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Abstract. In a recent paper [1], the authors suggest a novel Riemannian frame-

work for comparing shapes. In this framework, a simple closed surface is repre-

sented by a field of metric tensors and curvatures. A product Riemannian metric 

is developed based on the L2 norm on symmetric positive definite matrices and 

scalar fields. Taken as a quotient space under the group of volume-preserving 

diffeomorphisms, the space becomes a proper metric manifold of shapes. In this 

work, we simplify this representation, showing that only mean curvature and 

metric tensor fields are needed for a complete surface representation. In this 

simplified framework, we develop an algorithm for computing Karcher means, 

and compare the results to standard Euclidean averages of surface embeddings.  
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1 Introduction 

Comparison of simple 3D shapes remains one of the staples of medical image analy-

sis. As in any population analysis, statistical comparison of a group of shapes typical-

ly requires a group template, the average shape. However, computing means of shapes 

requires a metric which respects the invariance to Euclidean motion that is inherent in 

proper shape analysis. In the absence of such a metric, the mean shape is often ap-

proximated as a Euclidean average of coordinates after registration and affine align-

ment. Many non-linear registration tools for shapes have been developed, of which 

we name a few below.  

Gu et al., developed a conformal mapping algorithm [2] for spherical mapping and 

formulated a landmark-matching energy as a Mobius transform. A relaxation of the 

conformal energy, the quasi-conformal mapping of Zeng et al. [3] simultaneously 

solves the Beltrami equations and minimizes curvature mismatch. Shi et al. [4] ap-

plies fluid registration to the flat 2D domain after conformally mapping a surface with 

prescribed boundaries. Spherical Demons [5] adapts the diffeomorphic demons algo-

rithm [6] to the sphere, matching curvature-derived intensity functions to register 

cortical surfaces. A similar approach is taken in [7], adapting fluid registration [8] to 

the sphere. In [9], the authors compute high-dimensional embeddings of surfaces 

based on eigenfunctions of the Laplace-Beltrami Operator (LBO). In this approach, 
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metric tensors are scaled to match the resulting LBO representations in the Euclidean 

sense.  

A number of manifolds of shape representations are possible, see for example [10]. 

In general, these fall into one of two categories: metrics on spatial diffeomorphisms to 

be applied to a known surface embedding, and metrics on representations from which 

the surface can be reconstructed directly. In the first category, the authors in [11] 

apply the large deformation framework to compute the length of the path in the space 

of diffeomorphism resulting from morphing one boundary onto another. An im-

provement on this is suggested in [12], measuring distances on the deformation of the 

surface itself rather than in the ambient space as done in [11]. Using [11], the authors 

in [13] develop an EM approach to estimate the shape mean based on the initial mo-

mentum describing the set of deformations.  

In the second category, Kurtek et al. [14] developed a Riemannian framework for 

simple surfaces, using q-maps. The 𝐿2 distance on q-maps, or simply the surface em-

bedding weighted by the root of the volume form, remains invariant under reparame-

terizations. Q-maps can be used to directly reconstruct the surface, a significant ad-

vantage over previous methods. Computing averages of a group of shapes reduces to 

estimating the mean q-map under spherical diffeomorphisms. However, the represen-

tation is still of the surface embedding, with all the resulting nuisances. Some standard 

heuristics are applied to the initial surfaces, namely centering each shape at the origin. 

This implies that a local change in the surface has a global effect on the representa-

tion. Further, the metric is on the space 𝒮  of smooth functions from the 2-sphere 

to ℝ𝑛, which ignores the surface metric structure. 

Finally, in [1] the authors proposed a metric on a surface representation which is 

completely independent of the surface embedding. Applying the Ebin metric to a field 

of pullback metric tensors on the sphere, and the 𝐿2 metric to mean and Gaussian 

curvatures, the authors develop a Riemannian space of shapes. The representation can 

then be used to reconstruct the surface purely from intrinsic surface properties, with 

no need to normalize for Euclidean motion. Further, the mapping between surfaces 

resulting from removing the action of volumorphisms leads to an equiareal surface-to-

surface mapping that is as-conformal-as-possible. Building on this framework, we 

make the following contributions: First, we show that the conformal equivalence be-

tween genus-zero shapes implies that the shapes can be uniquely represented with a 

field of spherical tensor metrics and mean curvatures, as shown in [15]. Thus, Gaussi-

an curvature is no longer required. Second, we develop an algorithm for computing 

Karcher means of these representations from a population of shapes. Our modified 

reconstruction algorithm produces plausible reconstructed averages for subcortical 

and cortical surface models. 

