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Abstract. This paper presents an application of a recently introduced
novel framework for computing the diffeomorphic path between two given
diffeomorphisms computed from two pairs of image frames in a motion
sequence [1]. The specific application we address here is that of cardiac
motion analysis. The framework involves a two-step algorithm wherein
we first project the given pair of diffeomorphisms onto the space of densi-
ties – defined by quotienting out the volume-preserving diffeomorphisms
considered as the nuisance parameters and then compute the geodesic
path between the two points in this space. The second step lifts the
aforementioned geodesic path back into the space of diffeomorphisms.
The lifting problem is formulated as a quadratic programming problem
with bilinear constraints and solved using the augmented Lagrangian
method. Unlike the LDDMM-based techniques, this approach yields a
path joining the given pair of diffeomorphisms that becomes a geodesic
path upon quotienting out the volume-preserving diffeomorphisms. We
use this path as the main feature to discriminate between ischemia pa-
tients with and without stem cell treatment. Such a discriminatory power
can be very useful in the quantification of differences between controls
and patients undergoing the treatment.

1 Introduction

While substantial advances in diagnosis and treatment have been made in the
past half century, heart disease unfortunately is still a major cause of morbid-
ity and mortality around the world. Among the novel therapeutic approaches
that are currently under active investigation, stem cell-based therapy (e.g., [10])
holds a great promise for the future with revolutionary potential for signifi-
cant improvement in patient prognosis and disease outlook. This paper proposes
an application of a novel computational approach recently introduced in [1] to
cardiac motion analysis with the aim of providing clinical researchers image pro-
cessing tools that can extract subtle and useful features from the MR images for
high-level clinical tasks such as patient classification and outcome assessment.
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(a) (b) (c) (d)

Fig. 1. Top row (a) and (b):the left ventricular myocardium (LVM) at end-systole
(ES) and end-diastole (ED). (c) and (d): LVM segmentations of (a) and (b), respec-
tively.

The key idea here is to use smooth paths in the space of diffeomorphisms (of
the image domain) as the characterization of the continuous variation in shape
and volume of the patient’s myocardium across cardiac cycles. More specifically,
given a sequence of MR images of a cardiac cycle (Fig.1), we compute a diffeomor-
phic map between each image and a reference image, the image at the beginning
of the cycle. These discretely sampled diffeormorphisms are interpolated to form
a smooth path of diffeomorphisms from which useful high-level features can be
extracted directly. Unfortunately, the diffeomorphisms are often noisy because
the myocardium constantly undergoes small and random movement due to the
pressure exerted from its surroundings. While these small random perturbations
should be treated as nuisance parameters and modelled with diffeomorphisms
close to the identity, there is an important equivalence among them: two small
perturbations with the same myocardium volume should have the same clini-
cal significance because it implies the same volume of ejecta in each case. This
particular insight naturally leads to the idea of treating volume-preserving dif-
feomorphisms as the nuisance parameters, and the desired diffeomorphic paths
should be smooth paths in an appropriate space that has “taken out” the effects
of these nuisance parameters.

The above viewpoint admits a lucid and transparent formulation using the
idea of quotient space. Specifically, let Ω denote a 3-D (image) domain with the
volume form µ, and Diff(Ω),Diff(Ω)µ the infinite-dimensional group of diffeo-
morphisms of Ω and its infinite-dimensional subgroup of volume-preserving dif-
feomorphisms, respectively. Mathematically, the quotient space Diff(Ω)/Diff(Ω)µ
is the space that has factored (taken) out the effect of Diff(Ω)µ, and there is
a canonical projection map Diff(Ω) → Diff(Ω)/Diff(Ω)µ. The quotient space
has been studied in [6], and it can be identified with the space of density func-
tions Den(Ω) on Ω that can be canonically embedded as a convex subset of
a sphere in the Hilbert space (See [6] for details). While Diff(Ω) is a compli-
cated space, the reduction Diff(Ω) → Diff(Ω)/Diff(Ω)µ = Den(Ω) provides
us with the space Den(Ω) of known and computationally tractable geometry.
In particular, one straightforward way to exploit this reduction for computing
diffeomorphic paths in Diff(Ω) is to first compute a geodesic path in Den(Ω)
and then lift the path back into Diff(Ω). Specifically, given the diffeomorphism
ρ computed using any registration technique, our method will compute a path in
the space of diffeomorphisms connecting ρ with the identity diffeomorphism (see
next section for details) using a two-step algorithm that first projects ρ and the
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Fig. 2. Illustation of the two main steps in our algorithm for computing diffeomorphic
paths. f(0), f(tf ) and f(t) represent projected points of the two given diffeomorphisms
and the great circle connecting the two projected points on the sphere, respectively.

