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Abstract. This paper investigates the shape collapse problem in non-
rigid image registration. The shape collapse problem is the situation
when an appendage of a deforming object does not overlap with the tar-
get shape and collapses to a set of zero measure during the registration
process. The dual problem occurs when a new appendage grows out of
the object to match the target shape. In both cases, the estimated cor-
respondence between the source and target objects is often undesirable.
The shape collapse problem is caused by deforming the moving image
in the gradient direction of the similarity cost and affects both small
and large deformation registration algorithms. Minimizing a registration
cost function by following the similarity-cost gradient drives the regis-
tration to a local energy minimum and does not permit an increase in
energy to ultimately reach a lower energy state. Furthermore, once an
object collapses locally, it has zero measure under the similarity cost in
this region and is permanently stuck in a local minimum. This paper
presents a criterion for detecting image regions that will collapse if the
similarity cost gradient direction is followed during optimization. This
criterion is based on the skeletal points of the moving image in the sym-
metric difference of the original two binary images. Experimental results
are presented that demonstrate that the shape collapse problem can be
detected before registration.

Keywords: image registration, skeleton, shape collapse, collapse points,
predicting regions of collapse

1 Introduction

A common problem that affects both small and large-deformation image regis-
tration algorithms is when a part of an object collapses during the registration
process. The problem can be illustrated by registering images of hands in which
four of five fingers overlap (see Fig. 1). The shape collapse occurs during regis-
tration when the index finger in the source image collapses into a thin set. At
the same time, a new finger grows out of the palm of the hand to match the
finger in the target hand. The biologically relevant transformation in this case
would be instead to shift the finger to match its pose in the target image. This
solution is difficult to reach with greedy optimization algorithms often used in
image registration, because collapsing the index finger in the source image to a
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(a) Moving image (b) Target image (c) Difference
before registration

(d) Deformed mov-
ing image

Fig. 1. Example of an undesirable shape collapse during image registration.

thin set reduces the registration similarity cost immediately, as opposed to ro-
tating the finger which may increase the cost initially. Note that Fig. 1-d shows
the final result for a small deformation image registration and only a partial
deformation for a large deformation registration. Additionally, once a region of
source image collapses during the registration process, it remains collapsed, i.e.
a collapsed region in the source image corresponds to a local minimum of the
registration cost function.

We are not aware of others that have studied the shape collapse problem in
image registration. The distance function from smooth submanifolds and its cut
loci have been thoroughly studied by many in differential geometry. See [2] for
basic introduction and a review. The notion of skeleton generalizes the notion
of cut locus when the boundary is not differentiable. Skeletonization and medial
representations have been thoroughly studied; a good overview can be found in
[3].

In this paper we present a novel method for a priori detection of object
points where shape collapse is likely to occur and predicting the collapse loci.
We provide several examples where our algorithm successfully predicts collapse
loci. Detecting collapse loci is important for the alignment of sulci in brain image
registration, which is similar to the alignment of fingers in the hand example
discussed above. In this case, once we detect collapsing sulci, we can devise
solutions to this problem by, for instance, enforcing the sulcus to retract into
or sliding along the cortex rather than collapsing. This may also be used as a
potential method to detect different folding patterns between the brains. The
approach to handle collapsing is different based on the application domain, and
as such, is beyond the scope of this paper.

2 Mathematical Formulation

The ideas presented in this paper are independent of space dimension. For ex-
ample, the area-decreasing discussion below becomes volume-decreasing in 3-D.
Likewise, the definition of skeleton below allows for curves and sheets in 3-D.
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Let Ω be a subset of Rn, typically with n = 2 or 3. Let Ii : Ω → R, i = 1, 2
be two binary images to be registered, where I1 denotes the moving image and I2
denotes the target image. We denote the foreground of Ii by Vi ⊂ Ω for i = 1, 2.
We assume that the Vi is compact. For the sake of simplicity, we will assume
that the boundary of Vi is piecewise C1 closed curve when n = 2. In the n = 3
case, the boundary of Vi is assumed to be a piecewise-smooth surface that is a
union of finitely many surfaces, curves and points (e.g., the boundary of a cube).