The remainder of the paper is organized as follows. Section 2 introduces the Rie-

mannian metric on metric tensors, describing briefly its invariance properties. Section 

3 describes the full metric plus curvature framework, showing that our representation 

is sufficient to reconstruct a surface.  Section 4 shows how the framework can be used 

to compute intrinsic means of metric plus curvature maps. Section 5 gives some im-

plementation aspects. Sections 6 and 7 present some experimental results and con-

clude the paper. 
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2 A Metric on Metrics 

Given a set of surfaces with a mapping from the 2-sphere 𝕊2 to space, 𝒮 =
{𝑆: 𝕊2 → ℝ3|𝑆 ∈ 𝐶∞}, we represent the metric structure of our shapes as the pull-back 

metric tensor 𝑔, 𝑔𝑖,𝑗 = 𝑆𝑖
𝑇𝑆𝑗. The field of these tensors lives in the space of positive 

definite tensors ℳ(𝕊2) = {ℎ: 𝑇𝕊2 × 𝑇𝕊2 → ℝ|ℎ ∈  𝑆𝑃𝐷(2)}. A metric on this space 

must be invariant to reparameterizations of a pair of tensor fields to be an intrinsic 

distance on metric structures. More formally, for a given metric on ℳ, the group of 

diffeomorphisms on 𝕊2 must act on ℳ by isometry. Ebin et al. [16] showed that the 

𝐿2  Riemannian metric on the tangent bundle of ℳ , satisfies this criteria: given 

𝑔 ∈ ℳ,   ℎ, 𝑘 ∈  Σ ≅ 𝑇𝑔ℳ, the metric can be written as: 

 

(ℎ, 𝑘)𝑔 = ∫ 〈ℎ, 𝑘〉𝑔𝑑𝜇𝑔𝑀
,                                          (1)     

 

where 〈ℎ, 𝑘〉𝑔 is the inner product induced by 𝑔, 〈ℎ, 𝑘〉𝑔 = 𝑡𝑟(𝑔−1ℎ𝑔−1𝑘), and 𝜇𝑔 is 

the volume form also induced by 𝑔. This metric produces geodesics on ℳ whose 

length can be computed point-wise and in closed form. A reparameterization 𝜑 ∈
Φ =  {𝜙: 𝕊2 → 𝕊2|𝜙, 𝜙−1 ∈ 𝐶2} acts on 𝑔 by conjugation with the pushforward (Ja-

cobian)𝐷𝜑: 𝑇𝑥𝕊2 → 𝑇𝜑(𝑥)𝕊2 , 𝜑 ∘ 𝑔 = 𝐷𝜑𝑇𝑔 𝐷𝜑. Given two parameterized surfaces 

𝐴, 𝐵 ∈ 𝒮 , a closed-form solution for the geodesic distance between 𝑔𝐴 and 𝑔𝐵 at a 

point 𝑥 is  [17] 

 

𝐷(𝑔𝐴[𝑥], 𝑔𝐵[𝑥]) = √∫ 〈𝑔𝑡
′(𝑥), 𝑔𝑡

′(𝑥)〉𝑔𝑡(𝑥)
𝑑𝑡

1

0
= ‖Log[𝑔𝐴

−1 2⁄
𝑔𝐵𝑔𝐴

−1 2⁄
]‖

𝐹
.    (2) 

 

This metric can be shown to be invariant under simultaneous spherical re-mappings of 

𝐴 and 𝐵 [17], since 𝐷(𝑔𝐴, 𝑔𝐵) = 𝐷(𝐷𝜑𝑇𝑔𝐴𝐷𝜑, 𝐷𝜑𝑇𝑔𝐵𝐷𝜑).  