identity onto the sphere and computes the unique geodesic joining the two pro-
jected points. This is followed by the second step that lifts the geodesic path on
the density sphere back to Diff(Ω), that is formulated as a quadratic program-
ming problem with bilinear constraints which can be solved using the numerical
algorithm proposed in [8] based on the augmented Lagrangian method. While
the diffeomorphic path φ(t) computed by our method is not a geodesic path in
Diff(Ω), it nevertheless acquires a geodesic interpretation in the sense that by
quotienting out the volume-preserving diffeomorphisms, the path φ(t) is indeed
a geodesic path in the quotient space. Fig.2 provides a diagrammatic illustration
of this algorithm.

In this paper, we apply our framework to cardiac motion analysis and the
classification of ischemia patients. In particular, we show that features extracted
from diffeomorphic paths are useful in classifying ischemia patients undergoing
stem cell treatment and without treatment. Note that the classification problem
does not require us to perform the second step defined above, namely, the lifting
step. However, it is the lifting step that explicitly produces an interpolating path
between the two given diffeomorphisms, and this step is necessary for visualizing
the diffeomorphic path as well as for evaluating the quality of interpolation
between the given time sequence of data that are needed in the validation step
to assess the accuracy of the computed path.

We structure this paper somewhat differently by first presenting the details of
our proposed algorithm and the experimental results on cardiac motion analysis
in the following three sections. Related work will be discussed after the presen-
tation of our framework and results, and the discussion will be centered on the
relations between our work and that of Large Deformation Diffeomorphic Met-
ric Mapping framework (LDDMM) [2–5] and iDiff framework introduced very
recently in [7]. We end this paper with a short conclusion and a plan for future
work.
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2 Theory and Algorithm

This section presents the aforementioned two-step algorithm for estimating a
path of diffeomorphisms connecting a given pair of diffeomorphisms ρ1, ρ2. For
simplicity of exposition, we will assume that ρ1 is id, the identity diffeomorphism
and the necessary modification for general case is straightforward and simply in-
volves a group operation applied to the two diffeomorphisms as ρ−11 ◦ ρ1 = id
and ρ = ρ−11 ◦ ρ2.

The spaces of densities and diffeomorphisms: Our aim is to compute a
diffeomorphic path, φ(t) between id and ρ such that φ(0) = id and φ(t = tf ) = ρ
where, 0 ≤ t ≤ tf , and the image domain Ω will be considered as a compact
subset of R3 with a given volume form µ = dxdydz.

The projection map Φ that maps Diff(Ω) to the quotient space Den(Ω) is
given by,

Φ : φ→ f =
√
|Dφ|, (1)

where |Dφ| is the determinant of the Jacobian of φ with respect to the volume
form µ. We note that Φ(id) = 1, the constant function one. The space of densities
can be identified with an infinite-dimensional sphere of radius µ(Ω), the volume
of Ω, ∫

M

Φ2(φ)dµ = µ(Ω). (2)

By scaling Φ with
√
µ(Ω), we can further identify Den(Ω) with an infinite-

dimensional unit sphere. More details are given in [6]. Once the two projected
points on the sphere are identified, the unique geodesic path joining the two
points f1, f2 can be readily determined using the formula [9].

f(t) =
1

sin(θ)
[sin(θ − t)f1 + sin(t)f2] , (3)

where f1 =
√
|Did|, f2 =

√
|Dρ|, and θ is the angle between the two points on

the sphere.
We remark that if the two given diffeomorphisms are already volume-preserving,

then by definition, they project to the same point in Den(Ω). Hence, their
geodesic in Den(Ω) is degenerate and consists of just one point, and the lifted dif-
feomorphic path in Diff(Ω) is then a path consisting of only volume-preserving
diffeomorphisms.

