocity.

�.� Modeling metals in nanoplasmonics

In computational electromagnetics, metals are often assumed to be perfectly conducting. This assumption

is usually valid for a vast range of applications, especially in the microwave regime. Classical microwave

devices like antennas [�], cavities for particle accelerators [��] or metamaterials [��] operate between

MHz frequencies up to several THz for high-end Terahertz technologies. Microwave devices are usually

larger than one wavelength (opposite to nanophotonics), leading to characteristic lengths of ldevice > λ.
Copper for example, has a skin-depth of 2 µm at 1 GHz that is equivalent to a wavelength λ = 30 cm.

The ratio between the skin depth and the wavelength is ⇡ 1e−3 generally justifying a PEC boundary

condition at the metal interface [�].

In nanophotonics, the metamaterial character of metals is the main work-horse which becomes dom-

inant for sub-wavelength structures. As the term photonics already indicate, the frequencies range from

the infra-red (⇡ 400 THz) to the Ultra Violet (UV) (⇡ 800 THz), being equivalent to λ 2 [300, 1000] nm.

Gold for example, appears to have a skin-depth of 100 nm at 500 THz (λ = 600 nm). Obviously, the

wavelength and the skin-depth are of the same order of magnitude and metals cannot be modeled by a

simple boundary condition anymore. Hence, a volume material model is required.

�.�.� Constitutive equations for metals

Throughout the course of this work, we are particularly interested in metals. They are usually seen as a

rigid, positive ion-core grid hosting both bound electrons (d-band) and valence electrons (s-band). Hence,

the electric polarization P can be split in two parts: the background polarization of the bound electrons

Pb [��, ���], governing the in�uence of the background electrons, and Pf , which models the currents in

the free electron gas. Exploiting this splitting, the complete polarization can be written as

P(|E|) = Pb(|E|) +Pf(|E|). (�.�.�)

If P linearly depends on the electric �eld E, the material is called linear. Quite often, non-linearities are

dominated by a dependence on the magnitude of the electric �eld |E|. We exclusively consider linear

materials in the scope of this thesis. Multiple linear models for the bound electronsPb and free electrons

Pf can be found in literature [���].

Bound electron polarization In a linear medium, the polarization of the bounded electrons accounts

for the history of the electric �eld, namely

Pb = χb ?t E, (�.�.�)

where the electric susceptibility χb : Ω⇥ [0, T ] 7! R
3⇥3 generally is a tensor (anisotropic materials) and

?t denotes the convolution in time.
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Free electron polarization Regarding the polarization of the free electrons, one has to take into ac-

count for both the history of the �eld and its variation over space via the relation

Pf = χf ?(r,t) E, (�.�.�)

where ?(r,t) denotes the convolution in both space and time. and hence χf : Ω⇥ [0, T ] 7! R
3⇥3 We will

assume isotropic materials, i.e. χ := χ diag{1 1 1} in the following.

Remark �.�.�. It is important to note the di�erence between Pb and Pf . While Pb(r, t) only depends on

the time history (convolution in time: temporal dispersion) at the same point r, Pf(r, t) also depends on the

surrounding domain (convolution in time and space: temporal and spatial dispersion).

�.�.� Dispersion model for bound electrons

In the frequency-domain (for a given frequency !), equation (�.�.�) reduces to a multiplication of the

frequency-dependent quantities associated to "b and E. Thus prescribing the expression of a frequency-

dependent permittivity allows to determine the model equations (performing an inverse Fourier trans-

form to obtain the time-dependent equations).

In the case of bound electrons, inter-band transitions can be modeled by Lorentz oscillators motivated

by a simple semi-quantum model of the form

"b(!) =
kX

l=1

fl!P
2

(!2
l − !2) + i!Γl

. (�.�.�)

Here, !P is a physical parameter called the plasma frequency� which is related to the electron density and

predominantly prescribes the plasmonic behaviour of a metal. The other parameters k (the number of

poles), fi, !i and Γi are degrees of freedom in the model. These will be �xed in order to �t experimental

data of permittivity values. However, this model is limited in accuracy. As an alternative model, we

propose to use the Brendel-Bormann (BB) model applied to a wide optical frequency range as developed

by Rakic et al. [���]. The advantage of this model is that it is able to distinguish between free and

bounded electron contributions in the permittivity and thus allows for an accurate description of the latter

ones. However, this model demands the evaluation of relatively complex functions, namely the Kummer

functions of the second kind (we refer to [���] for details) and is hence complicated to be formulated

in the time-domain. It turns out that the BB model’s permittivities can be nicely �tted by a generalized

dispersion model which consists of a Padé series of zero, �rst and second order poles (see [���])

"b(!) = "1 − σ

i!
−
X

l2L1

al
i! − bl

−
X

l2L2

cl − i!dl
!2 − el + i!fl

, (�.�.�)

with {"1, σ, al, bl, cl, dl, el, fl} 2 R and L1,2 being the number of �rst and second order poles, respect-

ively. These constants are thus �xed in order to provide a good �t of the values given by the BB model.

Figure �.� shows an example �t of the bound electron permittivity "Au
b of gold. This �t consists of six

second order poles and a constant value "1. Table �.� provides the corresponding parameters. Analogous

results for Silver are provided in section C. Applying an inverse Fourier transform with the correspond-

ing expression (�.�.�) yields a system of time-domain Ordinary Di�erential Equations (ODE) driving the

evolution of the polarization current which is then coupled to Maxwell’s equations via (�.�.�). We refer

to [��] for more details on this model and to Chapter �.� for the global set of equations.

�The plasma frequency is the characteristic oscillation frequency of the electron density with respect to the average electron

density.
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Table �.� | Fit parameters of Au. Coe�cients of the generalized dispersion model (�.�.�) with ε∞ = 1.0 �tted to the BB

permittivity of Au. Figure �.� depicts the original BB model and the �tted result.
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Figure �.� | Real and imaginary part of Au’s bound permittivity. Black: εr and εi respectively are the real and imaginary

part of the experimentally motivated BB model [���]. Colored: the �tted permittivity with our generalized dispersion model

[���]. The corresponding �tting coe�cients can be found in Table �.�.

�.�.� Quantum hydrodynamic electron response

The free electrons of a metal, leading to the polarization Pf , can be considered as a free electron gas that

is modeled by a nonlinear �uid equation. Given the electron charge−qelec, its massmelec and a damping

constant γ, the nonlinear hydrodynamic electron model reads [�]

melec (@t + v · r)v = −qelec (E+ v ⇥B)−melecγv −r
✓
δG[n]

δn

◆
, (�.�.�)

together with the continuity equation

0 = @tn+r · (nv), (�.�.�)

where v represents the �uid velocity, n its density and qelec(E+v⇥B) is the Lorentz force. The last term

of (�.�.�), containing the quantum pressure
δG[n]

δn
, eventually determines which quantum mechanical

e�ects of the electron gas is taken into account or left out by an explicit form for the energy functional

G[n]. Following the discussion by Ciraci [��], this term splits up into a sum of kinetic (T), exchange

correlation and potential energy (XC). An approximated functional can be formulated as

G[n] ⇡ G⌘[n] = TTF[n] +
1

⌘
TW[n] + EXC. (�.�.�)
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where the kinetic contribution consists of the Thomas-Fermi (TF) and the von Weizsäcker (W) part.

A fully nonlinear problem as stated in (�.�.�) is a serious challenge and a reasonably vast range of

problems can already be properly modeled by a linearized version of (�.�.�) [��]. Of course, such a model

does not account for nonlinear e�ects like Second Harmonic Generation (SHG) [��], but already includes

spatial dispersion [�, ���, ���, ��].

�.�.� Linear nonlocal dispersion

As a simpli�ed attempt that sticks to functionals of the type (�.�.�), we assume a pure Thomas-Fermi

theory and drop the von Weizsäcker contribution as well as the exchange correlation in (�.�.�). Further

we assume an equilibrium state with zero background velocity, no static electric and magnetic �eld, and

a constant electron density denoted by n0. We consider the same expression for the quantum pressure as

in [��], which leads to a linear Thomas-Fermi theory [��, ��, ���]. The �rst order linearized term of the

quantum pressure thus expresses as

β2 1

n0
rn. (�.�.�)

The quantum related parameter β has to be chosen according to the physics of the problem. Its choice

is a crucial point in this model and it depends on the Fermi velocity vF and the spatial dimensionality of

the problem. Boardman [�] comprehensively discusses the choice of this parameter and proposes

β =

r
3D

D(D + 2)
vF, (�.�.��)

for high frequencies where surface plasmons can be excited [�]. In (�.�.��), D = {1, 2, 3} is the dimen-

sionality of the Fermi gas. A three dimensional Fermi gas, as we consider it throughout this work, yields

β =
p

3/5vF. Expanding all the �elds around an equilibrium state, i.e. u(r, t) ⇡ u0 + u1(r, t), u 2
{n,v,E,B}, keeping the linear terms only, and omitting the index (·)1 leads to a �rst order system

melec@tv = −qelecE−melecγv +melecβ
2 1

n0
rn,

@tn = −n0r · v.
(�.�.��)

Here, we assumed @tn0 = v0 = E0 = B0 = 0 (non-moving �uid, zero static electric or magnetic �elds,

and a constant electron density) and constant (in both space and time) background electron density n0.

Di�erentiating the �rst equation in (�.�.��) with respect to the time t, exploiting the second equation in

(�.�.��), and using Jf = n0qelecv, the current density of the unbound electrons in the �uid formally yields

0 = @ttJf + γ@tJf − β2r(r · Jf)− !P
2"0@tE, (�.�.��)

with !P =

s
n0q

2
elec

"0melec
being the plasma frequency. Equation (�.�.��) is a second order Partial Di�erential

Equation (PDE) in space and time. As we will see later, this form is impractical for our DGTD framework

and we hence want to recast it under a �rst order system

0 = @tJf + γJf − β2rQ− !P
2"0E,

0 = @tQ−r · Jf .
(�.�.��)

System (�.�.��) can be written as a �rst order system of hyperbolic PDE (see Section �.�).
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�.�.� Linear local dispersion

Neglecting nonlocality, i.e. β ⌘ 0, signi�cantly simpli�es the model discussed in Section �.�.�. Hence,

(�.�.�) becomes an Ordinary Di�erential Equation (ODE) of the form

@tJ = L(J,E), (�.�.��)

where L is still a linear but only a local operator now and we dropped the index (·)f for the moment. For

the well known Drude model [��] we have

@tJ = −γJ+ !P
2"0E. (�.�.��)

Using @tP = J in (�.�.��) and P = −|qelec|nx afterwards, as well as !P =

q
n|qelec|2
"0melec

yields

melec@ttx+melecγ@tx = −|qelec|E, (�.�.��)

which indeed is a simple harmonic oscillator. Here, x(t) : R 7! R
3 denotes the spatial displacement of an

electron in dependence of the time t. Valence electrons are though harmonically oscillating when subject

to an external electric �eldE. Figure �.� illustrates ametal bulk irradiated by an incoming electromagnetic

wave. Transforming (�.�.��) into the frequency-domain by assuming a harmonic time dependence f(t) =
<{f exp(−i!t} and f is a phasor, leads to

P(!) = − n|qelec|2
melec(!2 + iγ!)

E. (�.�.��)

Using (�.�.��) in (�.�.�) and subsequently plugging it into (�.�.��) brings us to a frequency dependent

permittivity function

D(!) = "0"(!)E. (�.�.��)

Equation (�.�.��) is well known in literature as the Drude dispersion model. The performance in terms

of �tting accuracy of di�erent materials for both, the real and imaginary part of "(!) is comprehensively

discussed in [���, ���]. Viquerat also proposes a generalized dispersion model based on Padé expansion

in order to augment the �tting precision of experimental data over large frequency ranges. This is realized

by adding poles up to the second order until the modeled and measured curves su�ciently overlap. We

will use this model throughout this work but skip a detailed discussion of the scheme and refer to [���, ��]

for further details.

E

E

E

E

x

y

z

Figure �.� | Electron Displacement for the Drude Model. Free electrons (electron gas) inside the metal are excited by an

external electric �eld. The charge displacement causes additional �elds in terms of polarization. As this e�ect is frequency-

dependent, a dispersion yields for non-monochromatic illumination.
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�.� Complete system of Maxwell’s equations coupled to local and non-

local dispersion laws

The split of the bound and free polarization in (�.�.�) was necessary in order to apply the quantum hy-

drodynamic electron response model to the free electrons and to allow a �exible model for the bound

electrons at the same time. Coupling both to Maxwell’s equations leads to the complete system

r⇥E+ µ0@tH = 0,

r⇥H− "0"1@tE− Jf − Jb = 0,

@tJf + γJf − β2rQ− !P
2"0E = 0,

@tQ−r · Jf = 0,

−Jb +J 0 +
X

l2L1

J l +
X

l2L2

J l = 0,

−J 0 +

0
@σ +

X

l2L2

dl

1
AE = 0,

−J l + alE− blP l = 0, 8l 2 L1,

−@tP l +J l = 0, 8l 2 L1,

−@tJ l + (cl − dlfl)E− flJ l − elP l = 0, 8l 2 L2,

−@tP l + dlE+J l = 0, 8l 2 L2.

(�.�.�)

Maxwell + local & nonlocal dispersion

�.�.� Boundary conditions

The set of equations (�.�.�) is supplemented with initial and boundary conditions. Let us focus on the

latter. Regarding the set of pure Maxwell equations, we have to �x boundary conditions for E and H.

We choose not to detail them here since we will use classical boundary conditions that are applied on a

PEC or PMC wall or First Order Absorbing Boundary Condition (ABC) as described in Section �.�.�. We

do not prescribe any boundary conditions to the set of unknowns issued from the bound electrons, since

their evolution is described by a set of ODEs. Let us focus on the set of unknowns issued from the free

electrons model, i.e. Jf and Q. We omit the subscript of the free electrons in the following and presume

J := Jf . System (�.�.��) can be written as a �rst order hyperbolic equation as expressed in the third

and fourth equation of (�.�.�). We refer to [���] for the comprehensive discussion and derivation of this

system of hyperbolic PDEs; we simply recall the main results for (�.�.��) in the following. Considering

the propagation problem (�.�.��) on a domain Ω we claim continuity for the normal component of the

polarization current at any subdomain interface between two disjoint domains Ω1 and Ω2, Ω1 \ Ω2 =
@Ω1,2 and Ω1,2 ⇢ Ω, i.e.

n · (J2 − J1)|@Ω1,2 = 0. (�.�.�)

Figure �.� depicts Ω. In the case of β 6= 0 on Ω1 and β ⌘ 0 on Ω2, @Ω1,2 becomes a boundary of

the nonlocal domain. Supposing a vanishing polarization current outside the nonlocal domain Ω1, the

resulting boundary condition reads

n · J1|@Ω1,2 = 0. (�.�.�)
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Ω2, @Ω2

Ω1, @Ω1

E@Ω1
,H@Ω1

Figure �.� | Computational domain Ω. Domain Ω1 consists of vacuum and hence the electromagnetic �elds E and H are

present. It is surrounded by the boundary ∂Ω1,2 = Ω1 ∪Ω2 where Ω1 truncates the Maxwell domain and Ω2 is the interface to

the dispersive domain Ω2 where the additional �elds J and Q are present.

In the special case of Ω1 = Ω, (�.�.�) formulates the boundary condition for the entire boundary @Ω of

the nonlocal domain Ω. Boundary condition (�.�.�) is often referred to as ‘hard-wall’ boundary condition

because spill-out e�ects are not modeled.

Remark �.�.�. Hard-wall boundary conditions (in the linear case) assume a background electron density

which is strictly restricted to the given metal domain, i.e.

n0 =

(
n0(r) , r 2 Ω2

0 , otherwise
. (�.�.�)

Here, the domains are presumed to be arbitrarily known. Hence, no electron is allowed to travel out of the pre-

de�ned metal-domain, which determines the term ’hard-wall’. Di�erently, if spill-out e�ects were contained

in the model, the boundary of Ω2 may evolve in time and electrons could travel outside the initially de�ned

metal-domain.

Symmetry conditions Beside the physically interpretable boundary condition (�.�.�) that forbids nor-

mal currents at the metal surface, it is useful to de�ne a supplementary symmetry condition. This condi-

tion will be used for symmetric simulation setups in order to reduce the computational domain and hence

the complexity of the simulation. We de�ne the term ‘soft-wall’ boundary condition which reads

nQ1|@Ω1,2 = 0. (�.�.�)

Condition (�.�.�) is the dual condition of (�.�.�).

�.� Mathematical characterization

The following part is concerned by a study from a more mathematical point of view. In order to simplify

the way of writing down the formulae, wewant to cast Maxwell’s equations and the linearized �uidmodel

into a more general framework. This requires a multiplication by some constants and hence slightly

changes the appearance of the equations. While the actual meaning of the equations is obviously not

changed, it allows us to prove existence and uniqueness of the solution as in [��, ��]. Furthermore, we
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will exploit this form in order to de�ne bilinear forms in the following chapter. Semi-discrete stability

together with classical inverse inequalities meets the requirements for the fully discrete stability and

convergence proof. Here, we can re-use the proof in [��]. The following derivations consider the case in

(�.�.�) where Jb ⌘ 0. However, the result in [��] and ours yield the result for the whole set of equations

in system (�.�.�).

�.�.� Hydrodynamic system

Casting the four unknown �elds {E,H,J, Q} into a new vector variable leads to the de�nition of

ϑ :=
⇥
H E J Q

⇤
. (�.�.�)

The RHS of the �rst four equations in system (�.�.�) splits up into a di�erential operator part L and K,

which represents a compact operator perturbation. These operators are de�ned by

L :=

2
664

−"0!P
2r⇥ {ϑ}2

"0!P
2r⇥ {ϑ}1

β2r{ϑ}4
β2r · {ϑ}3

3
775 , K :=

2
664

0
−"0!P

2{ϑ}3
−γ{ϑ}3 + "0!P

2{ϑ}2
0

3
775 . (�.�.�)

Here, {ϑ}1 = H, {ϑ}2 = E, {ϑ}3 = J and {ϑ}4 = Q. Eventually, de�ning a material matrix

Λ = diag
⇥
"0µ0µ1!P

2I3⇥3, "0"1!P
2I3⇥3, I3⇥3, β2

⇤
, (�.�.�)

for the Left Hand Side (LHS) yields the reformulated equation

Λ@tϑ = L(ϑ) +K(ϑ). (�.�.�)

Equation (�.�.�) is rewritten as

Λ@tϑ = I(ϑ), (�.�.�)

where we have de�ned I := L+K.

�.�.� Existence and uniqueness

We now want to prove the existence and uniqueness of the solution of system (�.�.�). Following the

development in [��], we use classical operator theory and can hence recycle Lemma �.� and Theorem �.�

in [��]. Appropriate spaces for the operators L andK are

D(L) = H(curl,Ω)⇥H0(curl,Ω)⇥H0(div,Ω)⇥H1(Ω),

D(K) =
(
L2(Ω)

)10
,

(�.�.�)

and D(I) = D(K). The complete initial value problem hence reads

Λ@tϑ = L(ϑ) +K(ϑ),

ϑ(0) = ϑ0,
(�.�.�)

with a given ϑ0 2 D(I) We also de�ne the weighted scalar product on D(K) =
(
L2(Ω)

)10

hϑ,ϑ0i
Λ

= hΛϑ,ϑ0i 2 (D(K))2 , (�.�.�)
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with the associated norm

||ϑ||2
Λ

= hϑ,ϑi
Λ
, (�.�.�)

since all the physical constants are ≥ 0. For �nite time values T > 0, we can adapt the result in [��, ��]

and conclude the following lemma and theorem on the existence and uniqueness of the Cauchy problem

(�.�.�) on [0, T ].

Lemma �.�.�. (i) The unbound operator L is de�ned on D(L) = H(curl,Ω) ⇥ H0(curl,Ω) ⇥
H0(div,Ω) ⇥ H1(Ω), which is dense in

(
L2(Ω)

)10
. Furthermore, L is dissipative

in L(Ω)10 and
hL(ϑ),ϑi = 0, 8ϑ 2 D(L). (�.�.��)

(ii) The operatorK is de�ned on D(K) =
(
L2(Ω)

)10
. Furthermore,

hK(ϑ),ϑi  0. (�.�.��)

Proof. The proof is straightforward. Performing the scalar product yields

(i)

hL(ϑ),ϑi = "0!P
2 (−hr ⇥ {ϑ}2, {ϑ}1i+ hr ⇥ {ϑ}2, {ϑ}1i − hn⇥ {ϑ}2, {ϑ}1i)

β2 (hr{ϑ}4, {ϑ}3i − hr{ϑ}4, {ϑ}3i+ h{ϑ}4{ϑ}3,ni) ,
(�.�.��)

where we exploited the de�nition of D(L).

(ii)
hK(ϑ),ϑi = "0!P

2 (−h{ϑ}3, {ϑ}2i+ h{ϑ}2, {ϑ}3i)

−γh{ϑ}3, {ϑ}3i

= −γ||{ϑ}3||2.

(�.�.��)

Theorem �.�.�. If ϑ0 2
(
H0,E0,J0, Q0

)
2 D(I), then there exists a unique weak solution

ϑ = (H,E,J, Q) 2 C0 ([0, T ],D(I)) \ C1
⇣
[0, T ],

(
L2(Ω)

)10⌘
, (�.�.��)

of (�.�.�).

�.�.� Energy

An energy principle can be understood as a �gure of merit of a physical model, as the total energy stored

in a physically motivated system must never increase. Additionally, preserving this property when it

comes to numerical algorithms would be a nice feature of the latter. Formally de�ning the energy in

system (�.�.�) at any time t 2 [0, T ] by

E(t) =
1

2
||ϑ||2

Λ
, (�.�.��)

leading to the following result.
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Theorem �.�.�. If ϑ 2 C0([0, T ],D(I)) \ C1
⇣
[0, T ],

(
L2(Ω)

)10⌘
, E(t) is bounded on [0, T ].

Proof. Dot multiplying (�.�.�) with ϑ and assuming su�ciently regular �elds, leads to

hΛ@tϑ,ϑi = hL(ϑ),ϑi+ hK(ϑ),ϑi. (�.�.��)

Simplifying the result by using (i) and (ii) of Lemma �.�.� yields

@tE(t)  0, (�.�.��)

for all t 2 [0, T ].

Here, where we have assumed that @Ω is a perfectly electric conducting boundary and that currents

vanish outside Ω.

The result obtained in (�.�.��) shows the strict preservation of the energy @tE(t) = 0 for a collision

free model, i.e. γ ⌘ 0 and also drives dissipation if collisions (damping), i.e. γ 6= 0 is taken into account.

�.�.� Study of the hyperbolicity

If we focus on theMaxwell-hydrodynamic part of (�.�.�) (i.e. the �rst four equations, neglecting the ODEs

contributions, i.e. Jb ⌘ 0), one can study its hyperbolicity. We here recall the associated eigenvalues and

again refer to [���] for details. For ξ = {ξ1, ξ2, ξ3}T 2 R
3, the eigenvalues of the Maxwell-hydrodynamic

system are given by

λ(||ξ||) =
{
0 0 0 0 −c0cr||ξ|| −c0cr||ξ|| c0cr||ξ|| cr||ξ|| −β||ξ|| β||ξ||

 
. (�.�.��)

These will be of importance when discussing the numerical �uxes in the numerical sections that follow.

�.� Analytical solutions

This chapter is concerned with the de�nition of several analytical solutions of Maxwell’s equations and

Maxwell’s equations coupled to dispersion laws. Such solutions are provided in order to serve as reference

solutions to our numerically computed results in the coming chapters.

Most of them are well known textbook examples like respectively cubic and spherical PEC cavities or

free space solutions for Maxwell’s equations. More advanced solution techniques for scattering problems

of individual rods or spheres have been done by Mie [��] in the beginning of the 20th century. We brie�y

recall the physical setup of this type of problems and give the main results we need for our validation

purposes.

�.�.� Cavity problem

Rectangular cavities consist of a domain Ω = {r 2 [0, al]
3}, where al with l 2 {x, y, z} respectively

denote the edge lengths in the Cartesian {x, y, z} direction. Assuming PEC boundary conditions on ∂Ω
and bringing (�.�.��) to the frequency-domain yields the eigenvalue problem

r2E+
ω2

c02cr2
E = 0, (�.�.�)
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with the time-domain solution

E(x, y, z, t) =

2
66666664

{E0}x cos
✓
⇡nx

ax
x

◆
sin

✓
⇡ny

ay
y

◆
sin

✓
⇡nz

az
z

◆

{E0}y sin
✓
⇡nx

ax
x

◆
cos

✓
⇡ny

ay
y

◆
sin

✓
⇡nz

az
z

◆

{E0}z sin
✓
⇡nx

ax
x

◆
sin

✓
⇡ny

ay
y

◆
cos

✓
⇡nz

az
z

◆

3
77777775

cos (!rest) . (�.�.�)

Here, nl 2 N with l 2 {x, y, z} is the mode number and !res the resonance angular frequency resulting

from the dispersion relation. The solution of the magnetic �eld is analogous. Additionally, we have to

avoid unphysical solutions which can be guaranteed by Gauss’ law

r ·E = 0. (�.�.�)

Assuming a cubic cavity with al = a and the mode nl = 1 for all l simpli�es the equations Without Loss

Of Generality (w.l.o.g.). The resonance frequency hence reads

!res = c0cr⇡
p
3, (�.�.�)

We skip simple algebraic steps [��] and directly provide the result for E0 =
(
−1 0 1

)T

E(x, y, z, t) =

2
6666664

− cos (⇡x) sin (⇡y) sin (⇡z)

0

sin (⇡x) sin (⇡y) cos (⇡z)

3
7777775
cos (!rest) ,

H(x, y, z, t) = ⇡c0cr

2
6666664

− sin (⇡x) cos (⇡y) cos (⇡z)

2 cos (⇡x) sin (⇡y) cos (⇡z)

− cos (⇡x) cos (⇡y) sin (⇡z)

3
7777775
sin (!rest) .

(�.�.�)

Equally, the linear hydrodynamic Drude model (�.�.��) has a similar form if γ = !P ⌘ 0. We hence

obtain
β2rQ− @tJ = 0,

r · J− @tQ = 0.
(�.�.�)

Proceeding equivalently to the Maxwell case leads to

(
β2
(
Kx +Ky +Kz

)
+ !2

)
Q = 0, (�.�.�)

where the β2
(
Kx +Ky +Kz

)
+ !2 = 0 is the dispersion relation. In case of a nontrivial solution we

claim Q 6= 0. Solving the separated ODE for each separation constant K l = (i{k}l)2 that veri�es the

��



dispersion relation and with the appropriate boundary conditions @nQ|@Ω as discussed in Chapter �.�.�

gives

K l = −
✓
nl⇡

al

◆2

, (�.�.�)

as previously for the Maxwell case. The resonance angular frequency for the hydrodynamic case reads

!res,fluid = ⇡β

s✓
nx

ax

◆2

+

✓
ny

ay

◆2

+

✓
nz

az

◆2

. (�.�.�)

Eventually, we obtain the time-domain solution of of Q and J

Q(x, y, z, t) = Q0 cos

✓
⇡nx

ax
x

◆
cos

✓
⇡ny

ay
y

◆
cos

✓
⇡nz

az
z

◆
sin (!res,fluidt) ,

J(x, y, z, t) = −β2diag(J0)

!res,fluid

2
66666664

⇡nx

ax
sin

✓
⇡nx

ax
x

◆
cos

✓
⇡ny

ay
y

◆
cos

✓
⇡nz

az
z

◆

⇡ny

ay
cos

✓
⇡nx

ax
x

◆
sin

✓
⇡ny

ay
y

◆
cos

✓
⇡nz

az
z

◆

⇡nz

az
cos

✓
⇡nx

ax
x

◆
cos

✓
⇡ny

ay
y

◆
sin

✓
⇡nz

az
z

◆

3
77777775

cos (!res,fluidt) .

(�.�.��)

If nl = 1 and al = a 8l the solution simpli�es analogously to the Maxwell case.

�.�.� Plane wave propagation in free space

Moving from the setup of an enclosed convex domain Ω with boundary conditions on @Ω, we now con-

sider a free space problem in the in�nite space. This is a particularly useful setup as we will use this �eld

solution as excitation for the scattering problems considered in the following chapters.

Starting from Maxwell’s equations in a homogeneous in�nite space �lled with a linear, isotropic and

non dispersive medium and respectively switching to the temporal and spatial Fourier space

@l ! i{k}l, 8l 2 {x, y, z}, (�.�.��)

leads to
−!"0"rE = k⇥H,

!µ0µ1H = k⇥E.
(�.�.��)

The combination of Ampère’s and Faraday’s law yields

!2(c0cr)
−1/2E = k⇥ (k⇥E),

= −(k ·E) · k+ (k · k)E.
(�.�.��)

and due to the orthogonality k ? E we eventually get

(!2(c0cr)
−1/2 − k · k)E = 0. (�.�.��)

In order to ful�ll the dispersion relation

!2(c0cr)
−1/2 = {k}2x + {k}2y + {k}2z, (�.�.��)

��



the individual components of the wave vector read

{k}x =
!

c0cr
sin(✓) cos(φ),

{k}y =
!

c0cr
sin(✓) sin(φ),

{k}z =
!

c0cr
cos(✓),

(�.�.��)

with ✓ 2 [0,⇡) and φ 2 [0, 2⇡) (see Figure B.�). This leads to the �nal monochromatic solution

E(r) = E0 exp(−i!t) exp(ik · r),

H(r) =
k⇥E0

!µ0µ1
exp(−i!t) exp(ik · r).

(�.�.��)

Time-domain simulations are not restricted to monochromatic excitations and it is hence bene�cial to

account for the whole frequency spectrum in one simulation run. In order to excite a broad frequency

spectrum, we use a Gaussian windowed monochromatic plane wave as an incident pulse. The resulting

frequency spectrum is controlled by an appropriate choice of the temporal variance of the Gaussian signal

Einc(r, t) = E0 sin

✓
!c

✓
t− t0 −

k · r
|k|

◆◆
exp

2
6664−

✓
t− t0 −

k · r
|k|

◆2

2σ2

3
7775 . (�.�.��)

Here,E0 is the transverse electric �eld amplitude, !c is the central frequency, t0 an initial time delay, and

σ the variance of the Gaussian window. For one particular �eld source in the scope of our numerical code

(see Section �.�.�), time derivatives of the source signal are required. By this means, we here provide the

time derivative as well

@tEinc(r, t) = E0

8
>>><
>>>:
!c cos

✓
!c

✓
t− t0 −

k · r
|k|

◆◆
exp

2
6664−

✓
t− t0 −

k · r
|k|

◆2

2σ2

3
7775

−
t− t0 −

k · r
|k|

σ2
sin

✓
!c

✓
t− t0 −

k · r
|k|

◆◆

· exp

2
6664−

✓
t− t0 −

k · r
|k|

◆2

2σ2

3
7775

9
>>>=
>>>;

.

(�.�.��)
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Metallic halfspace, εm(ω)

hDielectric slab, εd

Vacuum

z

Figure �.� | Three layer system. Our three layer system consists of an in�nite metallic half-space, a dielectric layer on top of

the metal, and vacuum.

For the sake of completeness, we also want to provide the spatial derivative of Einc. Spatial derivation

with respect to l 2 {x, y, z} yields

@lEinc(r, t) = −E0k · el
σ2|k|2

exp

2
6664−

✓
t− t0 −

k · r
|k|

◆2

2σ2

3
7775

·

!cσ

2|k| cos
✓
!c

✓
t− t0 −

k · r
|k|

◆◆

+

✓
(k · r− (t− t0)|k|) sin

✓
!c

✓
t− t0 −

k · r
|k|

◆◆◆]
.

(�.�.��)

�.�.� Three layer system

An important setup in nanophotonics is illustrated in Figure �.�. The metallic ground plane is covered

by a dielectric layer. Further obstacles like nano cubes, nano spheres, etc. are often placed on top of the

dielectric layer. Such setups may require the analytical solution of the three layer system without the

obstacle in order to impose the correct incident �eld in our numerical simulation. We will derive this

solution in the following.

Due to symmetry reasons, we consider the solution to be invariant in x and y direction, i.e. we neglect
the derivatives @x = @y = 0, and only consider the incident wave propagating in −ez direction. Hence,

we only solve for {E}y and {H}x. Making an ansatz for the solution in all three sub domains in the

frequency-domain

{Ev}y = exp (−ik0z) + r exp (ik0z) ,

{
Ed
 
y

= A exp
(
−ik0

p
"dz
)
+B exp

(
ik0

p
"dz
)
,

{Em}y = C exp
(
−ik0

p
"mz

)
,

(�.�.��)

with k0 = !
p
"0µ0. Analogous relations are obtained for i!µ0{H}x = −@z{E}y . Solving this system

obviously requires additional conditions which are given at the material interfaces. First, we claim the

continuity of the tangential electric �eld and the continuity of the tangential magnetic �eld subsequently.