 

 

Fig. 1. Metric tensor fields and mean curvature – a complete surface representation. Tensors are 

displayed as their eigenvectors in 𝑇𝕊2 with magnitude corresponding to the eigenvalues. The 

color map indicates mean curvature. The scale bar indicates mean curvature values. 
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3 Metrics on the Space of Surfaces 

The change in the volume form due to reparameterization prevents a straightforward 

generalization of ( ∙  , ∙ )𝑔 to the quotient space ℳ\Φ. Instead, the authors in [1] con-

sider the submanifold ℳ𝜇 of metrics which correspond to a fixed measure 𝜇. ℳ𝜇 is a 

metric space under ( ∙  , ∙ )𝑔. The restriction of Φ to its subgroup of maps with a uni-

tary pushforward Φ𝑈 = {𝜙 ∈ Φ|𝑑𝑒𝑡(𝐷𝜙) = 1}, leads to a quotient space  ℳ𝜇\Φ𝑈 

that is a metric space under the metric  

 

𝔇(𝐴, 𝐵) =  min
𝜑∈Φ𝑈

(∫ ‖Log[𝑔𝐴
−1 2⁄

𝜑 ∘ 𝑔𝜑∘𝐵𝑔𝐴
−1 2⁄

]‖
𝐹

2
𝑑𝕊2 

𝕊2 )
1/2

 𝐴, 𝐵 ∈ 𝒮1.          (3) 

 

Here, 𝒮1 is the restriction of 𝒮 to equiareal spherical parameterizations of shapes with 

normalized surface area.  

The metric 𝔇(𝐴, 𝐵) allows us to compute intrinsic distances between metric struc-

tures. However, metric structure must be augmented with curvature information in 

order to represent a surface uniquely. The following theorem given by Gu, et al. [15], 

shows how this may be done in the case of conformal parameterization: 

 

Theorem 1. A closed conformally parameterized surface 𝑆 in ℝ3 is determined by its 

conformal factor 𝜆 and its mean curvature 𝐻 uniquely up to Euclidean motion, where 

the metric tensor 𝑔 =  𝜆𝐼.  

 

As our spherical parameterization is equiareal, we cannot expect them to be confor-

mal except in the trivial case where 𝑆 =  𝕊2. However, it is known that for all genus-

zero surfaces there exists a conformal equivalence. Further, a conformal reparameter-

ization can be found using only the metric structure, without knowing the surface 

[15]. Thus, we have the following result: 

 

Theorem 2. A closed parameterized surface 𝑆 ∈ 𝒮 is determined by its metric tensor 

 𝑔 and its mean curvature 𝐻 uniquely up to Euclidean motion. 

 

We note also that a generalization of this result is shown in [18]. An illustrative ex-

ample of such a representation is shown in Figure 1 above. From this result, it is clear 

that we only need augment the space {ℳ(𝒮1)\Φ𝑈, 𝔇(∙,∙)} with a corresponding met-

ric on 𝐻. We now define the space of shapes as  

 

𝔖 = {ℳ(𝒮1) × 𝐶2(𝕊2)\Φ𝑈 ,   𝔇(∙,∙) × 𝐷𝐿2\Φ𝑈
(∙,∙)}                        (4) 

 

Here, 𝐶2(𝕊2) = {𝑓: 𝕊2 → ℝ|𝑓 ∈ 𝐶2} , and the usual 𝐿2  distance modified by Φ𝑈 ,  

𝐷𝐿2\Φ𝑈
(𝑎, 𝑏) = min𝜙∈Φ𝑈 √∫ (𝑎 − 𝜙 ∘ 𝑏)2𝑑𝕊2

𝕊2 . For brevity, we will call the 2-

product metric ℒ(∙,∙) = 𝔇(∙,∙) × 𝐷𝐿2\Φ𝑈
(∙,∙), defined explicitly as  

ℒ(𝐴, 𝐵) = √𝔇2(𝐴, 𝐵) + 𝐷𝐿2\Φ𝑈

2 (𝐻𝐴, 𝐻𝐵).                                 (5) 
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4 Computing the Karcher Mean on 𝕾 

Given a set of parametric surfaces representations 𝔰 =  {𝑆𝑖| 𝑆𝑖 ∈ 𝔖}, we would now 

like to find their intrinsic average. Note that by intrinsic we mean invariant to affine 

transformations, i.e. in our sense mean curvature is “intrinsic.” Finding the Karcher 

mean 𝜈(𝔰) = {𝑔
𝑺
, 𝐻𝑺} under ℒ(∙,∙)  requires simultaneous estimation of geodesic 

lengths to each shape’s orbit in 𝔖.  In other words, we must find several reparameteri-

zations 𝜙𝑖 ∈ Φ𝑈, while estimating 𝜈(𝔰): 

 

𝜈(𝔰) = argmin
𝑺∈𝔖

( min
𝜙𝑖∈Φ𝑈

∑ ∫ ‖Log [𝑔𝑆𝑖

−
1
2𝜙𝑖 ∘ 𝑔𝜙𝑖∘𝑺𝑔𝑆𝑖

−
1
2]‖

𝐹

2

+ [𝐻 𝑆𝑖
− 𝜙𝑖 ∘ 𝐻𝑺]

2
𝑑𝕊2 

𝕊2𝑖

) (6) 

 

Estimating 𝜈(𝔰) can be done with a two-step optimization: first, holding the estimates 

of the 𝜙𝑖 constant to update the current 𝜈(𝔰) estimate; and second, holding 𝜈(𝔰) con-

stant to update all remappings 𝜙𝑖 simultaneously. These two steps are repeated until 

an optimality condition is met.  