Given the geodesic path f(t) on Den(Ω) and representing diffeomorphic
paths using 3-D deformation vector fields, φ(t) = (x+U(x, y, z, t), y+V (x, y, z, t), z+
W (x, y, z, t)), the diffeomorphic path φ(t) ∈ Diff(Ω) is required to satisfy the
constraint,

Φ(φ(t)) = f(t). (4)

Since,

|Dφ(t)| =

∣∣∣∣∣∣
1 + U(t)x U(t)y U(t)z
V (t)x 1 + V (t)y V (t)z
W (t)x W (t)y 1 +W (t)z

∣∣∣∣∣∣ , (5)
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we have

f(t)2 = |Dφ(t)|/µ(Ω). (6)

Eq.(5) gives the determinant of the Jacobian of φ, and U(t)i, V (t)i, and W (t)i
denote the first-order derivatives with respect to i ∈ {x, y, z}. Our next step
is to recover the deformation fields, φ(t) from Eq.(6). We remark that the pro-
posed method does not explicitly perform spatial regularization on diffeomorphic
paths, Instead, the diffeomorphic paths will be computed by lifting using the Ja-
cobian constraints.

Path Lifting: The constraint provided by Eq.(6) does not determine a unique
solution, and geometrically, this corresponds to the fact that Eq.(6) only requires
φ(t) to lie on a Diff(Ω)µ-orbit in Diff(Ω) parameterized by the point f(t) in the

sphere. Therefore, we will compute the lifted path in Diff(Ω) using L2-based
regularization: L2 smoothness of the deformation vector fields over time as the
main regularization criterion. We note that while other regularization schemes
are possible, e.g., using the Sobolev norm, we have chosen the L2 regularization
because of its computational simplicity. This leads to the following quadratic
programming problem with bilinear constraints:

min

∫ ∣∣∣∣dU(x, y, z, t)

dt

∣∣∣∣2 +

∣∣∣∣dV (x, y, z, t)

dt

∣∣∣∣2 +

∣∣∣∣dW (x, y, z, t)

dt

∣∣∣∣2 dµdt
s.t. |Dφ(t)| = f(t)2µ(Ω).

(7)

We remark that the continuity of the computed diffeomorphic path is always
assured because its projection on the sphere is a continuous path (in fact, a
smooth geodesic path). Specifically, the domain of the optimization problem
specified in Equation 7 can be taken to be the set C of all C1-diffeomorphic paths5

that project to the given geodesic on the sphere (i.e., satisfying the constraint
Equation 4). The set C is nonempty because of the connectedness of both the
fiber (the group of volume-preserving diffeomorphisms) and the base curve (the
geodesic path on sphere). We also note that our diffeomorphic path is always
computed for two given diffeomorphisms (id and ρ defined above) and not among
several diffeomorphisms.

5 Or some suitable completion of the set of all C1-diffeomorphic paths under an ap-
propriate Soblev norm.
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3 Optimization

While Eq.(7) is formulated for continuous variables x, y, z and t, in practice, we
have to work with discrete pixels and time, and its discrete version is given by,

min
Ut

ijk
,V t

ijk
,W t

ijk

∑
i,j,k,t

[∣∣∣∣∣U
t+1
ijk − U

t−1
ijk

2δx

∣∣∣∣∣
2

+

∣∣∣∣∣V
t+1
ijk − V

t−1
ijk

2δy

∣∣∣∣∣
2

+

∣∣∣∣∣W
t+1
ijk −W

t−1
ijk

2δz

∣∣∣∣∣
2]
δtδxδyδz

s.t.

∣∣∣∣∣∣
1 + U t

xijk
U t

yijk U(t)tzijk
V t
xijk

1 + V t
yijk V t

zijk

W t
xijk

W t
yijk 1 +W t

zijk

∣∣∣∣∣∣− µ(Ω)(f t
ijk)2 = 0,

(8)

where the superscript t and subscript i, j, k denote the discrete time and voxel
indices respectively, and the subscripts x, y and z in the constraints denote the
first-order derivatives w.r.t. x, y and z respectively. We set δx, δy and δz to be
one, and therefore the volume µ(Ω) is the image size.