This is justi�ed by vanishing surface currents due to a �nite permeability. Exploiting these conditions at

��



z = 0 yields

1 + r = A+B,

r − 1 =
p
"d(B −A),

(�.�.��)

which gives

A =
2

1 +
p
"d

+

p
"d − 1p
"d + 1

B = t+ r+B,

t :=
2

1 +
p
"d

,

r+ :=

p
"d − 1p
"d + 1

(�.�.��)

Performing equivalent steps at z = −h eventually leads to

B = A

p
"d −p

"mp
"d +

p
"m

exp
(
i2k0

p
"dh
)

= rmA exp
(
i2k0

p
"dh
)
,

rm :=

p
"d −p

"mp
"d +

p
"m

.

(�.�.��)

Combining these two equations gives

A =
t

1− r+rm exp
(
i2k0

p
"dh
) ,

B =
rmt

1− r+rm exp
(
i2k0

p
"dh
) exp

(
i2k0

p
"dh
)
.

(�.�.��)

As we now have A and B we are able to straightforwardly obtain r and C

r =
t

1− r+rm exp
(
i2k0

p
"dh
)
(
1 + rm exp

(
i2k0

p
"dh
))

− 1,

C =
t(1 + rm)

1− r+rm exp
(
i2k0

p
"dh
) exp

(
ik0

p
"dh
)
exp

(
−ik0

p
"mh

)
.

(�.�.��)

This completes the Ansatz in (�.�.��) and allows for the explicit evaluation of the �elds. However, the

solution is still in frequency-domain and we would like to derive the corresponding time-domain signal.

Unfortunately, it turns out that a closed form of (�.�.��) in the time-domain is a challenging task or perhaps

even impossible. This issue is due to the dispersive material "m(!) which hence shows di�erent phase

and group velocities depending on the frequency. Such a dispersion degenerates the initially Gaussian

shaped pulse. A possible work around is to reconstruct a time-domain signal from a discrete evaluation

of (�.�.��), i.e. by a discrete inverse Fourier transform.

�.�.� Mie scattering of a dispersive rod

Ruppin has provided an analytic solution for the electromagnetic scattering of small metallic nano-wires

[���]. The metal is modeled by linearized hydrodynamic Drude model. We here recall the main results

��



that are of concern to our work. The physical setup is depicted in Figure �.�. This system is modeled by

(�.�.�) with Jb ⌘= 0. Following [���], the extinction cross-section CSext is given by

CSext(!) = − 2

k0R

1X

n=−1
<{an}. (�.�.��)

Here, R is the rod’s radius, and an the nth Mie coe�cient

"T(!) = 1− !P
2

!(! + iγ)
,

k0(!) =
p
"1

!

c0
,

kT(!) =
p

"(!)
!

c0
,

kL(!) =

s
!(! + iγ)− !P

2

β2
,

cn(!) =
n2

kLR

Jn(kL)

J 0
n(kL)

Jn(kTR)

✓p
"T

k0R
−

p
"1

kTR

◆
,

an(!) = − cnJn(k0R) +
p
"1Jn(k0R)J 0

n(kTR)−p
"TJ

0
n(k0R)Jn(kTR)

cnHn(k0R) +
p
"1Hn(k0R)J 0

n(kTR)−p
"TH 0

n(k0R)Jn(kTR)
,

(�.�.��)

where we stuck to previously de�ned notations of the !P and β. Here, J(·) and H(·) are the cylindrical
Bessel and Hankel functions and (·)0 their derivatives, respectively. We will exploit this analytical result

for the validation of our �D implementation in Section �.�.�. Please note that for β = 0 the additional

Mie coe�cients cn vanish and we recover the standard Mie solution for the local Drude model.

TE

{E}x
{E}y

{H}z
y

z

x

Figure �.� | In�nitely long dispersive rod. The rod is illuminated by an electric �eld that is polarized perpendicular to the

cylinder axis. Due to the translational invariance in the y direction, the �D geometry is reduced to a �D problem.

�.�.� Mie scattering of a dispersive sphere

Analogously to the �DMie solution in the previous section we now provide an analytical Mie solution in

�D. The following results are taken from [��]. We only summarize the main equations that are necessary
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in order to implement the solution of CSext. All material and dispersion model related functions read

k0 =
!

c0
,

"L = "1 − !P
2

!(! + iγ)
,

av := k0R
p
"v,

aL := k0R
p
"L,

aN :=
1

β

✓
!(! + iγ)− !P

2

"1

◆
.

(�.�.��)

Here, "v is the permittivity of the surrounding material. Subsequently, the Mie coe�cients are given by

tMn :=
avJ

0
n(av)Jn(aL)− Jn(av)aLJ

0
n(aL)

Hn(av)aLJ0n(aL)− avH0
n(av)Jn(aL)

,

tEn :=
"L (Jn(av) + avJ

0
n(av)) Jn(aL)− Jn(av)

(
(Jn(aL) + aLJ

0
n(aL)) + tNn

)

−"L (Hn(av) + avH0
n(av)) Jn(aL) + Hn(av) ((Hn(aL) + aLH0

n(aL)) + tNn )
,

(�.�.��)

where

tNn :=
n(n+ 1)Jn(aL)Jn(aNR)

aNRJn(aNR)

✓
"L
"1

− 1

◆
. (�.�.��)

In case of a β ⌘ 0, the nonlocal contribution vanishes and tNn = 0 which gives the standard Mie coe�-

cients [���]. Eventually, the extinction CS in a vacuum surrounded nonlocal nano-sphere reads

CSext =
−2

(k0R)2

1X

n=1

(2n+ 1)<
(
tMn + tEn

)
, (�.�.��)

We will use the analytically calculated extinction cross section CSext in order to validate our �D imple-

mentation of the system (�.�.�).

�.�.� Electromagnetic �eld of a moving point charge in the free space

A second category of open space setups is the electromagnetic �eld generated by a moving point charge.

We assume a constant velocity of the electron and hence no change in the moving direction. Liénard-

Wiechert potentials allow for a �eld solution of more complicated trajectories including acceleration [��].

For our purposes a shortcut can be taken via the Lorentz transformation of an electrostatic �eld as we

leave out acceleration. Applying (�.�.�) to the electrostatic �eld of a point charge yields

Eelec(r, t) =
qγ

4⇡"0

d(r, t)
✓
|d(r, t)|2 + γ2 − 1

|v|2
(v · d(r, t))2

◆3/2
.

(�.�.��)

Here, q is the particle’s charge, v the velocity of the electron, relec(t) = (xelec(t), yelec(t), zelec(t))
T the

electron’s position, d(r, t) =: relec(t) − r the distance vector from r to the electron, and the relativistic

��



factor γ = 1/
p

1−(|v|/c0)
2. The partial time derivative equally reads

@tEelec(r, t) =
qγ

4⇡"0

v
✓
|d(r, t)|2 + γ2 − 1

|v|2
(v · d(r, t))2

◆3/2

− 3qγ

4⇡"0

(v · d(r, t))γ2d(r, t)
✓
|d(r, t)|2 + γ2 − 1

|v|2
(v · d(r, t))2

◆5/2
.

(�.�.��)

�.�.� Electromagnetic �eld of amoving Gaussian charge distribution in the free space

Section �.�.� was concerned with the analytic solution of a moving point charge in free space. However,

with regards to our essential intents that are the simulation of EELS or Cathodoluminescence (CL), we

envisage penetrating beams, i.e. an electron that penetrates the material.

We would need, the incident �eld and its time derivative will have to be evaluated on the volume

where the electron �ies through. A sharp look at (�.�.��) and (�.�.��) shows a singularity for r = relec.

Of course, this leads to accuracy issues at and close to the singularity due to the �nite machine precision.

For this reason, we propose to regularize the �eld with a Gaussian charge distribution. Proceeding in a

similar fashion as in Section �.�.�, we perform a Lorentz transformation of the electrostatic �eld.

We start the derivation with the electrostatic �eld generated by a Gaussian charge distribution which

can be expressed by

⇢gauss(r) :=
qp

8⇡3σ6
exp

"
−|r|2
2σ2

#
, (�.�.��)

centered at the coordinate origin and with q the total charge and σ the variance. If we now take Gauss’

law from (�.�.�), we obtain

ˆ

@Ω

Dgauss · n d2r =

ˆ

Ω

⇢gauss d3r,

Dgauss(r) =
qer

4⇡|r|2
p
8⇡3σ6

2⇡
ˆ

0

⇡̂

0

|r|
ˆ

0

exp


− r2

2σ2

]
dr d✓ dφ,

=
qer

|r|2
p
8⇡3σ6

 r
⇡

2
σ3erf

 |r|p
2σ

]
− σ2|r| exp

"
−|r|2
2σ2

#!∣∣∣∣∣

|r|

0

.

(�.�.��)

Consequently, we obtain

Egauss(r) =
qer

"0|r|2
p
8⇡3σ6

 r
⇡

2
σ3erf

 |r|p
2σ

]
− σ2|r| exp

"
−|r|2
2σ2

#!
. (�.�.��)

Equation (�.�.��) now needs to be transformed to Cartesian coordinates in order to make it suitable for

the later implementation in our DGTD framework. Performing a coordinate transformation leads to the
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electric �eld

{Egauss}x = x

q

 
−
p
2

σ
exp


−x2 + y2 + z2

2σ2

]p
x2 + y2 + z2 +

p
⇡erf

"p
x2 + y2 + z2p

2σ

#!

4⇡3/2 (x2 + y2 + z2)
3/2

"0

{Egauss}y = y

q

 
−
p
2

σ
exp


−x2 + y2 + z2

2σ2

]p
x2 + y2 + z2 +

p
⇡erf

"p
x2 + y2 + z2p

2σ

#!

4⇡3/2 (x2 + y2 + z2)
3/2

"0

{Egauss}z = z

q

 
−
p
2

σ
exp


−x2 + y2 + z2

2σ2

]p
x2 + y2 + z2 +

p
⇡erf

"p
x2 + y2 + z2p

2σ

#!

4⇡3/2 (x2 + y2 + z2)
3/2

"0

(�.�.��)

Here, the distribution is centered at the coordinate system’s origin. Having a closer look to the electric

�eld at {x, y, z} = 0 shows a �nite �eld

lim
{x,y,z}!0

|Egauss| = 0. (�.�.��)

However, (�.�.��) is numerically di�cult to evaluate due to the singular denominators. Although analyt-

ically speaking the numerator dominates, (�.�.��) remains challenging in terms of �oating point precision.

We hence propose a linearization of (�.�.��) around {x, y, z} = 0 and a piecewise assembled reformula-

tion of (�.�.��) by means of

Egauss(x, y, z) =

8
><
>:

q

6
p
2⇡3/2"0σ3

{x, y, z}, |{x, y, z}|  σ

s

(�.�.��), otherwise

, (�.�.��)

where s denotes the splitting parameter which tunes the linearized sphere around {x, y, z} = 0. Figure
�.�� depicts (�.�.��) for four example values of σ.

Having the electrostatic �eld at hand, we can now perform a Lorentz transformation in order to obtain

the �eld of a moving charge in the laboratory frame. w.l.o.g., we assume a trajectory in ez direction

rgauss(t) := r0 + vt with v = |v|ez . Applying the Lorentz transformation to (�.�.��) and rewriting the
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Figure �.�� | Piece-wisely de�ned electric �eld of a Gaussian distributed charge. Here, σ = 1 nm and we plot the absolute

value |Egauss| for s = {1, 1.5, 2, 4}. The transition between the linearized and the original region is almost invisible for s ≥ 4.

formula in laboratory frame coordinates reads

{Egauss,lab}i := {Egauss}i

0
BBBB@
x, y,

z + t |v|s

1−
✓ |v|

c0

◆2

1
CCCCA

, i = {x, y},

{Egauss,lab}z := γ {Egauss}z

0
BBBB@
x, y,

z + t |v|s

1−
✓ |v|

c0

◆2

1
CCCCA

.

(�.�.��)

If we additionally allow an arbitrary starting position re = {xe, ye, ze} for the electron, (�.�.��) becomes

Ẽgauss,lab (x, y, z) := Egauss,lab (xe − x, ye − y, ze − z) (�.�.��)

Inserting all quantities �nally yields the explicit incident �eld which is ready to be implemented in our

DGTD framework

Ẽgauss,lab(x, y, z) =

8
>>><
>>>:

a2{∆x,∆y,∆z}, |{∆x,∆y, γ∆z}|  σ

s

a3{∆x,∆y,∆z}, otherwise
, (�.�.��)
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with

∆x = xe − x,

∆y = ye − y,

∆z = ze − z + |v|t,

∆r = ∆x2 +∆y2 + (γ∆z)2,

a1 = −
p
2∆r

σ
exp


−∆r

2σ2

]
+
p
⇡erf

"r
∆r

2σ2

#
,

a2 =
γq

6
p
2⇡3/2"0σ3

,

a3 =
a1γq

4⇡3/2∆r
3/2"0

.

(�.�.��)

Figure �.�� illustrates the Lorentz transformed �elds in the vicinity of the center of mass of the charge
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Figure �.�� | Lorentz transformed �eld of Gaussian charge. Here, the velocity |v| = 0.8 · c0, the splitting factor s = 4, and the

charge is moving in ez direction.

distribution. The corresponding time derivative reads

@tẼgauss,lab(x, y, z) =

8
>>>><
>>>>:

{0, 0, |v|γq
6
p
2⇡3/2"0σ3

}, |{∆x,∆y, γ∆z}|  σ

s

{∆x∆za4a5, ∆y∆za4a5, a4(∆z2a5 + a6)}, otherwise
,

(�.�.��)
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with

a4 = −
q⌫γ3 exp


−∆r

2σ2

]

4⇡3/2∆r
5/2"0σ3

,

a5 = −
p
2∆r

3/2 + 3a1σ
3 exp


∆r

2σ2

]
,

a6 =
a1σ

3

γ2
∆r exp


∆r

2σ2

]
.

(�.�.��)

We now evaluate the relative error of the Gaussian electron with respect to a point charge. De�ning

the relative error by

∆Erel(r) :=
Edirac(r)−Egauss(r)

Edirac(r)
, (�.�.��)

and respectively plugging in (�.�.��) for Edirac and (�.�.��) for Egauss yields

∆Erel(r) =

r
2|r|
⇡σ2

exp

"
−|r|2
2σ2

#
+ erf

 |r|p
2σ

]
. (�.�.��)

Evaluating the overall relative error by means of the L1(Ω)-norm reads

∆Erel =

ˆ

Ω

|∆Erel(r)| d3r,

=

r
8

⇡
σ.

(�.�.��)

This result shows a linear convergence for the Gaussian smeared-out electron.
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Apart from basic nanophotonic devices like rods, spheres or spherical dimers for whichwe have analytical

solutions thanks to standard and advanced Mie theories, more complicated setups are highly di�cult or

even impossible to solve by hand. Numerical methods that allow for the solutions of PDEs, more precisely

in the context of this work, of Maxwell’s equations, have gained tremendous attention in the last �fty

years. This development has mainly been driven by the extremely rapid improvement of computing

capacities of modern machines.

For the full set of Maxwell’s equations, i.e. without approximations of static type or quasi-static

type, two complementary formulations are possible. They can either be (naturally) formulated in the

time-domain or in the frequency-domain. The latter intrinsically assumes a time-harmonic dependency

exp[−i!t] of the solution and the time derivatives transform to a multiplication with −i!. Frequency-
domain methods are particularly useful for monochromatic simulations or if a fairly low amount of

frequency samples is needed (one solver call per frequency). In the context of nanophotonics, Max-

well’s equations in the frequency-domain are nowadays predominantly solved with RCWA [��, ��], FEM

[���, ��] and BEM [��]. RCWA has originally been developed for periodic gratings and has now been ex-

tended to in�nite structures including PMLs and coordinate stretching for metals [��]. Since the standard

RCWA is a layer-wise method, it is not well suited for any non-Cartesian geometry. An additional lim-

itation occurs if the periodicity of the structure becomes large with respect to the wavelength requiring

a signi�cant amount of modes that leads to large matrices. FEM and BEM can overcome this limita-

tion. These methods are formulated on a volume (FEM) and on a surface (BEM) discretization, which is

well suited for more general geometries. Among others, common domain tessellations are for example

tetrahedra and triangles for FEM and BEM, respectively. Both methods are somewhat complementary.

FEM is usually better suited for volume dominated problems with many geometrical details while BEM

is preferable for large domains with a relatively small amount of surfaces. These qualitative geometrical

arguments are based on the fact that FEM leads to larger but sparse matrices while the BEM matrices are

dense and more di�cult to solve.

Considering Maxwell’s equations in the time-domain is usually favorable if one wants to simulate

broad frequency bands, nonlinear e�ects or large computational domains. The latter may lead to pro-

hibitive linear systems of the FEM discretization (this argument is only valid if one uses an explicit time

integration scheme). Historically, Yee [���] proposed a FDTD scheme in ���� and Weiland [���] the FIT
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in ���� for time-domain Maxwell’s equations. Both methods rely on staggered Cartesian grids. These

schemes and various extensions have become very popular especially because of their simplicity and

non-dissipative nature. However, the e�ciency of both methods is intrinsically limited due to the regular

Yee grid that is not suitable for geometries that are non Cartesian. Cartesian Yee grids are subject to a

staircasing e�ect that pollutes the solution. Additionally, the electromagnetic �elds at material interfaces

may in this case loose smoothness, which is di�cult to handle with FDTD and FIT for example. This is a

severe issue for nanophotonics where many e�ects are con�ned to the material interfaces.

Ideally, a numerical method would combine the broadband character of time-domain methods with

the unstructured mesh �exibility and the high-order nature of FEM. A promising approach is the family of

so called DGTDmethods. Equally to FEM, DGTDmethods rely on a weak formulation and work very well

on unstructured meshes. However, instead of continuous basis functions, a discontinuous approximation

space is used that decouples the neighbored mesh elements. Such an approach leads to discontinuities

at the cell interfaces and hence to a global discontinuous solution. This is why that family of methods is

commonly referred to as DG methods. Interestingly, the decoupling of the mesh elements changes the

structure of the mass matrix, which now becomes block-diagonal. A block-diagonal mass matrix is easily

invertible and hence provides a well-suited setting for explicit time integration schemes.

Beyond the spatial discretization, the selected time integration scheme plays an important role in

the overall performance of the algorithm. FDTD methods usually employ a second order Leap-Frog (LF)

scheme due to its simplicity and energy conservation property. In the FDTD case, a higher order time

integration scheme would even not be advantageous since the overall convergence order is dictated by

the minimum of the spatial and temporal order. Despite various e�orts [��, ��, ���] that involve severe

complications of the original algorithm, increased accuracy of FDTD on computational domains with dis-

continuous materials remains challenging. The situation changes for DGTD as high spatial convergence

orders are now achievable. In this prospect, high-order order explicit RK methods are promising candid-

ates, especially the family of Low Storage Runge-Kutta (LSRK) methods. In other words, DGTD combines

the mesh �exibility and high-order nature of FEM with a possible explicit time integration scheme as for

FDTD methods.

This chapter proposes a DGTD discretization of system (�.�.�). More precisely, we develop the spatial

discretization, referred to as semi-discrete scheme, provide a semi-discrete stability result and conclude by

sketching a convergence proof on quasi-uniform tetrahedral meshes. A brief reminder on more technical

aspects concerning the assembly of the local matrices, the mapping from a reference element and the

extension to curvilinear elements is conducted. After having discretized in space, we proceed with the

discretization in time resulting in a fully-discrete scheme. Here, we rely on a second order LF scheme

and RK-type methods. We provide stability results of the fully-discrete schemes for LF and RK time

discretizations. Further, we sketch the convergence proof of the DG-RK version.

�.� Discontinuous Galerkin method

The DGmethod was �rst proposed in the context of neutron transport problems by Reed and Hill [���] in

����. In the following years, the method has become very popular and has been applied to a vast �eld of

computational physics and engineering topics. A very popular example is the �eld of computational �uid

dynamics where discontinuous formulations are well adapted to shocks. Although most publications on

DG are journal papers, the books of Hesthaven and Warburton [��] as well as Di Pietro and Ern [��] give

a comprehensive study of DG methods.

The starting point of the DG formulation is a local weak formulation of system (�.�.�). Spatial discret-

ization with the DG method requires a special choice of FE spaces, i.e. special polynomial basis functions
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on a given mesh. This choice clearly distinguishes DG methods from conforming FEM. While Nédélec

based FEM uses basis function from conforming discretization spaces, DG relies on element-wise local

basis functions. The use of local basis functions implies that the continuity of the �elds is not enforced

and discontinuities at the cell interfaces may arise. The treatment of those discontinuities provides an

additional design parameter for the �nal algorithm. As we will see later, the discontinuities at the mesh

element interfaces will be handled by a numerical �ux (similar to FV methods). Further, the choice of this

�ux is not unique and will strongly in�uence numerical properties such as the numerical dissipation and

dispersion as well as the existence of spurious solutions [��]. Di�erent polynomial basis expansions are

possible, but in this work, we concentrate on nodal Lagrange based basis functions on a triangular (�D)

or a tetrahedral (�D) mesh. As mentioned earlier, the associated block-diagonal mass matrix allows an

e�cient explicit time integration. The introduced discontinuity in the approximation induces an increas-

ing amount of discrete unknowns, which is an obvious drawback of the method. It can be overcome by

exploiting the locality of the approach with a distributed memory parallel implementation strategy.

We nowwant to apply the DGmethod to system (�.�.�). To do so, wewill �rst de�ne an approximation

space that leads to a local weak formulation and which is the reason for the discontinuous nature of the

method. In order to re-establish a communication between the (local) cells, we require the de�nition

of a numerical �ux (also known as numerical trace) that provides a unique de�nition of the �elds on

the cell interfaces. Coupling the local formulations via the numerical �ux eventually allows a global

weak formulation. All notations are consistent with Chapter � and we refer to the previous chapter for

de�nitions.

Remark �.�.�. We have decided to skip the full derivation of a DG scheme for system (�.�.�) for the sake of

readability and restrict ourselves to Maxwell’s equations coupled to the hydrodynamic equations, i.e. (�.�.�).

The interested reader is referred to [��] for the analysis of the generalized local dispersion model. An extension

to the analysis of the full system (�.�.�) is straightforward due to linearity.

�.�.� Domain discretization and approximation space

The following derivations can be seen as an extension of the work in [��]. We have used the same

notations as far as possible. This �rst part sets up the discrete version of the computational domain and

the corresponding approximation space.

Tessellated domain Let us consider a polyhedral domain Ω that can be tessellated. The tessellation is

de�ned by Th = (⌧i)i2J0,NTh
K tetrahedra with NTh 2 N such that Ωh = [i2J0,NTh

K⌧ i ⌘ Ω. A character-

istic size parameter hi > 0 with i 2 J0, NThK is associated to each tessellated sub domain and we de�ne

a global mesh parameter h = maxi2J0,NTh
Khi. This characteristic size parameter hi can be understood as

the diameter of the tetrahedron ⌧i.

We further de�ne the overlap of two tetrahedra as an internal face ai,k := ⌧i [ ⌧k for i 6= k. The
corresponding outward-oriented normal vector of the triangle ai,k is denoted by ni,k pointing from the

element ⌧i to its neighbor ⌧k. The set of neighbors of element ⌧i 8i 2 J0, NThK is cast into Vi (the indices

of the neighboring tetrahedra). All inner faces between tetrahedra are gathered in Fint and the boundary

faces ai,@Ω := ⌧ i \ @Ω for all i 2 J0, NThK are cast into F@Ω.

The anisotropy of the mesh is limited by a quasi-uniformity assumption, i.e. there exists a positive

and mesh-independent constant ⌘ such that for all h, for all ⌧i 2 Th and for all k 2 Vi; hi/hk  ⌘ holds.

Approximation space We aim for an approximate solution ϑh of the actual solution ϑ on each �nite

element ⌧i, i 2 J0, NThK. Here, we rely on a polynomial ansatz and ϑh are hence piecewise polynomials.
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The polynomial degree of ϑh may generally vary for di�erent �nite elements ⌧i. Keeping this element-

dependency in mind, for a given i 2 J0, NThK, we denote by di > 0 the number of DoFs per ⌧i and by P i

the associated polynomial space. Let ('i,j)1jdi be a set of linearly independent basis functions such

that P i := Span{'i,j , 1  j  di}. The corresponding approximation space is �nally de�ned by

Vh :=
{
Wh 2 L2(Ω),W|⌧i 2 (P i)

3, 8 ⌧i 2 Th
 
,

V h :=
{
W h 2 L2(Ω),W |⌧i 2 P i, 8 ⌧i 2 Th

 
.

(�.�.�)

We additionally claim forWh 2 Vh and W h 2 V h that

• Wi andW i denote their restriction to the ⌧i−th element;

• Their average on an arbitrary face ai,k 2 Fint is de�ned by

{Wh}ik := Wi +Wk,

{W h}ik := W i +W k

(�.�.�)

• Their jump at a given face ai,k 2 Fint is similarly de�ned as

JWhKik := Wi −Wk,

JW hKik := W i −W k.
(�.�.�)

In other words, we are searching for a polynomial representation ϑh 2 Vh of ϑ, where

Vh := V
3
h ⇥ V h, (�.�.�)

being de�ned on the set of all sub domains and hence the total domain.

Remark �.�.�. Since our approximation space is completely element-wise, no continuity of the global solu-

tion ϑh is guaranteed. The potential discontinuity at a cell interface has to be properly handled. This is

commonly solved by considering a Riemann problem.

�.�.� Riemann problem at a cell interface

As previously mentioned, each cell has strictly local basis functions. Without an additional treatment,

each individual cell is isolated from each other. The global solution is consequently discontinuous on the

cell interfaces (see Figure �.� (a) and (b)) and a unique de�nition of the �eld values on the face ⌧− \ ⌧+
is lacking. In order to overcome this dilemma, a numerical �ux is used, which weakly reinforces the

tangential continuity of the solution. Finding the appropriate numerical �ux is subject to solving a local

Riemann problem at each cell interface. The driving idea is outlined in Figure �.�. Each cell interface is

subject to a discontinuity coming from the element-wise de�nition of our approximation space. Keeping

only the leading term of the generalized Riemann problem (see Figure �.� (b) and (c)) leads to a standard

Riemann problem with a constant solution on each side. Such a problem can be solved with the methods

of characteristics (see Figure �.� (d)). Means and jumps at the cell interface between element ⌧− and its

neighbor ⌧+ are de�ned by

{A}−+ := A− +A+, JAK−+ := A− −A+, (�.�.�)

��



τ − τ +

(a) Field discontinuity at the interface of two

mesh cells.
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(b) Generalized Riemann problem at a cell interface.
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(c) Leading Riemann problem at the cell interface.
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λ7,8,10

λ1,..,4

λ5,6,9

(d) Solution of the leading term Riemann problem.

Figure �.� | Riemann problem. Figure (a) illustrates a �eld discontinuity at the interface of two mesh cells. Generally, this is

subject to a generalized Riemann problem as shown in (b). Considering only the leading term within the vicinity of the interface

(orange region), simpli�es the generalized Riemann problem to a standard Riemann problem with a piecewise constant solution

(c). Its solution in the (x− t) space is shown in (d). With kind permission from [���].

analogously to (�.�.�) and (�.�.�). Here, A−,+ can be an operator, a �eld E, H, J, Q or physical para-

meters like Z (impedance), Y (admittance) and β on the left (-) and right (+) side of the cell interface,

respectively. Since this is very classical, we skip the details of the derivation of the numerical �ux for

Maxwell’s equations and refer to the literature [��, ��, ���] for details. Let us directly recall the general

upwind �ux for the E andH �elds [���]

n⇥H−
⇤ =

1

Z− + Z+

(
n⇥ {ZH}−+ − ↵n⇥ (n⇥ JEK−+)

)
,

n⇥E−
⇤ =

1

Y − + Y +

(
n⇥ {YE}−+ + ↵n⇥ (n⇥ JHK−+)

)
,

(�.�.�)

where n−+ = −n+−. The scalar ↵ 2 [0, 1]weights the upwinding. The case ↵ = 0 is called centered �ux
and in the case ↵ = 1 the scheme is fully upwind. Regarding the hydrodynamic part J and Q, centered

�uxes have already been considered in [���], and we now propose to derive the formulation of the upwind

�uxes. Let us ignore the coupling to Maxwell’s equations, neglect the damping term in (�.�.��), and focus
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on the hydrodynamic equations

@tJ = β2rQ,

β2@tQ = β2r · J.
(�.�.�)

Proposition �.�.�. The upwind �ux for (�.�.�) is given by

(β−)2Q−
? =

β−β+

β− + β+

(
{βQ}−+ − ↵

(
n · JJK−+

))
,

(β−)2 n · J−
? =

(β−)3 (β+)
3

(β−)3 + (β+)3

✓
n ·
⇢
J

β

}

−+

− ↵JQK−+

◆
,

(�.�.�)

Numerical flux

and on the boundary of the nonlocal dispersive domain

Q−
? |@ΩNL

= Q−,

n · J−
? |@ΩNL

= 0.
(�.�.�)

Proof. Casting (�.�.�) into a conservative form leads to:

Q@tW +r · F(W) = 0, (�.�.��)

with

W =

2
664

{J}x
{J}y
{J}z
Q

3
775 , Q =

2
664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 β2

3
775 ,

Fx =

2
664

−β2Q
0
0

−β2{J}x

3
775 , Fy =

2
664

0
−β2Q

0
−β2{J}y

3
775 , Fz =

2
664

0
0

−β2Q
−β2{J}z

3
775 .

(�.�.��)

The Rankine-Hugoniot jump conditions read

β−Q− (W−
? −W−) + n−+ · (F−

? −F−) = 0,

n−+ · (F−
? −F+

? ) = 0,

−β+Q+ (W+
? −W+) + n−+ · (F+

? −F+) = 0.

(�.�.��)

Here, we have used the eigenvalues that correspond to the hydrodynamic part (see section �.�.�). For the

sake of simplicity, we omit the direction of n−+ and �x the normal vector to point from “-” to “+”, i.e.

n := n−+. Subtracting the second from the �rst equation and summing up the second and third equation

of (�.�.��) gives
β−Q− (W−

? −W−) + n · (F+
? −F−) = 0,

−β+Q+ (W+
? −W+) + n · (F−

? −F+) = 0,
(�.�.��)

��



respectively multiplying with β+Q+ and β−Q− (that are commuting) and summing yields

β−β+Q−Q+ (W−
? −W− −W+

? +W+)

+ (β−Q− + β+Q+)n · F−
?

−β−Q−n · F+ − β+Q+n · F− = 0.

(�.�.��)

The normal �ux is given by

n · F =


−β2nQ

−β2n · J

]
. (�.�.��)

Inserting the �ux gives for the J part

β−β+ (J−
? − J− − J+

? + J+)

+ (β+ + β−)n
⇣
− (β−)2Q−

?

⌘

+β+ (β−)2 nQ− + β− (β+)
2
nQ+ = 0.

(�.�.��)

Performing the cross product with n and together with (�.�.��) yields

n⇥ (J−
? − J+

? ) = n⇥ (J− − J+) ,

n · (J−
? − J+

? ) = 0.
(�.�.��)

The vector identityA = (n ·A)n− n⇥ (n⇥A) applied toA = J−
? − J+

? reads

J−
? − J+

? = (n · (J−
? − J+

? ))| {z }
=0

n− n⇥ (n⇥ (J−
? − J+

? )),

J−
? − J+

? = −n⇥ (n⇥ (J−
? − J+

? )).
(�.�.��)

and similarly forA = J− − J+

J− − J+ = (n · (J− − J+))n− n⇥ (n⇥ (J− − J+)),

J−
? − J+

? = J− − J+ − (n · (J− − J+))n.
(�.�.��)

Plugging (�.�.��) into (�.�.��) leads to

(β−)2 nQ−
? =

β−β+

β− + β+
(n (Q−β− +Q+β+)− n (n · (J− − J+))) ,

(β−)2 nQ−
? =

β−β+

β− + β+

(
n{βQ}−+ − n

(
n · JJK−+

))
.

(�.�.��)

Similar steps for the Q part give

β−β+ (β−)2 (β+)
2
(Q−

? −Q− −Q+
? +Q+)

−
⇣
(β−)3 + (β+)

3
⌘⇣

(β−)2 n · J−
?

⌘

+β− (β−)2
⇣
n · J+ (β+)

2
⌘
+ β+ (β+)

2
⇣
n · J− (β−)2

⌘
= 0.

(�.�.��)
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Using (�.�.��) simpli�es (�.�.��) to

(β−)2 n · J+
? =

(β−)3 (β+)
3

(β−)3 + (β+)3

✓
n ·
⇢
J

β

}

−+

− JQK−+

◆
. (�.�.��)

If we now allow the contribution of the jump value J·K to be tunable by a real tuning parameter ↵ 2 [0, 1]
we obtain (�.�.�).

