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Abstract. We develop a variational method of deriving stochastic par-
tial differential equations whose solutions follow the flow of a stochastic
vector field. As an example in one spatial dimension we numerically
simulate singular solutions (landmarks) of the stochastically perturbed
EPDiff equation derived using this method. These numerical simulations
show that singular solutions of the stochastically perturbed EPDiff equa-
tion persist, and some choices of stochastic perturbations allow land-
marks to interpenetrate and exchange order on the real line in overtaking
collisions, although this behaviour does not occur for singular solutions of
the unperturbed deterministic EPDiff equation. This solution behaviour
introduces the possibility of a topological change and may be of impor-
tance in registration of noisy images in computational anatomy.
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1 Introduction

Trouvé and Vialard [14, 15] study the stochastic evolution of landmarks in LD-
DMM [12] as a stochastic perturbation of the canonical Hamiltonian system
arising from the singular reduction to a finite dimensional system of Lagrangian
particles of a solution of the EPDiff equation for the geodesics on the group of dif-
feomorphisms, which arises from the LDDMM variational principle [4]. From this
viewpoint, the variational principle for shape analysis using LDDMM has a nat-
ural analogue in particle dynamics. In particular, papers [14, 15] suggest adding
white noise to the Hamiltonian evolution equation for the landmark canonical
“momentum”, as though the noise were a random force acting on a system of
particles. However, there exist many ways of introducing stochasticity into par-
ticle dynamics. Here, we will explore an alternative approach for including noise
in Hamilton equations which is still consistent with the LDDMM variational
principle for landmark evolution. For brevity, and to simplify matters, we will
take the viewpoint of particle dynamics and defer its potential applications in
landmark dynamics for LDDMM until later work.

Our approach is based on a generalisation in [7] of earlier work by Bismut
[1], Lázaro-Camı́ and Ortega [11], and Bou-Rabee and Owhadi [2] for stochastic
ordinary differential equations (SDE). The parametric stochastic deformation
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(P-SD) approach of [7] unifies the Hamiltonian and Lagrangian approaches to
temporal stochastic dynamics, and extends them to stochastic partial differential
equations (SPDE) in the case of cylindrical noise in which the spatial dependence
is parametric, while temporal dependence is stochastic.

Objectives. This paper has two main objectives. The first objective is the in-
clusion of parametric stochastic deformation (P-SD) in the variational principle
for the EPDiff partial differential equation. The second objective is the numer-
ical study of the statistical effects of parametric and canonically Hamiltonian
stochastic deformations (CH-SD) on the soliton-like solutions of deterministic
EPDiff in one spatial dimension, when the Lagrangian in Hamilton’s principle
is a Sobolev norm on the continuous vector fields. When the Lagrangian is the
H1 norm, the deterministic equation is the completely integrable CH equation
[3] and the solutions are true solitons (peakons).

2 Stochastic variational perturbations in one spatial
dimension

2.1 Singular peakon solutions of the EPDiff equations

Let Diff(Rn) be the diffeomorphism group of Rn, and X(Rn) its Lie algebra, i.e.,
the set of all smooth vector fields on Rn. The EPDiff equation is obtained from
the variational principle δS = 0 for the action functional S =

∫
`(u) dt with

the restricted variations δu = v̇ − [u, v] (see [8]). The EPDiff(H1) equation in
the one-dimensional case when `(u) = 1

2‖u‖
2
H1 = 1

2

∫
u2 + α2u2x dx is called the

Camassa-Holm (CH) equation for m = δ`/δu = u−α2uxx with positive constant
α2; namely [3],

mt + (um)x +mux = 0 with m = u− α2uxx . (1)

This equation has singular peaked soliton (peakon) solutions, given by

m(x, t) =

N∑
a=1

pa(t)δ(x− qa(t)) , so that u(x, t) :=

N∑
b=1

pb(t)K(x− qb(t)),

(2)

where K(x − y) = exp(−|x − y|/α) is the Green’s function for the Helmholtz
operator 1−α2∂2x. The peaked shape of the velocity profile of the soliton solution
of the CH equation u(x, t) := p(t) exp(−|x−q(t)|/α) provided the name, peakon.