The first step in the optimization of (6) requires repeated point-wise estimates of the 

mean metric structure and the “mean” mean curvature. While the curvature term is 

trivially computed, the first term has no closed-form solution. Iterative approximation 

is required. Under the log metric, the mean metric is a 2x2 matrix satisfying 

 

𝐺(𝑔𝑺) = arg min
𝑔𝑺∈𝑆𝑃𝐷(2)

∑ ‖Log [𝑔𝑆𝑖

−
1
2𝑔𝑺𝑔𝑆𝑖

−
1
2]‖

𝐹

2

 

𝑖

.                           (7) 

 

The gradient of the above expression can be shown to be 

 

∇𝐺𝑗𝑘 = ∑ 2𝑡𝑟 [Log 𝑋𝑖  𝑋𝑖
−1

𝑑

𝑑𝑔𝑺,𝑗𝑘
𝑋𝑖]

𝑖

, 𝑋𝑖 = 𝑔𝑆𝑖

−
1
2𝑔𝑺𝑔𝑆𝑖

−
1
2 .               (8) 

 

This formulation differs slightly from [17], but the means are in fact equivalent. 

The second step in the optimization scheme of (6) requires an additional term to en-

sure that the spherical remappings 𝜙𝑖  remain in Φ𝑈 , i.e. that they remain area-

preserving. We use the same term as was done in [1]. The second optimization step then 

becomes very similar to the optimization problem in [1] summed over the surfaces in 𝔰. 

The only difference is the absence of the Gaussian curvature term, which, as we have 

shown, is not needed for a unique representation. 

The overall optimization problem for finding Karcher means in the intrinsic shape 

framework can now be stated briefly as finding the optimal metric and curvature 

structure 𝜈 and spherical reparameterizations  𝜑𝑖 to minimize the following cost: 

 

𝒞(𝔰, 𝜈, {𝜑𝑖}) = ∑ ℒ2(𝑆𝑖 , 𝜈) + 𝑅 ∫ (log 𝑑𝑒𝑡[𝐷𝜑𝑖])2𝑑𝕊2

𝕊2
 𝑆𝑖∈ 𝔰

.              (9) 
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5 Implementation Details 

5.1 Optimization 

We follow [1], using the spherical fluid framework to optimize (9) and compute the 

Karcher mean. As an initial step, all surfaces are spherically registered to a single 

target shape, exactly as in [1]. The point-wise metric and curvature mean map serves 

as the initial guess before group-wise registration. From this point, the only difference 

between [1] and this work is that the moving template metric + curvature field is up-

dated at every iteration as the current point-wise mean. The average mean curvature is 

straight-forward, while the average metric tensors can be estimated quickly with a 

backtracking line search using the gradient in (8).  

5.2 Surface Reconstruction 

In [19], the authors propose to integrate the Gauss-Codazzi equations directly to re-

construct a surface from its conformal parameterization. As we do not compute ex-

plicit conformal maps, using this approach on the general metric tensor may be com-

putationally challenging. Instead, we use a least-squares estimate that is a modifica-

tion of the approach in [1]. As in [1], we rely on discrete differential geometry opera-

tors described in [20]. Suppose we have a spherical mesh 𝓂 =  〈𝑉, 𝐸〉, |𝑥| = 1 ∀𝑥 ∈
𝑉, and 𝑔, 𝐻 defined at each vertex in 𝑉, with an edge set 𝐸. The mesh representing an 

embedding in space, 〈𝑆(𝑉), 𝐸〉  minimizes the least-squares problems: 

 

𝐸𝑔 = ∑ √𝑨(𝑥)𝑨(𝑦)𝑥𝑦∈𝐸 (‖𝑆𝑥 − 𝑆𝑦‖ − 𝐿𝑥𝑦)
2
,    

𝐿𝑥𝑦 =
1

2
[(𝑥 − 𝑦)𝑇𝑔(𝑥)(𝑥 − 𝑦)]1/2 +

1

2
[(𝑥 − 𝑦)𝑇𝑔(𝑦)(𝑥 − 𝑦)]1/2                  (10) 

 

   𝐸𝐻 = ∑ 𝑨(𝑥) (〈[∑
(cot 𝑎𝑥𝑦+cot 𝑏𝑥𝑦)(𝑆𝑥−𝑆𝑦)

4𝑨(𝑥)𝑦∈𝑁1(𝑥) ] , 𝒏(𝑥)〉 − 𝐻(𝑥))

2

𝑥∈𝑉 . 