The eventual choice of ↵ heavily in�uences the numerical properties of the �nal discretized version

of (�.�.�). Properties like numerical dissipation and the occurrence of spurious solutions are particularly

sensitive to the �uxes as we will see later for the numerical results.

�.�.� Weak form

Towards the discretization of space, we now derive a weak form. We will use the above de�ned element-

wise polynomial approximation space to de�ne a local weak form on each element ⌧i for all i 2 J0, NThK.
A global form will be constructed from the local form afterwards.

De�nitions For the sake of readability, we de�ne

• An element-wise L2-scalar product for all i 2 J0, NThK h·, ·i⌧i ;

• Its global counterpart h·, ·ih :=
X

i2J0,NTh
K

h·, ·i⌧i ;

• And theL2-scalar product on a face F , h·, ·iF , together with the global version on all internal faces

h·, ·iF int
h

:=
X

F2F int
h

h·, ·iF ;

• And �nally the L2-scalar product h·, ·i@⌧i on the boundary of ⌧i, which is equal to
X

k2Vi

h·, ·iaik .

Further, for all ϑ 2 L2(Ω)10, we write ϑ =
(
ϑ1 ϑ2 ϑ3 #4

)T 2 L2(Ω)⇥L2(Ω)⇥L2(Ω)⇥L2(Ω).
For the sake of readability, we temporarily rede�ne the normal vectornik for each cell ⌧i with i 2 J0, NThK
and for all neighbors k 2 Vi as n := ni.

Element-wise weak form In the same fashion as for Maxwell’s equations without the supplementary

hydrodynamic model, we now develop an element-wise weak form of (�.�.�). First, we multiply (�.�.�)

with a test function ϑ0 2 Vh and perform the L2-scalar product on a sub domain ⌧i. This procedure

includes an integration by parts, which leads to an ambiguity in our discontinuous framework on the

boundary @⌧i. The �eld values on the element boundary, commonly referred to as numerical �ux, will be

recovered by the solution of the Riemann problem. Simultaneously, the numerical �uxes are the commu-

nication channel of two neighboring elements. The local problem is formulated as: �ndϑh 2 C1(0, T,Vh)
such that for all i 2 J0, NThK for all ϑ0

h 2 Vh

hΛ@tϑh,ϑ
0i⌧i = hϑh,L

?
i (ϑ

0)i⌧i −
⌦
F↵

i,h(ϑh),ϑ
0
h

↵
@⌧i

+ hK(ϑh),ϑ
0
hi⌧i , (�.�.��)

Local weak form
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on [0, T ]. Here, integration by parts splits the di�erential operators into their volumic and surfacic part,

i.e.

hΛ@tϑh,ϑ
0
hi⌧i = −"0!P

2
⇣⌦

{ϑh}2,r⇥ {ϑ0
h}1
↵
⌧i
+
⌦
ni ⇥ ϑ?

2, {ϑh}01
↵
@⌧i

⌘

+"0!P
2
⇣⌦

{ϑh}1,r⇥ {ϑ0
h}2
↵
⌧i
+
⌦
ni ⇥ ϑ?

1, {ϑh}02
↵
@⌧i

⌘

+β2
⇣
−
⌦
{ϑh}4r, {ϑ0

h}3
↵
⌧i
+
⌦
niϑ

?
4, {ϑh}03

↵
@⌧i

⌘

+β2
⇣
−
⌦
{ϑh}3,r{ϑ0

h}4
↵
⌧i
+
⌦
{ϑh}04ni,ϑ

?
3

↵
@⌧i

⌘

+
⇣
−γ
⌦
{ϑh}3, {ϑh}03

↵
⌧i
+ "0!P

2
⌦
{ϑh}2, {ϑh}03

↵
⌧i

⌘
.

(�.�.��)

The local volumic operator in (�.�.��) is de�ned by

L?
i (ϑ

0) =

2
664

"0!P
2r⇥ ϑ2|⌧i

−"0!P
2r⇥ ϑ1|⌧i

−β2rϑ4|⌧i
−β2r · ϑ3|⌧i

3
775 , (�.�.��)

and the local surfacic trace operator reads

F↵
i,h(ϑh)|@⌧i =

2
664

"0!P
2ni ⇥ ϑ⇤

2|⌧i
−"0!P

2ni ⇥ ϑ⇤
1|⌧i

−β2niϑ
⇤
4|⌧i

−β2ni · ϑ⇤
3|⌧i

3
775 ,

=

2
666666666664

ni ⇥
✓

"0!P
2

Y − + Y +

(
{Y ϑ2}−+ − ↵

(
ni ⇥ Jϑ1K−+

))◆

ni ⇥
✓

"0!P
2

Z− + Z+

(
−{Y ϑ1}−+ − ↵

(
ni ⇥ Jϑ2K−+

))◆

✓
β−β+

β− + β+

(
−ni{βϑ4}−+ + ↵ni

(
ni ⇥ Jϑ3K−+

))◆

 
(β−)3 (β+)

3

(β−)3 + (β+)3

✓
−ni ·

⇢
ϑ3

β

}

−+

+ ↵Jϑ4K−+

◆!

3
777777777775

.

(�.�.��)

Here, we have used the �ux de�nitions in (�.�.�) and (�.�.�) for the numerical trace, seen from element ⌧i,
i.e. the “-” is equivalent to i and “+” represents the neighboring elements k for all k 2 Vi if aik 2 Fint. The

upwind parameter ↵ 2 [0, 1] remains variable and tunes the �ux formulation from centered �uxes for

↵ = 0 to fully upwind �uxes ↵ = 1. We want to emphasize that we keep an element-dependent material

de�nition βi, Y i and Zi. As commonly known, heterogeneous materials (di�erent materials in each cell

⌧i) do not cause any problems for a DGTD discretization of Maxwell’s equations with local dispersion

laws. However, coupling the Maxwell system with the linearized �uid model reveals a constraint on the

material parameter β. From a numerical analysis point of view, we cannot prove stability for the linearized

hydrodynamic �uid model if β− 6= β+ as we will see later.

Remark �.�.�. A constant value for β is somewhat physically intuitive. One of our initial physical assump-

tions was a constant background electron density. Allowing two di�erent values of β at a material interface

can be seen as a varying electron density and hence a violation of the initial assumption. In other words, dif-

ferent values for β (in the context of the here studied model) are only valid if the nonlocal dispersive domains

are separated and do not share any interfaces.
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Global weak form Aiming for a global weak formulation, which we express with bilinear forms, we

need global operators. In this sense, we de�ne a global weak volumic operator

Lh(ϑ) = −L⇤
h(ϑ) =

2
664

−"0!P
2rh ⇥ {ϑ}2

"0!P
2rh ⇥ {ϑ}1

β2rh{ϑ}4
β2rh · {ϑ}3

3
775 , (�.�.��)

for all ϑ 2 Vh, with the piecewise operators (rh ) on each sub domain ⌧i for i 2 J0, N⌧iK. In other words

for all ph 2 Vh and for all qh 2 V h

(rh ⇥ ph)|⌧i = r⇥ (ph|⌧i) ,

(rh · ph)|⌧i = r · (ph|⌧i) ,

(rhqh)|⌧i = r (qh|⌧i) .

(�.�.��)

Casting the global form into the bilinear forms m, a, b↵ and k, which are de�ned on Vh ⇥ Vh, yields for

all (ϑ,ϑ0) 2 Vh ⇥ Vh

m(ϑ,ϑ0) = hϑ,ϑ0i
Λ
,

a(ϑ,ϑ0) = hϑ,L⇤
h(ϑ

0)ih,

b↵(ϑ,ϑ
0) = "0!P

2

 
−
⌧{Y ϑ2}

{Y } , Jϑ0
1K ⇥ n

〉

F int
h

− ↵

⌧
Jϑ1K ⇥ n

{Y } , Jϑ0
1K ⇥ n

〉

F int
h

!

"0!P
2

 
+

⌧{Zϑ1}
{Z} , Jϑ0

2K ⇥ n

〉

F int
h

− ↵

⌧
Jϑ2K ⇥ n

{Y } , Jϑ0
2K ⇥ n

〉

F int
h

!

✓
+
D
β̃{βϑ4}n, Jϑ0

3K
E

F int
h

− ↵
D
β̃Jϑ3K,n

E

F int
h

hJϑ0
3K,niF int

h

◆

 
+

⌧
β̂

⇢
ϑ3

β

}
Jϑ0

4K,n

〉

F int
h

− ↵
D
β̂Jϑ4K, Jϑ

0
4K
E

F int
h

!

+BoundaryConditions(ϑ),

k(ϑ,ϑ0) = hK(ϑ),ϑ0)ih.

(�.�.��)

For the sake of readability, we have de�ned

β̃ =
β−β+

β− + β+
,

β̂ =
(β−)3 (β+)

3

(β−)3 + (β+)3
,

(�.�.��)

where β−,+ respectively is the material parameter left and right of the interior face aik 2 Fint with

(i, k) 2 J0,NhK⇥ J0,NhK in direction of the normal vector nik. Hence, β
+ describes the material in cell

k. Obviously, the bilinear form b↵(ϑ,ϑ
0), which contains the surfacic terms, is slightly more complicated

to derive. Since its derivation is a bit lengthy, we only sketch the idea for the hydrodynamic contribution.
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Presuming to start on element ⌧−, the total surface contribution reads

b− := β2
−
X

+

ˆ

s−+

ϑ4
?
−ϑ3

0
− · n+ ϑ3

?
− · n ϑ4

0
−, (�.�.��)

with
X

+

being the sum over all faces, which do not belong to the physical boundary @Ω of the total

domain Ω. Summing up over all elements (all internal faces) leads to

b =
X

i2J0,NhK

bi

b =
X

sj2F int

ˆ

sj

+β̃
⇣
{βϑ4}−+n · Jϑ0

3K−+ − ↵
⇣
n · Jϑ3K−+

⌘ (
n · Jϑ0

3K−+

)⌘

+β̂

✓✓
n ·
⇢
ϑ3

β

}

−+

◆
Jϑ0

4Ki+ − ↵Jϑ4K−+Jϑ0
4K−+

◆
,

(�.�.��)

and immediately to the bilinear form b↵(ϑ,ϑ
0). We postpone the treatment of the boundary faces for a

moment, and keep it in mind as an additional contribution called BoundaryConditions(ϑ).
The previously de�ned bilinear forms now allow us to recast the global semi-discrete problem as:

Find ϑh 2 C1(0, T,Vh) such that

m(@tϑh,ϑ
0
h) = a(ϑh,ϑ

0
h) + b↵(ϑh,ϑ

0
h) + k(ϑh,ϑ

0
h), (�.�.��)

Global weak form

for all ϑ0
h 2 Vh on [0, T ]. We further establish a consistency result.

Proposition �.�.�. (Consistency) The exact solution ϑ of (�.�.�) veri�es

m(@tϑ,ϑ
0
h) = a(ϑ,ϑ0

h) + b↵(ϑ,ϑ
0
h) + k(ϑ,ϑ0

h), 8ϑ0
h 2 Vh. (�.�.��)

Proof. The proof is straightforward. Due to the continuous tangential trace of the electromagnetic �elds,

the continuous normal trace of the current density and the continuous trace of the charge density, the

expression a(ϑ,ϑ0
h) + b(ϑ,ϑ0

h) = hL(ϑ),ϑ0
hi is veri�ed. The result follows.

In terms of boundary conditions, we allow �ve di�erent kinds: (i) PEC, (ii) PMC, (iii) ABC for Max-

well’s equations and (iv) HardWall (HW), (v) SoftWall (SW) for the hydrodynamic part. They respectively

read
n⇥ ϑ?

2|@⌧PEC
= 0,

n⇥ ϑ?
1|@⌧PMC

= 0,

n⇥ ϑ?
1|@⌧ABC

=
1

2
(ϑ−

2 − Z−(n⇥ ϑ−
1 )),

n⇥ ϑ?
2|@⌧ABC

=
1

2
(ϑ−

1 + Y −(n⇥ ϑ−
2 )),

n · ϑ?
3|@⌧HW

= 0,

nϑ?
4|@⌧SW = 0.

(�.�.��)
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All of these conditions turn out to be energy conserving except for the ABC contribution. The overall

boundary contribution hence reads

BoundaryConditions(ϑh) = −1

2

⇣
||Zn⇥ ϑ1||2FABC + ||Y n⇥ ϑ2||2FABC

⌘
. (�.�.��)

Lemma �.�.�. If the material parameter β is constant and ↵ 2 [0, 1], then for all ϑh 2 Vh,

a(ϑh,ϑh) + b↵(ϑh,ϑh) = −↵|ϑh|2S  0, (�.�.��)

where we have de�ned

|ϑh|2S := "0!P
2
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◆

+BoundaryConditions(ϑh).
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Proof. First, we choose as test function ϑ0 = ϑ, which leads to

a(ϑh,ϑh) + b↵(ϑh,ϑh) = "0!P
2
(
−
⌦
ϑ+
1 ⇥ n,ϑ+

2

↵
F int +

⌦
ϑ−
1 ⇥ n,ϑ+

2

↵
F int

)
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(β−)2ϑ−

4 ϑ
−
3 ,n

↵
F int +

⌦
(β+)2ϑ+

4 ϑ
+
3 ,n

↵
F int

+b↵(ϑh,ϑh),

(�.�.��)

where we have exploited an integration by parts. Expanding the surface contribution yields

a(ϑh,ϑh) + b↵(ϑh,ϑh)

= "0!P
2( −
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1 ⇥ n,ϑ+

2

↵
F int +
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2
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2
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(�.�.��)

If β is a constant parameter, i.e. β− = β+ = β for all cells, basic algebraic simpli�cations lead to

a(ϑh,ϑh) + b↵(ϑh,ϑh) = −↵"0!P
2
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The result follows.

Remark �.�.�. The assumption on β is completely justi�ed and even necessary because we have assumed a

constant electron equilibrium density for our linearized �uid model.

We complete this series of useful lemma by the so-called inverse inequalities and an energy principle.

Lemma �.�.�. Let ↵ 2 [0, 1]. Then, for all ϑ 2 Vh,

sup
ϑ02Vh

|a(ϑ,ϑ0) + b↵(ϑ,ϑ
0)|

||ϑ0||  Ch−1⌘||ϑ||,

sup
ϑ02Vh

|k(ϑ,ϑ0)|
||ϑ0||  C||ϑ||,

sup
ϑ02Vh

|b↵(ϑ,ϑ0)|
||ϑ0||  Ch−1⌘||ϑ||,

(�.�.��)

as well as

|b↵(ϑ,ϑ0)|  Ch−1⌘||ϑ|| |ϑ0|S , (�.�.��)

for all (ϑ,ϑ0) 2 Vh ⇥ Vh. Here, ⌘ is the mesh regularity parameter indicating the quasi uniformity as

de�ned previously.

Proof. The proof is classical and only extends the proof in [��] using the divergence and gradient operator

inverse estimates, similar to [���].

Proposition �.�.�. Ifϑh 2 Vh is a solution of the semi-discrete scheme, the semi-discrete energy Eh de�ned

on [0, T ] by

Eh(t) =
1

2
m(ϑh,ϑh) =

1

2
||ϑh||2Λ, (�.�.��)

Semi-discrete energy

is strictly non-increasing in time.

Proof. By the help of Lemma �.�.� and k(ϑh,ϑh) = −
∣∣∣∣pγϑ3

∣∣∣∣2  0, with γ ≥ 0, directly follows

@tEh(t) =
1

2
m(@tϑh,ϑh)  0. (�.�.��)

Semi-discrete stability

Remark �.�.�. Due to linearity, the total semi-discrete energy of system (�.�.�) is the superposition of the

nonlocal dispersion and generalized dispersion contribution [���]. The total energy hence reads

Etot(t) = ENL(t) + Egen(t). (�.�.��)

The stability for the generalized model follows readily [��] and is not further detailed here. Consequently, the

stability of the complete semi-discrete version of (�.�.�) follows via classical arguments.
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�.�.� Convergence of the semi-discrete scheme

The semi-discrete convergence proof of system (�.�.�) turns out to be a combination of arguments from

[��] and [��]. On the one hand, we allow more general �uxes than in [��], on the other hand, hKϑ,ϑi is
strictly non-positive. Based on these conditions, the proof in [��] also holds in our case.

Supposing su�ciently regular initial conditions, such that there exists ϑ 2 C0(0, T,Hs(Ω)10) with
s > 1. We skip the details of the (lengthy) proof and directly provide the result.

(i) For ↵ = 0, the error ||ϑ− ϑh|| is of the order O
(
hmin(s,k)

)
, if ||ϑh(0)− ⇡h(ϑ(0))||2Λ

= O
(
hmin(s,k)

)
;

(ii) For ↵ 2 (0, 1], the error ||ϑ− ϑh|| is of the order O
⇣
hmin(s,k)+ 1

2

⌘
, if

||ϑh(0)− ⇡h(ϑ(0))||2Λ = O
⇣
hmin(s,k)+ 1

2

⌘
.

Semi-discrete convergence

Here, ⇡h denotes theL
2 projection onVh and k the polynomial order. We can conclude from these results

that the dissipative upwind scheme shows improved convergence rates compared to centered �uxes.

�.� DG matrices and mappings from a reference element

Chapter �.�.� has set up the polynomial approximation space, which has led to the global weak formula-

tion (�.�.��). The bilinear forms in (�.�.��) consists of three di�erent types of integrals commonly referred

to as mass- (m), sti�ness- (a) and surface-terms (b↵). An element-wise matrix formulation of the semi-

discrete problem reads

Mi@tΘi(t) = AiΘi(t) + BiΘi(t) +KiΘi(t). (�.�.�)

Here,Θi 2 R
10di denotes the vector of unknowns. We omit a detailed derivation of the matrices since it

is quite classic (see [��, ���]) and restrict ourselves to the type of matrix entries.

Global matrix The global mass-termsM and K are of the same kind. They share the important prop-

erty of block-diagonality. Block-diagonality for M easily allows the computation of M−1, which is the

main reason why DGTD is e�cient with explicit time-integration schemes.

In general, the assembly of the sub matrices provides the global formulation. We derive the sub

matrices in the following.

Mass matrix Due to the local de�nition ofWi, i 2 J0, NThK the sub blocks read for all j, k 2 di

(Mii)jk =

ˆ

⌧i

m'ij'ik d3r. (�.�.�)

Here, m 2 {Λll,−"0!P
2,−γ, "0!P

2} with l = 1, . . . , 4 are the di�erent materials that appear in the

mass matrix. Throughout the course of this manuscript, we consider constant material parametersm per

element ⌧i, i 2 J0, NThK. Considering the element ⌧i, i 2 J0, NThK with a local DoF vector Θi that
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contains the DoFs of the electric and magnetic �eld, the polarization current and charge density leads to

the element-wise mass matrix multiplicationMi@tΘi(t) with

Mi = diag{Mii, . . . ,Mii}, 2 R
10di⇥10di , (�.�.�)

where each block contains the corresponding m.

Sti�ness matrix In the same way we proceeded for the mass matrices, we de�ne a material dependent

sti�ness matrix as (
A
l
ii

)
jk

= m

ˆ

⌧i

'ij@l'ik d3r, l 2 {x, y, z}, (�.�.�)

with m 2 {−"0!P
2, "0!P

2,−β2,−β2}. Each A
l
i is associated to @l and we can assemble discrete di�er-

ential operators

A
curl
i =

2
4

0 −A
z
i A

y
i

A
z
i 0 −A

x
i

−A
x
i A

y
i 0

3
5 ,

A
grad
i =

⇥
A
x
i A

y
i A

z
i

⇤T
,

A
div
i =

✓
A
grad
i

◆T

.

(�.�.�)

The operation on ⌧i, i 2 [0, NTh ] with a local DoF vectorΘi hence reads AiΘi(t) with

Ai = diag{m1A
curl
i ,m2A

curl
i ,m3A

grad
i ,m3A

div
i }, 2 R

10di⇥10di , (�.�.�)

with (m1,m2,m3,m4) = (−"0!P
2, "0!P

2,−β2,−β2).

Surface matrix Integration by parts in the weak formulation has split the di�erential operators into

a volumic sti�ness part and the surfacic contribution where the DG �ux de�nitions were required. The

surface integral reads

(
B
l
iv

)
jk

= m

ˆ

aiv

'ij'vkel · niv d
2r, l 2 {x, y, z}, (�.�.�)

with v 2 Vi and m 2 {−"0!P
2, "0!P

2, β2, β2}. In a similar manner as for the volumic part, we assemble

B
curl
iv =

2
4

0 −B
z
iv B

y
iv

B
z
iv 0 −B

x
iv

−B
x
iv B

y
iv 0

3
5 ,

B
grad
iv =

⇥
B
x
iv B

y
iv B

z
iv

⇤T
,

B
div
iv =

✓
B
grad
iv

◆T

.

(�.�.�)

The operation on ⌧i, i 2 J0, NThK with a local DoF vector of the �uxes Θ?
i leads to BiΘi with

BiΘ
?
i (t) =

X

v2Vi

diag{m1B
curl
iv ,m2B

curl
iv ,m3B

grad
iv ,m3B

div
iv }Θ?

iv. (�.�.�)

Here,Θ?
iv denotes the numerical �ux at the cell interface between ⌧i and ⌧v .
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�.�.� Linear elements

For linear triangles and tetrahedra, i.e. elements with straight edges and plane surfaces, we can de�ne

a�ne mappings from a reference element to the physical elements. Deploying a�ne mappings for the

integrals of the mass-, sti�ness-, and �ux-matrix computations shrinks down thememory consumptions�.

The integrals are evaluated on a reference element and then transformed to the physical one. Hence, only

the transformation from the reference element to the physical element has to be stored. This is possible

due to a constant Jacobian matrix as we will see now.

Figure �.� depicts the mappingψ⌧i(ξ) from a reference element ⌧̂ to a physical tetrahedron ⌧i. Please

note that this �gure illustrates a second order mapping while we only consider linear mappings for the

moment. Let us de�ne the reference tetrahedron as ⌧̂ := {(ξ, η, ζ) 2 R
+, ξ+η+ζ  1} and ξ = (ξ, η, ζ).

The mapping from the reference element to the physical element is de�ned by the a�ne mapping

ψ⌧i : τ̂ ! τi, such that 8 ξ 2 τ̂ x = ψ⌧i(ξ), (�.�.��)

with x = (x, y, z). Applying this transformation to the integrals of the previous section yields [���]

(Mii)jk =

ˆ

⌧̂

ϕ̂jϕ̂k det
⇣
Jψτi

⌘
dξ,

(
A
l
ii

)
jk

=

ˆ

⌧̂

ϕ̂j

n
det
⇣
Jψτi

⌘
J−1
ψτi

rξϕ̂k

o

l
dξ,

(Bil)jk =

ˆ

t̂

ϕ̂jϕ̂k det
⇣
Jψτi

⌘
det
⇣
J−1
ψτi

n̂
⌘

dŝ,

(�.�.��)

where we dropped the material parametersm and denote the reference triangle by t̂. The Jacobian matrix

of the transformation ψ⌧i is de�ned by

⇣
Jψτi

⌘

jl
=

✓
∂xj

∂ξl

◆

jl

. (�.�.��)

For linear tetrahedra, the mapping’s implementation and consequently its Jacobian matrix become

ψ⌧i(ξ) = v1 + (v2 − v1)ξ + (v3 − v1)η + (v4 − v1)ζ,

Jψτi
(ξ) =

2
4
{v2 − v1}x {v3 − v1}x {v4 − v1}x
{v2 − v1}y {v3 − v1}y {v4 − v1}y
{v2 − v1}z {v3 − v1}z {v4 − v1}z

3
5 .

(�.�.��)

Since the Jacobian matrix is constant, the integrals in (�.�.��) can be simpli�ed. Each element only needs

to store the Jacobian matrix instead of the whole mass-, sti�ness-, and surface-matrix.

�.�.� Curvilinear elements

Although non-uniform tetrahedral meshes are well adapted to large simulation domains that contain

small geometrical details, they require signi�cant local re�nements for curved material interfaces. Es-

pecially in nanoplasmonics, where most e�ects rely on surface waves, an accurate �eld solution at the

metal-dielectric interfaces is crucial.
�In a DGTD implementation, we do not actually assemble global matrices. Each element is treated locally. This is commonly

referred to as a matrix-free implementation. Thus, during the update of each cell τi, we transform the matrix entries from the

reference element τ̂ to τi.
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Figure �.� | High-order mapping. Second order mapping from the reference element τ̂ to the physical element τi. With kind

permission from [���].

Typically, technical schematics and plans are done by the help of Computer Aided Design (CAD) soft-

ware. At the end of the design phase, the engineer obtains a geometric computer model of the desired

devices. Common computer based geometry representations are for example Boundary Representation

(BREP)[���] and Non-Uniform Rational Basis Spline (NURBS)[���]. If one wants to solve a PDE on a

geometry, which is given by a CAD software, classical methods like FDTD, Finite Volume Method (FVM)

or FEM require an intermediate meshing step. For Maxwell’s equations, FDTD is usually formulated on

regular Cartesian grids that may su�er from the staircasing e�ect. Complex geometrical details are often

better approximated by unstructured tetrahedral meshes, well suited to FE methods. However, once a

CAD geometry has been tessellated, the original geometric description is lost. Later mesh re�nement

iterations may require a communication step with the CAD system and can be problematic. A relatively

new approach that directly uses the NURBS representation of a given geometry is the so-called Isogeo-

metric Analysis (IGA)[��]. IGA directly employs the geometric basis functions as approximation space

and is hence intrinsically boundary conforming. This family of methods has signi�cantly gained atten-

tion in the last decade [��]. Although IGA seems to be very promising, it requires fairly drastic changes

for existing implementations. An alternative approach, which incorporates more sophisticated geometry

approximations are isoparametric elements. Even though they still rely on a mesh, the clear advantage

of isoparameteric elements is a fairly easy extension of the existing implementation.

For nanophotonics, the authors in [���] have investigated the importance of a proper surface approx-

imation of metallic nano-spheres. They compared a Cartesian mesh FDTD implementation with a DGTD

formulation on linear elements. The latter out-performed the FDTD because FDTD su�ers from the stair-

casing e�ect. However, the author still experienced limited convergence rates for curved geometries and

proposed an implementation of curvilinear elements for nanophotonic metal structures. These predic-

tions have been con�rmed meanwhile in the context of nonlinear hydrodynamic dispersion models [��]

and for local dispersion laws [���].

In the scope of this manuscript, we extend the formulation proposed in [���] to the linearized hydro-

dynamic �uid model. Our main motivation is the extremely thin penetration layer of nonlocal e�ects at

the metal boundary [���], which leads to an enormous surface-sensitivity of the solution. Compared to

simulations with a local dispersion model, the weight of surface e�ects will increase and further mesh

re�nements would be necessary. As a result, the obtained numerical solution shows unwanted artefacts

like spurious resonances or numerical dissipation when compared to the analytical reference solution.

We refer to section �.�.� for a numerical evidence.

In other words, the nonlocal dispersion model even impairs the performance of linear elements with
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respect to local dispersion models since all nonlocal e�ects below the plasma frequency predominantly

appear at the metal surface�. Additionally, the DGTD convergence rate of simulations with curved geo-

metries on a linear mesh is intrinsically limited to the second order with regards to the approximation

of the geometry. This is polynomial order independent of the DG approximation space [��, ���]. For

this reason, we extend our DGTD method by curvilinear elements allowing us to signi�cantly reduce

the computational costs. Hereby, the performance gain can be explained by a combination of a reduced

amount of mesh cells and the full high-order nature due to curvilinear elements.

One clear drawback of curvilinear elements appears in the mapping from the reference element to

the physical tetrahedron. In the previous section, we de�ned a linear mapping with a constant Jacobian.

As we will see in the following, the mapping for high-order elements is non-linear. This prevents the

’easy’ storage of the DG matrices, where only the Jacobian is needed. Now, a numerical integration on

each physical element is indispensable and we have to store the full local DG matrices on each element.

According to our experience, the net gain due to curvilinear elements is still strictly overbalanced.

High-order mapping If curvilinear elements are present in the computational mesh, the procedure

remains similar as for a purely linear mesh. The only di�erence is a change in the mapping from the

reference element ⌧̂ to the physical curvilinear element ⌧i. In order to account for the curved physical

element, additional control points are introduced as depicted in Figure �.�. This leads to a non-linear

mappingψ⌧i if they do not lie on a straight line between two edges. For DGwith Lagrange basis functions,

the procedure is straightforward and the mapping consists in a sum of weighted Lagrange polynomials

de�ned on ⌧̂ . In this sense, we de�ne the usual DoFs (Al)l=1,...,Mn withMn = 1/6(n+ 1)(n+ 2)(n+ 3)
the amount of DoFs on the reference element ⌧̂ . This leads to an n-th order mapping ψ⌧i

(n) and reads

ψ⌧i
(n)(ξ) =

P
0j+k+ln

a
(n)
jklξ

jηkζ l. (�.�.��)

Here, a
(n)
jkl are the weighting coe�cients of the n-th order mapping. A second order mapping for example,

as we consider throughout the course of this work, becomes

ψ⌧i
(2)(ξ) = a

(2)
1 +

a
(2)
2 ξ + a

(2)
3 η + a

(2)
4 ζ+

a
(2)
5 ξη + a

(2)
6 ξζ + a

(2)
7 ηζ+

a
(2)
8 ξ2 + a

(2)
9 η2 + a

(2)
10 ζ

2.

(�.�.��)

The Jacobian matrix of a second order mapping already contains �rst order polynomials and its determ-

inant third order polynomials. Consequently, we cannot simplify the integrals in (�.�.��), i.e. we cannot

take the Jacobian out of the integral. A space-dependent Jacobian thus requires numerical integration

of the DG matrices and prevents a simple mapping coe�cient as it was possible for linear elements.

This involves the storage of the DG matrices for each curvilinear element and signi�cantly increases the

memory consumption. We spare out the details of the determination of a
(2)
jkl and the numerical integration

strategies since they are equivalent to the procedure for Maxwell’s equation in [���].

Adding curvilinear elements to our DGTD implementation of the nonlocal dispersion model reuses

the already integrated volumic matrices of the Maxwell part. However, the surface terms have changed

�We focus on the physics below the plasma frequency since the regime beyond ωP is dominated by losses and less interesting

for real-world applications.
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due to the di�erent surface integrals of the hydrodynamic part and have to be added. These additional

matrices arise for the normal �ux of the current density
´

@⌧i

J?rφik · n and the scalar �ux of charge

density
´

@⌧i

Q?φik · n. As a reminder, since the surface normals are not constant anymore (due to the

curved surface, n = 2 in our case), a separate computation of each integral-type is necessary. In total,

four additional matrices have to be stored when the curvilinear tetrahedron ⌧i is subject to a nonlocal

dispersion law.

Remark �.�.�. Despite advantages like a lower amount of mesh cell, a highly accurate surface approxim-

ation, the overall performance of the simulation is constrained by and increased memory-consumption and

the quality of a valid curvilinear mesh. Valid and invalid curvilinear meshes have been discussed in [��, ��].

We here rely on available software like http://gmsh.info/ (GMSH) and www.meshgems.com (Distene) for the

mesh generation.

�.� Time discretization

System (�.�.��) has been discretized in space. However, the time axis is still continuous and needs to

be discretized. A key-advantage of a spatial DG discretization clearly is the local formulation that leads

to weakly coupled elements. The weakness of the coupling can rather be seen as a communication of

neighboring cells via the numerical �uxes. Such a weak coupling yields a block-diagonal mass matrix that

is issued from them(ϑh,ϑ
0
h) for all ϑh, ϑ

0
h 2 Vh term. This particular property of the mass matrix is the

reason why DG is e�cient in combination with an explicit time integration. (The inversion of the mass

matrix that is required by any explicit time integrator is easily attainable due to the block-diagonality.)

Generally, various explicit time integration schemes could be employed for the time discretization

in (�.�.��). However, the overall convergence order of the space-time scheme is limited by the order of

the space and time scheme (as we will see later). In other words, if a spatial discretization of order k is

combined with a time integration scheme of order l, the overall order shall be min(k, l).

Maxwell’s equations in time-domain have predominantly been solved with the well established Yee

scheme [���], i.e. staggered �nite di�erences. E�cient and simple FDTD implementations are intrinsic-

ally limited by a second order convergence (in optimal conditions). A second order LF scheme is hence

su�cient and does not limit the overall convergence of the scheme. As DG provides a high spatial con-

vergence order (see Chapter �.�.�), a second order LF scheme would dramatically limit the overall con-

vergence order. Motivated to fully exploit the high spatial order in combination with a well adapted time

integration scheme, we couple our DG discretization with explicit high order RK methods.

We �rst provide a stability result of the fully-discrete DGTD scheme when the time is discretized

with a second order LF scheme. Afterwards, we introduce classical RK methods and an optimized LSRK

variant which is particularly tailored to the discrete Maxwell operator. A stability and convergence result

of DGTD with a standard RK-� scheme is sketched and concludes this part.