Peakons are emergent singular solutions which dominate the initial value
problem, since an initially confined smooth velocity distribution will decompose
into peakon solutions and, in fact, only peakon solutions. The main point to no-
tice is that the distance between any two peaks never passes through zero. That
is, the peakons keep their order, even after any number of overtaking collisions
(the taller peakons travel faster). Substituting the (weak) solution Ansatz (2)
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into the CH equation (1) and integrating against a smooth test function yields
the following dynamical equations for the 2N solution parameters qa(t) and pa(t)

dqa
dt

= u(qa(t), t) and
dpa
dt

= − pa(t)
∂u(qa(t), t)

∂qa
. (3)

The system of equations for the peakon parameters comprises a completely in-
tegrable canonical Hamiltonian system, whose solutions determine the positions
qa(t) and amplitudes pa(t), for all N solitons, a = 1, . . . , N , and also describe
the dynamics of their multi soliton interactions.

2.2 Singular momentum map version of the Stratonovich stochastic
EPDiff equations

The objective of the remainder of the paper is to introduce stochasticity into the
EPDiff equation and study its effects on the interactions of the peakon solutions
of the CH equation. We consider the canonical Hamiltonian stochastic deforma-
tion (CH-SD), and also its special case, the parametric stochastic deformation
(P-SD). To achieve our objective, we propose an action functional which contains
a Stratonovich stochastic term, and treats q as an advected quantity, where the
advection condition (the first equation in (3)) is enforced as a constraint with
the help of the Lagrange multiplier p, and then prove the following theorem.

Theorem 1 (Canonical Hamiltonian Stochastic Deformation (CH-SD)
of EPDiff ).

The action S(u, p, q) for the stochastic variational principle δS = 0 given by

S(u, p, q) =

∫ (
`(u) +

∑
a

〈
pa ,

dqa
dt
− u(qa, t)

〉)
dt︸ ︷︷ ︸

Lebesgue integral

−
∫ ∑

i

hi(q, p) ◦ dWi(t)︸ ︷︷ ︸
Stratonovich integral

,

(4)

leads to the following Stratonovich form of the stochastic EPDiff equation

dm = −£umdt+
∑
i

{
m, hi(q, p)

}
◦ dWi(t) ,

dqa = u(qa, t) dt+
∑
i

{
qa , hi(q, p)

}
◦ dWi(t) ,

dpa = −pa(t)
∂u

∂x
(qa, t) dt+

∑
i

{
pa , hi(q, p)

}
◦ dWi(t) ,

(5)

where the momentum density m and velocity u are given by

m(x, t) :=
δ`

δu
=

N∑
a=1

paδ(x− qa(t)) , and u(x, t) :=

N∑
b=1

pbK(x− qb(t)). (6)
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Proof. Take the variations of the action integral (4), to find

δu :
δ`

δu
−

N∑
a=1

paδ(x− qa(t)) = 0 ,

δp : dqa − u(qa, t) dt−
∑
i

∂hi
∂pa

(q, p) ◦ dWi(t) = 0 ,

δq : − dpa − pa(t)
∂u

∂x
(qa, t) dt−

∑
i

∂hi
∂qa

(q, p) ◦ dWi(t) = 0 ,

(7)

after integrations by parts with vanishing endpoint and boundary conditions.
The first variational equation captures the relation (6), and latter two equations
in (7) produce the corresponding equations in (5). Substituting the latter two
equations in (7) into the time derivative of the first one yields the first equation
in (5).

The particular choice of the functions hi(q, p) =
∑N
a=1 paξi(qa) lead to the

parameterised stochastic deformation (P-SD) of the peakon solutions. We sum-
marise this observation in the following Corollary.

Corollary 1. [P-SD is a special case of CH-SD for EPDiff] Given the set of dif-

fusivities ξi(x), i = 1, . . . ,M , let hi(q, p) =
∑N
a=1 paξi(qa). Then the momentum

density m(x, t) satisfies the equation

dm+ £dxtm = 0 , (8)

where the stochastic vector field dxt(x) is given by the P-SD formula,

dxt(x) = u(x, t) dt+
∑
i

ξi(x) ◦ dWi(t) . (9)

Proof. Specialise to hi(q, p) =
∑N
a=1 paξi(qa) in the first line of equation (5) in

Theorem 1.