The collapse problem occurs when V1 has an appendage which is not included
in V2, and the growth problem occurs when V2 has an appendage which is not
included in V1. The collapse and growth behaviors look different if they are
observed only from the point of view of the foreground. However, the growth of
the foreground can be studied as a certain type of collapsing of the background.

Definition 1. Let V be a subset of a metric space (Ω, d), and Br(p) denotes the
open metric balls {x ∈ Ω : d(x, p) < r}. A closed ball B ⊂ V is called a maximal

ball of V , if for every closed ball B
′
, B ⊆ B

′ ⊆ V , one has B = B
′
. The set{

q ∈ V : ∃r > 0, Br(q) is maximal ball of V
}

is defined to be the skeleton S(V )
of V by maximal balls [4].

Suppose Ω is a metric space. Let p be a point of Ω, and let V be any subset
of Ω. The interior of V , denoted Int(V ), is the union of all open subsets of Ω
contained in V . The exterior of V , denoted Ext(V ), is the union of all open
subsets of Ω contained in Ω− V . The boundary of V , denoted by ∂V , is the set
of all points of Ω that are in neither Int(V ) nor Ext(V ).

We first discuss the collapsing behavior in the simple case of V2 = ∅ and
no regularization. Since we have a binary image, a greedy algorithm for the
similarity-cost gradient follows the direction that decreases the area in the fastest
way. We study this area-decreasing flow on the interior of V1, and the distance
function f : V1 → [0,∞) to the boundary ∂V1, given by f(x) = dist(x, ∂V1) =
inf {|x− y| : y ∈ ∂V1} . For a piecewise C1 boundary, f is C1 except on a set
(containing the skeleton and the boundary) of measure zero, and its gradient
∇f (when it exists) is perpendicular to the level sets of f .

The fastest area decreasing occurs by deforming the interior of V1 along
∇f until the skeleton is reached at that direction, since following the gradient
one goes into the interior deeper in the fastest way. The superlevel sets slr =
{x ∈ V1 : f(x) ≥ r} are the stages of this deformation in the continuous category,
as justified below.

For every q ∈ S(V1), there is a unique maximal ball Br(q) of V1 centered
at q, and the set of points along the boundary ∂V1 associated to q is A∂(q) :=
Br(q) ∩ ∂V1. The associated set A∂(q) is nonempty. It usually has two or more
points, but it can be one point, such as the focal point of a boundary curve (or a
surface for n = 3) at a strict local maximum of curvature (or principal curvature
for n = 3). For every p ∈ ∂V1, we can also define the associated set AS(p) =
{q ∈ S(V1) : p ∈ A∂(q)}, which is the set of points along the skeleton associated
with p. If ∂V1 is C2 about p, then AS(p) contains one point. Let L(p, q) denote
the line segment with end points p and q, and L◦(p, q) = L(p, q) − {p, q}. For
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Fig. 2. (a) Possible configurations of the skeletal and boundary points. A skeletal
point can correspond to one (q4), two (q2), three (q3) or more (q1) boundary points.
Similarly, a boundary point can have one (p4) or many (p2) associated skeletal points.
(b) Collapsing and non-collapsing points. p1 is a collapsing point because it belongs to
the same maximal ball Br(q) as p2, and both p1 and p2 are in the non-overlap region U .
In contrast, p′1 is not a collapsing point because it only shares a maximal ball (Br(q′))
with p′2, but p′2 is not in U .

simplicity, we will use 2-D examples to illustrate these concepts throughout this
paper, even though the extension to n-D using line segments is straightforward.
Figure 2 illustrates the possible configurations of boundary and skeletal points
and their associations, as well as the notation used.

Proposition 1. The set of line segments {L◦(p, q) : q ∈ S(V1) and p ∈ A∂(q)}
is a partition of V1 − (∂V1 ∪ S(V1)).