�.�.� Second order leap-frog

We consider (�.�.��) on the time interval [0, T ] with T > 0 and discretize the latter by a uniform subdivi-

sion (tn)n2J0,NK, N 2 N
? of size ∆t. The dual grid is shifted in time by ∆t/2 with respect to the primary

one. Applying a second order LF scheme to system (�.�.��) we obtain the following fully discrete scheme

m(
ϑn+1
h − ϑn

h

∆t
,ϑ0

h) = a(ϑ
n+ 1

2

h ,ϑ0
h) + b↵(ϑ

n+ 1
2

h ,ϑ0
h) + k(ϑn

h,ϑ
0
h),

(�.�.�)
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with

ϑn+1
h =

⇣
ϑ
n+ 3

2

h,1 ϑn+1
h,2 ϑ

n+ 3
2

h,3 ϑn+1
h,4

⌘T
,

ϑ
n+1/2
h =

⇣
ϑ
n+ 1

2

h,1 ϑn+1
h,2 ϑ

n+ 1
2

h,3 ϑn+1
h,4

⌘T
,

ϑn
h =

⇣
ϑ
n+ 1

2

h,1 ϑn
h,2 ϑ

n+ 1
2

h,3 ϑn
h,4

⌘T
.

(�.�.�)

We only recall the Courant Friedrichs Lewy (CFL)-type stability criterion and refer to [���] for details.

Proposition �.�.�. Positivity of the energy. The corresponding energy to (�.�.�) is positive under the fol-

lowing condition

∆t

4
 min

⇢
1

9!P
2"0C

,
"0"1

2h+ 9C
,

1

2h"0!P
2 + 9β2C

,
1

9C

}
, (�.�.�)

LF stability

where C is a generic constant independent of ∆t and h.

Proof. See [���].

Its low order nature and the staggered formulation makes it unhandy to extend this scheme to a

generalized dispersion model [���]. We will not further pursue the investigation of this scheme.

�.�.� Runge-Kutta methods

The semi-discrete system (�.�.��) is a system of ODEs and can be cast into

@ty(t) = F(t,y(t)), (�.�.�)

to which standard time integration methods directly apply. Here, y 2 R
M is the vector of unknowns,

M the number of coupled ODEs, and F : R? ⇥ R
M 7! R

M the RHS. Using the same discretization of

the time interval [0, T ] with T > 0 (a uniform subdivision (tn)n2J0,NK, N 2 N
? of size ∆t). We further

de�ne yn to be the approximated solution of y(tn) at the time tn. A classical RK scheme [��] of order s
with s 2 N

⇤ stages for (�.�.�) reads

yn+1 = yn +∆t

sX

i=1

biKi,

Ki = F

0
@tn + ci∆t,yn +∆t

sX

j=1

aijKj

1
A

(�.�.�)

Here, s denotes the number of stages and aij , bi, ci the so-called Butcher coe�cients. The Butcher coef-

�cients eventually determine the characteristics of the scheme and tailors properties like its implicit or

explicit character, stability criteria and its convergence and order. The following considerations are re-

stricted to conditionally stable explicit schemes, i.e. ai,j = 0 for j ≥ i. We omit a deeper analysis of

classical explicit RK schemes and refer the interested reader to [��].

However, we want to point out the memory consumption of (�.�.�). The recursive sum requires a

storage of s+1 vectors of the same size as yn. Since DG type methods avoid the storage of a large matrix
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and rely on a transformation from a reference element, memory limitations are directly related to the size

of the vector of DoFs. This, in turn, means that a multiple storage of the DoF vector is preferably avoided.

Nevertheless, we will make use of the scheme (�.�.�) for the numerical analysis of the fully-discrete

scheme where we will use an explicit RK scheme of order 4.

�.�.� Low storage Runge-Kutta methods

Specialized LSRK methods overcome the memory constraint of classical RK schemes. As a matter of fact,

these schemes only need a storage of two full DoF vectors independently of the number of stages. We

follow [���] where the authors have focused on a scheme that was originally proposed by Williamson

[���]. Di�erent implementations have been proposed in [���, ��]. The Williamson formulation reads

K1 = y1,

K2 = AiK2 +∆tF(tn + ci∆t,K1)

K1 = K1 +BiK2

)
for all i = J1, sK,

yn+1 = K1.

(�.�.�)

Obviously, this scheme only requires one additional DoF vector. Looking for a scheme which is self-

starting requiresA1 = 0 and we hence end up with 2s−1 free variables that tailor the scheme. A reduced

amount of free variables comes with more restrictive general convergence behaviour. As a consequence,

at least 5 LSRK stages are required in order to guarantee 4th-order convergence [��].

Niegemann et al. [���] have recently proposed a LSRK scheme algorithm with optimized stability re-

gions. The proposed scheme has been designed for advection-dominated problems andworks particularly

well forMaxwell’s equations solved by aDGTD formalism. Optimized LSRKmethods in combinationwith

Maxwell-DGTD coupled to a Padé-type generalized dispersion model have been studied recently [���].

Throughout this work, we rely on an LSRK with an optimized stability region of order 4 and 12 or 14
stages for centered or upwind �uxes, respectively.

Extending Maxwell’s equations coupled to a linearized hydrodynamic model in combination with a

generalized dispersion model (see (�.�.�)), may impact the stability criterion. However, we have never

experienced any stability issues due to the nonlocal dispersion model. A rigorous stability analysis has

not been done and will be part of a future work.

Nevertheless, the hyperbolicity analysis in Chapter �.�.� allows a qualitative explanation. The eigen-

values of the pure Maxwell case correspond to the speed of light which is the propagation velocity of

the electromagnetic wave. Coupling Maxwell’s equations to a linearized �uid model enriches the set of

solutions by the bulk plasmon waves. These bulk plasmons, however, appear to have a propagation ve-

locity which is about two orders of magnitude slower than the speed of light. If the original time step∆t
has thus been determined by the CFL criterion of Maxwell’s equations, the coupled system should still be

stable.

Of course, Maxwell’s equations and the hydrodynamic model are not equivalent and our qualitative

explanation lacks the impact of the discrete grad, div and curl operators. Numerical experiments (cubic

cavity and the scattering of a sphere in vacuum) have shown that we can arti�cially increase the nonlocal

parameter up to β = 0.85c0 without experiencing stability issues. Such a value for β is almost two orders

of magnitude higher than physically acceptable values.
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�.�.� Stability of the fully-discrete scheme

It turns out that the analysis of the semi-discrete scheme (�.�.��) appears to have similar properties as

for Maxwell’s equations only coupled to a generalized dispersion law. Indeed, since the energy is not

only bounded in �nite time but is strictly decreasing, the scheme is even more favorable. Luckily, our

case ful�lls the requirements of the proof in [��] and the result hence equally holds for (�.�.��). We use

a standard explicit RK time integrator instead of the previously presented LSRK scheme. Following [��],

we de�ne the operator Lh by

Lh : Vh 7! Vh (�.�.�)

with for all (ς, ξ) 2 Vh ⇥ Vh,

(Lhς, ξ) = a(ς, ξ) + b↵(ς, ξ). (�.�.�)

We further de�ne the operator Kh : Vh 7! Vh with for all (Khς, ξ) = k(ς, ξ). The overall RHS is packed
together and we de�ne

Dh := Lh + Kh, (�.�.�)

which permits to recast the semi-discrete scheme as: Find ϑh 2 Vh such that

Λ@tϑh = Dh(ϑh). (�.�.��)

Equation (�.�.��) is of the same form as (�.�.�) an we apply a �th order RK discretization. We still con-

sider (�.�.��) on the time interval [0, T ] with T > 0 and discretize the latter by a uniform subdivision

(tn)n2J0,NK, N 2 N
? of size ∆t. Here, all components of ϑn

h share the same time grid, i.e.

ϑn
h =

(
ϑn
h,1 ϑn

h,2 ϑn
h,3 ϑn

h,4

)T
. (�.�.��)

The stability condition follows. We recall from [��]:

Proposition �.�.�. Let ↵ 2 ]0, 1]. Under a 4/3−CFL condition, i.e. ∆t . h4/3, the scheme is stable in �nite

time, in the sense that there exists C > 0 (independent of h and ∆t) such that

max
n2{0,...,N}

||ϑn
h||2Λ  exp(CT )

∣∣∣∣ϑ0
h

∣∣∣∣2
Λ
. (�.�.��)

RK stability

Remark �.�.�. Proposition �.�.� states a controlled increase of energy. This is due to the generalized disper-

sion model contribution. In other words, if we only couple Maxwell’s equations to the linearized �uid model,

the exponential term drops and the stability result changes to

max
n2{0,...,N}

||ϑn
h||2Λ 

∣∣∣∣ϑ0
h

∣∣∣∣2
Λ
. (�.�.��)

Proof. Since we are in a very similar situation as in [��], the proof is almost equivalent and we spare out

a thorough reproduction of the details.
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�.�.� Convergence of the fully-discrete scheme

Thanks to the successful stability analysis, a conducting convergence proof relies on similar steps. We

refer the interested reader to [��, ��] for inspirations on the convergence proof. The result reads

Proposition �.�.�. There existsC > 0 (independent of h and∆t, but that depends on T andϑ) such that

max
n2{0,...,N}

||ϑ(tn)− ϑn
h||Λ  C

(
hmin(s,k)+1/2 +∆t4

)
, (�.�.��)

RK convergence

under the CFL-type condition.
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Chapter � has set up the physical context in terms of model equations, boundary conditions and source

terms. Aiming for complex nanophotonic geometries, where analytical solutions are either extremely

elaborate or do not exist, we have proposed a spatial and temporal discretization scheme in Chapter �.

While Chapter � deals with the description of the numerical scheme, its stability analysis and a con-

vergence result, an exhaustive numerical simulation of nanophotonic scattering problems still requires

additional functionalities.

We name the lacking ingredients ‘Technicalities’, containing speci�c �eld sources, sophisticated free-

space boundary conditions and physically interpretable observables.

More precisely, we will recall the TF/SF-interface approach enabling an intuitive manner to impose

incident �elds. A complementary approach, the so called SF-formulation, will lead to a formulation of

Maxwell’s equations, where only scattered �elds remain. Such a formulation is well suited for EELS

simulations due to its very �exible source term formulation [��, ��].

In terms of domain truncation, we provide a CFS-PML boundary condition that has proven to be very

e�cient for DGTD methods [��, ���].

Correspondingly to their formulation, CFS-PMLs easily allow arbitrary materials inside the PML re-

gion. This feature will be of particular importance for simulation examples like nano-cubes, where an

in�nite half-space (metallo-dielectric substrate) is mandatory. We refer to Chapter � for concrete applic-

ation examples.

Sophisticated domain truncation thanks to PMLs and appropriate �eld source formulations will allow

�D time-domain simulations of system (�.�.�). However, most physical interpretation are very often based

on frequency-domain observables like optical CSs of a scatterer, re�ectance or transmission spectra (for

periodic unit-cells) and absorption spectra inside a certain sub domain of a device. In the context of EELS

simulations, physicists are commonly interested in the Electron Energy Loss Probability (EELP), which

is equally de�ned in frequency-domain. Adding those observables to our DGTD implementation grants

access to comparisons of the simulated observables and their experimental counterparts.

i
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�.� Field sources

Nanophotonic scattering simulations generally rely on any kind of incident signal, except for eigenvalue

problems. Such signals can for instance be a plane wave pulse, a Gaussian laser beam [��] or electron

beams in EELS [��, ���], Electron Energy Gain Spectroscopy (EEGS) [���, ���] and CL [���] microscopy.

The question arises, how to impose these excitations to system (�.�.�). This section brie�y recalls already

established techniques like the TF/SF approach and the SF technique as these principles are used through-

out the course of this work in di�erent situations later on.

�.�.� Total �eld / scattered �eld interface

TF/SF interface will serve for two di�erent purposes at the same time. On the one hand side, a TF/SF

interface allows incident �elds for PML truncated domains and on the other hand they provide an elegant

possibility to evaluate physical observables based on Poynting’s theorem (�.�.��).

The here presented techniques are well established in the FDTD and also more recently in the DGTD

community. Comprehensive details can be found in [���, ��, ���] and we only provide a condensed

version of the references. The TF/SF approach splits the total �elds

ϑtot = ϑinc + ϑsca, (�.�.�)

into their incident and scattered components. Usually, the incident �eld is known a priori since it is part

of the simulation setup de�nition. Splitting-up the overall computational domain into two sub domains:

the scattered �eld domain Ωsca (where we only compute the scattered �eld) and the total �eld domain

Ωtot which containing the scatterers and where we compute the total �eld, leads to two sets of the semi-

discrete problem in (�.�.��)

m(@tϑh,tot,ϑ
0
h) = a(ϑh,tot,ϑ

0
h) + b↵(ϑh,tot,ϑ

0
h)+

k(ϑh,tot,ϑ
0
h), 8ϑ0

h 2 Vh, supp(ϑh,tot) = Ωtot,

m(@tϑh,sca,ϑ
0
h) = a(ϑh,sca,ϑ

0
h) + b↵(ϑh,sca,ϑ

0
h)+

k(ϑh,sca,ϑ
0
h), 8ϑ0

h 2 Vh, supp(ϑh,sca) = Ωsca.

(�.�.�)

Although the unknowns of each sub domain now represent di�erent �elds, the DG formalism remains

exactly the same inside each domain. However, the �ux at the interface @Ωtot,sca = @Ωtot \ @Ωsca has to

be adapted in order to take the di�erent �eld formulations into account. We refer to [��, ���] for further

details. Please note that the presented approach is only valid for linear Maxwell’s equations. Figure �.�

shows a sphere inside Ωtot, surrounded by the TF/SF interface. The domain outside the TF/SF interface

thus is Ωsca being truncated by PMLs. Figure �.� depicts a numerical example of the TF/SF approach.

In Figure �.� (a) no scatterer is present (vacuum sphere) and hence no scattered �elds appear in the SF

domain. Assuming a metallic sphere in Figure �.� (b) leads to the classic Surface Plasmon Polariton (SPP)

resonance and hence to scattered waves in the SF domain.

�.�.� Scattered �eld formulation

The SF formulation is based on a similar approach as the TF/SF interface formulation. However, the slight

di�erence arises due to the strict absence of the total �eld in the solution. The TF/SF formulation divides

the computational domain into a total �eld domain Ωtot and a scattered �eld domain Ωsca. While the
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Figure �.� | Mesh con�guration including a scatterer, a TF/SF interface, and a PML layer. The scatterer (orange) is

enclosed by the TF/SF interface in (light gray). The faces of the PML (gray) are removed for clarity. Courtesy of [���].

(a)No scatterer in Total Field (TF) zone

(vacuum sphere).

(b) Metallic spherical scatterer in TF

zone.

(c) Metallic spherical scatterer in SF

zone.

0 1 2 3 4

|E|

Figure �.� | TF/SF and SF �eld plot. Figure (a) shows the incident �eld in the TF domain and no �eld in the SF domain.

Putting a metal sphere into the TF zone causes scattered �elds hence �elds in the SF zone. The solution in Figure (c) has been

obtained with the SF source formulation and does not contain any incident �eld which makes the TF/SF interface invisible for

the solution.

solution on Ωtot is composed of the incident plus the scattered �eld, the solution on Ωsca only consists in

the scattered �eld without the incident �eld. In contrast, the SF formulation does not have any total �eld

region, i.e. Ω = Ωsca. If wanted, the total solution can be reconstructed by ϑtot = ϑsca + ϑinc.

Bene�ts of the SF formulation System (�.�.��) in the SF form turns out to be a very �exible option

for EELS simulations that rely on an incident electron beam excitation. Such a simulation requires a

fairly complicated TF/SF approach guaranteeing a convex TF domain for non-penetrating electron beams

[��, ���]. Penetrating electron beams are unfortunately impossible in combination with TF/SF interfaces.
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Employing a SF formulation intrinsically overcomes this drawback due to its volume based formu-

lation (instead of a TF/SF interface). Additionally, re-meshing is not required for di�erent electron tra-

jectories, since di�erent electron beam positions only manifest in di�erent parameters of the analytical

source termϑinc. This paves the way for multiple simulation runs with various electron beam trajectories

on the same mesh that avoids mesh noise.

Maxwell’s equations in the SF formulation Inspired by Diehl [��], we extend the frequency-domain

SF formulation to a purely time-domain derivation (leading to an equivalent result) and considering ar-

bitrary dispersion models, e.g. the generalized dispersion model coupled to a linearized hydrodynamic

dispersion model (�.�.�). Extending the SF formulation to nonlocal dispersion models is very straightfor-

ward thanks to the fact that the entire dispersion is cast into a dispersion current. For linear dispersion

laws and linearMaxwell’s equations, the actually implemented form of Jf does not a�ect the SF derivation

and can hence be kept general.

Remark �.�.�. Although throughout the course of this thesis we neglect any magnetization e�ects, i.e.

M ⌘ 0, the following derivation preserves the generalizationM 6= 0 for the sake of completeness.

We assume a vacuum domainΩ1 and a dispersive domainΩ2 as depicted in Figure �.�. The electric and

magnetic �elds are equivalently decomposed as in (�.�.�). Ampère’s and Faraday’s law for the dispersive

materials and for vacuum on the same domain Ω2 respectively read

r⇥Etot = −@t(µ0H
tot)− @t(µ0M(Htot)),

r⇥Htot = @t"0"1Etot + Jb(E
tot) + Jf(E

tot),

r⇥Einc = −µ0@tH
inc,

r⇥Hinc = "0@tE
inc.

(�.�.�)

Simple algebraic steps immediately lead to

r⇥Esca = −@t(µ0H
sca)− @t(µ0M(Htot)),

r⇥Hsca = @t"0"1Esca + @t"0("1 − 1)Einc + Jb(E
tot) + Jf(E

tot),
(�.�.�)

and eventually

@tH
sca = − 1

µ0
r⇥Esca − @t(M(Htot)),

@tE
sca =

1

"0"1

(
r⇥Hsca − Jb(E

tot) + Jf(E
tot)
)
− (1− "−1

1 )@tE
inc.

(�.�.�)

SF formulation

We can conclude from (�.�.�):

• In case of vacuum, i.e. "1 = Jf ⌘ 0, we recover Maxwell’s equations without any source terms,

leading to the absence of scattered �elds if no materials are present (equivalent if (�.�.�) was con-

sidered on Ω1);
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Ω2, ∂Ω2

Ω1, ∂Ω1

E∂Ω1 ,H∂Ω1

Figure �.� | SF computational domain. Ω1 consists of vacuum and Ω2 is dispersive. E∂Ω1 ,H∂Ω1 symbolize the boundary

conditions for E andH where the vacuum domain is truncated.

• Either non-dispersive dielectric "1 or/and bound electron polarization current Jb or/and a free

electron polarization current Jf can cause scattered �elds.

Regarding the computational costs, the SF formulation requires the evaluation of the incident �eld on

every non-vacuum volume, i.e. where Jb(Etot) 6= 0 or/and Jf(Etot) 6= 0 due to Etot = Einc + Esca.

If the material’s background permittivity "1 is non-vanishing, an additional evaluation of the incident

�eld’s time derivative is also necessary. Figure �.� (b) and (c) illustrate the di�erence between the TF/SF

and SF source formulation.

�.� Domain truncation

This chapter outlines di�erent domain truncation techniques. First, Silver-Müller (�rst-order radiation

conditions), often referred to as ABC, are given for completeness. We then sketch the main ideas of

CFS-PMLs and proceed with a special formulation of Maxwell’s equation based on a combination of the

SF formulation and CFS-PMLs. This formulation will turn out to be impractical in time-domain what

motivates our proposition of a combination of TF/SF surfaces and CFS-PMLs.

�.�.� Silver-Müller absorbing condition

The Silver-Müller radiation condition [���] reads

lim
⇢!1

⇢((r⇥Esca)⇥ n− ik0Esca) = 0, (�.�.�)

which can also be expressed as [��]

n⇥E = −Zn⇥ (n⇥H). (�.�.�)

This �rst order radiation condition assumes outward-travelling waves and its performance signi�cantly

decreases for oblique incidence angles [��].

�.�.� Perfectly matched layers

Overcoming the incident angle limitation of Silver-Müller boundary conditions, an arti�cial boundary

layer can be employed, commonly known as PMLs. PMLs have �rst been proposed by Berenger in ����
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[�]. The leading idea is to truncate a free space simulation setup with a layer �lled by an arti�cial material

that attenuates the outward-travelling waves. Such an arti�cial material has to be designed in a way that

it optimally absorbs all radiation coming from the actual computational domain (for example the scattered

�elds of a sphere). Perfect absorption also means no back re�ection into the simulation domain and would

hence mimic an in�nite space for the solution on the domains Ω1 and Ω2 according to Figure �.�.

König et al. [��] have recently proposed the CFS-PML in the context of DGTD. For details and per-

formance assessments of standard PMLs, Uniaxial Perfectly Matched Layers (UPMLs) and CFS-PMLs we

refer to [�, ��, ���]. In the following, we restrict ourselves to CFS-PMLs.

CFS-PML formulation CFS-PMLs rely on a complex coordinate stretching in the PML domain Ω̃ [��],

see Figure �.� (b). Such a stretching transforms the spatial derivatives

@l ! 1

sl(!)
@l, (�.�.�)

in the frequency-domain. Here, sl(!) := l −
σl

i! − ↵l
and l 2 {x, y, z}. We refer to [���] for a quantit-

ative study about appropriate choices of the numerical values of l, σl, ↵l. Applying the PML strategy to

Maxwell’s equations in frequency-domain yields

−i!"0"1E = er⇥H,

i!µ0µ1H = er⇥E,
(�.�.�)

Maxwell’s equations on Ω̃

with the transformed operator

er =

✓
1

sx(!)
@x,

1

sy(!)
@y,

1

sz(!)
@z

◆T

, (�.�.�)

and for Ω̃ being �lled with vacuum.

Time-domainCFS-PML An inverse Fourier transform leads to the time-domain version of (�.�.�). The

ex component of Ampère’s law for example reads

"0"1@t{E}x =
1

sy
@y{H}z −

1

sz
@z{H}y,

"0"1@t{E}x =
1

y
@y{H}z −

1

z
@z{H}y −

{
GE
 
xy

−
{
GE
 
xz
,

@t
{
GE
 
xy

=
σy
2y

@y{H}z −
✓
↵y +

σy
y

◆{
GE
 
xy
,

@t
{
GE
 
xz

= −σz
2z

@z{H}y −
✓
↵z +

σz
z

◆{
GE
 
xz
.

(�.�.�)

Here,G is the auxiliary PML quantity due to the arti�cial material. We refer to [��, ���] for details about

the derivation and more technical aspects like the split-�ux formulation. DG-based CFS-PMLs crucially

rely on split-�uxes.
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CFS-PML and SF formulation Beside rather academic studies like isolated spheres in vacuum, most

nanophotonic devices are deposited on an in�nite metal or dielectric substrate. A scatterer, e.g. a nano-

cube or a sphere, etc. is subsequently deposited on the substrate surface. This in�nite substrate, however,

has to be truncated in volume-based numerical methods, similar to the in�nite vacuum domain in Figure

�.�. Figure �.� (b) depicts such a setup.

In the context of CFS-PMLs, materials inside the PML domain do not change the PML formulation [��]

and hence provide a very e�cient way to incorporate non-vacuum materials in Ω̃. An intuitive approach

may be to put a TF/SF interface around a scatterer as outlined in Figure �.� (a). However, this requires the

analytical solution of a three-layer system, see Section �.�.� and is easily achievable in frequency-domain.

In broad-band time-domain simulations, where the incident signal is a Gaussian pulse for example, no

analytic closed form inverse Fourier transform of such a signal exists. We would require a discrete inverse

Fourier transform of the incident �eld on the entire TF/SF interface. This is certainly possible but involves

high computational costs.

Trying to circumvent this issue, we propose the combination of the SF formulation in combination

with material-�lled CFS-PMLs. As we will see soon, such an approach encounters a pitfall which po-

tentially leads to a complete failure if done incorrectly. We will provide both, the wrong and correct

formulation.

y
x

z

(a) In�nitemetallic and dielectric slabwith TF/SF and

PML. The two lower layers respectively illustrate metallic

ground plane and the dielectric slab which equally enter

the PMLs and hence act like an in�nite plane. Additionally,

a TF/SF surface surrounds a volume that contains metal,

dielectric, and vacuum.

Ω1, @Ω1 Ω0, @Ω0

Ω̃
1
, @Ω̃

1
Ω̃
0
, @Ω̃

0

(b) SF-PML domain. Domain Ω0 consists of vacuum

and Ω1 of an arbitrary material. The PML domains Ω̃
0

and Ω̃
1
are respectively �lled with the same material as

their corresponding domains Ωi for i = {1, 2}.

Figure �.� | TF/SF-PML and SF-PML. Figure (a) shows TF/SF interface for in�nite substrates and (b) sketches the SF-PML

domain setup.

CFS-PML and SF formulation - the naive approach In order to provide a general derivation, we

de�ne � di�erent domains as outlined in Figure �.� (b). Domain Ω0 and Ω1 represent the ‘inner’ domain,

i.e. the actual computational domain. Consistently with previous notations, Ω̃
i
, i 2 {0, 1} denote the

PML extension of Ωi. The term ‘extension’ means a constant material transition from the inner domain

Ωi to the PML domain Ω̃
i
. In other words, if Ω1 consists of a gold, the gold will be continued in the Ω̃

1
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and mimic an in�nite gold volume. De�ning Maxwell’s equations on the inner domains Ωi reads

r⇥H0
tot = "0@tE

0
tot, r⇥H1

tot = "0"1@tE
1
tot,

r⇥E0
tot = −µ0@tH

0
tot, r⇥E1

tot = −µ0µ1@tH
1
tot.

(�.�.�)

accompanied by the interface condition on Ω
0 \ Ω

1

n01 ⇥ (E1
tot −E0

tot) = 0,

n01 · ("1E1
tot −E0

tot) = 0,
(�.�.�)

as well as for the domain PML interfaces Ω
0 \ Ω̃

0
and Ω

1 \ Ω̃
1

n00̃ ⇥ (Ẽ
0
tot −E0

tot) = 0, n11̃ ⇥ (Ẽ
1
tot −E1

tot) = 0,

n00̃ · (Ẽ
0
tot −E0

tot) = 0, n11̃ · ("1Ẽ
1
tot −E1

tot) = 0.
(�.�.�)

Applying the SF procedure on each inner domain yields on Ωi

r⇥H0
sca = "0@tE

0
sca, r⇥H1

sca = "0"1@tE
1
sca + "0("1 − 1)@tE

1
inc,

r⇥E0
sca = −µ0@tH

0
sca, r⇥E1

sca = −µ0µ1@tH
1
sca − µ0(µ1 − 1)@tH

1
inc.

(�.�.��)

Equivalent steps apply for the PML domains and subsequently the CFS-PML coordinate transform which

changes the derivatives and hence r 7! r̃, leads to

r̃ ⇥H0
sca = "0@tE

0
sca, r̃ ⇥H1

sca = "0"1@tE
1
sca + "0("1 − 1)@tE

1
inc,

r̃ ⇥E0
sca = −µ0@tH

0
sca, r̃ ⇥E1

sca = −µ0µ1@tH
1
sca − µ0(µ1 − 1)@t@H

1
inc.

(�.�.��)

Here, we have applied a standard PML strategy to Maxwell’s equations in SF form.

A straightforward implementation of (�.�.��) with the incident planewave solution (�.�.��) and (�.�.��)

yields a wrong formulation and hence a wrong solution. Where does the error come from? During the

SF derivation, we have used the fact, that the incident �eld in free space ful�lls Maxwell’s equations (see

Section �.�.�). However, the free space solution of (�.�.�) is not equivalent to (�.�.��).

CFS-PML and SF formulation - the correct approach Let us compare (�.�.��) with a di�erent for-

mulation, where we commute the application of the SF formulation and the coordinate stretchingr 7! r̃.

In other words, we start with the total �eld equations, apply the PML transformation and switch to the SF

form, afterwards. As a matter of fact, the equations for vacuum remain the same as there is no incident

�eld due to "1 = 1. On Ω̃
1
the PML-transformed equations read

r̃ ⇥H1
tot = "0"1@tE

1
tot,

r̃ ⇥E1
tot = −µ0µ1@tH

1
tot.

(�.�.��)

w.l.o.g., we omit the polarization current for the sake of readability. Splitting into scattered and incident

�elds yields

r̃ ⇥H1
tot = "0"1@tE

1
tot + r̃ ⇥H1

inc − "0@tE
1
inc,

r̃ ⇥E1
tot = −µ0µ1@tH

1
tot + r̃ ⇥E1

inc − µ0@tH
1
inc.

(�.�.��)

��



As we cannot decompose or simplify the term "0"1@tẼ
1
inc − "0@tE

1
inc, we have to use the incident �eld

Ẽ and H̃ of an entirely �lled PML domain for the SF approach. Maxwell’s equations on a material-�lled

PML domain in the SF formulation hence become

"0"1@tẼ
1
sca = r̃ ⇥ H̃

1
sca + r̃ ⇥ H̃

1
inc − "0("1 − 1)@tẼ

1
inc,

−µ0µ1@tH̃
1
sca = r̃ ⇥ Ẽ

1
sca + r̃ ⇥ Ẽ

1
inc + µ0(µ1 − 1)@tH̃

1
inc,

(�.�.��)

or in a simpli�ed form

"0"1@tẼ
1
sca = r̃ ⇥ H̃

1
sca + "0(1− "1)@tẼ

1
inc,

−µ0µ1@tH̃
1
sca = r̃ ⇥ Ẽ

1
sca − µ0(1− µ1)@tH̃

1
inc.

(�.�.��)

Maxwell’s equations on Ω̃ in SF form

Non-vacuum SF-PMLs in frequency-domain The implementation of (�.�.��) is in principal possible.

Of course, the analytic solution of the incident �eld in a PML ‘material’ is needed.

Analytical solution of a plane wave on Ω̃ We refer to (�.�.��) for the plane wave solution in the free

space and simply extend the derivation in terms of the transformation of the spatial derivatives (�.�.�)

[�]. Taking into account the PML-transformed derivative operator, i.e. k becomes k̃. The solution of a

plane wave in an in�nite PML medium hence reads

Ẽ(r) = E0 exp(−i!t) exp(ik̃ · r),

H̃(r) =
k⇥E0

!
exp(−i!t) exp(ik̃ · r),

(�.�.��)

with the dispersion relation ✓
!

c0cr

◆2

−
∣∣∣k̃
∣∣∣
2
= 0, (�.�.��)

which leads to n
k̃
o

x
=

!

c0cr
sx sin(✓) cos(φ),

n
k̃
o

y
=

!

c0cr
sy sin(✓) sin(φ),

n
k̃
o

z
=

!

c0cr
sz cos(✓).

(�.�.��)

Let us assume an incident angle ✓ = 0 and φ = 0 �nally leading to the frequency-domain free space

solution of a plane wave

Ẽ(r) = E0 exp(−i!t) exp

✓
i!

z

c0cr

✓
z +

↵zσz
↵2
z + !2

◆
− z

c0cr
!2 σz

↵2
z + !2

◆
. (�.�.��)

Plane wave in CFS-PML

Remark �.�.�. A technical complication arises if the plane wave is obliquely incident with respect to the

domain-PML interface. In such a case, the damping at each point r has to be computed as a function of the

distance that the wave will have travelled through the PML domain.
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Non-vacuum SF-PMLs in time domain A rigorous and exact use of (�.�.��) is more complicated in

the time-domain. The di�culties arise due to the dispersive behavior of the PML. Dispersive incident�elds

usually lack analytic inverse Fourier transforms for Gaussian pulses in the sense of (�.�.��) which involve

a poly-chromatic signal. Due to dispersion, one has to account for frequency-dependent propagation

velocities.

Especially the second term of the propagative part in the exponent is problematic. Hoping for a way

out of this dilemma, we have tried an approximated incident �eld. Assuming realistic material parameters

and CFS-PML parameters justi�es  >>
↵σ

↵2 + !2
and we hence neglect the second term of the exponent.

The resulting time-harmonic incident signal hence reads

Ẽ(r) = E0 exp(−i!t) exp

✓
i!

z

c0cr
(z)− !2 z

c0cr

σz
↵2
z + !2

◆
, (�.�.��)

which easily transforms to

Ẽ(r, t) = E0 sin

✓
−i!

✓
t− zz

c0cr

◆◆
exp

✓
−!2 z

c0cr

σz
↵2
z + !2

◆
, (�.�.��)

in themonochromatic case. However, as soon aswewant to use an incident broadbandGaussian pulse, the

damping term also becomes problematic due to the varying angular frequency!. Replacing the frequency
dependency in the damping term by a constant frequency, e.g. the central frequency !c, introduces wrong

decays of the incident �eld and leads to spuriously reduced or increased incident �elds in the SF-PML

formulation. In practice, such a ‘tweaking’ does not work.