Remark 1 (Outlook: Comparing results for P-SD and CH-SD). In Section 3 and
Section 5 we will investigate the effects of choosing between two slightly differ-
ent stochastic potentials on the interaction of two peakons, N = 2, correspond-

ing to P-SD and CH-SD. The two options are h
(1)
i (q, p) =

∑N
a=1 paξi(qa) and

h
(2)
i (q, p) =

∑N
a=1 paϕia(q), respectively. These are both linear in the peakon mo-

menta and in the simplest case they have constant coefficients. Although these
two choices are very similar, they will produce quite different solution behaviour
in our numerical simulations of peakon-peakon overtaking collisions in Section 5.

Remark 2 (Stratonovich stochastic EPDiff equations in one dimension).

1. In one spatial dimension, equation (8) becomes(
∂tm+ umx + 2mux

)
dt+mx

∑
i

ξi(x) ◦ dWi(t) + 2m
∑
i

ξ′i(x) ◦ dWi(t) = 0 .

(10)
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Importantly, the multiplicative noise multiplies both the solution and its
gradient. The latter is not a common form for stochastic PDEs. In addition,
both the spatial correlations ξi(x) and their derivatives ξ′i(x) are involved.

2. The equations for dqa and dpa in (5) are stochastic canonical Hamiltonian
equations (SCHEs) in the sense of Bismut [1, 11]. These equations for dqa
and dpa may be rewritten as

dqa =
∂H

∂pa
(q, p) dt+

∑
i

∂hi
∂pa

(q, p) ◦ dWi(t) ,

dpa = −∂H
∂qa

(q, p) dt−
∑
i

∂hi
∂qa

(q, p) ◦ dWi(t) ,

(11)

with the deterministic Hamiltonian

H(q, p) =
1

2

∑
a,b

papbK(qa − qb) . (12)

The stochastic canonical Hamilton equations in (11) can also be obtained by
extremising the phase-space action functional

S
[
q(t), p(t)

]
=

∫ T

0

( N∑
a=1

paq̇a−H(q, p)
)
dt−

∫ T

0

M∑
i=1

hi(q, p)◦dWi(t) . (13)

This is the restriction of (4) to the submanifold defined by the Ansatz (6).

3 The Fokker-Planck equation

The stochastic process in (11) for (q(t), p(t)) can be described with the help
of a transition density function ρ(t, q, p; q̄, p̄) which represents the probability
density that the process, initially in the state (q̄, p̄), will reach the state (q, p)
at time t. The transition density function satisfies the Fokker-Planck equation
corresponding to (11) (see [6], [9]). Let us examine the form of this equation in

the case of hi(q, p) =
∑N
a=1 paβia, where βia = const. In that case the noise in

(11) is additive, and the Stratonovich and Itô calculus yield the same equations
of motion.

3.1 Single-pulson dynamics

Consider a single pulson (N = 1) subject to one-dimensional (i.e., M = 1)
Wiener process, with the stochastic potential h(q, p) = βp, where β is a nonneg-
ative real parameter. The stochastic Hamiltonian equations (11) take the form
dq = p dt+ β ◦ dW (t), dp = 0. The corresponding Fokker-Planck equation takes
the form

∂ρ

∂t
+ p

∂ρ

∂q
− 1

2
β2 ∂

2ρ

∂q2
= 0 (14)
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with the initial condition ρ(0, q, p; q̄, p̄) = δ(q−q̄)δ(p−p̄). This advection-diffusion
equation is easily solved with the help of the fundamental solution for the heat
equation, and the solution yields

ρβ(t, q, p; q̄, p̄) =
1

β
√

2πt
e
− (q−q̄−pt)2

2β2t δ(p− p̄). (15)

This solution means that the initial momentum p̄ is preserved. The position has a
Gaussian distribution which widens with time, and whose maximum is advected
with velocity p̄.

