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Abstract. In this article we study the problem of thoracic image regis-
tration, in particular the estimation of complex anatomical deformations
associated with the breathing cycle. Using the intimate link between the
Riemannian geometry of the space of diffeomorphisms and the space of
densities, we develop an image registration framework that incorporates
both the fundamental law of conservation of mass as well as spatially
varying tissue compressibility properties. By exploiting the geometrical
structure, the resulting algorithm is computationally efficient, yet widely
general.
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1 Introduction

In this paper we consider the problem of tracking organs undergoing deformations
as a result of breathing in the thorax and imaged via computed tomography
(CT). This problem has wide scale medical applications, in particular radiation
therapy of the lung where accurate estimation of organ deformations during
treatment impacts dose calculation and treatment decisions [8, 12, 18, 22]. The
current state-of-the-art radiation treatment planning involves the acquisition
of a series of respiratory correlated CT (RCCT) images to build 4D (3 spatial
and 1 temporal) treatment planning data sets. Fundamental to the processing
and clinical use of these 4D data sets is the accurate estimation of registration
maps that characterize the motion of organs at risk as well as the target tumor
volumes.

The 3D image produced from X-ray CT is an image of linear attenuation
coefficients. The linear attenuation coefficient µ of a material is defined as
µ = αmρm, where αm is the mass attenuation coefficient of the material and ρm
is the mass density. The linear attenuation coefficient is proportional to the true
density and therefore exhibits conservation of mass.

Currently, the application of diffeomorphisms in medical image registration is
mostly limited to the L2 image action of the diffeomorphism group, which is not
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a mass-preserving transformation. Furthermore, the diffeomorphisms estimated
from typical image registrations algorithms (such as LDDMM [5] or ANTS [1])
do not accurately model the varying compressibility of different tissues types. In
thoracic datasets, the lungs are highly compressible. Conversely, the bronchial
tubes and the tissue surrounding the lungs are incompressible. During inhale,
as air enters, the lung volume increases and the lung density decreases, while
during exhale lung volume decreases and the lung density increases. But in both
inhale and exhale, the lung mass is conserved.

In this paper we use a cone-beam CT dataset of a rat acquired at 11 time
points of an inhale-exhale breathing cycle. Figure 1 shows the mass, volume, and
density of the lungs of a rat at each time point of its breathing cycle, exemplifying
these properties.
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Fig. 1: Rat lung data: volume, density, and mass of the lungs during an inhale-
exhale breathing cycle. As the volume increases, the density decreases, but mass
is conserved.

Both of these effects can be clearly seen in the histograms of a full-inhale and
a full-exhale image, as shown in Figure 2.

In 2010, the EMPIRE10 [15] challenge compared registration algorithms
applied to intra-patient thoracic CT images. The winner of the competition used
an LDDMM method using normalized cross correlation metric [21]. This method
does not model conservation of mass or spatially varying tissue compressibility.
While others in this competition used the density action on these images [6,9], none
of these methods incorporate the spatially varying nature of tissue compressibility.

We present an image registration technique that incorporates conservation
of mass and organ compressibility. Instead of the L2 image action of diffeomor-
phisms, we use the physiologically appropriate density action. We also regularize
the diffeomorphism by using a space-varying penalty which allows for high com-
pressibility of the lung tissue while at the same time enforcing incompressibility
of high density structures such as bone. The algorithm is based on the intimate
link between the Riemannian geometry of the space of diffeomorphisms and the
space of densities [4,13,14]. The resulting algorithm also has the added advantage
that it is computationally efficient: orders of magnitude faster than existing
diffeomorphic image registration algorithms.
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Fig. 2: Histograms of a full-inhale and full-exhale image. Each histogram has
three peaks: the peak at 0 represents surrounding air, the middle peak represents
lung tissue, and the peak at 90 represents soft tissue. For the lung tissue, the
full inhale has higher volume but a lower image intensity than the full exhale,
therefore showing conservation of mass. For the soft tissue, the average intensity
does not change because it is incompressible. The slight drop in frequency of the
full inhale is due to soft tissue leaving the image boundary.

2 Mathematical Formulation

Mathematically, the problem is to find a diffeomorphic (bijective and smooth)
transformation between two densities on a subset Ω ⊂ R3. With a ‘density’
we mean a volume form on Ω, i.e., an element of the form I dx where dx =
dx1 ∧ dx2 ∧ dx3 is the standard volume element on R3 and I = I(x) is a non-
negative function on Ω. The space of all densities on Ω is denoted Dens(Ω). One
might, of course, identify I dx with its function I, and thereby think of Dens(Ω)
as the set of non-negative functions on Ω. However, the invariance properties
and geometry of the problem are remarkably more transparent when viewing
Dens(M) as a space of volume forms.