�.�.� Total �eld / scattered �eld interfaces inside perfectly matched layers

We have motivated and outlined the PML domain truncation in Section �.�.�. As a result, we have con-

cluded that scatterers on in�nite substrates can neither be e�ciently simulated with PMLs in combination

with the TF/SF interface nor with the SF formulation (in time-domain).

A sharp look at Figure �.� (b) gives rise to a third possibility. If an incident plane wave travels in ez
direction, i.e. vertically, no PML attenuation appears in the lateral PML zones where sz ⌘ 0. In other

words, a TF/SF interface can be easily combined with PMLs for normal incidence.

Additionally, appropriate boundary conditions behind the PMLs are either periodic boundaries or

PEC plus PML (depending on the polarization of the incident wave).

Proof. The proof is trivial. Insert the incident plane wave with Einc ? ez andHinc ? ez into (�.�.�). The

result follows.

Comparison of the ‘naive’ SF-PML formulation and TF/SF interfaces inside PMLs Figure �.� (a)

shows the absolute value of the electric �eld |E| for a single nano cube on an in�nite metal substrate.

We can clearly see a very suspicious behavior at the domain-PML interface which is due to the incorrect

SF-PML time-domain formulation. In contrast, Figure �.� depicts the �eld solution for the setup in Figure

�.� (b) without a scatterer. The pulse obviously travels correctly inside the domain and the PML domain.

This result concludes our chapter on �eld sources and PMLs. We have now developed a methodology

which allows in�nite substrates and non-periodic scatterers at the same time.
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(a) Erroneous incident �eld for SF-PML The incorrect in-

cident �eld in the PML regions (left and right outside the black

line) leads among less visible errors to arti�cial wave-fronts at

the domain-PML interface. A perfectly matched incident �eld

would lead to plane wave-fronts.

sx, sz

sx

sx

sx

sx, sz

sx, sz

sx

sx

sx

sx, sz

sz

sz

TF

SF

(b) TF/SF-PML setup with scatterer.

The TF/SF enters the PML region. It is im-

portant to note the position of the TF/SF

interface, which is chosen to only penet-

rate the PMLs in the sx layer.

Figure �.� | SF-PML time domain snapshot and TF/SF-PML setup. Figure (a) shows a �eld snapshot of the incorrect SF-PML

and (b) sketches the TF/SF-PML setup with dispersive metals inside the PML zone.

(a) Electric �eld at t1. The TF/SF sur-

face ‘emits’ a plane in −ez direction.

(b) Electric �eld at t2. The pulse ar-

rives at the vacuum-dielectric inter-

face without any spurious re�ections

or wave-fronts at the PML interface.

(c) Electric �eld at t3. The pulse passes
the vacuum-dielectric and interface is

evenly attenuated inside along the sz
layer.

Figure �.� | TF/SF-PML time domain snapshots. Field plots at di�erent simulation times in a TF/SF-PML setup according to

Figure �.� (b) (here without scatterer and a dielectric instead of a metal in order to better show the PML attenuation).

�.� Observables

This section is dedicated to observables which are extractable from �D time-domain �eld solutions. We

brie�y recall these observables for the purpose of readability of this manuscript and to avoid any ambi-

guities in their de�nitions whenever our results are compared with external results.
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�.�.� Scattered power - the optical cross section

The optical CS reveals the optical response of a scatterer. We de�ne the real part time averaged Poynting

vector

S =
1

2
<{E⇥H⇤}. (�.�.�)

Again, splitting the �elds E and H in the same way as we did in (�.�.�), we de�ne an incident, scattered

and total �eld Poynting vector, i.e.

Sl =
1

2
<{El ⇥H⇤

l }, with l 2 {inc, sca, tot}. (�.�.�)

According to Section �.�.�, the total and scattered time-averaged absorbed powers respectively read

P abs = −
ˆ

@ΩTF/SF

Stot · n d2r,

P sca =

ˆ

@ΩTF/SF

Ssca · n d2r.
(�.�.�)

The three di�erent Quantity of Interest (QoI), namely the absorption CS, the scattering CS, and the ex-

tinction CS are �nally de�ned by

CSabs :=
P abs

|Sinc|
,

CSsca :=
P sca

|Sinc|
,

CSext := CSabs + CSsca.

(�.�.�)

Cross-section

Here, @ΩTF/SF is a closed surface as depicted in Figure �.�. The incident power |Sinc| is analytically
available if Einc is analytically known together with its temporal Fourier transform. We can derive it

from the incident Gaussian pulse (�.�.��) by the help of the temporal Fourier transform (�.�.�)

Einc = E0
iσ

2
exp [i!(t0 + k · r)]

✓
exp


−1

2
σ2(! − !c)

2

]
− exp


−1

2
σ2(! + !c)

2

]◆
, (�.�.�)

where t0 determines the temporal arrival of the pulse. Eventually, we obtain

|Sinc| = |Einc|2. (�.�.�)

�.�.� Re�ection and transmission coe�cient in a unit-cell

Periodic structures allow for the de�nition of re�ection and absorption coe�cients. These coe�cients

provide a spectral information about the frequency-depend re�ection and transmission properties of a

structure. Reusing the already de�ned expressions, we de�ne the re�ection coe�cient by
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R :=
P sca

ˆ

@ΩTF/SF

Sinc · n d2r

,
(�.�.�)

Re�ectance

and analogously

T :=
P abs

ˆ

@ΩTF/SF

Sinc · n d2r (�.�.�)

Transmission

for the transmission coe�cient. Here, @ΩTF/SF is a pseudo-closed surface as shown in Figure �.� (a). If

lossy materials are involved, the de�nition of an additional absorption coe�cient

A := 1−R− T , (�.�.�)

may be useful.

�.�.� Ohmic losses

Heat losses or Ohmic losses have already been mentioned in Section �.�.� (Poynting’s theorem). The

de�nition of the time-averaged Ohmic-loss inside a closed volume Ωohm ⇢ Ω is given by

P ohm :=

ˆ

Ωohm

J? ·E d3r

2|Sinc|
.

(�.�.��)

Ohmic-loss

�.�.� Electron energy loss probability

EELS signals mimic the energy loss of an electron beam due to its electromagnetic interaction with a

Device Under Test (DUT). Let us suppose such an EELS electron beam in the vicinity of a metallic sphere

as depicted Figure �.� (b). When the electron gets su�ciently close to the sphere, the electromagnetic �eld

of the moving charge induces a scattered �eld on the sphere. For metallic spheres, a SPP will be excited.

This excitation is an energy transfer from the kinetic electron energy to the SPP resonance. Hence, after

the electron-sphere interaction, the electron will be slowed down due to its energy loss.

Typical EELS devices, however, provide electron beams at beam energies of about 0.6c0 in combina-

tion with extremely low currents of the order of nA, leading to quasi-single electron beams [���]. Such

high energy electron beams in combination with very short interaction ranges of nanophotonic devices

of ⇡ 100 nm, leads to a negligible change in velocity. This does not mean that the actual energy-change

is negligible. Energy changes of several eV can precisely be measured with modern spectrometers.
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In conclusion, we can model EELS by a single electron beam with constant velocity, often referred to

as No Recoil Approximation (NRA). The theoretical loss due to the electron-DUT interaction can further

be described by the quantity

∆E := q

1̂

−1

v ·Esca(relec(t), t) dt. (�.�.��)

Here, q is the charge of the electron, v the velocity of the electron and relec(t) the position of the electron,
i.e. its trajectory. The previous expression can be cast into

∆E :=

1̂

0

~!ΓEELS d!, (�.�.��)

which now allows the de�nition of a electron energy loss probability

ΓEELS(!) :=
q
p
2p

⇡~!

1̂

−1

<{exp (i!t)v ·Esca(relec(t), !)} dt. (�.�.��)

EELS-probability

Proof.

∆E = q

1̂

−1

v ·Esca(relec(t), t) dt,

= q

1̂

−1

v · <
{
F−1 {Esca(relec(t), !) exp (i!t)}

 
dt,

= q

r
2

⇡

1̂

−1

1̂

0

v · < {Esca(relec(t), !) exp (i!t)} d! dt,

=

1̂

0

q

r
2

⇡

1̂

−1

v · < {Esca(relec(t), !) exp (i!t)} dt d!.

(�.�.��)

Here, we suppose that the integrals in time and angular frequency are formally exchangeable.

Equation (�.�.��) gives rise to the frequency-dependent energy loss of an electron in the NRA.

Remark �.�.�. In simulations with a �nite computational domain, the integral in (�.�.��) has to be trun-

cated. This integration path has to be chosen such that it su�ciently accounts for all the scattered �elds. The

impact of the integration length will be studied in Section �.�.�.

The authors in [��, ���] have found increasing discrepancies between analytical Mie EELS spectra and

DGTD simulations for beam velocities beyond 0.4c0. On our opinion, the observed e�ect may be due to an

erroneous formula for the electric and magnetic �eld of a moving charge in free-space. Using the correct

formula (�.�.��) leads to a convergence of the DGTD results. See Section �.�.� for details.
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Figure �.� | Periodic unit-cell and EELS-setup.

�.� Optimization, inverse problems and uncertainty quanti�cation

Optimization In the course of this thesis several optimization algorithms have been used. Although

they are a key ingredient for the solution of the solution of the inverse problems in Section �.� and �.�,

the development and implementation of these algorithms was not part our work.

Almost all the optimization problems in the scope of this work are intrinsically derivative-free because

the cost-functions rely on RCWA or DGTD simulations. Typical derivative-free algorithms among oth-

ers are for example evolutionary algorithms (CMA-ES (CMA-ES)) [��], genetic algorithms [��], particle

swarm [��], Nelder-Mead [���], simulated annealing [��] and pattern search [���].

The choice of the optimal algorithm for a given optimization problem is not always easy. Depending

on the di�erent attributes of the cost-function like its computational cost, its regularity and smoothness

as well as the dimensionality of free parameters, an optimal a priori selection is not trivial.

Considering full-wave optical simulations as cost-functions, e.g. DGTD runs on a cluster computer,

rapidly comes with simulation times of several hours per cost-function call. Classic optimization al-

gorithms like CMA-ES or pattern search commonly require hundres of cost-function evaluations.

Modern meta-model based optimization algorithms like Gaussian-process models (Kriging) [��] in

combinationwith derivative based optimization provide a lucrative and powerful alternative. Thosemeth-

ods build local meta-models around a local minimum in an adaptive way based on a Gaussian-process

model.

Throughout this work, we predominantly rely on pattern-search and meta-model based optimization.

Inverse problems Section �.� and �.� are concerned with the solution of inverse problems. These

inverse problems will be formulated as optimization problems. The arising optimization problems are

tackled with pattern-search, meta-model based optimization and particle swarm methods.

UQ � In the context of numerical and applied mathematics or, accordingly, computational science and

engineering, the term UQ [���] refers to a comparably new �eld of study which develops methods aim-

�With the kind permission from [���].
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ing at quantifying the impact of input variability upon a computational model’s output. We refer to

the considered output as the QoI and denote it with q. The input parameters are denoted with z =
(z1, z2, . . . , zN ). The relation between inputs and QoI is denoted with f , such that q = f (z), with
f : RN ! R. This notation assumes that q is a scalar quantity, however, the consideration of multiple

real or complex QoI is also possible. In this context, f can be understood as an abstract representation of

the underlying mathematical and computational model which produces a value of the QoI, given a set of

input values. Moreover, f is assumed to be a completely deterministic function, i.e. the exact same q is

produced for a �xed z.

Due to inputmodeling uncertainties, e.g. stemming frommeasurement inaccuracies ormanufacturing

tolerances, we model z as a random vector de�ned on the probability space (Θ,Σ, P ), such that z : Θ !
Γ ⇢ R

N , and characterized by the Probability Density Function (PDF) % (z), % : Γ ! R+. Assuming that

z consists of mutually independent Random Variables (RVs) z1, z2, . . . , zN , the multivariate PDF is given

as

% (z) =

NY

n=1

%n (zn) , (�.�.�)

where %n refers to the univariate PDF of the n-th RV. Then, the QoI q = f (z) is itself a RV. Quantifying
uncertainty with respect to q typically involves computing statistical measures, such as its expectation

value, variance, higher order moments, PDF, quantiles, exceedance probabilities or sensitivity indices, to

name a few.

We assume that f represents a complex computational model, such that modi�cations to the under-

lying software and/or numerical solvers are undesirable. For that reason, UQ studies must be performed

in a black-box fashion. Moreover, we assume that the complexity and, accordingly, the execution time of

a single model evaluation, corresponding to a single call of function f , is signi�cantly higher than typical

numerical operations. Then, the overall cost of a UQ study is dominated by the number of black-box

model evaluations, respectively, function calls. Monte Carlo (MC) sampling [��] is the most commonly

used method for black-box UQ studies. However, its slow convergence rate of O
(
M−0.5

)
, where M

denotes the number of generated random samples and corresponding function calls, may lead to unac-

ceptable computational costs. Under the further assumption that f is a smooth, ideally analytic, function

with respect to z, methods based on polynomial approximations of f may be employed [��, ���], in

order to achieve algebraic or even exponential convergence rates. Such methods evaluate the QoI for

a set of relatively few realizations of z and typically employ interpolation [�, ���, ���] or regression

[�, ���, ���] schemes to construct the approximation. One such approach is the stochastic collocation

method [�, ���, ���], which will be the method of choice in the context of the present work.
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Chapter � has provided a comprehensive overview of the underlying equations and their analytical solu-

tions. Aiming for more general solutions for arbitrary geometries has constituted the numerical al-

gorithms in Chapter �. Carrying forward this reasoning to physical interpretations of numerically ob-

tained solutions, we have established a set of physically interpretable observables in Chapter �.

This Chapter now discusses implementation aspects, numerical convergence studies together with

more complex validation examples, ensuring an error-free and robust software. Having a reliable DGTD

code available, we investigate spherical dimer systems for plane wave excitations and EELS studies and

High Performance Computing (HPC) aspects.

�.� Implementation and third party software

This Chapter is supposed to provide a brief overview on the numerical implementation of Chapter � and

� as well as the usage deployment of third party software. Figure �.� illustrates a typical work�ow of

our software. Starting with a geometry model, we create a computational mesh, i.e. triangles, tetrahedra

or hexahedra, which will serve as a discretized computational domain. These steps are followed by the

actual execution of the DGTD solver and the exploitation of the results in terms of visualization or further

post-processing for physical or numerical interpretations.

�.�.� Geometry model and meshing

A major part of the simulation examples of this work are based on the scripting input of GMSH [��] with

https://www.opencascade.com/ (openCascade) engine extension. Depending on the individual meshing

di�culties, we either directly use GMSH’s mesh tool or Distene’s MeshGems.

�.�.� Optimization

Most optimization results rely on the https://team.inria.fr/acumes/software/ (Famosa) library or the ht-

tps://fr.mathworks.com/products/optimization.html (Matlab) optimization toolbox.
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Figure �.� | DIOGENeS work�ow.

�.�.� Visualization

Wehavemainly used https://team.inria.fr/gamma�/project-presentation/gamma-software/ (Vizir) and ht-

tps://www.paraview.org/ (Paraview) for mesh visualizations as well as for �D and �D simulation results.

�.�.� �D implementation

Proof of principle tests have been �rst realized in an easy-to-manipulate �D code. Key features of this

code are:

• A�ne triangular meshes

• Polynomial orders up to P4

• Leap-Frog and LSRK time integration

• Centered and upwind DGTD

• Local time stepping (not further detailed in this work) in the fashion of [���]

• PEC, PMC, ABC and hard-wall boundary conditions

• TF/SF-interfaces

• CS computation

• Field probes and �D �eld visualization

�.�.� �D implementation - DIOGENeS

Most of the relevant �D development steps have been tested and eventually contributed to the DIOGENeS

software suite. Important key features for this work are:

• A�ne and curvilinear tetrahedral meshes
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• Polynomial orders up to Pn

• LSRK time integration

• Centered and upwind DGTD

• PEC, PMC, ABC, periodic, hard-wall and soft-wall boundary conditions

• TF/SF-interfaces

• SF source formulation

• CS, absorption, EELS computation

• Field probes and �D �eld visualization

• MPI parallelization

�.� Validation

This part deals with numerical results obtained with our �D and �D implementation of the proposed

DGTD method. We start with di�erent validation test cases ranging from numerical convergence rates

to the importance of boundary conforming curvilinear elements for e�cient simulations of scattering

problems in nanophotonics.

�.�.� �D Hydrodynamic test cavity and convergence study

We omit the convergence study of the �D implementation. Interested readers may be referred to [���].

�.�.� �D Hydrodynamic test cavity and convergence study

In order to validate our implementation of the previously presented DGTD solver we �rst perform a

numerical convergence study. Here, we consider a simple test problem for which we have an analytical

time-domain solution. This will be done for (�.�.�) when neglecting the ODE part. We propose to use

the method of manufactured solutions, i.e. we arti�cially construct a solution that will satisfy (�.�.�)

with a source term and hence allows us to determine the convergence rates. Inspired by [��, ���] we

exploit the analytical eigenmode solution of the homogeneous Maxwell’s and hydrodynamic equations

on a rectangular cavity domain.

Manufactured solution of the coupled system We denote the eigenmode solutions for Maxwell’s

(�.�.�) equations and the hydrodynamic part (�.�.��) by Hart,Eart and Jart, Qart (see [���, ��] for de-

tails). We arti�cially �ll this cavity with vacuum for Maxwell’s equations and with a dispersive medium

characterized by speci�c values of !P and β for the hydrodynamic Drude model while we neglect damp-

ing, i.e. γ ⌘ 0 (which is not necessary). The resulting formulation of the coupled problem including the

manufactured solution hence reads

r⇥E+ µ0@tH = 0,

r⇥H− "0"1@tE = J− Jart,

β2rQ− @tJ = −!P
2"0(E−Eart),

r · J− @tQ = 0.

(�.�.�)
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Table �.� | Number of tetrahedral for cubic cavityMesh M� is the coarsest and M� is a systematically re�ned version of M�.

M� M� M� M� M�

# Tets �� ��� ���� ����� ������

Table �.� | Hydrodynamic convergence rates. Numerically obtained convergence rates for the hydrodynamic test cavity

solved by the DGTD method with centered �uxes (upper, P0 to P4) and upwind �uxes (lower, P0 to P4) and a LSRK time

integration scheme. Mesh M� is the coarsest mesh and M� the most re�ned one.

M�!M� M�!M� M�! M� M�!M�

P0 -�.�� �.�� �.�� �.��

P1 -�.�� �.�� �.�� �.��

P2 �.�� �.�� �.�� �.��

P3 �.�� �.�� �.�� �.��

P4 �.�� �.�� �.�� �.��

P0 �.�� �.�� �.�� �.��

P1 �.�� �.�� �.�� �.��

P2 �.�� �.�� �.�� �.��

P3 �.�� �.�� �.�� �.��

P4 �.�� �.�� �.�� �.��

Let us de�ne a time dependent error norm ||u− ua||2
L2(Ω) with u 2 {H,E,J, Q} and (·)a being the

analytical solution, on the domain Ω by

err = ||u− ua||2
L2(Ω) :=

X

i2NΩ

||ui − uai ||2L2(Ωi)
. (�.�.�)

The convergence rates are computed by comparing the evolution of the error norm while progressively

re�ning the computational mesh. Starting with a coarse Mesh (M)� and successively re�ning by two

(i.e. h becomes h/2 at each re�nement step) leads to a sixteen times �ner mesh M� (Table �.� shows

the total number of tetrahedra). Simulations are run for 100 oscillation periods on each mesh, and for

each polynomial order. Table �.� summarizes the convergence rates for the DGTD-LSRK scheme with

centered �uxes. The results are in coherent [���] for the pure Maxwell operator and theoretical results

of the DGTD method [��, ��, ��] as well as our results in Section �. We obtain sub-optimal convergence

rates for the centered scheme, i.e. nth order for DGTD-Pn with n the polynomial order of the DG Ansatz

space. For DGTD-Pn with upwind �uxes we obtain optimal convergence rates, which is even better than

our theoretical result.

�.�.� Mie scattering in �D

Section �.�.� and �.�.� have shown the numerical convergence of the proposed DGTD scheme and hence

con�rmed the theoretical results in Section �.�.

Realistic scattering problems are more complicated than simple rectangular cavity problems and re-

quire a set of more technical features like incident �elds and radiation boundary conditions for the domain

truncation. Of course, adding additional technical features bears the danger of implementation errors. We

therefore want to assess more advanced test cases in order to add an additional validation stage and to

obtain a �rst physical result.
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Figure �.� | L2-error for centered DGMaximum values of the L�-error for centered �uxes and a LSRK time integrator.
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Figure �.� | L2-error for upwind DG Maximum values of the L2-error for upwind �uxes and a LSRK time integrator.

Our scenario of choice consists in the scattering of an in�nitely long nano-rod, yielding a �D setup

due to its invariance along the rod axis. This scenario allows us to test our �D DGTD implementation.

Equivalent benchmarks of this kind have been carried out in recent works [��, ���].

We have performed multiple simulations on di�erent (already very re�ned) a�ne triangular meshes.

Figure �.� illustrates the di�erent re�nement levels of the gold nano-rod.

Remark �.�.�. Time-domain simulations have to ensure a su�ciently long simulation time in order to let

all �elds decay to (almost) zero. If this criterion is not respected, observables like CS or the volumic absorption

may be erroneous due to an incorrect Fourier-transform.

Table �.� summarizes the physical parameters and the simulation time we have used for the CS results

in Figure �.�.

The relatively high re�nement is necessary due to the short wavelength of the bulk plasmons that ap-

pear for angular frequencies beyond the plasma angular frequency !P. Those bulk plasmon resonances

��



(a) M� (b)M� (c)M�

Figure �.� | Nano wire meshes. Each mesh mainly consists of a SF vacuum area (light red), a TF vacuum area (light blue), and

the metallic circle (dark red). The extinction CS is computed on the TF/SF surface. The nano-wire’s radius is R = 2 nm. M� is

already su�ciently re�ned and the CS spectra in Figure �.� for M� and M� are not distinguishable.

Table �.� | Simulation parameters

!P γ β2 R Tmax

Run (R): � 1.36e16 1/s 3.23e13 1/s 6.9738e11 m2/s2 2 nm 3.33e−14 s

do not exist if local dispersion models are employed. We refer to [���, ��] for comprehensive discus-

sions. Figure �.� compares the �eld plots of a locally dispersive result and a simulation using the nonlocal

hydrodynamic model. Bulk plasmons are only present in the nonlocal case (6th bulk resonance).

�.�.� Mie scattering in �D

Section �.�.� has validated our �D implementation and we now continue in the same way for the �D

implementation. The following discussion contains twomain directions. First, we compare our numerical

DGTD solution of a spherical scatterer with analytical Mie solutions for pure validation purposes. This

study shows the performance of reasonably coarse a�ne tetrahedral meshes in combination with high

order polynomial basis functions. Secondly, we investigate and show a signi�cant performance increase

due to curvilinear tetrahedra. The second part can be put into context as an applied continuation of

Section �.�.�.

The scattering of a single sphere in vacuum is a classic nanophotonics benchmark example. Beyond

applications where the relatively simple result of an isolated sphere in vacuum already explains several

physical e�ects, the scattering of a single sphere also comes with an analytical solution. This, of course,

permits us to compare the performance of our method with so called Mie solutions. Gustav Mie has

published his work on the scattering of spheres in vacuum in the early 20th century [��] and his initial

works have been extended to more complex material con�gurations [��], di�erent coordinate systems

[���] and even nonlocal dispersion laws [���, ��, ��].
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Figure �.� | Extinction CS of an in�nitely long nanowire. Comparison of the analytical Mie solution and the numerical

DGTD result with second order polynomials. R = 2 nm, ωP = 13.6e15 rad/s, γ = 3.23e13 rad/s and β = 0.835e6 m/s. The
here used meshes di�er by means of the local mesh re�nement inside the metallic regime. Here, M� is the �nest and M� the

most coarse mesh. M� is already su�ciently re�ned and the CS spectra for M� and M� are not distinguishable.

From a more methodological point of view, the Mie sphere appears to be signi�cantly more complex

in comparison to the test problem of a cubic cavity that we have used for the convergence study in the

previous section. Among others, the sphere involves the additional boundary condition (�.�.�) at the

interface between the metallic sphere itself and the surrounding vacuum. Furthermore, it demands a

free space approximation of the in�nite vacuum. Regarding the free space approximations, we have used

CFS-PMLs [�, ��] in order to minimize spurious re�ections from the arti�cial domain truncation. Since

such a setup forbids a direct imposition of the incident �eld, i.e. a pulsed plane wave in our case, via for

example �rst order Silver-Müller radiation conditions [���], we use a TF/SF approach [���].

A�ne elements and centered DG

As for this �rst �D validation stage, we only rely on linear tetrahedral meshes and centered DG. It can

thus be seen as the three dimensional analogue of Section �.�.�. From a methodological point of view,

only the time integration scheme has changed from a second order LF algorithm to a modern optimized

LSRK scheme. Figure �.� depicts the extinction CS of a metallic nano-sphere.

Below the plasma frequency !P, local and nonlocal dispersion lead to similarly shaped extinction CS

spectrum. This is not the case anymore for frequencies above !P. Nonlocality allows bulk plasmons, also

referred to longitudinal modes [��], which are forbidden for Mie spheres consisting of locally dispersive

metals.

In terms of the validation of our DGTD implementation (see Figure �.�), we observe a fairly poor result

for �rst order polynomial basis functions, i.e. DGTD−P1. Although the �rst resonance is relatively well

observable, the second peak is already completely red-shifted with respect to the analytical solution.

For higher frequencies, being equivalent to shorter wavelengths, the DGTD−P1 on the mesh in Figure

�.� completely fails. Increasing the polynomial order to second order polynomials P2 yields an accurate

solution of the �rst two resonances and also contains the �rst two bulk plasmon peaks. However, spurious

solutions due to the centered �uxeswithin theDG scheme keeps a clear resonance detection inaccurate for
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(a) Local dispersion (b) Nonlocal dispersion

Figure �.� | Nano-rod �eld plot. Field solutions of a dispersive nano-rod with a radius of 2 nm. The plots show the Fourier-

transformed time-domain solution of
∣

∣{E}x
∣

∣ for the local and nonlocal dispersion model at ω = 1.963ωP.

Figure �.� | A�ne nano-sphere mesh. Red: Linear tetrahedra discretization of the sphere domain. Gray: Discretized sur-

rounding vacuum domain.

the bulk plasmons. Allowing even higher order polynomials of order P3 leads to a very clean numerical

solution, even for the bulk plasmons. As an intermediate result, we conclude:

• Classical centered DG for Maxwell’s equations coupled to a linearized hydrodynamic dispersion

model su�ers from spurious solutions, being in line with well known results from the literature

[��].

• Increasing the polynomial order of the basis functions and bene�t from the �exible high order

nature of the DGTD scheme for a �xed tetrahedral mesh, signi�cantly improves the quality of the

solution.

Accuracy and performance improvements due to upwind �uxes and curvilinear elements will be discussed

in the following.

Curvilinear elements and upwind DG

We now investigate the surface approximation of a single sphere and its in�uence on the resulting ex-

tinction CS spectra [���]. Here, we compare di�erent polynomial orders of the DG basis functions as

well as the accuracy, and hence performance gain if curvilinear tetrahedra are used. Figure �.� shows the

computational meshes we have used for this study. There are two topologically di�erent meshes M� and

M�, shown in Figure �.� (a) and (c), respectively. Both meshes represent the same physical sphere and the
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Figure �.� | Solution of a nonlocal Mie Sphere. Extinction CS spectra of the local an nonlocal Mie solution in comparison

to the numerical Mie solution for polynomial expansions of order one to three.

geometrical misrepresentation of M� (a) is quite obvious as the sphere hardly resembles a sphere at all -

it rather represents a faceted particle. Performing an h−refinement leads to M� (c) which visibly better

approximates a sphere. Activating curvilinear elements gives curved versions of M� and M� as depicted

in Figure �.� (b) and (d).

Using the same plane wave source, same boundary conditions and the same QoI, i.e. extinction CS,

as before, we can obtain the extinction CS spectra in Figure �.�� for the two di�erent meshes on a�ne

and curvilinear tetrahedra, respectively. Obviously, mesh M� with a�ne tetrahedra leads to a very poor

result, similarly for �rst order P1 and fourth order P4 polynomials as shown in Figure �.�� (a). The P1

solution only reproduces the �rst resonance at about 0.675!P although it is supposed to be at 0.7!P.

Additionally, the second and third resonance of the Mie spectrum at about 0.825!P and 0.875!P are

completely inobservable.

Increasing the polynomial order to P4 shifts the �rst resonance almost to the correct angular fre-

quency, the second resonance now appears in the spectrum and is even relatively close to the correct

resonance angular frequency. A third resonance seems to build up at 0.95!P which would be quite far

from the correct position if we relate it to the actual third resonance in the Mie spectrum. If we now

switch to the curvilinear version of M�, the situation changes. The �rst resonance of the P1 solution is

slightly shifted towards the correct value and the second resonance tends to build up.

However, both resonances positions are far o� and the absolute as well as the relative amplitudes

completely fail with respect to the Mie solution. Again, increasing the polynomial order to P4, the nu-

merical solution signi�cantly approaches the analytical Mie solution down to an error of 2.38%. Table

�.� summarizes the errors of all runs.

Spatial h−refinement of the sphere, i.e. using M�, improves the situation of the a�ne mesh. Figure

�.�� (b) depicts the P1 spectrum now showing the �rst resonance at the correct frequency and the second
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(a) Mesh M� without high order cells. (b) Mesh M� with quadratic cells.

(c)Mesh M� without high order cells. (d) Mesh M� with quadratic cells.

Figure �.� | Four di�erent discretization for a scattered sphere in vacuum. Figure (a) and (b) have the same number of

elements and di�er by the geometric representation order from linear to quadratic. Figure (c) is a re�ned version of (a) and (d)

the high order version.
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Figure �.�� | Extinction cross-section spectra on mesh M� and M�. Comparison of the extinction cross-section spectra

of a metallic nano-sphere in dependence of the polynomial interpolation order Pn and the geometric mesh order, i.e. linear or

quadratic mesh elements. The error in comparison to the Mie solution can be found in Table �.�
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Table �.� | Relative error of sphere simulations. The relative error is given with respect to the analytical nonlocal Mie

solution.

P1 P2 P3 P4

M1− Linear ��.��% ��.��% ��.��% ��.��%

M1−Quadratic ��.��% ��.��% �.��% �.��%

M2− Linear ��.��% ��.��% �.��% �.��%

M2−Quadratic ��.��% ��.��% �.��% �.��%
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Figure �.�� | Extinction cross-section spectra on mesh M� and M�. Comparison of the extinction cross-section spectra

of a metallic nanosphere in dependence of the polynomial interpolation order Pn and the geometric mesh order, i.e. linear or

quadratic mesh elements. The error in comparison to the Mie solution can be found in Table �.�

resonance that now builds up at 0.815!P instead of 0.825!P. Although the positions of the resonances

are relatively close to the exact solution, the amplitudes still di�er heavily. The third resonance remains

invisible for �rst order polynomials. If fourth order polynomials P4 on linear elements are used, the

numerical solution already gets fairly close to the exact solution with an error of 5.45%. Activating

curvilinear elements for P1 and P4, the numerical solutions with respect to the linear runs increase

equally to M� and the obtained error for P4 only is 0.96%.

Curvilinear simulations are intrinsically more costly than linear ones due to increased memory con-

sumption, a reduced CFL condition and additional DoFs, see Section �.�.� for details, in comparison to the

same run on a linear mesh. In order to present a fair comparison of a curvilinear solution on the coarse

mesh M� and the solution on an h−refinedmesh M�with linear elements, we choose the two runs with a

similar error level, namelyM1−P3−curvilinear andM2−P4− linear. Figure �.�� depicts the obtained
spectra and Table �.� lists the statistics of both simulations (sequential as well as parallel).

Both meshes almost have the same amount of cells since the largest part of the domain consists of

vacuum. While the sphere is discretized by �� curved tetrahedra (M�), the h−refinedmesh M� needs ���

elements. This local re�nement explains the little relative di�erence in the total amount of mesh cells

and is at the same time close to a real world nanophotonics setup. Of course, the �ner mesh M� su�ers

frommore mesh cells and even more severely from a time step due to a smaller characteristic mesh length

h and an increased polynomial degree that changes the CFL condition [��]. This leads to an increased

number of iterations in the time stepping scheme from 7060 for M� to 90933 for M�. An average runtime
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Table �.� | Performance comparison of sphere simulations. Sequential mesh and CPU statistics of the mesh M� with

curvilinear elements and a polynomial order P3 versus the re�ned mesh M� with rectilinear elements and a polynomial order

P4. The simulated spectra are depicted in Figure �.��. The listed values only contain the actual mesh and do not contain ghost

cells due to boundary conditions and domain decomposition for the parallel MPI runs. These runs have been performed on an

Intel®Xeon®CPU E�-���� v� �.� GHz machine with �� GB RAM.