3.2 Two-pulson dynamics

The dynamics of two interacting pulsons has been thoroughly studied and pos-
sesses interesting features (see [5], [8]). It is therefore intriguing to see how this
dynamics is affected by the presence of noise. Consider N = 2 pulsons subject
to a two-dimensional (i.e., M = 2) Wiener process, with the stochastic poten-
tials h1(q, p) = β1p1 and h2(q, p) = β2p2, where q = (q1, q2), p = (p1, p2). The
corresponding Fokker-Planck equation takes the form

∂ρ

∂t
+

∂

∂q1

[
a1ρ
]

+
∂

∂q2

[
a2ρ
]

+
∂

∂p1

[
a3ρ
]

+
∂

∂p2

[
a4ρ
]
− 1

2
β2
1

∂2ρ

∂q21
− 1

2
β2
2

∂2ρ

∂q22
= 0

(16)

with the initial condition ρ
(
0, q, p; q̄, p̄

)
= δ(q1−q̄1)δ(p1−p̄1)+δ(q2−q̄2)δ(p2−p̄2),

where

a1(q, p) = p1 + p2K(q1 − q2), a3(q, p) = −p1p2K ′(q1 − q2),

a2(q, p) = p2 + p1K(q1 − q2), a4(q, p) = p1p2K
′(q1 − q2).

(17)

Despite its relatively simple structure, it does not appear to be possible to solve
this equation analytically. It is nevertheless an elementary exercise to verify that
the function

ρ(t, q1, q2, p1, p2; q̄1, q̄2, p̄1, p̄2) = ρβ1
(t, q1, p1; q̄1, p̄1) + ρβ2

(t, q2, p2; q̄2, p̄2), (18)

where ρβi is given by (15), satisfies (16) asymptotically as q1 − q2 −→ ±∞,
assuming the Green’s function and its derivative decay in that limit. This simple
observation gives us an intuition that stochastic pulsons should behave like indi-
vidual particles when they are far from each other, just like in the deterministic
case. In order to study the stochastic dynamics of the collision of pulsons, we
need to resort to Monte Carlo simulations.

In Section 4 we discuss our numerical algorithm, and in Section 5 we present
the results of our numerical studies.
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4 Stochastic variational integrator

Given the variational structure of the problem we have formulated in Theorem 1,
it is natural to employ variational integrators for numerical simulations. For
an extensive review of variational integrators we refer the reader to Marsden
& West [13] and the references therein. Stochastic variational integrators were
first introduced in Bou-Rabee & Owhadi [2]. These integrators were derived for
Lagrangian systems using the Hamilton-Pontryagin variational principle. In our
case, however, we find it more convenient to stay on the Hamiltonian side and use
the discrete variational Hamiltonian mechanics introduced in Lall & West [10].
We combine the ideas of [2] and [10], and propose the following discretization of
the phase-space action functional (13):

Sd =

K−1∑
k=0

( N∑
i=1

pki
qk+1
i − qki
∆t

−H(qk+1, pk)

)
∆t

−
K−1∑
k=0

M∑
m=1

hm(qk, pk) + hm(qk+1, pk+1)

2
∆Wm

k ,

(19)

where ∆t = T/K is the time step, (qk, pk) denote the position and momentum
at time tk = k∆t, and ∆Wm

k ∼ N(0, ∆t) are independent normally distributed
random variables for m = 1, . . . ,M and k = 0, . . . ,K − 1. Extremizing (19)
with respect to qk and pk yields the following implicit stochastic variational
integrator:

qk+1
i − qki
∆t

=
∂H

∂pi

(
qk+1, pk

)
+

M∑
m=1

∂hm
∂pi

(
qk, pk

)∆Wm
k−1 +∆Wm

k

2∆t
,

pk+1
i − pki
∆t

= −∂H
∂qi

(
qk+1, pk

)
−

M∑
m=1

∂hm
∂qi

(
qk+1, pk+1

)∆Wm
k +∆Wm

k+1

2∆t
, (20)

for i = 1, . . . , N . Knowing (qk, pk) at time tk, the system above allows to solve
for the position qk+1 and momentum pk+1 at the next time step. For increased
computational efficiency, it is advisable to solve the first (nonlinear) equation
for qk+1 first, and then the second equation for pk+1. Assuming the stochastic
potentials are of the form hi(q, p) =

∑N
a=1 paϕia(q), the second equation is a

linear system for pk+1, and in case ϕia = const, it becomes an explicit update
rule.