Proof. We want to show that every point a ∈ V1 belongs to a L(p, q) where
p ∈ ∂V1, q ∈ S(V1) and they are associated with each other. The point a has
a closest point p ∈ ∂V1 at a distance f(a) = c and hence Bc(a) ⊆ V1. Then
Bc(a) ⊆ Br(q) ⊆ V1 for a maximal ball Br(q). If p ∈ Bc(a) ⊆ Br(q) is an
interior point of Br(q) then it cannot be on ∂V1. Hence ∂Br(q) and ∂Bc(a) are
tangential at p, and thus a ∈ L(p, q). Therefore V1 is the union of all L(p, q) with
q ∈ S(V1) and p ∈ A∂(q).

For pi ∈ ∂V1 and qi ∈ S(V1) with pi ∈ A∂(qi), for i = 1, 2, if L(p1, q1) ∩
L(p2, q2) 6= ∅ then either p1 = p2 or q1 = q2, i.e. these segments can only
intersect along the boundary or the skeleton unless they are identical. Because,
an intersection at the interior of the line segments would contradict the triangle
inequality and pi being the closest point of ∂Vi to qi. �

By Proposition 1 and its notation, if a ∈ L◦(p, q), then p is the unique closest
point of ∂V1 to a. This justifies that f−1(r) is the set of all points apq on L(p, q)
with ‖apq − p‖ = r as long as ‖q − p‖ ≥ r, as q varies through all of S(V1) and
p through all of A∂(q). The fastest area decreasing flow on the interior of V1
is along the line segments L◦(p, q) with unit speed until the skeleton is reached
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along each segment. The flow is not definable along the skeleton. However, away
from the skeleton, slr are the stages of this deformation, and L(p, q) is parallel
to ∇f(apq) if it exists.

We remark that this flow needs to be considered on the interior of V1, since it
is possible that AS(p) may contain more than one point if ∂V1 is not differentiable
at p ∈ ∂V1 (e.g. p2 in Fig. 2-a). In that case, the flow is not defined at p, but it
is well defined on the union of {L◦(p, q) : ∀q ∈ AS(p)} . Rather than letting ∂V1
follow the flow, we use the boundary of slr, namely f−1(r). Using slr has the
additional advantage of describing the area reduction process accurately around
the skeleton. This is because S(slr) = S(V1)∩ slr and the flow along the L(p, q)
reaches different parts of the skeleton at different times and stops. Therefore
it is possible that slr may break into components. In this case, the flow is not
continuous at the skeleton; however, the area-reduction is continuous.

In the continuous area-reduction case and with V2 = ∅, the above process
(without regularization) will reduce V1 to ∅ since it will remove the skeleton
along the way. By using small (but not zero) regularization and discrete image
registration, we see that the skeleton actually remains. The deforming forces
towards a point q on the skeleton are from different directions along L(p, q) for
several p ∈ A∂(q). The regularization will reduce the effect of these forces by
averaging and slow down the area reduction. Since the skeleton has measure zero
and the deformations we use for the image registration are discrete, removing
the skeleton has no or little gain in the cost function, and therefore a skeleton
remains. Since the deformations are not going exactly along slr, the skeleton
reached through image registration cannot be expected to be same as S(V1), but
it is a very good approximation since the above mentioned factors are not in
effect until the flow comes near S(V1).

The next step is to consider the case in which the target image contains a
foreground object, i.e., V2 6= ∅. We begin with some definitions.

Definition 2. Let V1 and V2 be subsets of Ω representing the foreground objects
of images I1 and I2, respectively. The overlap of the foreground objects is denoted
as W = V1 ∩ V2 and the symmetric difference region (non-overlap) U = U1 ∪U2

where U1 = V1 − V2 = {x ∈ V1 : x /∈ V2} and U2 = V2 − V1.

Definition 3. A point p1 ∈ ∂V1 is a collapsing point for q ∈ S(V1), if ∃p2 ∈ ∂V1
such that p1 6= p2, {p1, p2} ⊂ A∂(q), and L(p1, q) ∪ L(p2, q) ⊂ U1. The notation
CLPS(q) denotes all collapsing points (if any) along ∂V1 associated with q ∈
S(V1) and CLPS(V1) denotes the union of CLPS(q) for all q ∈ S(V1).