M1−Quadratic− P3 M2− Linear− P4

L2−error (Mie) �.�% �.��%

# Cells ����� �����

# Sphere cells �� ���

# HO cells ��� -

# Iterations ���� �����

Memory 1481.5 MB 1980.4 MB
Time per ��� iterations 374 s 703 s

Total time in loop (sequ.) 26404 s 639259 s
Speedup 24.2 -

Timer per ���

iterations (parallel)

#proc T [s] Tcpu[s] speedup

� ��� ��� �.�

� �� ��� �.�

� �� ��� �.�

�� �� ��� ��.�

#proc T [s] Tcpu[s] speedup

� ��� ��� �.�

� ��� ��� �.�

� ��� ��� �.�

�� �� ��� �.�

for 100 time stepping iterations of 374 s and 703 s for M� and M�, respectively leads to a total simulation

time of 7 h 20 mn and 177 h 34 mn which means a performance speedup of 24.2. In terms of memory,

theM1−P3 − curv solution comes with more DoFs in comparison with a linear M� run but still better

performs in comparison to aM2− P4 − lin run by 75%.

If MPI parallelization is used (only within a single multi core node in this example) we obtain reas-

onably good scaling results. As depicted in Table �.� the scaling slightly breaks down at 12 sub domains

for M� and already at 8 sub domains for M�. This is due to the quite inhomogeneous load balancing of

the computational cost of each cell type. This imbalance arises since the performed simulations contain

di�erent types of equations to be solved on each cell: purely Maxwell’s equations in vacuum, Maxwell

plus the hydrodynamic equation inside the sphere, CFS-PML cells, and boundary cells. Additionally, the

TF/SF incident �eld and on-the-�y Fourier-transform of the extinction CS will add up to an even stronger

imbalance. The systematic optimization of the load balancing will be part of a future work.
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�.�.� Validation of the scattered �eld formulation

Scattering of a Gaussian pulse

In order to validate the SF formulation with an incident Gaussian modulated plane wave (�.�.��), we com-

pute the scattering CS of a metallic nano-sphere. The obtained results are compared with the analytical

Mie solutions and results that have been obtained with the TF/SF formulation. Since the SF formulation is

de�ned on volumes while the TF/SF formulation is surface based, we expect di�erent results. Especially if

the computational mesh is not su�ciently re�ned. Additionally, curvilinear elements might have a strong

in�uence similarly to the results found in [���]. The simulation setup is depicted in Figure �.�. However,

for the SF formulation the TF/SF interface is only used for the CS calculation.
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Figure �.�� | Comparison of Mie, SF, and TF/SF. Comparison of the analytical Mie solution with two numerical results

obtained by the DGTD with SF and TF/SF. The gold nano-sphere measures R = 10 nm with the material parameters ωP =
1.1e16 rad/s, γ = 4.515e13 rad/s and ε∞ = 3.74. As slightly observable in the zoom, the SF formulation seems to perform

better than the TF/SF formulation.

Figure �.�� depicts the numerically computed scatteringCSsca obtained with the TF/SF and SF formu-

lation in comparison with the analytical Mie solution. Obviously, the P2 solution obtained by the TF/SF

and SF formulation are very close although not equal. Increasing the polynomial order to P4 yields a

very good agreement of the numerical results in comparison to the analytical Mie solution.

Electron energy loss spectroscopy

We refer to Section �.�.� for details of the EELP calculation which is now validated (comparison to analyt-

ical Mie solutions [��]). Figure �.�� and �.�� show the numerical results ofΓEELS for a single nano-sphere.

Both �gures show ΓEELS for the same simulation setup but di�erent ΓEELS integration lengths.

EELS simulations can su�er from three main errors:

• A non-converged DGTD �eld solution because of a too coarse mesh;

• Too short integration time (erroneous Fourier-transform in (�.�.��));

• Insu�ciently long integration length of the trajectory integral (�.�.��).
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Here, we have used a sphere radiusR = 10 nm, an impact factor of dEELS = 2nm and a beam velocity

of velec = 0.8c0ez . Figure �.�� depicts ΓEELS for a �xed integration length of ±30 nm. Successive mesh

re�nements lead to accuracy improvements of the numerically computedΓEELS. The di�erent re�nement

stages from the most coarse mesh M� up to the �nest mesh M� are shown in Figure �.��. The DGTD

solution seems to reach convergence for the meshes M� and M�. Unfortunately, both meshes still cannot

precisely reproduce the analytical Mie result.

Increasing the integration length to±60 nm lets the DGTD solution perfectly meet the analytical one

(see Figure �.��). As a conclusion, the integration length has to be su�ciently long in order to account

for all the �elds which are part of the electromagnetic interaction of the electron and the nano-particle.

Remark �.�.�. We have also tested integration lengths of ±90 nm and ±120 nm. The in�uence on the

computed ΓEELS for integration lengths greater than ±60 nm turns out to be negligible.

(a) M� (b)M� (c)M� (d)M�

Figure �.�� | Tetrahedralmesh of the nano-sphere EELS simulation. This �gure shows the tetrahedral mesh in the vicinity

of the nano-sphere.
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Figure �.�� | EELS spectrum ΓEELS(ω) for a nano-sphere in vacuum with an impact parameter of dEELS = 2 nm.

The curves vary in terms of an increasingly re�ned mesh M�, M�, M�, and M�. Here, the radius Rsphere = 10 nm and the

integration length ±30 nm for ΓEELS(ω).
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Figure �.�� | EELS spectrum ΓEELS(ω) for a nano-sphere in vacuum with an impact parameter of dEELS = 2 nm. The

curves vary in terms an increasingly re�ned mesh M�, M�, M�, and M�. Here, the radius Rsphere = 10 nm and the integration

length ±60 nm for ΓEELS(ω).

Electron energy loss spectroscopy for penetrating beams

Assuming impact parameters dEELS < 0, i.e. an electron that travels through the sphere, leads to a

singular source term in (�.�.��) and (�.�.��). In a discrete setting, e.g. FDTD or DGTD, a real singular �eld

only arises if discrete electron trajectory relec(ti), with ti being the i− th time on the discrete time axis,

coincides with the spatio-temporal computational grid. However, on computers with �nite arithmetics,

the evaluation of the source terms already leads to erroneous values for d(r, t) > 0 due to a limited

machine precision (in our case ��-bit). Diehl et al. [��] have used an adaptive technique where they have

slightly moved the electron trajectory in the ez−plane until the trajectory was su�ciently far away from

the next DoF (in a given x− y pixel).

Such an approach unfortunately cannot converge in a classical h−convergence sense. Imagining an

initial meshMinit where this strategy �nds an acceptable position under a constraint of the form

find : relec = relec,0 + velect such that

|relec(t)− r(DoF)| > "min, 8 t and 8 DoF.
(�.�.�)

A successive mesh re�nement, e.g. h/i i = 1, .., will violate this constraint at some point. In other words,

such an approach is doomed to fail in terms of numerical convergence.

Opting for a more robust method, we use a smeared out electron distribution that intrinsically avoids

singularities. Section �.�.� has derived the free space solution of the electromagnetic �eld of a relativistic

Gaussian electron. Using (�.�.��) and (�.�.��) instead of (�.�.��) and (�.�.��) circumvents singular �elds

in the source term of the SF formulation for penetrating beams, i.e. dEELS < 0.

We have successfully implemented the (�.�.��) and (�.�.��) in our DGTD framework. For d(r, t) > 0
and su�ciently small values of the Gaussian width σ, the point charge and Gaussian charge solution lead

to the same ΓEELS spectra (not detailed here).

Choosing a trajectory through a DUT on a su�ciently re�ned mesh (in order to account for an accur-

ate �eld solution), forbids the use of (�.�.��) and (�.�.��) due the singularity. Unfortunately, our Gaussian

electron approach is not a thorough solution. It turns out that we can accurately predict the parts of the
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ΓEELS spectrum which are linked to surfacic resonances. All bulk contributions, however, will logarith-

mically diverge with a decreasing Gaussian regularization parameter σ [��, ��]. This behavior can be

observed in Figure �.��. While the spectrum beyond 3.5e15 rad/s is almost insensitive to the regulariza-

tion parameter (surface contribution), the lower part of the spectrum signi�cantly changes in dependence

of σ. In other words, the regularized EELS approach evenly fails if used straightforwardly as presented

in the scope of this work.
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Figure �.�� | EELS spectrum ΓEELS(ω) for a Gaussian penetrating beam. The surface plasmon resonance at 3.7e15 rad/s
is not a�ected by σ while the bulk contribution slowly begins to diverge for decreasing σ. Here, the sphere’s radius isRsphere =
10 nm.

�.�.� High performance computing aspects

A short performance study will complete the validation phase chapter. Aiming for a most realistic simu-

lation setup that is representable in terms of common real world simulations, we study the performance

behavior in the context of a nano-cube and a two-dimensional grating. The cube mesh is shown in Figure

�.�� and Table �.� contains further details on the mesh. Figure �.�� illustrates the geometry of the grating

setup and Table �.� provides details on the mesh topology.

Since DIOGENeS currently only supports MPI parallelization, the number of Central Processing Unit

(CPU) is equivalent to the amount of sub domains, i.e. MPI ranks. Rankwise Symmetric multiprocessing

(SMP) parallelization will be part of a future work. A pure MPI parallelization arti�cially increases the

amount of DoF due to more ghost cells (arti�cial cells for the inter sub domain communication).

Nano-cube Figure �.�� outlines the strong scaling result. We have tested the scaling behaviour for

P i, i = 1 . . . 4 including curvilinear elements, local dispersion (auxiliary ODEs), nonlocal dispersion

(auxiliary PDEs) and PMLs (auxiliary ODEs). The workload and memory consumption of each mesh

cell strongly depends on the physical material, i.e. the underlying equation that has to be solved. Such

supplementary informations are not yet exploited during the mesh partitioning and hence intrinsically

lead to a sub optimal load balancing. Also, node-dependent performance inhomogeneities of the machine

have not been taken into account either.

A fair scaling is observed up to � nodes (�� sub domains). Further increasing the amount of sub

domains yields very poor scaling properties. Higher polynomials orders which lead to more DoFs per
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Figure �.�� | Computational meshes of �D grating. Brown: Si PML, red: Si substrate and grating, yellow: vacuum (SF zone),

green: vacuum PML. The lateral faces are periodic boundary conditions.

Table �.� | Mesh statistics of nano-cube mesh. The statistics are for the initial mesh without ghost-cells.

# Cells ����

# Linear cells ��� # PML cells ���

# HO cells ���� # Dielectric cells ����

# Vacuum cells ���� # Gen-disp + Nonlocal cells ����

node on a �xed partitioning tend to improve the scaling. This con�rms that we are in a situation of

communication limited scaling where a higher workload per core creates a trend towards better scaling.

We want to mention that for �� sub domains the average number of cells per node is already �� cells, if

the partitioning was ideal.

Grating Figure �.�� outlines the strong-scaling result. We have tested the scaling behaviour forQi, i =
1 . . . 3 including dielectrics, PMLs (auxiliary ODEs). Equivalent same sub-optimal partitioning arguments

apply to the grating.

Despite a small o�set (in the log scale), the grating case scales signi�cantly better up to ��� cores. We

observe a scaling breakdown forQ1 beyond ��� sub domains whileQ2,3 still scale nicely up to ��� cores.

This is due to the higher workload per core. Doubling the number of sub domains up to ��� eventually

drops the scaling. We have to mention that each core only hosts ��� cells in average for ��� sub domains.

While the somewhat constant factor between the ideal scaling � and our results is order-independent,

the scaling breakdown seems to appear at⇡ 102 elements per node for the grating as well as for the cube.

�This factor might be due to the di�erent computational costs for normal Maxwell cells and PML cells. Since the mesh is

relatively homogeneous, there are many pure Maxwell or PML sub domains intrinsically having di�erent workloads per rank.
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Figure �.�� | MPI speedup for the nano-cube. The mesh statistics are depicted in Table �.�. We have used the same mesh-
partitioning for eachPi. The speed-up is relative to �� sub domains. This work was granted access to the HPC and visualization
resources of "Centre de Calcul Interactif" hosted by "Université Nice Sophia Antipolis" (CICADA).
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Figure �.�� | MPI speedup for the grating. The mesh statistics are summarized in Table �.�. We have used the same mesh-

partitioning for eachQi. The speed-up is relative to �� sub domains. This work was granted access to the HPC and visualization

resources of "Centre de Calcul Interactif" hosted by "Université Nice Sophia Antipolis" (CICADA).

Although this estimation is very rough and heavily depends on the computational cost per cell, we can

at least conclude an approximative partitioning limit. In other words, one MPI task should not host less

than ⇡ 150 cells.

Remark �.�.�. We are aware of the fact that these scaling results are far from usual HPC-standards. How-

ever, our scaling-study has been performed on two realistic test-cases and we hence consider them to be

representative for a vast set of simulations. Also, we wanted to get a ’feeling’ of how many elements per CPU

are necessary for a reasonable scaling.
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Table �.� | Mesh statistics of grating mesh. The statistics are for the intial mesh without ghost-cells.

# Cells �����

# Linear cells ����� # PML cells �����

# HO cells - # Dielectric cells �����

# Vacuum cells ����� # Gen-disp + Nonlocal cells �

��



�.� Spherical dimer

Spherical dimers consist of two spheres being very close to each other, hence forming a gap system, see
Figure �.�� (a). Such dimers are well known to show high �eld enhancements due to the hybridized modes
of the individual spheres that build up a so called gap plasmon. These �eld enhancements are of interest
for e.g. Surface Enhanced Raman Scattering (SERS) [���].

Beyond the applicative aspects, the spherical dimer system is signi�cantly more complicated for ana-
lytical solutions due to a lower symmetry level than single spheres. Breaking the symmetry of a single
sphere by introducing a second sphere brings a second tuning parameter of the system - the gap size. For
su�ciently small gaps, nonlocal e�ects are expected to occur, as has been recently theoretically shown
for a fully retarded three dimensional dimer case [���].

�.�.� Optical cross section simulation

For extinction CS simulations, in contrast to scattering CS, the absorption CS comes into play and the near
�eld thus gains importance. A precise evaluation of the absorption CS, in turn, requires a well resolved
near �eld which strongly depends on the surface approximation of the nano particles. We have used
identical spheres with the radii RDimer = 10 nm and a gap of δDimer = 2 nm being su�ciently wide to
neglect tunneling e�ects. Both spheres consist of gold with the material parameters !P = 1.39e16 rad/s,
γ = 3.23e13 rad/s and β = 0.84 m/s.
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Figure �.�� | Spherical dimer system. (a) sketches the dimer setup with an ex polarized incident plane wave and (b) shows
the �D �eld distribution of the electric �eld on the dimer surface and on a cutting plane and along the dimer axis.

Numerical discussion: a�ne vs. curvilinear elements Figure �.�� and �.�� show the extinction CS
spectra for simulations with local and nonlocal dispersion models on a mesh with a�ne tetrahedra and
a converged reference spectrum obtained on a curvilinear mesh.

For local dispersion (see Figure �.��), centered DGTD on a�ne tetrahedra obtains a reasonably good
solution for frequencies below 0.56!P. Spurious solutions dominate the extinction spectrum for centered
�uxes. Using ↵ = 1.0, i.e. fully upwind �uxes, introduces numerical dissipation and damps spurious
solutions. The resulting spectrum is very close to the reference solution.

The situation changes for nonlocal dispersion (see Figure �.��). The solution with centered �uxes, i.e.
↵ = 0 in (�.�.�), barely shows dissipation and almost contains all the resonances as the reference solution.
Unfortunately, the spectrum is heavily polluted by spurious oscillations whichmakes it extremely di�cult

��



for the weaker resonances of amplitudes below 3e−15 cm−2 to be correctly distinguished and detected.
Switching to upwind �uxes, i.e. ↵ = 1.0 in (�.�.�), damps away all spurious solutions at the price of
higher numerical dissipation making the detection of weak resonances impossible again.

If curvilinear elements are turned on now, i.e. the black curve in Figure �.��, we indeed see that the
previously discussed centered spectrum almost contains all correct resonances plus additional spurious
modes. In contrast, the upwind solution smoothes out too strongly and at least two resonances are com-
pletely lost. Figure �.�� (b) illustrates the computational mesh of the dimer system with the curvilinear
elements.
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Figure �.�� | Spherical dimer DGTD �ux comparison (local). Comparison of the extinction CS spectra for a spherical
dimer system on a linear mesh in dependence of the numerical �ux choice. Black: the reference DGTD solution with curvilinear
elements. Blue: DGTD with centered �uxes and linear mesh cells, and orange: DGTD with upwind �uxes and linear mesh cells.

Physical discussion: local vs. nonlocal dispersion Comparing a local dispersion model β = 0with
the nonlocal solution in Figure �.�� (a) shows signi�cant blue-shifts for all resonances. The resonances
above 0.6!P are even shifted strong enough to lie on the next local resonance.

In terms of near �eld solution, Figure �.�� depicts the electric �eld distribution inside the dimer and
Figure �.�� the �eld on the surface and in the gap. Regarding the �eld distribution inside the dimers,
nonlocality leads to a stronger penetration of the �eld to the inside of the spheres. While locally dispersive
dimers build out a nicely convex gap mode, nonlocality causes an almost parallel gap penetration layer.
Additionally, nonlocality builds up a very thin penetration layer which is particularly strong on the rear
side of the dimers. Such penetration e�ects and amore homogenous �eld (out-smearing) is not observable
for local dispersion. Figure �.�� con�rms the previous inside observations. Nonlocality leads to �eld
enhancements on the surface and widens the gap mode.
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Figure �.�� | Spherical dimer DGTD �ux comparison (nonlocal). Comparison of the extinction CS spectra for a spherical
dimer system on a linear mesh in dependence of the numerical �ux choice. Black: the reference DGTD solution with curvilinear
elements. Blue: DGTD with centered �uxes and linear mesh cells, and orange: DGTD with upwind �uxes and linear mesh cells.

In conclusion, nonlocality leads to blue-shifts in the CS spectra, even for relatively low βvalues of less
than 1e6 m/s. Near �eld observations clearly show mode distortion in comparison to local dispersion
models. Complementary simulation results are provided in section D.

(a) Local dispersion. (b) Nonlocal dispersion.
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Figure �.�� | Spherical dimer �eld plot at the third resonance (volume). Figure (a) shows the �D �eld distribution of
the electric �eld if a local dispersion model is employed. In (b) a nonlocal dispersion model is used. Nonlocality smears out
vacuum-metal interface and builds up a ‘penetration’ layer. The discontinuities of the DGTD method are clearly visible.
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(a) Spherical dimer: local vs. nonlocal CS. Comparison of the extinction CS spectra of a spherical
dimer system based on local on nonlocal dispersion models.

(b) Local dispersion. (c) Nonlocal dispersion.
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Figure �.�� | Spherical dimer: local vs. nonlocal dispersion. A comparison of local an nonlocal extinction CS is shown in
(a). Figure (b) shows the �D �eld distribution at third resonance of the electric �eld if a local dispersion model is employed. In
(c) a nonlocal dispersion model is used. Nonlocality widens the gap plasmon resonance due to stronger �eld enhancements.
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Di�erences between local and nonlocal dispersionmodels are still small. Especially for today’s fabrication
precisions, it remains a challenging task to �nd reliable structures where nonlocality is dominant over
geometrical errors. Numerous theoretical studies [���, ���, ���] have been concerned with sphere based
systems. However, these systems either require extremely small spheres of radii ≈ 2 nm or very small
gap sizes in the dimer setup in order to be sensitive to nonlocality. Such small spheres appear to not
be perfect spheres anymore since the atomic structure starts to cause faceted nano particles [���]. A
promising experiment has been carried out in ���� [��] where nonlocality was measured for spheres on
a substrate. Despite the fact that the nonlocal model was able to accurately predict the measured data
while the local model failed, the experimentalists had to tremendously decrease the gap size between the
substrate and the sphere in order to obtain a su�cient impact of nonlocality. Gap sizes below ≈ 2 nm
may be subject to tunneling which is not included in the nonlocal model.

Aspiring towards more experimental setups where nonlocality should be observed and clearly distin-
guishable from other e�ects like tunneling, we consider two promising structures. The �rst structure, a
classical grating, presents a modern calibration approach of the nonlocal dispersion model. Calibrating
the hydrodynamic dispersion model turns out to be fairly complicated if nonlocality wants to be properly
distinguished from geometric uncertainties. Chapter �.� presents a calibration approach for well-known
grating structures relying on the solution of inverse problems with state of the art meta-model based
optimization and surrogate model based UQ analysis.

Afterwards, we benchmark our numerical results with experimental data. Our simulations of nano-
cubes show an excellent agreement and allow new interpretations and explanation of former experiments
from Duke University [���]. This topic will be subject of Chapter �.�.
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�.� Grating

Thiswork has been realized in collaborationwithArmel Pitelet at Institut Pascal, Clermont-
Ferrand and Dimitris Loukrezis at TU-Darmstadt. The results have been published in [���].
We refer to [���] for a more thorough physical introduction and discussion. This chapter
provides complementary details about the post-fabrication telemetry and the calibration of
the nonlocal material parameter β.

�.�.� Post-fabrication telemetry - solving an inverse problem

Nano gratings [���] strongly depend on the fabrication tolerances of the etching process and the layer-
wise dielectric deposition technology. For our theoretical investigations, we will use an idealized geomet-
ric model of the grating structure based on three parameters dGrating, aGrating, hGrating of the metallic
structure and the height hDiel of the dielectric. Figure �.� shows both setups, before and after the deposited
dielectric.

Unfortunately, the fabrication tolerances of state-of-the-art nano processing still lead to a priori tol-
erances of about ±5 nm for the etching process [��] and about ±11% [��] for the dielectric deposition.
Modern electron beam etching is usually limited by the beam quality while the dielectric deposition de-
pends on a layer-wise error, i.e. independent from layer to layer. In order to obtain the more accurate
geometric model, we aim for a post-fabrication characterization, referred to as geometric telemetry.

Post-fabrication characterization is of particular importance for our study because nonlocality is a
relatively small correction of the material model and its in�uence could be completely drowned in fab-
rication imperfections, i.e. tolerances. Trying to overcome this dilemma, we perform telemetry strategy,
allowing to precisely determine the actual geometric parameters. The thereby found geometric model
(see Figure �.�) will subsequently be the starting point of our main study:

• Is the in�uence of nonlocality greater than that of geometric imperfections?

• If yes, can we extract the nonlocal material parameter β and hence calibrate the linearized hydro-
dynamic dispersion model with the proposed grating setup?

The geometric telemetry will be split up into two steps: step I which characterizes the metal geometry
parameters dGrating, aGrating, hGrating and step II providing the dielectric height hDiel. A key ingredient
of our strategy consists in the fact that we do not rely on nonlocal simulations at any time during step I
and II. This is particularly important since the nonlocal material parameter β is still subject to ongoing
discussions in the community [�, ���, ��, ��, ���]. Thus, motivated by the lack of accuracy in the β−value,
our �nal goal is to deploy a robust protocol that allows for the extraction, i.e. indirect measurement, of the

nonlocal material parameter β. This will be the last step after a successful determination of the geometry
(step I and II) and in the following referred to as step III. Figure �.� illustrates the overall work-�ow.

A SP propagating along an air-Ag (see Figure �.� (a)) interface is almost insensitive to nonlocality,
while the TiO2-Ag interface signi�cantly increases the impact of spatial dispersion (see Figure �.� (b)),
as discussed in the introduction and as depicted in Figure 1 in [���]. For this reason, it is bene�cial to
perform a �rst characterization step, before the TiO2 deposition.

Telemetry goal An accurate knowledge of the entire geometry will eventually allow:

• A comparison of local and nonlocal simulations based on an accurate and realistic geometric model.
This theoretical comparison checks whether the proposed grating structure is su�ciently sensit-
ive in order to observe nonlocality experimentally. Here, a value for β will have to be assumed
according to the literature [��].
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• An UQ of the geometric uncertainty for the local and nonlocal simulation. This will show if uncer-
tain geometries make the in�uence of nonlocality undetectable.

• The solution of an inverse problem in order to �nd the experimental and hence the real value of β.
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Figure �.� | Calibration of nonlocal dispersion model.

Remark �.�.�. As a �rst step, the presented study exclusively relies on theoretical results. We propose a

robust telemetry strategy based on arti�cial measurement data, i.e. simulated spectra with added noise.

Such a choice enables to sanity check, since the reference geometry is known. To the best of our knowledge,

no experimental data, which would exactly meet our proposed strategy plan yet exists. We hope this work

encourages experimentalists to realize the corresponding experiments.

Step I and II - searching the grating’s geometry Starting with step I and II, we require a numerical
model that provides the re�ectance spectrum. Grating structures with local dispersion, in a wisely chosen
frequency range, can be e�ciently solved by RCWAmethods [��, ���]. According to the strategy outlined
in Figure �.�, we perform two ’arti�cial’ fabrication (.a) and measurement (.b) sub-steps:

(I.a) Etch the grating into the Ag bulk layer and measure the re�ectance (nonlocality absent);

(I.b) Find dGrating, aGrating and hGrating, based on RCWA simulations (without nonlocality);

(II.a) Add the dielectric layer (TiO2) and again measure the re�ectance (nonlocality possible);

(II.b) Find hDiel, based on RCWA� simulations (nonlocality possible).

Step I hence reads:

(i) Choose an reference set of geometric parameters hGrating = hG,init, dGrating = dinit and aGrating =
ainit;

(ii) Simulate the re�ectance spectrum with RCWA (local dispersion). We call the result of this �rst
simulation the original solution. Perturb the simulated re�ectance by adding a white noise, referred
to as arti�cial experimental data Rlocal

measured;

�We relied on a RCWA implementation of the Electromagnétisme et Nanophotonique de l’Institut Pascal team in Clermont-
Ferrand.
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(a) Metallic gratingwithout dielectric. Periodic metal-
lic grating setup before dielectric deposition (nonlocality
absent).
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(b) Metallic grating with dielectric. Periodic grating
setup with dielectric (TiO2) �nishing (nonlocality pos-
sible).

Figure �.� | Periodic grating. Two fabrication states of the metallo-dielectric grating. First, a periodic grating is etched into
the silver ground layer, Figure (a). Then, the grating is �lled up with TiO2 and an additional homogeneous layer of the same
material is topped on the structure, Figure (b). This allows spatial dispersion in the silver, i.e. εAu(ω) becomes εAu(ω,k).

(iii) Solve an inverse problem (formulated as an optimization problem) and �nd the fabricated geometry.

See Figure �.� for the corresponding �owchart.

Remark �.�.�. Step (i) and (ii) would be replaced by experimental results in the future.

After the creation of the arti�cial measurement data, i.e. (i) and (ii), the inverse (optimization) problem
reads

minimize
∣∣∣
∣∣∣Rlocal

measured −Rlocal
optimized

∣∣∣
∣∣∣
l2

subject to hGrating ∈ [hG,min, hG,max]

dGrating ∈ [dmin, dmax]

aGrating ∈ [amin, amax].

(�.�.�)

Inverse problem: �nd metallic geometry

Figure �.� shows the result of (�.�.�). We have tested two di�erent optimization algorithms of the Matlab
optimization toolbox, namely particle swarm and pattern search and INRIA’s Famosa. Both algorithms
from the Matlab optimization toolbox �nd fairly good solutions as depicted in Figure �.�. Potential issues
for the optimization process might be many local minima with similar error levels due to the high noise
of the arti�cial measurement data. Such a situation makes it di�cult to �nd the most ‘realistic’ minimum.
Multiple local minima of the same level can be imagined as several parameter combinations of dGrating,

aGrating and hGrating yielding a similar error-level
∣∣∣
∣∣∣Rlocal

measured −Rlocal
optimized

∣∣∣
∣∣∣
l2
in (�.�.�).

Remark �.�.�. We have performed multiple optimization runs with di�erent algorithms: particle swarm,

pattern search andmetamodel (Kriging) based optimization, as well as di�erent starting points for the pattern

search. For Kriging, we rely on the Famosa optimization toolbox. The obtained results are not very sensitive to

the choice of the optimization algorithm. In terms of computational costs, Kriging performs best, followed by
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pattern search and particle swarm seems to be less appropriate for this type of optimization problem. However,

most results in the following discussion will be based on pattern search due to its robustness and higher

e�ciency for derivative-free medium-dimensional problems [��]. Although metamodel based optimization

is faster, we have mainly used pattern search because of its availability in the Matlab Optimization Toolbox

(this simpli�es the reproducibility of our results for future experimentalists).

The cost-function calls are based on RCWA simulations and take approximately 10 minutes for 200
frequency points without parallelization. Each frequency point is independent, leading to a linear scaling if

parallelization was active.

Start

Local simulation of
the metal grating

Arti�cial ex-
perimental data

Find hGrating,
dGrating and aGrating

Fabricated geometry hGrating, dGrating and aGrating

add noise

Figure �.� | Work�ow of dielectric free grating. Schematic of step I. The pure metal grating in Figure �.� (a) will be free of
nonlocal e�ects. Hence, we use a local simulation result and add a noise in order to get an arti�cial set of experimental data.
Then, we search the three unknown geometric parameters (inverse problem).

Step II After adding the dielectric layer, a telemetry of hDiel is carried out. There is now � di�erent pos-
sible scenarios depending on the underlying material model of the ‘measured’ data, the material model of
the simulations of the inverse problem and the amount of free geometric parameters. These � possibilities
read:

A-� Use the noisy local spectrum. Add hDiel to the unknowns of the inverse problem (�.�.�) and solve
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Inverse solution - local

Figure �.� | Re�ectance spectrum. Result of step I. An arti�cial white noise has been added to the original spectrum (in
blue) obtained for hG,init = 68.0 nm, dinit = 500.00 nm and ainit = 166.67 nm. In orange: The result of the inverse
problem (�.�.�) with Matlab’s pattern search. This spectrum corresponds to hGrating = 68.08 nm, dGrating = 499.15 nm
and aGrating = 165.34 nm. The constraint intervals are chosen to be hGrating ∈ [62, 73] nm, dGrating ∈ [495, 505] nm and
aGrating ∈ [161, 171] nm, which is in accordance with the precision of the etching process.
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Original solution - local
Particle swarm optimization - local
Pattern search optimization - local

Figure �.� | Particle swarm vs. pattern search. Comparison of the original spectrum and the solution of the inverse problem.
Here, we compare particle swarm optimization and pattern search for the solution of (�.�.�) (both based on local dispersion). The
found geometric parameters for particle swarm are hGrating = 68.18 nm, dGrating = 501.41 nm and aGrating = 171.00 nm.
See Figure �.� for the pattern search results.

minimize
∣∣∣
∣∣∣Rlocal

measured −Rlocal
optimized

∣∣∣
∣∣∣
l2

subject to hGrating ∈ [hG,min, hr,max]

dGrating ∈ [dmin, dmax]

aGrating ∈ [amin, amax]

hDiel ∈ [hDiel,min, hDiel,max]

(�.�.�)

Inverse problem A-�
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Figure �.� | Work�ow of the metallo-dielectric grating. Schematic of step II B. Supposing nonlocality to be present in the
real experiment as depicted in Figure �.� (b), we use a nonlocal simulation result of the metallo-dielectric grating. Adding an
arti�cial measurement noise leads to the arti�cial nonlocal experimental data. The goal is to �nd hDiel. We can either restart
from scratch and leave all four parameters free or �x the already found parameters and search for hDiel only.

A-� Use the noisy local spectrum. However, �x dGrating, aGrating and hGrating to the values of (�.�.�).
Find hDiel by solving

minimize
∣∣∣
∣∣∣Rlocal

measured −Rlocal
optimized

∣∣∣
∣∣∣
l2

subject to hDiel ∈ [hDiel,min, hDiel,max]
(�.�.�)

Inverse problem A-�

B-� Use the noisy nonlocal spectrum. Add hDiel to the unknowns and solve

minimize
∣∣∣
∣∣∣Rnonlocal

measured −Rlocal
optimized

∣∣∣
∣∣∣
l2

subject to hGrating ∈ [hG,min, hG,max]

dGrating ∈ [dmin, dmax]

aGrating ∈ [amin, amax]

hDiel ∈ [hDiel,min, hDiel,max]

(�.�.�)

Inverse problem B-�
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Figure �.� | Work�ow of the metallo-dielectric free grating (nonlocal). Schematic for step II C. Similar steps as in Figure
�.�. However, here a nonlocal simulation tool is used to solve the inverse problem. This requires a precise knowledge of the
nonlocal parameter β.