The group of diffeomorphisms Diff(Ω) acts from the right on Dens(Ω) by
pullback: the action of ϕ ∈ Diff(Ω) on I dx ∈ Dens(Ω) is given by

(ϕ, I dx) 7→ ϕ∗(I dx) = (|Dϕ| I ◦ ϕ) dx, (1)

where |Dϕ| denotes the Jacobian determinant of ϕ. The corresponding left action
is given by pushforward:

(ϕ, I dx) 7→ ϕ∗(I dx) = (ϕ−1)∗(I dx) =
(
|Dϕ−1| I ◦ ϕ−1

)
dx. (2)

The Riemannian geometry of the group of diffeomorphisms endowed with a
suitable Sobolev H1 metric is intimately linked to the Riemannian geometry of
the space densities with the Fisher–Rao metric. This has been developed and
extensively studied in [4, 13,14]: the basic observation is that there are Sobolev
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H1-metrics on the space of diffeomorphisms that descend to the Fisher–Rao
metric on the space of densities.

The distance associated with the Fisher–Rao metric is traditionally defined
between probability densities (densities of total mass 1) and is given by

dF (µ0, µ1) =
√

vol(Ω) arccos

(
1

vol(Ω)

∫
Ω

√
µ0

dx

µ1

dx
dx

)
, (3)

where µ0 and µ1 are probability densities. It naturally extends to the space of all
densities and the case when vol(Ω) =∞, for which it is given by

d2F (I0 dx, I1 dx) =

∫
Ω

(
√
I0 −

√
I1)2dx . (4)

Notice that d2F (·, ·) in this case is the Hellinger distance. For details, see [4].

The Fisher–Rao metric is the unique Riemannian metric on the space of
probability densities that is invariant under the action of the diffeomorphism
group [2,3]. This invariance property extends to the induced distance function, so

d2F (I0 dx, I1 dx) = d2F (ϕ∗(I0 dx), ϕ∗(I1 dx)) ∀ϕ ∈ Diff(Ω) . (5)

ϕ

id

Diff(Ω)

D
iff

1
,I

0 (Ω
)

Dens(Ω)×Dens(Ω)

(f.dx, I0.dx)

((f ◦ ϕ)dx, I1.dx)

(ϕ∗(f.dx), ϕ∗(I0.dx))

∇E

Orb(f.dx, I0.dx)

Fig. 3: Illustration of the geometry associated with the density matching prob-
lem. The gradient flow on Diff(Ω) descends to a gradient flow on the orbit
Orb(f dx, I0 dx). While constrained to Orb(f dx, I0 dx) ⊂ Dens(Ω) × Dens(Ω),
this flow strives to minimize the product Fisher-Rao distance to ((f ◦ϕ) dx, I1 dx).

Motivated by the aforementioned properties, we develop a weighted diffeo-
morphic matching algorithm for matching two density images. The algorithm
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is based on the Sobolev H1 gradient flow on the space of diffeomorphisms that
minimizes the energy functional

E(ϕ) = d2F (ϕ∗(f dx), (f ◦ ϕ−1)dx) + d2F (ϕ∗(I0 dx), I1 dx)). (6)

This energy functional is only a slight modification of the energy functional studied
in [4]. Indeed, if f in the above equation is a constant σ > 0, then (6) reduces to
the energy functional of Bauer, Joshi, and Modin [4, §5.1]. Moreover, the geometry
described in [4, § 5.3] is valid also for the functional (6), and, consequently, the
algorithm developed in [4, § 5.2] can be used also for minimizing (6). There the
authors view the energy functional as a constrained minimization problem on
the product space Dens(Ω)×Dens(Ω) equipped with the product distance, cf.
Fig 3 and [4, § 5] for details on the resulting geometric picture. Related work
on diffeomorphic density matching using the Fisher Rao metric can be found
in [19,20].

Using the invariance property of the Fisher-Rao metric and assuming infinite
volume, the main optimization problem associated with the energy functional (6)
is the following.