 

Here, 𝒏 is the surface normal, 𝑨(𝑥) is the area element, and  𝑎𝑥𝑦, 𝑏𝑥𝑦 are angles 

opposite edge 𝑥𝑦. The area element can be estimated from the spherical area element 

and 𝑑𝑒𝑡(𝑔)
1

2. The cotangent weights in the estimated curvature operator themselves 

vary with the evolving mesh. However, when the initial guess is sufficiently close, 

e.g. when it is the Euclidean mean, fixing cot 𝑎𝑥𝑦 + cot 𝑏𝑥𝑦 according to the metric 

generally does not affect the quality of the solution. To solve the system in (10), we 

must define a fixed frame. This can be done by computing the shape of an individual 

triangle based on the metric tensor alone, and fixing it in space. In practice, avoiding 

this step when the initial guess is sufficiently close does not affect the behavior of the 

optimization.  
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Fig. 2. Putamen (a) Euclidean mean; (b) Karcher mean; (c) overlay of (a) – blue and (b) –  

orange. Extreme curvatures are better preserved in Karcher means compared to Euclidean 

means consistently across shape types. 

 

6 Experiments 

We compute the Karcher means of 100 white matter surface models from healthy 

elderly participants in the ADNI 1 study. In Figure 3, we show the comparison to the 

Euclidean average. In general, more geometric detail is preserved over the Karcher 

mean, as Euclidean averaging tends to erode sharp features. Additional experiments 

were run on 400 subcortical shapes of typically developing children and young adults. 

Results for hippocampal shape are displayed in Figure 4 and for putamen shape in 

Figure 2. Sum of squared distances ∑ ℒ2(𝑆𝑖 , 𝜈) 𝑆𝑖∈ 𝔰  is displayed in Table 1 for the 

Euclidean and Karcher means. Compute times for the Karcher mean scale linearly 

with the number of subjects, since the reparameterization step is an order of magni-

tude costlier than the point-wise metric mean step of the optimization. When com-

pared to the performance of pairwise registration in [1], the analogous computation 

here – a mean of two shapes – is not significantly different (on the order of a few 

minutes for a spherical harmonic bandwidth of 128).  

 Table 1. Sum of geodesic squares for Euclidean and Karcher means. 

 Cortex Hippocampus Putamen 
∑ ℒ2(𝑆𝑖 , 𝜈) 𝑆𝑖∈ 𝔰  Euclidean 2.1 x 104 8.5 x 102 2.4 x 103 

∑ ℒ2(𝑆𝑖 , 𝜈) 𝑆𝑖∈ 𝔰  Karcher 5.4 x 103  3.2 x 102 1.4 x 103 
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7 Conclusion 

We have presented a novel intrinsic shape representation in Riemannian setting, 

based on metric tensors and mean curvatures. In this setting, we show that it is possi-

ble to efficiently compute manifold mean representations and reconstruct their surfac-

es embedded in space. The mean estimation method is efficient due to the closed form 

solution for the geodesic length on the shape manifold. Our method is capable of 

group-wise registering complex shapes such as the cortical surface, and efficiently 

estimating sample means. When reconstructed into real surfaces, the realization of our 

mean estimate consistently preserves high-curvature and fine geometric features bet-

ter than Euclidean averaging of coordinates. This provides some empirical proof that 

the suggested shape framework captures intrinsic properties of surfaces better than 

simpler methods based on the surface embedding.  

 

 

Fig. 3. (a) Euclidean Average; (b) Riemannian average – Karcher mean; (c) Overlay of (a) and 

(b), Karcher mean in orange, Euclidean mean in blue. Deeper sulci and taller gyri are prominent 

in the Riemannian average when compared to the Euclidean approximation.  
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Fig. 4. Hippocampal (a) Euclidean mean; (b) Karcher mean; (c) overlay of (a) – blue and (b) –  

orange 
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