B-� Use the noisy nonlocal spectrum and solve the optimization problem as stated in (�.�.�). However,
�x the already found parameters for dGrating, aGrating and hGrating (from step I) and optimize for
hDiel only

minimize
∣∣∣
∣∣∣Rnonlocal

measured −Rlocal
optimized

∣∣∣
∣∣∣
l2

subject to hDiel ∈ [hDiel,min, hDiel,max]
(�.�.�)

Inverse problem B-�

C Use the noisy nonlocal spectrum and solve the optimization problem as stated in (�.�.�), add hDiel

but use a nonlocal model for Roptimized in (�.�.�)

minimize
∣∣∣
∣∣∣Rnonlocal

measured −Rnonlocal
optimized

∣∣∣
∣∣∣
l2

subject to hDiel ∈ [hDiel,min, hDiel,max].
(�.�.�)

Inverse problem C

Indeed, a combination of these scenarios gives rise to multiple indications for nonlocality. We will chro-
nologically discuss each step in the following.

Remark �.�.�. The nonlocal simulation for Rnonlocal
measured relies on a nonlocal DGTD simulation.
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A-� Figure �.� shows the result for an arti�cial measurement based on a local dispersion model, com-
pared to the solution of the inverse problem that is equally based on a local simulation. This strategy
�nds the same values for hGrating, dGrating, aGrating as (�.�.�) and additionally hDiel = 84.82 nm. Leading
to an absolute error of 0.18 nm ( hDiel,init = 85 nm).

A highly accurate result of the inverse problem can be explained by the fact that the arti�cial meas-
urement data is based on the same physical model (local dispersion).

A-� Strategy A-� leads to hDiel = 85.45 nm being very close to the result in A-�. We refer to the
discussion of A-�.
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measured

Original solution - local
Inverse solution - local

Figure �.� | Re�ectance spectrum. Result of step II A-� and A-�. An arti�cial white noise has been added to the original local
dispersion spectrum (in blue) obtained for hG,init = 68.0 nm, dinit = 500.0 nm, ainit = 166.67 nm, and hDiel,init = 85 nm
. In orange: the result of (�.�.�). The spectrum corresponds to hGrating = 68.01 nm, dGrating = 502.19 nm, aGrating =
166.91 nm and hDiel = 85.45 nm. The constraint intervals are chosen to be hGrating ∈ [62, 73] nm, dGrating ∈ [495, 505] nm,
aGrating ∈ [161, 171] nm and hDiel ∈ [75, 95] nm, which is in accordance with the precision of the fabrication process. If
we �x the previously obtained values of hGrating , dGrating and aGrating from Figure �.� and hence solve (�.�.�), we obtain
hDiel = 84.82 nm. The resulting spectra are almost identical and we omit displaying the result of A-�.

B-� If nonlocality was present in reality, the measured spectrum will be a�ected as soon as the dielec-
tric is deposited. Using a re�ectance result from a simulation (based on nonlocal dispersion) allows a
theoretical investigation of that case. This is equivalent to the left branch in Figure �.�. According to
the small visual di�erence between the arti�cial re�ectancesRlocal

measured andR
nonlocal
measured as shown in Figure

�.��, we expected a low impact of nonlocality on the solution of (�.�.�) compared to (�.�.�). Nonlocality
seemingly causes a small deviation compared to the local curve and the noise �nally blurs the di�erence
completely.

This, however, is not the case. Solving the inverse problem (�.�.�) does not yield the correct geometric
parameters dGrating, aGrating, hGrating and hDiel. Keeping the same fabrication uncertainty intervals as
before, (�.�.�) �nds dGrating = 499.71 nm, aGrating = 161.00 nm, hGrating = 67.23 nm and hDiel =
85.96 nm. Here, the optimizer reached the lower constraint value of the interval bound of hGrating, see
Figure �.�. Arti�cially increasing the interval bounds, i.e. exceeding the a priori fabrication uncertainty,
leads to dGrating = 491.08 nm, aGrating = 158.15 nm, hGrating = 67.36 nm and hDiel = 85.99 nm. It
seems that the optimization process tried to compensate nonlocality by tweaking the values of aGrating
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and hGrating. Nevertheless, the ‘wrong’ (local dispersion) model still yields reasonably good results for
dGrating and aGrating.

This allows us to conclude an intermediate result. If nonlocality is not present in the measurement,
the inverse problems (�.�.�), (�.�.�) as well as (�.�.�) will �nd the same geometric parameters for dGrating,
aGrating, hGrating and an accurate value for hDiel.

Contrarily, if nonlocality is present, the inverse problem (�.�.�) will not con�rm the already found
values from (�.�.�). Especially, the parameters aGrating and hGrating seem to be particularly sensitive to
this e�ect. Since the deposition of the dielectric does not a�ect the metallic geometry (step I), we have
hereby found a �rst hint for nonlocality.
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Inverse solution (larger bounds) - local

Figure �.� | Re�ectance spectrum. Result of step II B-�. Gray diamonds: Rnonlocal
measured corresponds to the nonlocal spectrum (gray

line) with hG,init = 68.0 nm, dinit = 500.0 nm, ainit = 166.67 nm, and hDiel,init = 85 nm . In blue: the result of the inverse
problem (�.�.�). The spectrum is based on hGrating = 67.23 nm, dGrating = 499.71 nm, aGrating = 161.00 nm and hDiel =
85.96 nm. The constraint intervals are chosen to behGrating ∈ [62, 73] nm, dGrating ∈ [495, 505] nm, aGrating ∈ [161, 171] nm
and hDiel ∈ [75, 95] nm, which is in accordance with the precision of the fabrication process. In orange: the same result as
the blue curve for larger constraint intervals hGrating ∈ [57, 78] nm, dGrating ∈ [490, 510] nm, aGrating ∈ [156, 176] nm
and hDiel ∈ [70, 100] nm. Optimization �nds hGrating = 67.36 nm, dGrating = 491.08 nm, aGrating = 158.15 nm and
hDiel = 85.99 nm.

B-� Reusing the already obtained results for hGrating, dGrating, aGratingin (�.�.�) for the metal geometry,
yields (�.�.�) (similar to A-� but with nonlocal measurement data). This is equivalent to the right branch
in Figure �.�. Still, the underlying simulation model for the inverse problem (�.�.�) remains local and is
hence ‘wrong’ with respect to the arti�cial (nonlocal dispersion model) measurement data.

However, solving the inverse problem (�.�.�) based on local simulations, yields hDiel = 84.83 nm (see
Figure �.��), being very close to the original value of 85.00 nm. In contrast to B-�, where all � parameters
were free, the found value for hDiel is now signi�cantly more accurate.

In other words, if nonlocality is present in the measurement, B-� (nonlocal measurement) �nds dif-
ferent values for the metal structure and than A-� and A-� (local measurements). As a matter of fact,
B-� seems to realize a well working manner to �nd the unknown dielectric height hDiel, only relying on
locally dispersive simulations (although being the ‘wrong’ model). This circumvents any assumption on
a nonlocal dispersion model during step I and II.
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Remark �.�.�. We cannot provide a thorough explanation why this works. A possible reason may be that

the metal geometry dictates the overall shape of the re�ectance curve. Although nonlocality modi�es the

re�ectance, the dielectric height cannot compensate this impact. This further means: nonlocality is not
interchangeable with the dielectric height. A proper sensitivity analysis will be part of a future work.

Furthermore, even if the impact of nonlocality (compare re�ectances in Figure �.��) is not directly
visible in the measured spectrum for λ ∈ [800, 2000] nm, it clearly becomes observable through the
geometric parameters, obtained by the solution of concatenated inverse problems (step I + II).
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Figure �.�� | Re�ectance spectrum. Result of step II B-�. Gray: Rnonlocal
measured corresponds to the original nonlocal spectrum

(in blue) for hG,init = 68.0 nm, dinit = 500.0 nm, ainit = 166.67 nm, and hDiel,init = 85 nm . Orange: the result of the

inverse problem (�.�.�). We have �xed the �rst three values of hGrating , dGrating and aGrating according to Figure �.� and �nd

hDiel = 84.83 nm. The constraint interval is chosen to be hDiel ∈ [75, 95] nm, which is in accordance with the precision of

the fabrication process. The positive o�-set of the local solution with comparison to the initial nonlocal reference spectrum is

in line with our simulations, where nonlocality slightly decreases the re�ectance.

C Figure �.� and system (�.�.�) have not been tackled within the scope of this work because we want

to avoid any assumptions on the nonlocal model for the geometric telemetry step.

Telemetry result Step I and II provide the �nal geometry

hGrating = 68.08 nm,

dGrating = 499.15 nm,

aGrating = 165.34 nm,

hDiel = 84.83 nm,

(�.�.�)

Geometric telemetry result

of the metallo-dielectric grating in Figure �.�.
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Table �.� | Uncertain parameters extracted from procedure B-�.

Parameter z δz Units

hG 68.082 0.1 (nm)
dG 499.156 1.0 (nm)
aG 165.36 1.5 (nm)
hD 84.83 0.3 (nm)

�.�.� Nonlocal dispersion - distinction from geometric uncertainty and model calib-
ration

The geometric telemetry has lead to the fabricated geometries in Table �.�. This has paved the way for
two further studies:

(�) An a priori comparison of local and nonlocal re�ectance spectra, assuming a β-value from literature.
Here, we have used β = 1.35e6 m/s.

(�) A similar strategy as for the geometric telemetry in order to extract β from the measurement data.
(step III)

(�) - Geometric uncertainty vs. nonlocality We use the UQ study results in order to estimate ±2σ
intervals around the optimized local re�ectance curve, where σ =

p
V[R] refers to the standard deviation.

The results corresponding to each resonance area are presented in Figure �.�� and Figure �.�� (in blue),
respectively. Since the nonlocal DGTD simulations are too expensive for an UQ of the same kind as we
have performed local model, we rely on a min-max study. Here, min-max represents solver calls for all
interval bound combinations (in orange) as depicted in the corresponding �gures.

According to Figure �.�� (a), a clear measurement of the �rst resonance is almost impossible due to the
small di�erence between the local and nonlocal curves. Nevertheless, the second resonance (see Figure
�.�� (b)) is signi�cantlymore sensitive to nonlocality and stays distinguishable. For the sake of robustness,
we have also performed simulations with the lowest physically acceptable value for β = 0.85e6 m/s [��],
which still guarantees a blueshift of 5 nm for the second resonance, i.e. stronger than the geometric
uncertainty. A parameter sweep on β is depicted in Figure �.��. Physically acceptable values for β may
lie between βmin ≈ 0.85e6 m/s [��] and βmax ≈ 1.4e6 m/s [���].

(�) - Model calibration (step III) Knowing the geometry and estimating the impact of nonlocality to
be greater than geometric uncertainties, we now want to extract the nonlocal material parameter β. We
proceed in the same way as for the geometric telemetry. However, instead of searching the geometry
parameters dGrating, aGrating, hGrating and hDiel, we are now interested in β. The corresponding inverse
problem, formally cast into an optimization problem, reads

minimize
∣∣∣
∣∣∣Rnonlocal

measured −Rnonlocal
optimized

∣∣∣
∣∣∣
l2

subject to β ∈ [βmin, βmax].
(�.�.�)

Calibration of the nonlocal dispersion model: �nd β
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Figure �.�� | Local vs. nonlocal grating. Comparison of the local and nonlocal re�ectance. The positions of the local res-
onances are at 579 nm and 735 nm and the nonlocal ones at 577 nm and 728 nm. This leads a blue-shift of 2 nm and 7 nm,
respectively. In blue: the {R} ± 2σ area, being an output of the UQ analysis based on stochastic polynomials. In orange: the
min-max intervals of the re�ectance for all interval bound combinations of the uncertain geometric parameters hGrating ∈
{67.98, 68.18} nm, dGrating ∈ {498.15, 500.15} nm, aGrating ∈ {163.86, 166.86} nm and hDiel ∈ {84.69, 85.31} nm.
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(a) Zoom on �rst resonance.
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(b) Zoom on second resonance.

Figure �.�� | Local vs. nonlocal grating (Zoom). Zoom on the resonances in Figure �.��.

Obviously, the solution of (�.�.�) requires nonlocally dispersive simulations. Since our RCWA neither
handles the whole spectrum λ ∈ [550, 2000] nm nor considers nonlocal dispersion, we have to rely on
DGTD [���].
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Figure �.�� | Local vs. nonlocal grating. Comparison of the local and nonlocal re�ectance at wavelengthsλ ∈ [800, 2000] nm.
In black and gray, the arti�cially obtained experimental data for the local and nonlocal dispersion model, respectively. The
distinction between both sets of measurement points is almost impossible. Blue: Re�ectance of the metallo-dielectric grating
based on the parameters found in B-� and local dispersion. Orange: Re�ectance of the metallo-dielectric grating based on the
parameters found in B-� and nonlocal dispersion.

The geometric size of the structure in combination with very small e�ective wavelengths already
requires very �ne meshes with respect to the free-space wavelength. Additionally, the interaction range
of nonlocal e�ects is in the range of several nano-meters at the metallo-dielectric interface and also needs
to be well resolved. The size of the computational domain and the necessary mesh-re�nements lead to
≈ 107 DoFs. Since we work in time-domain, the combination of small mesh cells (strong constraint
for explicit time integration, i.e. CFL-condition) and a long plasmon lifetime due to periodic boundary
conditions, lead to ≈ 120, 000 time-step iterations. In summary, one broad-band simulation takes about
640 CPU hours. Employing MPI-parallelization reduces the actual simulation times to �-��h on �-� nodes
(�� cores per node) of the Occigen cluster [��]. The solution of the inverse problem as stated in (�.�.�)
can be signi�cantly accelerated by meta-model based optimization algorithms. We have used the Kriging
meta-model (Gaussian process model) implementation of the FAMOSA [��] optimization toolbox.

Physically acceptable values for β may lie between βmin ≈ 0.85e6 m/s [��] and βmax ≈ 1.4e6 m/s
[���]. Figure �.�� shows the result of (�.�.�). We �nd βinverse = 1.385e6 m/s which is reasonably close to
the βinit = 1.35e6 m/s (value for Rnonlocal

measured).

�.�.� Optical near-�eld of the grating - local vs. nonlocal dispersion

We conclude this chapterwith �D solutions of the electric �eld. Figure �.�� shows the Fourier-transformed
�elds at λres,1 = 577 nm and λres,2 = 728 nm. A high coupling-e�ciency of the normally incident plane
wave with the surface plasmon at λres, i.e. R(λres) < 2%, leads to a very plane wave-like �eld at a
certain height above the dielectric. This observation is also con�rmed by almost vanishing �elds in the
SF-domain above the TF/SF-interface. These observations apply for both, local and nonlocal dispersive
simulations.

Zooming-in to the metallo-dielectric surface in the vicinity of the grating reveals sub-tile di�erences
between local and nonlocal dispersion. Figure �.�� compares the near-�eld at λres,1 of a local and nonlocal
simulation. The local simulation clearly respects the metallo-dielectric interface. The magnitude of the
electric �eld |E| jumps exactly at the transition from the metal to the dielectric. For nonlocal dispersion,
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Figure �.�� | Local to nonlocal dispersive grating. Comparison of the re�ectance curve in dependence of an increasing β
factor. Starting from a purely local dispersion model up to physically acceptable values of β.

however, we can observe a thin penetration layer and a smoother �eld distribution. Especially, the upper
corner experiences an increased �eld inside the metal. Additionally, nonlocality seems to smooth the
�eld singularities that appear in vicinity of the corners. Those �eld-singularities are well known to be
problematic for numerical methods at material corners. Although our linearized hydrodynamic �uid-
model only allows a �rst order perturbation of the electron density, it already leads to a signi�cantly
smoother surface transition at the metallo-dielectric interface. Our results are in line with theoretical
investigations in [�]. Equivalent interpretations apply to the second resonance λres,2 (see Figure �.��).
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function calls of that calibrate the meta-model. The minimum is found to be βinverse = 1.385e6 m/s, which is very close to the
initial value of βinit = 1.35e6m/s.
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Figure �.�� | Field solution at grating resonances. From the top to the bottom: PML-domain (not displayed), SF-domain,
TF-domain, vacuum-TiO2 interface, metallic grating. The high coupling e�ciency of the incident plane wave and the surface
plasmonic mode is remarkably obvious (almost no �eld in the SF domain). We quantify this by the very plane-wave like wave-
front above the grating. In other words, the grating couples almost all the incident energy into the surface plasmon. This is
perfectly in line with with the almost vanishing re�ectance of about 1% and 2% for the �rst and second resonance, respectively.
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Figure �.�� | Field solution at grating resonancesλres,1 (zoom). First resonance. Nonlocality allows a very think penetration
layer at the metallo-dielectric interface. Additionally, the �eld singularities at the corners are weakened and almost completely
disappear for the lower corner.
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Figure �.�� | Field solution at grating resonances λres,2 (zoom). Second resonance. Nonlocality allows a very think penet-
ration layer at the metallo-dielectric interface. Additionally, the �eld singularities at the corners are weakened.
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�.� Nano-cubes

Why arewe interested in nano-cubes? Surface plasmons at metallo-dielectric interfaces can be sens-
itive to nonlocality. Figure �.�� (a) depicts an gold-dielectric interface. Following standard derivations
[��, ���], the dispersion relation of the surface plasmon reads

κz
εd

+
κt
ε

= ξ, with ξ :=

{k}2x

✓
1

ε
−

1

1 + χb

◆

s
{k}2x +

ωP
2

β2

✓
1

χf
+

1

1 + χb

◆ (�.�.�)

Here, ε is the local permittivity contribution of the metal, εd the permittivity of the dielectric, κz =q
{k}2x − εdk02, κt =

q
{k}2x − εk02, and χb,f are consistent with Chapter �. Equation (�.�.�) is well

known from local dispersion theory if β = 0, i.e. ξ = 0. Figure �.�� (a) depicts the dispersion relation of
a surface plasmon. Obviously, nonlocality has a negligible impact. Considering a metal-dielectic-metal
gap structure as shown in Figure �.�� (b) with the gap height h yields the dispersion relation for the
symmetric mode

κz
εd

tanh
κzh

2
+

κt
ε

= ξ. (�.�.�)

We refer to [���] for details and conclude two important statements from (�.�.�):

• The impact of nonlocality on the symmetric mode scales with {k}x;

• Decreasing gap sizes lead to very high {k}x and thus to an increased sensitivity to nonlocality (see
Figure �.�� (b));

• Nonlocality kicks in at gap sizes smaller than≈ 5 nm since {k}x reaches considerably high values.

Motivated by these theoretical predictions for in�nite gap structures, we propose the well-known nano-
cube setup to study the in�uence of nonlocal dispersion on gap plasmons. Nano-cubes are famous for
the high fabrication accuracy due to the underlying chemical process. Application wise, nano-cubes have
been used for extreme Purcell factor devices [�], imaging based on meta surface pixels [���], molecule
sensoring [��], perfect absorbers [�], ultrafast emission sources [��] and many more.

In the scope of this work, we want to investigate the resonance position of the gap plasmon for very
small gaps. By this means, we study the discrepancy between local and nonlocal simulations. In order to
build a reliable geometric model, we �rst perform a post-fabrication telemetry, which leads to accurate
geometrical parameters of the nano-cube. This telemetry is based on the experimental data in [���]. As a
major result, we are able to explain the discrepancies between local simulations and measured resonance
positions by a signi�cant impact of nonlocal dispersion for gap sizes of about 3.1 nm. This result is based
on a �D simulation with nonlocal dispersion models.

�.�.� Metamodel-based telemetry

Unfortunately, microscopy techniques cannot provide su�ciently accurate information about the geomet-
ric parameters of our model cube, see Figure �.��. The optical response of nano-cubes is very sensitive to
the actual cube size that is mainly determined by the cube roundings, the thickness of the dielectric shell
and the length of the cube. This makes an accurate knowledge of the geometry absolutely necessary.
From a modeling point of view, we �rst have to calibrate our geometric model of Figure �.�� (b). Relying
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Figure �.�� | Surface and gap plasmon geometry.
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Figure �.�� | Surface and gap plasmon. Figures with courtesy of [���].

on a well established local dispersion model for silver and gold, we will perform a calibration procedure
for gap widths, where nonlocality is negligible. In the following, we only rely on the gap plasmon reson-
ance position. Based on theoretical results in the literature [���], nonlocality is expected to be of minor
importance for gap sizes larger than 5 nm. The term gap size has to be understood as the gap between
two metals, where the gap is usually �lled by a dielectric material. According to the schematic in Figure
�.��, the gap size would be δGap = δDiel+ δShell. Assuming the cube fabrication process to be su�ciently
robust, we want to �nd a radius rAg, a shell thickness δShell and a cube length lCube independent of δDiel.
(Robust here means that these parameters are constant for the fabrication of di�erent samples with vary-
ing dielectric heights δDiel.) Once these parameters have been found, a variation of the dielectric layer
δDiel will be performed, equivalent to the study in [���].
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(a) Scanning electronic microscopy images
of the silver nano-cubes. Here, the surface
coverage is ��.�%. Courtesy of [���].
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(b) The nano-cube setup consists of an in�nite gold ground layer,

a dielectric spacer of height δDiel and the cube surrounded by va-

cuum. Realistic cubes are wrapped in a dielectric shell layer of

size δShell. We de�ne lCube as the total length of the cube, includ-

ing the dielectric shell. The rounding radii of the inner and outer

cube are denoted by rAg and rDiel, respectively.

Figure �.�� | Nano-cube. Figure (a) shows a Scanning Electronic Microscopy (SEM) image of the fabricated nano-cubes [���]

at Duke university, (b) de�nes the modeled geometry.

Indirect measurement of the cube geometry Finding the geometric parameters can be understood

as an inverse problem because we know the solution, i.e. the measured gap resonance position of the

nano-cube, and we aim to �nd the cube geometry that leads to these resonances.

Here, we tackle the inverse problem by an optimization of the gap resonance positions. This means,

we try to �nd an optimal data set {rAg, δShell, lCube} in order to optimally �t the experimental data. In

other words, we want to �nd a global minimum of the discrepancy between the measured and simulated

resonance positions.

Such a procedure will require a signi�cant amount of cost function evaluations, i.e. simulation runs.

Depending on the cube geometry and the numerical simulation algorithm, this may be restrictively costly.

As an example, a full wave �D DGTD simulations in the time-domain of this nano-cube setup takes about

45 minutes on a modern parallel machine [��]. Figure �.�� illustrates an example of the computational

mesh. A key ingredient for rounded nano-cube simulations is the capability to accurately treat the roun-

ded corners and edges. Since DGTD is a special FE type method, we can employ isoparametric curvilinear

tetrahedra, well suited for rounded geometries (see Section �.�.�). Alternatively, standard Cartesian based

methods like FDTD would have to massively re�ne the global mesh in order to obtain a su�cient local

spatial sampling, i.e. discretization of the rounded geometry. Details on the computational are postponed

to the end of this chapter and we now want to focus on the solution of the inverse problem �rst.

In order to speed up the optimization procedure of the inverse problem, we will construct a surrogate

model of the gap plasmon resonance position λres. The overall work�ow is depicted in Figure �.��.

Surrogate model

igi-global.com “A surrogate model is a model that approximates a more complex, higher

order model and used in place of the complex model (hence the term surrogate). The reason is

usually that the complex model is too computationally expensive to use directly, hence the need

for a faster approximation. It is also known as a response surface model or a metamodel.”

For this study, di�erent surrogate models are potentially applicable. For instance, one could imagine

a single surrogate model, which completely approximates the whole absorption spectrum of the cube.

���
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Figure �.�� | Surrogate model based optimization. First, a surrogate model of the resonance position is built. Based on
this surrogate model, we �nd the cube geometry rAg , δShell and lCube. This surrogate model result is cross checked with a �D
simulation. If these simulations con�rm the result, we assume the found geometry to be reliable and investigate the smaller gap
sizes. Local and nonlocal simulations are performed for the smaller gap sizes and compared to the experimental data.

However, each surrogate model is ideally based on a functional behaviour that mimics the QoI depend-
ency (linear, exponential, etc.) on the model parameters (geometry, material, etc.). Here, we only know
the resonance position as a function of the dielectric height δDiel (for a �nite number of values δDiel. Fur-
thermore, we do not have any a priori knowledge about the δDiel dependency of the resonance position,
i.e. λres = f(δDiel) is unknown. For small perturbations, the gap resonance is assumed to depend almost
linearly� on {rAg, δShell, lCube}. We hence propose to build independent and linear surrogate models for
each δDiel.

Due to the fact that we have only � samples for di�erent heights δDiel = {0.6, 2.46, 6.0, 10.0, 14.0} nm
from [���], the available data set is very limited. In consequence, we have decided to base our geometric
telemetry on the four thickest dielectrics δDiel = {2.46, 6.0, 10.0, 14.0} nm where nonlocality should be
of minor importance since the overall gap size is δGap = δDiel + δShell.

In summary, each of the dielectric heights δDiel, where nonlocality is negligible, will have its ‘own’
surrogate model. These surrogate models will rely on simulations based on a local dispersion model and
will be independent of δDiel. Since future experiments may provide a richer sampling of the dielectric
height, we consider N samples of δDiel in the following and later restrict our considerations to N = 4.

�Changing the cube is equivalent to change the cavity size.
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Figure �.�� | Linear meta model. The linear meta model of the function λres(x) requires three function evaluations. One
at the interval center, and two at the interval boundaries in order to obtain the approximated �nite di�erence gradient τx. For
visualization reasons, we have simpli�ed the model to the �D case.

The linear surrogate models of each gap plasmon resonance position for all dielectric heights δDiel can be
cast into one vector

λres(rAg, δShell, lCube) = λ0 + τrAg
∆rAg

+ τδShell∆δShell + τl∆lCube

:= λ0 + A∆
(�.�.�)

where we have de�ned

A :=
⇥
τrAg

τδShell τl
⇤
,

∆ :=

2
4

rAg − rAg,0

δShell − δShell,0
lCube − lCube,0

3
5 .

(�.�.�)

Here, λres,λ0, τrAg
, τδShell , τlCube

2 R
N and the matrix A 2 R

N⇥3. We omit SI units in the following.
All geometric dimensions, if not further indicated, are to be considered in nm except for the A, which is
dimensionless.

The linear metamodel in (�.�.�) now needs to be calibrated to the experimental data from [���], being
exactly the �rst step in Figure �.��. We perform one simulation at the mean to determine λ0 and compute
τi with i 2 {rAg, δShell, lCube}, using the simulations at the interval bounds. These slopes are shifted to
the mean point (see Figure �.��).

In this sense, we now set N = 4 and de�ne an interval mean λ0 at {rAg = 5.0, δShell = 3.5, lCube =
72.5} and symmetric intervals for the �nite di�erence gradients inA, i.e. rAg = 5±2.5, δShell = 3.5±1.5
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and lCube = 72.5± 7.5. Eventually, local dispersion �D DGTD simulations at all of these samples lead to

λ0 =

2
664

616.8
641.2
684.1
768.9

3
775 ,

A =

2
664

−5.97 −10.63 3.87
−6.68 −14.85 4.39
−8.59 −24.23 5.23
−11.16 −49.10 6.85

3
775 ,

(�.�.�)

which concludes the �rst step of our work�ow in Figure �.��.

Surrogate model based inverse problem Having a surrogate model available, we now want to �nd
the combination of rAg, δShell and lCube that optimally �t with the measured resonance position

λres,exp =

2
664

580.7
606.9
655.1
734.7

3
775 . (�.�.�)

This step can be formally cast into a constrained optimization problem of the form

λoptimized = argmin ||λres,exp − λres(rAu, δShell, lCube)||l2

subject to rAu 2 [2.0, 8.0]

δShell 2 [2.0, 6.0]

lCube 2 [60.0, 85.0].

(�.�.�)

Inverse problem: �nd cube geometry

To solve this optimization problem, we have used Matlab’s pattern search. Applying the optimization
algorithm yields rAg, optimal = 7.0 nm, δShell, optimal = 2.5 nm and lCube, optimal = 65.0 nm. We have
rounded the actually obtained values and cross checked that the rounding has a negligible impact. These
values are in line with previous expectations frommicroscopy images. Figure �.�� compares themeasured
data with the metamodel based resonance positions. We have also cross-checked the metamodel results
with full wave �D DGTD simulations, which corresponds to step three in Figure �.��. The obtained
negligible errors in the range of less than 0.2 nm or⇡ 0.03%. In consequence, we consider ourmetamodel
to be su�ciently accurate and proceed with the subsequent steps in Figure �.��.

Remark �.�.�. As for our case, a linear surrogate model appeared to be su�cient. We were thus not obliged

to make the ‘no’-loop in Figure �.��. If this was necessary, a more complicated surrogate model might be

required. We have not investigated this within the here presented study. Possible directions could be Kriging

or stochastic collocation methods [��].
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Figure �.�� | Metal model based gap plasmon resonance. The optimized parameters are rAg, optimal = 7.0 nm,
δShell, optimal = 2.5 nm and lCube, optimal = 65.0 nm. The worst error of the meta model compared to a �D simulation is
of the order of 0.2 nm. The error bars are due to fabrication tolerances of the dielectric spacer as detailed in the text.

�.�.� Local vs. nonlocal dispersion - comparison to experimental results

The initial purpose of the nano-cube setup was to demonstrate nonlocal e�ects for very small gap sizes.
We have proposed a metamodel-based telemetry, helping to �nd a realistic set of geometric parameters
for the cube model of Figure �.��.

If we now decrease the gap size, the local simulation results should start to red-shift with respect
to the measured data. This e�ect is supposed to increase with a decreasing gap size due to a stronger
coupling of the gap plasmon to nonlocality. Following theoretical investigations in [���], nonlocality
starts to be important for gap sizes δGap = δShell + δDiel  5 nm. We will proceed in two steps:

• Run a �D full wave simulation for δDiel = {2.46 nm, 0.6 nm} with a local dispersion model

• Repeat the same simulations with a nonlocal dispersion model.

Figure �.�� depicts the resonance positions, resulting from both simulation series and themeasured values.

Local vs. nonlocal simulations Figure �.�� compares local and nonlocal DGTD simulations of the
nano-cube system. From a purely theoretical or simulation point of view, nonlocality is almost negligible
for δGap ≥ 12.5 nm. At δGap = 16.5 nm, both models lead to the same result. Decreasing the dielec-
tric height slowly introduces a blue-shift of the resonance position due to nonlocality. While it remains
fairly low for δGap = 8.5 nm, the blue-shift starts to be observable at δGap = 4.96 nm and is clearly
distinguishable for δGap = 3.1 nm.

Figure �.�� compares a simulated local and nonlocal spectrum for δGap = 3.1 nm. While the �rst
resonance, which can be identi�ed as the surface plasmon, does only shift about ⇡ 3 nm, the second
resonance shifts by ⇡ 31 nm. As nonlocality is signi�cantly stronger for gap modes, we can identify the
second resonance with the gap plasmon that is the one we are interested in.

Simulation vs. experiment Figure �.�� also compares the experimental data with simulations based
on local and nonlocal dispersion models. A good agreement of the three largest gaps is not surprising,
since we have based the calibration of our geometric model on those measured resonances. However, for

���



δGap = 5.96 nm, the model still seems to work very well. Further decreasing the gap size now leads to a
red-shifted simulation result with respect to the measured data, if local dispersion is employed. Adding
nonlocality accounts for the necessary blue-shift and leads to a very good agreement of the simulation
result with the measured data. Also, the uncertainty of the dielectric height δDiel decreases for a decreas-
ing spacer thickness, leading to a very small uncertainty interval at δDiel = 0.6 nm.

Fabrication error and geometry precision The measured gap resonances in Figure �.�� depend on
the dielectric spacer δDiel. As amatter of fact, the fabrication of the dielectric space is done by amany layer
process. Each deposited layer is supposed to be 0.045 nm thick and su�ers from an absolute thickness
error of 0.005 nm. Since each layer is completely independent of the previous one, we can estimate a
worst case fabrication uncertainty of

∆fabrication,max =
0.005

0.045
δDiel, (�.�.�)

which corresponds to the error bars in Figure �.��. This explains why the measured resonances in do
not perfectly �t with our model. Every parameter set that better �ts the resonance of the thickest height
δDiel = 14.0 nm systematically leads to a higher error for δDiel = {6.0, 10.0} nm. Furthermore, the
resonance at δDiel = 2.46 nm will be completely o�. We interpret it like this:

(i) The shape of λres(δDiel) is dominated by rAg, δShell and lCube;

(ii) The larger error of the resonance position for δDiel = 14.0 nmmight be due to the fabrication error.
This means, the actual dielectric height is probably not exactly 14.0 nm. Since this error decreases
for smaller spacers and the cube size does not change for di�erent spacer heights, we trust in the
found cube geometry.
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Figure �.�� | Gap plasmon resonance for di�erent cube lengths. Gray: Measured resonance position. The error bars show
the a priori fabrication tolerance of the dielectric spacer δDiel. Blue: Result of a local full wave �D DGTD simulation. Orange:
Result of a nonlocal full wave �D DGTD simulation with β = 1.35e6 m/s. The error bars are due to fabrication tolerances of
the dielectric spacer as detailed in the text.
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Figure �.�� | Local vs. nonlocal nano cube absorption. Cube size: rAg = 7.0 nm, δShell = 2.5 nm, lCube = 65.0 nm
and δDiel = 0.6 nm. Nonlocality causes a blue shift of ≈ 31 nm for the gap resonance. The overall dielectric gap between the
metals is δDiel + δShell = 3.1 nm wide. As a reference, the gray line shows the absorption of the same setup if the cube and the
dielectric shell are considered as vacuum, leading to a one dimensional multilayer refraction problem.