The integrator (20) is symplectic, and preserves momentum maps corre-
sponding to (discrete) symmetries of the discrete Hamiltonian—for instance,
if H(q, p) and all hi(q, p) are translationally invariant, as in our simulations

in Section 5, then the total momentum
∑N
i=1 pi is numerically preserved. The

proof of these facts trivially follows from [2], keeping in mind that the momenta
pi and velocities q̇i are related via the Legendre transform. By a straightfor-
ward application of the Stratonovich-Taylor expansion (see [9]), one can show
that the integrator (20) has strong order of convergence 0.5, and weak order of
convergence 1.
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5 Numerical experiments

We performed numerical simulations of the rear-end collision of two pulsons for
two different Green’s functions, namely K(q1−q2) = e−(q1−q2)

2

and K(q1−q2) =
e−2|q1−q2|. In the latter case, the corresponding pulsons are commonly called
‘peakons’. We investigated the initial conditions q̄1 = 0, q̄2 = 10, p̄2 = 1 together
with the following four initial values: p̄1 = 8, p̄1 = 4, p̄1 = 2, p̄1 = 1.

That is, we varied the initial momentum of the faster pulson. We perturbed
the slower pulson by introducing a one-dimensional Wiener process with the
stochastic potential h(q, p) = βp2 (this corresponds to β1 = 0, β2 = β in Sec-
tion 3.2). The pulsons were initially well-separated, so their initial evolution was
described by (18). The parameter β was varied in the range [0, 6.5]. We used
the time step ∆t = 0.02, and for each choice of the parameters 50000 sample
solutions were computed until the time T = 100.

5.1 Sample paths and mean solutions

0 20 40 60 80 100
0

50
100
150
200
250
300
350
400

q

q1

q2

0 20 40 60 80 100
0

50

100

150

200

250

300

350

0 20 40 60 80 100
0

50
100
150
200
250
300
350
400
450

0 20 40 60 80 100

t

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

p p1

p2

p1 +p2

0 20 40 60 80 100

t

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

0 20 40 60 80 100

t

0

1

2

3

4

5

6

Fig. 1. Example numerical sample paths for Gaussian pulsons for the simulations with
p̄1 = 4 and β = 4. The positions are depicted in the plots in the upper row, and the
corresponding momenta are shown in the plots in the lower row.

Figure 1 shows a few sample paths from the simulations of the interaction
of Gaussian pulsons for the case with p̄1 = 4 and β = 4. The simulations for
p̄1 = 8 and p̄1 = 2, as well as the simulations for peakons, gave qualitatively
similar results. The most striking feature is that the faster pulson/peakon may
in fact cross the slower one. In the deterministic case one can show that the
faster pulson can never pass the slower one—they just exchange their momenta.
The proof relies on the fact that both the Hamiltonian and total momentum
are preserved (see [5], [8]). In our case, however, the Hamiltonian (12) is not
preserved due to the presence of the time-dependent noise, which allows much
richer dynamics of the interactions. This may find interesting applications in
landmark matching—see the discussion in Section 6.
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Fig. 2. Numerical mean paths for Gaussian pulsons for the simulations with p̄1 = 4.
Results for three example choices of the parameter β are presented: β = 1.5 (left),
β = 2.5 (middle), and β = 4.5 (right). The positions are depicted in the plots in the
upper row, and the corresponding momenta are shown in the plots in the lower row.

Looking at Figure 1 we also note that our variational integrator exactly pre-
serves the total momentum, as expected. Figure 2 depicts the mean solution for
Gaussian pulsons with the initial condition p̄1 = 4 for different values of the
noise intensity β. We see that for small noise the mean solution resembles the
deterministic one, but as the parameter β is increased, the mean solution repre-
sents two pulsons passing through each other with increasingly less interaction.
We study the probability of crossing in more detail in Section 5.2.

We observed that pulsons may cross even when they have the same initial
momentum (p̄1 = 1). In the deterministic case they would just propagate in the
same direction, retaining their relative distance.

5.2 Probability of crossing

We studied in more detail the distance between the pulsons ∆q(t) = q2(t)−q1(t)
at the end of the simulation, that is, at time t = 100. The probability of crossing
as a function of the noise intensity β is depicted in Figure 3. We see that this
probability seems to approach unity for the simulations with p̄1 > 1, and 0.5 for
p̄1 = 1.