Figure 2-b illustrates these definitions. In this example, p1 is a collapsing
point because there exists a p2 satisfies all three conditions: p1 6= p2, {p1, p2} ⊂
A∂(q), and L(p1, q) ∪ L(p2, q) ⊂ U1. In contrast, p′1 is not a collapsing point
because the only point in ∂S1 that shares a maximal ball with it is p′2, and
p′2 /∈ U1. During the registration of the image of S1 into the image of S2, p1 p2
will move towards q on the skeleton of S1 whereas p′1 will move towards S2 and
p′2 will stay in S2.
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Regions of foreground reduction of the moving image occur on U1 and regions
of foreground growth occurs on U2. We can study U1 and U2 separately, since the
deformation algorithms are local. We start by discussing the area-decreasing flow
away from skeleton S(V1) in the continuous case without regularization again.
If p1 ∈ ∂V1 ⊂ V1 but p1 /∈ U1, that is p1 ∈ V2, then it is already in the target
set, there will be no area-decreasing flow near p1. If p1 ∈ U1 ∩ ∂V1, then the
area-decreasing flow on the union of {L◦(p, q) : ∀q ∈ AS(p)} starts as described
before for p near p1, and continues along L◦(p, q) until it comes close to either
(i) a q ∈ AS(p) when L◦(p, q) is away from the overlap W, or (ii) the flow comes
close to a point of ∂V2 provided that L◦(p, q) enters V2 at most once.

For the cases when p1 ∈ U1∩∂V1, q ∈ AS(p1) and L(p1, q) ⊂ U1, but p1 is not
a collapsing point due to the rest of A∂(q) being in W, there will be one-sided
flows towards q at the start. However, since these one-sided flows will alter the
skeleton of the remaining set, the flow needs to be readjusted according to the
new skeleton, a case that will not happen when V2 = ∅. All flows near W will
have this adjustment.

At the collapsing points (nonempty) CLPS(q) ⊂ A∂(q), we expect that the
area decreasing flow to reduce the area tending towards q from the several di-
rections {L(p, q) : ∀p ∈ CLPS(q)} , and some type of collapse occur at q.

If there exists an open set Z bounded away from W such that for all q ∈ Z ∩
S(V1) one has CLPS(q) = A∂(q) and for all p ∈ CLPS(q), L(p, q) ⊂ Z then the
area decreasing procedure in Z will behave the same as V2 = ∅. Understanding
how this works allows us to predict the outcome with a small regularization
factor. A part of a skeleton will be reached through image registration for the
collapsing of U1 within Z, it cannot be expected to be same as a part of S(V1),
but it is a good approximation since the above mentioned factors when V2 = ∅
are not in effect until the flow comes near this particular portion of S(V1).

The dual problem of growth in the foreground of the moving image is a
reduction in the background. Hence, we can predict the behavior of the growth
as well by using the same proceedure. Revisiting Fig. 1, we can now compare
the collapse and growth of the index finger. The collapse of the index finger
U1 is mostly sideways flowing towards the vertical part of the skeleton S(V1)
through U1, by becoming thinner and thinner. But the growth of the finger in
U2 is a reduction of a part of the complement of V1 (not V2!). It has to follow the
level sets of the distance function to ∂V1 on the complement of V1. These levels
sets restricted to U2 are parallel to the index finger in the moving image and
therefore U2 grows in the perpendicular direction to these level sets. The growth
in U2 keeps the maximal width since there is no skeleton of the background of
the moving image about that area.

3 Discussion

Figure 3 presents a simple 2D registration example that illustrates the shape
collapse problem for parts of the foreground and background of the moving
image. The moving image (Fig. 3-a) is a 128x128 pixel, binary image that has
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value 0 for the background and 1 for the foreground. The target image (Fig. 3-b)
differs from the moving image by a translation of the lower rectangle appendage.
The difference image (Fig. 3-c) demonstrates the amount of overlap between the
appendage of the moving and target image.