�.�.� Appropriate domain truncation - the in�uence of a �nite dielectric slab

Modeling a nano-cube in a numerical simulation comes with several di�culties. In the following, we
want to highlight more technical aspects of our �D DGTD simulations, especially concerning the domain
truncation.

Periodic unit cell Our �rst attempts were based on periodic boundary conditions, i.e. a nano-cube
in a periodic unit cell. However, imposing periodic boundaries in x and y direction leads to an in�nite
grating of equivalent nano-cubes. Grating modes can hence arise and couple to the gap plasmon. Mode
overlaps and mode repulsion due to the periodic modeling error might be signi�cant. On the other hand,
decreasing the periodicity length will forbid grating modes but increases the direct mutual coupling of
the cubes, in the fashion of cube dimers [��]. Figure �.�� and Figure �.�� outline the absorption spectra
for di�erent dielectric heights δDiel of a cube in a periodic unit cell.

Obviously, the spectra in the Figures �.�� and �.�� show the surface plasmon resonance at about
450 nm similar as for the single nano-cube in Figure �.��. Screening the spectra to longer wavelengths
surprisingly now shows two resonances. We identify the �rst peak (i) at ⇡ 530 nm as the grating mode
and the second peak (ii) as the gap resonance. This is justi�ed by

(i.a) A unit cell size of 500 nm in x and y direction;

(i.b) A very low gap size dependency of the �rst resonance;

(ii.a) A very strong dependency on the gap size δDiel.

A closer look at Figure �.�� reveals an interesting fact for increasing gap sizes. Once the gap resonance
approaches ⇡ 570 nm, it seems to experience an insuperable barrier. Even further, the gap resonance
pushes the grating mode to higher frequencies, what we de�ne as resonance repulsion.

This reasoning completes our arguments: we cannot use a periodic unit cell approach for our study.
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Figure �.�� | Volumic absorption of the periodic cube. Part one. Cube size: rAg = 3.0 nm, δShell = 3.0 nm, lCube =
50.0 nm lPeriodic = 500.0 nm , and varying dielectric height δDiel.
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Figure �.�� | Volumic absorption of the periodic cube. Part two. Cube size: rAg = 3.0 nm, δShell = 3.0 nm, lCube =
50.0 nm lPeriodic = 500.0 nm , and varying dielectric height δDiel.

In�nite substrate and single cube Aiming to overcome the limitations we have discussed previously,
we want to propose a proper single nano-cube simulation setup. This requires two key ingredients:

(i) CFS-PMLs, easily accepting arbitrary materials;

(ii) TF/SF surfaces inside the PML zone, allowing a true incident plane wave.

Figure �.�� (a) shows an example mesh including the PML domain and the TF/SF interface. As a matter of
fact, if the TF/SF is not continued in the PML region, the incident �eld is wrong. This is due to a missing
�eld on the PML side of the interface between PMLs and the inner domain. In other words, imposing the
�eld only in the inner domain, causes spurious di�raction at the domain-PML interface.

We want to conclude this discussion with a third aspect. Decreasing the dielectric height δDiel leads to
a very �at sheet. As can be seen in Figure �.�� (a), the aspect ratio of the tetrahedra in the dielectric PML
zone becomes extreme. One possibility is a local re�nement, which dramatically increases the number
of elements. Alternatively, the dielectric slab can be considered to be �nite around the cube, as depicted
in Figure �.�� (b). This obviously changes the physical setup. However, a numerical experiment shows
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a fairly small impact for δDiel  2.5 nm, see Figure �.��. Larger dielectric sizes show an increasing dis-
crepancy. Since the dielectric is �nite, the surface plasmon experiences a cavity in propagation direction,
which impacts the system response. In conclusion, the dielectric spacer can be modeled as a �nite layer,
if the δDiel is su�ciently small.
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Figure �.�� | In�nite vs. �nite dielectric. Cube length rAg = 7.0 nm, δShell = 2.5 nm, lCube = 65.0 nm and δDiel = 2.5 nm
and local dispersion. Comparison of the absorption in di�erent zones for a �nite and in�nite dielectric spacer.

�.�.� Optical near �eld of the gap plasmon - local vs. nonlocal dispersion

Figure �.�� illustrates �D solutions of the Fourier-transformed electric and magnetic �eld at the gap res-
onance. We observe a signi�cantly higher penetration of the magnetic �eldH into the metallic part of the
shell-cube as well as the metal substrate when nonlocality is activated. Also, the mode is less con�ned in
the center of the gap compared to the locally dispersive solution. This result is in line with our �ndings
in Chapter �.�.

The E field in contrast, gets screened from the bulk and yields an extreme �eld enhancement at the
metallo-dielectric interface. Additionally, the highest �elds concentrate in the outer half of the gap. Thin
penetration layers due to nonlocality have theoretically been predicted [���] and also appear for metallo-
dielectric gratings (see Figures �.�� and �.�� in Chapter �.�).

Time-domain videos of the magnetic and electric �eld (see link) show a ‘rotating’ behaviour. Turning
here means that the plasmon runs in anti-clockwise circles seen from above. This can be interpreted as a
wave which gets re�ected at the cube walls in x- and y-direction. We identify this wave with the localized
gap plasmon.

�.�.� Concluding remarks

This chapter has proposed a surrogate model-based telemetry strategy based in order to obtain the fabric-
ated cube dimension (inverse problem). Based on this geometric characterization, we have decreased the
gap size between the gold substrate and the silver cube and have compared numerical simulations which
either employ local or nonlocal dispersion models. As a theoretical result, the in�uence of nonlocality
exceeds the experimental error bars for gap sizes below 3.1 nm. Additionally, our nonlocal simulations
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(a) Computational mesh with in�nite dielectric, in-
cluding PMLs and TF/SF surface. The TF/SF surface
continues in the PML region.

(b) Computational mesh with �nite dielectric.
Here, the dielectric does not continue inside the
PML region.

Figure �.�� | Finite vs. in�nite dielectric mesh.

Figure �.�� | Triangulation of nano-cube. Curvilinear mesh of the single nano-cube setup. The cube length is lCube = 65 nm,
the radius of the metallic domain is rAg = 7 nm, the thickness of the dielectric shell is δShell = 2.5 nm and the thickness of the
dielectric slab is δDiel = 14 nm. Left: the nano-cube with its di�erent materials, right: the PML domain truncation.
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Figure �.�� | Field solution at cube gap resonance. Cube with gap size δDiel = 0.6 nm comparison of the local (left) and the
nonlocal (right) dispersion model. Nonlocality allows the H field to be signi�cantly spread into the metallic zone of the cube
and the substrate. TheE field penetrates less into the bulk but builds up an intense �eld region at the metal-dielectric interfaces
of the cube and the bulk. The gap mode is more con�ned in the ‘outer’ half of the gap. (These results have used DGTD− P4

on curvilinear elements. The visualization employs a�ne tetrahedra.)
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are able to explain the discrepancy between the experiment and local simulations [���] for very small
gap sizes.
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Today’s high-tech fabrication processes have opened the �eld to plasmonic structures where local dis-
persion laws are not su�cient anymore and nonlocal dispersion models are required. This thesis has
proposed and analyzed simulation strategies for these models. Furthermore, we have assessed the de-
veloped tools with respect to real world examples.

Theoretical considerations First, it was necessary to develop a material model for metals in nano-
photonics, which would be able to include the nonlocal response of the free electrons as well as the bound
electron contribution.

In order to do so, we started from continuous Maxwell’s equations in non-vacuum domains. The
material descriptions were �rst kept arbitrary and their response was cast into the polarization and mag-
netization. We have recalled several classical electrodynamic results, which have served as a toolbox
throughout the course of this thesis.

Subsequently, we have considered unmagnetized materials and have focused our work on modeling
the materials’ polarization. A clear priority has been put on the modeling of metals in a sub-wavelength
nanophotonic setup where the skin-depth is usually comparable to or larger than the device’s geometry.
Within this modeling step, two di�erent origins of polarization have been identi�ed: the contribution of
the bound electrons and the response of the quasi-free valence electrons. While the bound electrons can
accurately be modeled with a temporal dispersion relation (local dispersion), the free electrons require
a more complicated model if certain conditions appear. Such a condition is attained if the plasmonic
wave vector’s magnitude becomes very high and its e�ective wavelength approaches the mean free path
length of the free electrons. In this case, a mutual coupling of the electrons gains importance and the
system response becomes nonlocal (temporal and spatial dispersion). The overall model hence consists
of Maxwell’s equations, which are strongly coupled to a system of ODEs for the local contribution and a
system of PDEs for the nonlocal part.

In order to gain a deeper understanding of the underlyingmodel, we have reviewed thewell posedness
of the system and studied its hyperbolicity. We found that the new system is still hyperbolic, that it
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bene�ts from an energy principle and that it well describes physical phenomena such as electron density
waves, often referred to as bulk plasmons. It is clear that Maxwell’s equations alone do not admit such
solutions.

Realistic nanophotonic devices are beyond the capabilities of analytical solutions. For this reason,
it was necessary to develop an accurate numerical algorithm for the solution of the underlying model
equations on arbitrary geometries.

Aiming for a numerical algorithm that is able to solve our model on complex geometries with high
accuracy and e�ciency, we have decided to discretize our model with a DGTD method. The de�nition
of a numerical �ux is necessary in order to account for the arising discontinuities at the mesh cell in-
terfaces due to the local �nite element approximation space. We de�ned this �ux as the solution of a
local Riemann problem. This provided the building blocks for the de�nition of a global weak form. We
then continued with proo�ng stability and convergence properties of the semi-discrete scheme before
choosing an appropriate time discretization.

The accurate modelling of thematerial interfaces is crucial andmust be considered in the design of the
numericalmethod in order to render it e�cient. We thus provided a short intermezzo discussingmappings
between a reference element and a�ne and curvilinear elements. Curvilinear meshes have turned out to
be a key ingredient for e�cient nanophotonics simulations and especially for nonlocal dispersion models.
Performance studies were tackled in the simulations chapter. At this stage, we have outlined the increased
implementation complexity of curvilinear elements in a DGTD framework compared to a�ne meshes.

Beyond the spatial discretization of the PDE system, an appropriate time integration scheme is re-
quired for the time discretization. The resulting fully-discrete scheme obviously has to be investigated in
terms of numerical stability and convergence. Here, we have proposed three di�erent time discretization
schemes for the semi-discrete weak form. Our analysis started with a second order LF time integration
scheme due to its simplicity. A fully-discrete stability result of this scheme has been provided, yielding a
CFL type stability criterion. In order to exploit the high-order nature of DGTDwe have extended the time
discretization to fourth-order RK methods. Here, we have used used a classic RK� scheme for the stability
and convergence analysis. For our implementation, we chose an optimized fourth-order RK variant with
lower storage requirements than the original (LSRK�).

Practical considerations Simulations of complex realistic nanophotonic devices require more than a
basic numerical scheme in order to solve the underlying PDE. Such additional components are for example
sophisticated source formulations, domain truncation techniques, and observables. Furthermore, modern
algorithms for optimization and UQ round o� the ensemble of useful add-ons.

We have recalled the TF/SF and SF source formulation techniques, which are particularly useful for
scattering problems in combination with PMLs. In this thesis, we have focused on CFS-PMLs. These
are highly �exible if materials are present inside the PML region, at the price of implementing a more
complicated split �ux formulation.

In order to treat EELS simulations within this DGTD framework, we had to employ a special �eld
source, namely the SF formulation. This SF source formulation in combination with CFS-PMLs has turned
out to be inappropriate in the time-domain. We have rigorously explained where an intuitive use leads
to an incorrect formulation and provided the correct formulation as a result. However, this approach still
remains impractical in the time-domain. Tackling this challenge, we have developed an alternative to
SF-CFS-PMLs, which consists of a TF/SF formulation in combination with CFS-PMLs. This approach has
proven to work very well for certain classes of problems and has been extensively used in the chapters
concerned with numerical results.
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The physical interpretation and technical exploitation of our simulations did require observables that
are derived in a post-treatment from the actual �eld solution. We de�ned various observables, which
complete the considered practical aspects of a simulation tool. Additionally, we have brie�y outlined the
techniques and algorithms we have used for optimizations, the solution of inverse problems and UQ.

Implementation, validation and benchmarks In order to study nonlocal e�ects in complex real
world applications, we wanted to provide a user friendly and robust software.

All the models, formulations and observables have been implemented in the parallel �D software suite
DIOGENeS and are now available for further usage. First tests on the nonlocal dispersion model have also
been implemented in a �D code featuring local time stepping, which is not described in this manuscript.

Thorough validations and benchmarks have been presented. In particular, the performance gain due
to curvilinear elements is of signi�cant importance. Mie scattering has been used as an ultimate valida-
tion and performance test, as this allows to test multiple solver components against analytical solutions.
Our numerical results concluded with the simulation of a spherical dimer system. This study has been
conducted in collaboration with Matthias Moeferdt and Kurt Busch [���]. The dimer simulations have
con�rmed the need for curvilinear elements, coherent with the benchmarks for individual spheres. Fur-
thermore, they revealed physical insights regarding the impact of nonlocal dispersion models on the
spectra of the dimer system.

Physical considerations After successfully developing our simulation tool, we wanted to exploit its
access to nonlocal dispersion models. Fortunately, we had the opportunity to collaborate with leading
specialists in the �eld. These collaborations have lead to new insights into the nature of nonlocal disper-
sion.

Our �rst study proposes a calibration technique of the nonlocal material parameter β. This work has
been conducted in collaboration with Armel Pitelet, Antoine Moreau, Dimitrios Loukrezis, and Herbert
DeGersem [���]. We have shown that surface plasmons are sensitive to spatial dispersion, which pre-
viously has not been commonly known in the literature. This is only the case if an interface between
a metal and a high permittivity dielectric is considered. As a �rst result, we have discovered that the
optical response of metallic structures surrounded by a high refractive index medium will only be accur-
ately described if spatial dispersion is taken into account. We have relied on grating couplers where an
observation of spatial dispersion via its optical response, i.e. a resonance blueshift of up to � nm (around
1% of the wavelength), is now theoretically predicted. Finally, in order to ensure the usefulness of such
an experiment, we have proposed a full procedure to carefully characterize the geometrical parameters of
the structure after fabrication. This has been achieved by a concatenation of inverse problems. Further-
more, we have solved an inverse problem in order to estimate the hydrodynamic weighting parameter β.
Our main result here is that e�ects due to spatial dispersion can in no way be confused with e�ects due
to variations in the geometrical parameters of the grating. The signature of nonlocality is thus unique.

Our second study has investigated nonlocal e�ects on the plasmonic gap resonance of nano-cubes. We
have provided accurate geometric parameters of the actually fabricated nano-cubes through the solution
of an inverse problem. Furthermore, we have compared our simulation results with experimental data,
which are perfectly in line for gap sizes> 5 nm. For smaller gap sizes, however, our local simulations and
previous simulations at Duke university are clearly redshifted with respect to the measurements. Con-
sidering a nonlocal dispersion model for the nano-cube has led to a very good agreement for all gap sizes,
even the smallest ones. This agreement of experiment and theory has provided a second experimental
setup beyond nano-spheres where nonlocality has been measured.
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Achievements The main achievements and scienti�c contributions of this thesis are:

• A theoretical study of the continuous Maxwell-hydrodynamic system;

• The proposition of a DGTD formulation for this system and its numerical stability [���] and con-
vergence analysis;

• The demonstration of signi�cant performance improvements for curvilinear elements compared to
linear meshes in the context of the linearized �uid model� [���];

• An investigation of SF-CFS-PMLs in the time-domain and a workaround with TF/SF-CFS-PMLs;

• The proposition of a post-fabrication telemetry for metallo-dielectric gratings and a theoretical
prediction of the experimental observations. Special attention was given to geometric uncertainties
and whether their in�uence exceeds the impact of nonlocality [���];

• The accurate �D simulation of silver nano-cubes and the demonstration of experimental evidence
by means of blueshifts on the gap-plasmon [���];

• The extension of the DIOGENeS software by the numerical treatment of the linearized hydro-
dynamic equations, isoparametric curvilinear elements and MPI parallelization [���].

Future research topics The work presented in this thesis could be extended in multiple directions.
In terms of modeling, one may consider:

• The Generalized nonlocal optical response (GNOR) model [��], which is an extension of the linear
hydrodynamic model. Section A.� sketches the model and provides an energy result;

• Spill-out models [��]. Such models are already signi�cantly more complicated since they numer-
ically struggle when the background electron density tends to zero. Further, the initial electron
density is not easy to compute for complex structures. Section A.� outlines a weak formulation;

• A nonlinear hydrodynamic model [���] as a relatively easy extension towards nonlinear e�ects;

• Kerr-nonlinearities as a signi�cantly more complicated setup [��].

In terms of numerics, several algorithmic extensions are promising candidates for further e�ciency im-
provements:

• More advanced time stepping schemes like local time steps [���] or hybrid explicit/implicit schemes
[��] in order to account for the very small mesh cells that are required for an appropriate solution
of nonlocal e�ects;

• An extension to p-adaptivity [���] or hp-adaptivity [���];

• A hybrid mesh DGTD scheme [��], especially for the PMLs;

• Di�use Interface Methods [���];

• The exciting �eld of Tre�tz methods [��].

�Here, we �xed the error level and used di�erent mesh re�nements for the linear and curvilinear meshes.

���







A
F����� ����������

Here, we sketch two possible directions for more advanced material models in the context of linearized
nonlocal dispersion models.

A.� Generalized nonlocal optical response

Mortensen et al. [���] have proposed a re�ned version of the linearized �uid model. The so-called GNOR
model extend our linearized hydrodynamic model by an additional di�usion term. While the proposed
model is derived in frequency-domain, we want to study it in time-domain and investigate elementary
properties like energy conservation. In order to prepare the formulation of a DGTD framework it is
convenient to introduce the auxiliary variablesQ and R avoiding the “violation of the variational crime”
[���]. After simple re-arrangements the GNOR model reads

@tJ = Dr(R) + β̃
2
rQ− γJ+ !P

2"0E,

@tQ = r · J,

R = r · J.

(A.�.�)

Here, β̃
2
= β2+ γD with the di�usion constantD. The weak form for su�ciently regular test functions

φ is straightforward and follows

< @tJ,φ > = D < r(r · J),φ > +β̃
2
< rQ,φ >

−γ < J,φ > +!P
2"0 < E,φ >,

@t < Q,φ > = < r · J,φ > .

(A.�.�)

Energy First, we investigate the energy evolution in time. Physically speaking, the overall energy must
not increase in the absence of source terms. Similar steps for appropriate functions in order to evaluate
@tE apply and lead to

< @tJ,J > = D < r(r · J),J > +β̃
2
< rQ,J >

−γ < J,J > +!P
2"0 < E,J > .

(A.�.�)
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All terms are analogous to the nonlocal Drude model except for < r(r · J),J >. We thus have to show
its negativity < r(r · J),J > 0. Integration by parts yields

ˆ

Ω

r(r · J) · J =

ˆ

Ω

r · ((r · J)J)− (r · J)(r · J),

=

ˆ

Ω

r · ((r · J)J)− ||r · J||2
L2(Ω),

(A.�.�)

but
ˆ

Ω

r · ((r · J)J) =

ˆ

@Ω

(r · J)J · n

= 0,

(A.�.�)

due to the boundary condition (�.�.�).

Numerics GNORhas been successfully implemented in the ComsolMultiphysics FEM framework [���]
and more recently in the context of Hybrid Discontinuous Galerkin (HDG) methods [��]. Since GNOR
does not introduce additional di�erential operator nor complicates the linear hydrodynamic Drude model
by more than an additional grad div-term, we do not expect signi�cant di�culties for a numerical treat-
ment with DGTD.

A.� Electron spill-out model

Within the derivations in Chapter �.�.� and �.�.�we have assumed a constant background electron density
which sharply drops to zero at the metal boundary. Extremely small and perfectly round particles may,
however, be subject to spill-out e�ects and tunneling as has been shown recently. We refer to [��] for
thorough derivations and physical interpretations. Varying background electron densities n0(r) lead to a
more complicated pressure term in (�.�.�) since the gradient rn0(r) 6= 0 does not vanish anymore. The
linearized spill-out equation in time-domain reads

r
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Vectorial and scalar test functions respectively from the spaces φ 2 (L2(Ω))3 and ϕ 2 L2(Ω) yield the
weak gradient of density functional
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Now, the weak terms of the individual contributions
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The total system hence reads
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with
@thQ,'iΩ = hJ',ni@Ω − hJ,r'iΩ,

hξ,φiΩ =
1

qelec
hQφ,ni@Ω − hQ,rφiΩ,

h⌫,'iΩ = hξ',ni@Ω − hξ,r'iΩ,

hA,φiΩ = −@t
⌦
n−1
0 J,φ

↵
Ω
− γ
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0 J,φ

↵
Ω
+ "0!P

2
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0 E,φ

↵
Ω
,

(A.�.�)

where we have used
@tQ = r · J,

ξ =
1

qelec
rQ,

⌫ = r · ξ.

(A.�.��)

Finally, the boundary conditions
n · J|@Ω = 0,

@nQ|@Ω = 0,

n · ξ|@Ω = 0,

@n⌫|@Ω = 0,

(A.�.��)

conclude the weak form of the spill-out model. Equivalent to the derivations in Chapter �, an appropriate
trace de�nition is required. This will be subject of a future work. Allowing a variation of n0(r) leads to
numerical di�culties. Imagining the situation where n0 ! 0 and equation (A.�.�) and its weak counter-
part face a division by zero. Ciraci et al. [��] have introduced a cut-o� criterion which detects a threshold
value of n0 and switches the material model if n0 undergoes a de�ned value.

Remark A.�.�. The application of spill-out models comes with a second challenge. A central argument of

the model is the varying background electron density n0(r) which has consequently to be known. This is

not trivial for arbitrary geometries. The authors and given references in [��] discuss several possibilities the

accompanying approximations for fairly easy geometries like spheres and dimers. Aiming for more complex

�D structures will at least require a solution of a nonlinear Laplace-problem.
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B.� Coordinate system

We have used the polar coordinate system according to Figure B.�.

x

y

z

φ

θ

Figure B.� | Spherical coordinates system. With kind permission from [���].
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C.� Gold

Figure C.� and Table C.� specify the Au material �t of the Brendel-Bormann (BB)-model.
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Figure C.� | Real and imaginary part of Ag’s bound permittivity. Black: εr and εi respectively are the real and imaginary
part of the experimentally motivated BB model [���]. Colored: the �tted permittivity with our generalized dispersion model
[���]. The corresponding �tting coe�cients can be found in Table C.�.
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Table C.� | Fit parameters of Ag. Coe�cients of the generalized dispersion model (�.�.�) with ε∞ = 1.0 �tted to the BB
permittivity of Ag. Figure C.� depicts the original BB model and the �tted result. ωP = 1.2403e16 Hz and γ = 7.4444e13Hz.
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We provide a collection of simulation results for the spherical dimer system. More precisely, di�erent
incident polarizations have been tested in combination with varying �ux formulations and material laws
on. Further, we have also compared a�ne meshes and curvilinear elements respectively for plane waves
and EELS excitations.

D.� Linear elements

Simulations on a�ne meshes, centered and upwind DGTD, absorption, scattering and extinction cross
section for the polarizations:

• ({k}z, {E}x): Figures D.�, D.�, and D.�;

• ({k}z, {E}y): Figures D.�, D.�, and D.�;

• ({k}x, {E}y): Figures D.�, D.�, and D.�.
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Figure D.� | Logarithmic absorption CS of dimer ({k}z, {E}x).
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Figure D.� | Logarithmic scattering CS of dimer ({k}z, {E}x).
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Figure D.� | Logarithmic extinction CS of dimer ({k}z, {E}x).
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Figure D.� | Logarithmic absorption CS of dimer ({k}z, {E}y).
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Figure D.� | Logarithmic scattering CS of dimer ({k}z, {E}y).
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Figure D.� | Logarithmic extinction CS of dimer ({k}z, {E}y).
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Figure D.� | Logarithmic absorption CS of dimer ({k}x, {E}y).
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Figure D.� | Logarithmic scattering CS of dimer ({k}x, {E}y).
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D.� Curvilinear elements

Comparison of local vs. nonlocal dispersion models for the scattering (Figure D.��), absorption (Figure
D.��) and extinction (Figure D.��) cross section.
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Figure D.�� | Logarithmic extinction CS of dimer ({k}x, {E}y).
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Figure D.�� | Logarithmic absorption CS of dimer ({k}x, {E}y).
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D.� EELS-simulations

Comparison of local vs. nonlocal dispersion models as well as extinction spectra vs. EELS signals of the
spherical dimer system. The electron beam travels at center through the gap. The spectra are respectively
in Figures D.��, D.�� and D.��.

0.6ωP 0.7ωP

10−3

10−2

10−1

!

Γ
E
E
L
S
an
d
C
S

Local dispersion
Nonlocal dispersion

Figure D.�� | Spherical dimer: Comparison of local and nonlocal EELS.
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Figure D.�� | Spherical dimer: Comparison of local EELS and CS. The EELS spectrum is signi�cantly richer than the CS
spectrum. Most EELS resonances are dark-modes with respect to the incident plane wave in Figure �.�� (a).
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This list of symbols contains all symbols that occur in multiple sections. Local variables and de�nitions
generally not contained.

Symbols

Mathematics

α Upwind factor of numerical �ux
C Generic constant independant of ∆t and h
C Space of continuous functions
D Functional space, see analysis of well posedness
e Unit vector
F Rankine Hugeniot F
F Numerical trace operator
F (ω) Function in the spectral domain
f(t) Function in the time-domain
G Auxiliary PML current
h Characteristic mesh size
H Hilbert space
H Vectorial Hilbert space
I Identity matrix
I Di�erential operator of Maxwell’s equations +

dispersion models including source terms

K Operator containing the source terms of Max-

well’s equations + dispersion models

L Di�erential operator of Maxwell’s equations +

dispersion models

L Linear operator

Λ Matrix containing physical parameters of Max-

well’s equations + dispersion models
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λ Eigenvalues of the hyperbolic system
L Vectorial function space
L Functional space
L1 Functional space L1

N Set of positive integers
n Normal vector
ν Rescaled velocity ν = v/c0
Ω Computational Domain
φ Test function
ψ⌧i Mapping between the reference and physical ele-

ment
P Approximation space of Lagrange polynomials

on tetrahedra
Q Matrix of physical parameters for the conservat-

ive form
Q Approximation space of Lagrange polynomials

on hexahedra
R Set of real numbers
s Coordinate stretching for PML
σ Standard deviation
T Final time
t time coordinate
Θ DG DoF vector
ϑ Vector of vectors = {E,H,J, Q}
V Volume
V Functional space
V Vectorial approximation space
V Vectorial approximation space
W Flux for Rankine Hugeniot condition
W Vectorial discrete solution
W Discrete solution
(x0, y0, z0, t0) Cartesian axis and time in the moving frame
(x, y, z, t) Cartesian axis and time in the laboratory frame
F Fourier transform

Physics

A Arbitrary vector
B Magnetic �ux density �eld vector
β Material parameter β of the linearized hydro-

dynamic model

���



c0 Velocity of light in vacuum
χ Susceptibility
cr Correction of the velocity of light in a medium

cr = 1/pµr"∞

D Electric displacement �eld vector
E Electric �eld vector
E Energy
ε Permittivity
εL Drude permittivity (local dispersion)
F Lorentz force
G Energy functional of the nonlinear hydro-

dynamic model
γ Damping frequency of the Drude and linearized

hydrodynamic model
H Magnetic �eld vector
J Current density �eld vector
k Wave vector
M Magnetic polarization vector
m Mass
µ Permeability
n Electron density
ωP Plasma frequency
P Electric polarization vector
q Electric charge
Q Charge density of the linearized hydrodynamic

model
R Radius
ρ Electric charge density
S Poynting vector
σ Surface charge
T Energy functional (kinetic or von Weiszäcker

contribution)
v Velocity
vF Fermi velocity
w Energy density
x Displacement of an electron relative to its initial

position
Y Admittance
Z Impedance

Sources and Observables
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A Absorption coe�cient
d(r, t) Distance vector from point r to electron position

re(t) of an incident electron. d(r, t) := re(t) −
r(t)

CS Cross section
dEELS EELS impact parameter
erf Error function, integral of the Gaussian function

γ Relativistic factor γ :=
1r

1−
⇣
|v|
c0

⌘2

ΓEELS EELS probability
H Spherical Hankel function of the �rst kind
J Spherical Bessel function of the �rst kind
K Separation constant
k0 Free space wave number k0 := !/c0
ωc Central frequency
P Power
R Re�ection coe�cient
s Piecewise function splitting parameter for Gaus-

sian electron beam
σ Sigma environment of a Gaussian signal
T Transmission coe�cient

Acronyms

�D Two Dimensional
�D Three Dimensional

ABC First Order Absorbing Boundary Condition

BB Brendel-Bormann
BEM Boundary Element Method
BREP Boundary Representation

CAD Computer Aided Design
CFL Courant Friedrichs Lewy
CFS Complex Frequency Shifted
CICADA This work was granted access to the HPC and

visualization resources of "Centre de Calcul In-

teractif" hosted by "Université Nice Sophia An-

tipolis"

CL Cathodoluminescence

CMA-ES CMA-ES

CPU Central Processing Unit

CS Cross Section
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DFT Density functional theory
DG Discontinuous Galerkin
DGTD Discontinuous Galerkin Time-Domain
DIOGENeS Software developed at Inria Sophia Antipolis-

Méditerannée
Distene www.meshgems.com
DoF Degree of Freedom
DUT Device Under Test

EEGS Electron Energy Gain Spectroscopy
EELP Electron Energy Loss Probability
EELS Electron Energy Loss Spectroscopy

Famosa https://team.inria.fr/acumes/software/
FDTD Finite Di�erences Time-Domain
FE Finite Element
FEM Finite Element Method
FIT Finite Integration Technique
FV Finite Volume
FVM Finite Volume Method

GMSH http://gmsh.info/
GNOR Generalized nonlocal optical response

HDG Hybrid Discontinuous Galerkin
HPC High Performance Computing
HW Hard Wall

IGA Isogeometric Analysis

LF Leap-Frog
LHS Left Hand Side
LSRK Low Storage Runge-Kutta

M Mesh
Matlab https://fr.mathworks.com/products/optimization.html
MC Monte Carlo
MPI Message Passing Interface

NRA No Recoil Approximation
NURBS Non-Uniform Rational Basis Spline

ODE Ordinary Di�erential Equation
openCascade https://www.opencascade.com/

Paraview https://www.paraview.org/
PDE Partial Di�erential Equation
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PDF Probability Density Function
PEC Perfect Electrical Conductor
PMC Perfect Magnetic Conductor
PML Perfectly Matched Layer

QoI Quantity of Interest

R Run
RCWA Rigorous Coupled Wave Analysis
RHS Right Hand Side
RK Runge-Kutta
RV Random Variable

SEM Scanning Electronic Microscopy
SERS Surface Enhanced Raman Scattering
SF Scattered Field
SHG Second Harmonic Generation
SMP Symmetric multiprocessing
SPP Surface Plasmon Polariton
SW Soft Wall

TF Total Field
TF/SF Total Field / Scattered Field

UPML Uniaxial Perfectly Matched Layer
UQ Uncertainty Quanti�cation
UV Ultra Violet

Vizir https://team.inria.fr/gamma�/project-
presentation/gamma-software/

w.l.o.g. Without Loss Of Generality
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�.� Fit parameters of Au. Coe�cients of the generalized dispersionmodel (�.�.�) with ε1 =
1.0 �tted to the BB permittivity of Au. Figure �.� depicts the original BB model and the
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�.� Hydrodynamic convergence rates. Numerically obtained convergence rates for the
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�.� Performance comparison of sphere simulations. Sequential mesh and CPU statistics
of the mesh M� with curvilinear elements and a polynomial order P3 versus the re�ned
mesh M�with rectilinear elements and a polynomial order P4. The simulated spectra are
depicted in Figure �.��. The listed values only contain the actual mesh and do not contain
ghost cells due to boundary conditions and domain decomposition for the parallel MPI
runs. These runs have been performed on an Intel®Xeon®CPU E�-���� v� �.� GHz
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C.� Fit parameters of Ag. Coe�cients of the generalized dispersionmodel (�.�.�) with ε1 =
1.0 �tted to the BB permittivity of Ag. Figure C.� depicts the original BB model and the
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