Given densities I0 dx, I1 dx, and f dx, find ϕ ∈ Diff(Ω) minimizing

E(ϕ) =

∫
Ω

(
√
|Dϕ−1| − 1)2 f ◦ ϕ−1 dx︸ ︷︷ ︸

E1(ϕ)

+

∫
Ω

(√
|Dϕ−1|I0 ◦ ϕ−1 −

√
I1

)2
dx︸ ︷︷ ︸

E2(ϕ)

.

(7)

The invariance of the Fisher-Rao distance can be seen with a simple change
of variables x 7→ ϕ(y), dx 7→ |Dϕ|dy, and |Dϕ−1| 7→ 1

|Dϕ| . Then, Equation 7

becomes

E(ϕ) =

∫
Ω

(1−
√
|Dϕ|)2 f dy +

∫
Ω

(√
I0 −

√
|Dϕ|I1 ◦ ϕ

)2
dy . (8)

To better understand the energy functional E(ϕ) we consider the two terms
separately. The first term E1(ϕ) is a regularity measure for the transformation.
It penalizes the deviation of the diffeomorphism ϕ from being volume preserving.
The density f dx acts as a weighting on the domain Ω. That is, change of volume
(compression and expansion of the transformation ϕ) is penalized more in regions
of Ω where f is large. The second term E2(ϕ) penalizes dissimilarity between
I0 dx and ϕ∗(I1 dx). It is the Fisher–Rao distance between the initial density
I0 dx and the transformed target density ϕ∗(I1 dx). Because of the invariance (5)
of the Fisher–Rao metric, this is the same as the Fisher–Rao distance between
I1 dx and ϕ∗(I0 dx).

Solutions to problem (7) are not unique. To see this, let DiffI(Ω) denote the
space of all diffeomorphisms preserving the volume form I dx:

DiffI(Ω) = {ϕ ∈ Diff(Ω) | |Dϕ| (I ◦ ϕ) = I}. (9)
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If ϕ is a minimizer of E(·), then ψ ◦ ϕ for any

ψ ∈ Diff1,I0(Ω) := Diff1(Ω) ∩DiffI0(Ω) (10)

is also a minimizer. Notice that this space is not trivial. For example, any
diffeomorphism generated by a Nambu–Poisson vector field (see [16]), with I0 as
one of its Hamiltonians, will belong to it. A strategy to handle the degeneracy
was developed in [4, § 5]: the fact that the metric is descending with respect
to the H1 metric on Diff(Ω) can be used to ensure that the gradient flow is
infinitesimally optimal, i.e., always orthogonal to the null-space. We employ the
same strategy in this paper. The corresponding geometric picture can be seen in
Fig. 3.

3 Gradient Flow Algorithm Development

We now derive in detail the algorithm used to optimize the functional defined in
Equation 8. The H1-metric on the space of diffeomorphisms is defined using the
Hodge laplacian on vector fields and is given by:

GIϕ(U, V ) =

∫
Ω

〈−∆u, v〉dx . (11)

Due to its connections to information geometry we also refer to this metric as

information metric. Let∇GI

E denote the gradient with respect to the information
metric defined above. Our approach to minimize the functional of (8) is to use a
simple Euler integration of the discretization of the gradient flow:

ϕ̇ = −∇GI

E(ϕ) (12)

The resulting final algorithm (Algorithm 1) is order of magnitudes faster than
LDDMM, since we are not required to time integrate the geodesic equations, as
necessary in LDDMM [23].

In the following theorem we calculate the gradient of the energy functional:

Theorem 1. The GI–gradient of the matching functional (8) is given by

∇GI

E = −∆−1
(
−∇

(
f ◦ ϕ−1(1−

√
|Dϕ−1|)

)
−√

|Dϕ−1| I0 ◦ ϕ−1∇
(√

I1
)

+∇
(√
|Dϕ−1| I0 ◦ ϕ−1

)√
I1

)
. (13)

Remark 2. Notice that in the formula for ∇GI

E we never need to compute ϕ,
so in practice we only compute ϕ−1. We update this directly via ϕ−1(y) 7→
ϕ−1(y + ε∇GI

E) for some step size ε.