Figure 3 shows the skeletal points for the foreground (d) and background (e)
of the moving image. The skeletal points of the moving shape are used to predict
the location where a potential collapse of the moving image will occur. Note that
the designation of foreground and background objects are for convenience of
presentation and could have just been referred to as the white and black object
of the moving image. Regions of shape collapse only occur in the non-overlap
region between the moving and target images. Fig. 3-g and 3-h shows the skeletal
points masked by the region of overlap since these are the only skeletal points
that we are concerned with.

As discussed in Section 2, we will detect the object boundary points where
the region of collapse may happen when the images are registered. The set of
boundary points where the shape will collapse can only occur in the region of
non-overlap between the moving and target image. The foreground and back-
ground boundary points that occur in the symmetric difference region correspond
to a super set of the boundary collapse points and are shown in Fig.3-f and 3-i.
The foreground and background boundary collapse points are shown in Fig. 3-j
and 3-k. The collapse points are defined as the boundary points in the sym-
metric difference region that correspond to the skeletal points in the symmetric
difference region. The predicted foreground and background collapse points are
shown superimposed on the moving image in Fig. 3-l. The skeletal points asso-
ciated with boundary collapse points are a rough estimate of where the moving
image will collapse when registered to the target image, as shown in Figure 4.

Fig. 4 shows that the foreground and the background of the moving image
collapsed following the predictions of the boundary collapse points. The fore-
ground collapses to a thin strip of white foreground (square callout) and the
background collapses to a thin strip of black background (circle callout). Note
that the regions of collapse shown in Fig. 4 are small and hard to see. It is
because regions of collapse are hard to see that they are often ignored.

Figure 5 shows the result of registering the moving image to the target im-
age for the example in Fig. 3. The image registration algorithm[1] minimized
the objective function C(u) which consists of the weighted sum of a similar-
ity cost (sum of squared intensity differences (SSD)) and a regularization term
(membrane model), as described by the following equations:

C(u) =
α

2

∫
Ω

(I1(x+ u(x))− I2(x))
2
dx+

β

2

∫
Ω

||Lu||2dx Registration Cost

δC(u(x)) = α (I1(x+ u(x))− I2(x)) · ∇I1|x+u(x) + βL2u Gradient of Cost

u(i+1)(x) = u(i)(x)−∆δC(u(x)) Gradient Descent

The gradient descent used a step size of ∆ = 0.95, a weight of α = 1 for
the SSD term and a weight of β = 0.1 for the membrane regularization term.
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(a) Moving Image (b) Target Image (c) Difference image, i.e.,
white & black are non-
overlap region

(d) Skeletal points of mov-
ing foreground(FG) image

(e) Skeletal points of mov-
ing background(BG) im-
age

(f) Boundary of moving
FG image in non-overlap
region

(g) Skeletal points of mov-
ing FG in non-overlap re-
gion

(h) Skeletal points of mov-
ing BG in non-overlap re-
gion

(i) Boundary of moving
BG image in non-overlap
region

(j) FG boundary collapse
points

(k) BG boundary collapse
points

(l) Black: FG collapse
points, White: BG col-
lapse points

Fig. 3. Detection of boundary collapse points for overlapping appendage experiment.
Both the foreground and background collapses in this example.
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Fig. 4. The result of transforming the moving image into the shape of the target image
shown in the top row of Figure 3. The middle panel magnifies the collapse region of the
background (circle inset). The right panel magnifies the collapse region of foreground
(square inset).

The operator L in the regularization term is a linear differential, self-adjoint
operator and corresponds to L2u = ∇2u for the membrane regularization model
and ∇2 is the Laplacian. For this experiment, the displacement field u(x) was
represented as a 128x128 vector field. Bilinear interpolation was used to compute
the deformation of the moving image. 1000 iterations of gradient descent were
used to minimize the registration cost.