5.3 Noise screening

In the numerical experiments described above we observed that the presence of
noise causes pulsons to cross with a non-zero probability. The functions q1(t),
p1(t), q2(t) and p2(t) define a transformation of the real line through (6). In the
deterministic case this transformation is a diffeomorphism, but not when noise is
added, since the crossing of pulsons introduces topological changes in the image
of the real line under this transformation. This may be of interest in image
matching, as in [14], when one would like to construct a deformation between
two images which are not exactly diffeomorphic. However, with that application
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Fig. 3. The probability of crossing, that is, the probability that q2(t) < q1(t) at time
t = 100, as a function of the parameter β for Gaussian pulsons (top) and peakons
(bottom).
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Fig. 4. Example numerical sample paths for Gaussian pulsons for the simulations with
the initial conditions q̄1 = 0, p̄1 = 4, q̄2 = 10, and p̄2 = 1, and the stochastic potential
h(q, p) = βp2 exp(−(q2 − q1)2)/γ, with the parameters β = 4 and γ = 4. The positions
are depicted in the plots in the upper row, and the corresponding momenta are shown
in the plots in the lower row.

in mind, one may want to restrict the stochastic effects only to the situation
when two pulsons get close to each other. This can be obtained by applying the
stochastic potential h(q, p) = βp2 exp(−(q2 − q1)2)/γ. The parameter β adjusts
the noise intensity, just as before, while the parameter γ controls the range over
which the stochastic effects are non-negligible. We performed a few simulations
with this stochastic potential. A few sample paths are depicted in Figure 4. Note
that this stochastic potential is translation-invariant, so the total momentum is
preserved. As expected, our variational integrator preserves the total momentum
exactly.
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5.4 Restriction to parametric noise and additive noise in the
momentum equation

Interestingly, crossing of pulsons does not seem to occur for the case of parametric
stochastic deformation with the restriction ϕai(q) = ξi(qa) as in Lemma 1. We
ran numerical experiments for the potential h(q, p) = β(p1 + p2), which has
the form as in Lemma 1 with ξ(x) = β, but observed no interpenetration. We
also did not observe crossing when the stochastic potential is independent of p.
For instance, we performed simulations with the potential h(q, p) = βq2. Such
a potential results in additive noise in the momentum equation in (11) only, as
in [14]. In many cases the pulsons would asymptotically approach each other,
but never pass. We observed similar behavior for the (translationally invariant)
potential h(q, p) = β exp(−(q1 − q2)2/γ).

6 Summary and prospects

We have seen in Section 2 that the finite-dimensional peakon solutions for the
EPDiff partial differential equation in one spatial dimension persist under both
parametric stochastic deformation (P-SD) and canonical Hamiltonian stochastic
deformations (CH-SD) of the EPDiff variational principle. We took advantage
of the flexibility of CH-SD to study stochastic peakon-peakon collisions in which
noise was introduced into only one of the peakon position equations (rather
than symmetrically into both of the canonical position equations, as occurs with
P-SD), while at the same time not introducing any noise into either of the cor-
responding canonical momentum equations. Our numerical experiments in Sec-
tion 5 revealed that this type of noise allows the soliton-like singular peakon and
pulson solutions of EPDiff to interpenetrate and change order on the real line,
although this is not possible for the diffeomorphic flow represented by the solu-
tions of the unperturbed deterministic EPDiff equation. This crossing of peakon
paths was observed and its statistics were studied in detail. In contrast, cross-
ing of peakon paths was not observed for the corresponding P-SD simulations
in which the noise enters symmetrically in both position equations. Crossing of
peakon paths was also not observed when stochasticity was added only in the
canonical momentum equations, as studied in Trouvé and Vialard [14], where
the authors considered the equations

dqa = u(qa, t) dt and dpa = −pa(t)
∂u

∂x
(qa, t) dt+ σdW (t) (21)

for stochastic landmark matching in computational anatomy. This perturbation
corresponds to (11) with h1(q, p) = σ

∑
a qa, and enforces a stochastic Brown-

ian force on the particles, rather than making particle paths stochastic. Trouvé
and Vialard showed that this simple additive noise in the momentum equation
is in general enough to account for correlations between points on the curve
during landmark evolution under stochastic forcing. Our results in Section 5
demonstrated that noise in the position equations may additionally allow the
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landmarks to change their order on the line, thus allowing matching of two im-
ages which are not diffeomorphic.
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