Proof. We first calculate the variation of the energy functional. Therefore let ϕs
be a family of diffeomorphisms parameterized by the real variable s, such that

ϕ0 = ϕ and
d

ds

∣∣∣
s=0

ϕs = v ◦ ϕ. (14)
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We use the following identity, as derived in [10]:

d

ds

∣∣∣
s=0

√
|Dϕs| =

1

2

√
|Dϕ|div(v) ◦ ϕ. (15)

The variation of the first term of the energy functional is

d

ds

∣∣∣
s=0

E1(ϕ) =

∫
Ω

f(x)(
√
|Dϕ(x)| − 1)

√
|Dϕ(x)|div(v) ◦ ϕ(x)dx (16)

We do a change of variable x 7→ ϕ−1(y), dx 7→ |Dϕ−1(y)|dy, using the fact that
|Dϕ(x)| = 1

|Dϕ−1(y)| ;

=

∫
Ω

f ◦ ϕ−1(y)(1−
√
|Dϕ−1(y)|)div(v)(y)dy (17)

=
〈
f ◦ ϕ−1(1−

√
|Dϕ−1|),div(v)

〉
L2(R3)

(18)

=−
〈
∇
(
f ◦ ϕ−1(1−

√
|Dϕ−1|)

)
, v
〉
L2(R3)

(19)

using the fact that the adjoint of the divergence is the negative gradient. For the
second term of the energy functional, we expand the square

E2(ϕ) =

∫
Ω

I0(x)− 2
√
I0(x)I1 ◦ ϕ(x)|Dϕ(x)|+ I1 ◦ ϕ(x)|Dϕ(x)|dx (20)

Now
∫
Ω
I1 ◦ ϕ(x)|Dϕ(x)|dx is constant (conservation of mass), so we only need

to minimize over the middle term. The derivative is then

d

ds

∣∣∣
s=0

E2(ϕ) = −
∫
Ω

2
√
I0(x)

(
∇
√
I1
T
v
)
◦ ϕ(x)

√
|Dϕ(x)|

−
√
I0(x)I1 ◦ ϕ(x)|Dϕ(x)|div(v) ◦ ϕ(x)dx. (21)

We do the same change of variables as before:

= −
∫
Ω

√
I0 ◦ ϕ−1(y)

|Dϕ−1(y)|√
|Dϕ−1(y)|

(
2∇
√
I1(y)

T
v(y) +

√
I1(y)div(v)(y)

)
(22)

= −
〈

2
√
|Dϕ−1| I0 ◦ ϕ−1∇

√
I1, v

〉
L2(R3)

−
〈√
|Dϕ−1| I0 ◦ ϕ−1I1,div(v)

〉
L2(R3)

(23)

=
〈
−
√
|Dϕ−1| I0 ◦ ϕ−1∇

√
I1, v

〉
L2(R3)

+
〈
∇
(√
|Dϕ−1| I0 ◦ ϕ−1

)√
I1, v

〉
L2(R3)

. (24)

From the above equations we conclude that:

−∆(∇GI

E) = −∇
(
f ◦ ϕ−1(1−

√
|Dϕ−1|)

)
−
√
|Dϕ−1| I0 ◦ ϕ−1∇

√
I1 +∇

(√
|Dϕ−1| I0 ◦ ϕ−1

)√
I1 (25)
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Since we are taking the Sobolev gradient of E, we apply the inverse Laplacian to

the right hand side of Equation 25 to solve for ∇GI

E.

Algorithm 1 Final Algorithm

Choose ε > 0
Set ϕ−1 = id
Set |Dϕ−1| = 1
for iter = 1...NumIters do

Compute ϕ∗I0 = I0 ◦ ϕ−1|Dϕ−1|
Compute u = −∇

(
f ◦ ϕ−1(1−

√
|Dϕ−1|)

)
−
√
ϕ∗I0∇

√
I1 +∇(

√
ϕ∗I0)

√
I1

Compute v = −∆−1(u)
Update ϕ−1 7→ ϕ−1(y + εv)
Update |Dϕ−1| 7→ |Dϕ−1| ◦ ϕ−1e−εdiv(v)

end for

Remark 3. Algorithm 1 constructs the mapping ϕ−1 by numerically integrating
the vector field v. Thus, for small enough ε, the computed transformation ϕ−1 is
a diffeomorphism (as is also the case in LDDMM).

4 Results

We applied the proposed method to the previously mentioned rat dataset. In
this dataset, an anesthetized rat was placed on a mechanical ventilator. This
ventilator sent 11 gate signals to the cone-beam CT per breathing cycle, assuring
that all projections would all be acquired at a consistent points of the breathing
cycle [11]. Previous literature has shown that cone-beam CT is inadequate in
estimating the true linear attenuating coefficient density [7], so we empirically
estimated the density as the square of the the original data.

For these results we estimated the deformation from the full-exhale to the
full-inhale image. The deformation was computed on the resolution of the original
3D volume (245× 189× 217); all the figures show the same 2D coronal slice of
this volume. Shown in Fig. 4 are the coronal sections of full exhale, the full exhale
deformed via the density action, and the corresponding image at full inhale and
the estimated deformation.