Figure 5 illustrates the time progression of how using a greedy optimization
method causes the regions of the moving image to collapse. The arrows in Fig-
ure 5-a show the direction of the force generated by the gradient of the SSD
cost function. The white arrows show that there is a force pushing right and
a force pushing up. The combination of these two forces causes the collapse of
the foreground object at the lower left corner of the object. The black arrows
show a force pushing right and another pushing down. The result of these two
forces causes the background of moving image to collapse at the inside corner of
the object. Note that once a region of the image collapses, there is no way for a
greedy optimization method to “un-collapse” the region. The reason for this is
that the collapsed region has zero measure in the SSD cost function and there-
fore has little to no cost. Thus, there is no incentive (i.e., no gradient force) for
the greedy optimization method to retract or otherwise fix the collapsed region.

Figure 6 shows the x- and y-displacement fields associated with this regis-
tration experiment. Notice that the x-displacement field is not symmetric in the
vertical direction, i.e., the left black region appears to be shifted up compared
to the black region on the right. The vertical asymmetry of the x-displacement
field results from the shape collapse of the moving image. The asymmetry of the
x-displacement field corresponds to the nonzero regions of the y-displacement
field in the regions of image collapse. The nonzero regions of the y-displacement
field indicate a problem with the estimated transformation for this experiment.
It is reasonable to assume that the vertical appendage of the moving image
only needs to be shifted to the right to match the corresponding structure in
the target image. Thus, any nonzero displacement in the y-direction indicates a
counter-intuitive registration result.
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(a) Iteration 100 (b) Iteration 200 (c) Iteration 300

(d) Iteration 400 (e) Iteration 500 (f) Iteration 600

Fig. 5. Progression of deformation from moving to target image. The arrows show in
panel (a) the direction and location of the deformation. The white arrows show where
the foreground of the moving image collapses and the black arrows show where the
background of the moving image collapses.

(a) (b) (c)

Fig. 6. Displacement fields for the image registration of overlapping appendage experi-
ment. (a) X-displacement, (b) Y-displacement, (c) foreground and background skeletal
points overlaid on deformed image predict regions of collapse

The displacement fields shown in Figure 6 demonstrate that the regions of
collapse should not be ignored because they lead to poor correspondence in
the regions of collapse. Ignoring the poor correspondence in collapsed regions
may have a major impact on the conclusions drawn in the applications using
such transformations. These include mapping brain function, computing average
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shapes, computing shape statistics, computing mechanical properties of the lung,
adaptive radiotherapy planning, and computing cumulative dose in radiation
therapy to mention a few application areas.

Figure 6-c shows the skeletal points of the foreground and background objects
from the original moving image within the symmetric difference region, super-
imposed on the registration result. Notice that the skeletal points do a good job
of predicting the locations of the moving image collapse. The skeletal points do
not predict the actual locations of the moving image collapse due to the shape
change of the moving image during registration and the effect of regularization.

The minimum value of the Jacobian for the estimated transformation for this
experiment was 0.0853. The fact that the minimum value of the Jacobian was
positive indicates that the estimated transformation remained a diffeomorphism
throughout the optimization procedure. This fact illustrates that the collapse
problem occurs even when the transformation is a diffeomorphism.

Figure 7 shows three additional examples of predicting collapse points. The
first row of this figure illustrates collapse points occurring when a subregion of
an object retracts. The second row illustrates collapse points occurring when a
subregion of an object expands. The final row shows the cortical ribbon extracted
from a clinical MR image with 1× 1mm2 resolution. The cortical segmentation
was adapted to limit the example to illustrate four retraction and two expansion
regions around sulci. This example is important to show the scale of the expected
effect size of the collapsing problem for neuroimaging applications.

4 Conclusions

This paper presented the shape collapse problem for image registration which is
a problem for both small and large deformation image registration algorithms. A
mathematical justification was presented for why the collapsing problem occurs
for binary images that each contain a single corresponding object. Collapsing
boundary points were defined mathematically and were shown to predict before
the registration, which boundary points in the moving image will collapse during
an iterative image registration procedure that minimize the registration cost at
each iteration. Furthermore, the foreground and background skeletons of the
moving image in the symmetric difference region were shown to closely predict
the collapse loci in the moving image.
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