For the compressibility penalty f , we used a soft thresholding of the intensity
values of the initial image using the logistic function. High intensity regions of
the CT image (corresponding to bone and soft tissue) were given a high penalty
(f(x) = 10σ) and low intensity regions of the CT image (corresponding to air
and lungs) were given a low penalty (f(x) = .1σ) (see Figure 7)

We implemented the proposed algorithm and LDDMM on a single Titan-Z
GPU (using the PyCA software package [17] bitbucket.org/scicompanat/pyca )
for comparison. The difference images are pictured in Figure 5. The problem of

http://bitbucket.org/scicompanat/pyca
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Iex ϕ∗(Iexdx) Iin ϕ−1

Fig. 4: Density action results. This figure shows the lung image at the full exhale,
the full exhale deformed via the density action, and the corresponding image at
full inhale. Shown in the right panel is the estimated deformation.
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Fig. 5: Absolute value of image differences: The left panel shows the difference
between the original full exhale and the full inhale images. The center panel
shows the result after registration using the proposed method. The right image
shows the result using LDDMM with the L2 image action. In LDDMM, there is
significant error inside the lung due to the L2 action not preserving mass.

LDDMM using the L2 action can be seen in this image. The Jacobian determinants
are in Figure 6. The proposed method constrains the contraction and expansion
to inside the lung and outside the body. In this figure we also show the results of
using the density action with a constant penalty function (f(x) = σ.).

The proposed algorithm is significantly faster than LDDMM; it runs at 400
iterations per minute while LDDMM runs at 45 iterations per minute. We used
10 time steps to integrate the geodesic equations associated with the LDDMM
formulation. Since we are not required to integrate the geodesic equations in the
proposed algorithm, we have nearly a 10x speedup compared to LDDMM.
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Fig. 6: Jacobian determinants: On the left is the Jacobian determinant of the
transformation estimated by the proposed method. Notice that the volume change
is confined to inside the lungs and outside the body. In the center we use the
density action, but without a local-varying penalty (i.e. f(x) = σ). On the
right is the Jacobian determinant using LDDMM. Without the local-varying
penalty, there is contraction and expansion outside of the lungs. In LDDMM, the
contraction and expansion outside of the lungs is even more severe.

0 200 400 600 800 1000 1200 1400

Regularization
Data Match
Total

0 5 10 15 20 25
0

2

4

6

8

10
f(x)

Energy sig(x)

Fig. 7: Energy plot and the logistic function used for the penalty.

5 Discussion

In this paper, we introduced a computationally efficient method for estimating
registration maps between thoracic CT images. The proposed solution accurately
incorporates the fundamental property of mass conservation and the spatially
varying compressibility of thoracic anatomy. We conserve mass by viewing the
images as densities and applying the density action of a diffeomorphism instead
of the typical L2 action. We limit the volume change in incompressible organs
by placing a space-varying penalty on the Jacobian determinant of the diffeo-
morphism. While any non-negative function f(x) can be used, we simply use
a soft-thresholding function on the initial image. This choice is based on the
assumption that low CT image values (such as the lungs and air) exhibit a large
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amount of volume change whereas high images values (such as other soft tissue
and bone) are quite incompressible.

Acknowledgments

The authors thank Rick Jacob at the Pacific Northwest National Laboratory for
the imaging data which was funded by a grant from the National Heart, Lung, and
Blood Institute of the National Institutes of Health (R01 HL073598). The works
was partially supported by the grant NIH R01 CA169102-01A13, the Swedish
Foundation for Strategic Research (ICA12-0052), an EU Horizon 2020 Marie
Sklodowska-Curie Individual Fellowship (661482) and by the Erwin Schrödinger
Institute programme: Infinite-Dimensional Riemannian Geometry with Applica-
tions to Image Matching and Shape Analysis. M. Bauer was supported by the
European Research Council (ERC), within the project 306445 (Isoperimetric
Inequalities and Integral Geometry) and by the FWF-project P24625 (Geometry
of Shape spaces).

References

1. Avants, B.B., Tustison, N.J., Song, G., Cook, P.A., Klein, A., Gee, J.C.: A re-
producible evaluation of {ANTs} similarity metric performance in brain image
registration. NeuroImage 54(3), 2033 – 2044 (2011), http://www.sciencedirect.
com/science/article/pii/S1053811910012061
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