Geometrically, the determinant of the Jacobian |Dφ(t)| is the ratio of the
change of volume elements by φ(t) at domain points and time t. In our numer-
ical scheme, |Dφ(t)| is formulated as the volume of a hexahedral cell composed
with six-neighbour voxels which are displaced by the deformation vector fields.
This 3-D formulation is adopted in Eq.(1) as well, and efficient ways to compute
the volume are discussed in [11]. In [1], |Dφ(t)| in 2-D was formulated as a quadri-
lateral composed with four neighbouring pixels, and the optimization problem
was formulated as a quadratic programming problem with bilinear constraints.
Now, in this 3-D problem, the formulation leads to the same optimization prob-
lem but with trilinear constraints: As shown in [12], considering |Dφ(t)| to be
the volume of a hexahedral cell and vectorizing all deformation vector fields, the
optimization problem is formulated explicitly as follows:

min
1

2
UᵀRU +

1

2
VᵀRV +

1

2
WᵀRW + Bᵀ

uU + Bᵀ
vV + Bᵀ

wW

s.t. h = c + CV V + CWW + (CU + DU (V) + DU (W) + EU (V,W))U = 0

or h = c + CUU + CWW + (CV + DV (U) + DV (W) + EV (U,W))V = 0

or h = c + CUU + CV V + (CW + DW (U) + DW (V) + EW (U,V))W = 0,

(9)

Let us suppose that the size of domain is M × N × L. Then, in the above,
Uᵀ = (Uᵀ(t = 2), ...,Uᵀ(t = T − 1)) , and Bᵀ

u = (Uᵀ(t = 1),0ᵀ,Uᵀ(t = T ))
where 0 is a vector of zeros with length M ×N ×L× (T − 4) if we have a time
sequence t ∈ [1, T ] including two boundary conditions namely, φ(0) = id and
φ(T ) = ρ. V (W) and Bv ( Bw ) are defined in the same way. In Eq.(9), R is
the matrix for the quadratic component and its size is M × N × L × (T − 2).
CUU, CV V and CWW correspond to the linear terms of U, V and V in the
volume formulation of the hexahedral cells, respectively. D’s and E’s correspond
to the bilinear and trilinear terms after factoring out U, V and W, respectively.
Finally, c is the vectorization of µ(Ω)(f tijk)2 in Eq.(8) plus a vector of ones and
µ(Ω) = (M − 1)(N − 1)(L− 1). More details are provided in Appendix E of [12]

We solve the optimization using the augmented Lagrangian method with
penalty [8] by iteratively solving for the three blocks of variables U,V,W, fixing
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two of these while optimizing the rest. For instance, with fixed V and W, the
problem is given by,

min
1

2
UᵀRU + Bᵀ

uU + λᵀh +
1

2
c||h||2

s.t. U ∈ Rm,
(10)

where, λ ∈ Rm is the Lagrange multiplier, c→∞ and m = M×N×L×(T −2).
This is an unconstrained optimization problem and can be rewritten more clearly
as,

min
1

2
Uᵀ(R + cHᵀ

uHu)U + (Bu +
1

2
c((Gᵀ

uHu)ᵀ + Hᵀ
uGu) + (λᵀHu)ᵀ)ᵀU

s.t. U ∈ Rm,
(11)

where, Hu = CU + DU (V) + DU (W) + EU and Gu = c + CV V + CWW. That
is, h = HuU + Gu.

4 Experiments

We have acquired cardiac MR scans of patients with acute myocardial infraction
(AMI), and they were randomized into one of two groups: control and treat-
ment. The treatment group received endothelial progenitor stem cell (EPCs)
treatment, while the control received a cell-free infusion. Cardiac MRI exams
were performed at baseline which was prior to EPC therapy, and following six
months post-treatment [10]. Generally, cardiac analysis involves measuring the
average wall motion, or wall thickening reported for each of the individual seg-
ments of hearts. We propose a patient classification method (between control and
treatment groups) by measuring changes of diffeomorphic paths over six months.
These diffeomorphic paths are the diastolic filling motion of the left ventricular
myocardium (LVM) computed using our method. For the experiments, we have
expert-segmented LVM’s from the cardiac MR scans, and examples of LVM and
its segmentation are shown in Fig.1.

Data Acquisition: The cardiac data was acquired along the short-axis of the
heart using a cine multislice sequence using a Siemens Avanto 1.5T whole body
MRI scanner. Twenty-five phases were collected throughout the cardiac cycle
using a TrueFISP (a balanced coherent gradient sequence using Fast Imag-
ing with Steady state free Precession), with an echo time of 1.13ms and an
apparent repetition time of 71.82ms. Data was collected using a total of 161
phases encoded into a matrix of 256 × 151, yielding an in-plane resolution of
1.71875×1.71875mm2. Slice thickness was 7mm, with a slice separation of 10mm.
Coverage of the myocardium extended from above the valve plane at the base,
to below the apex throughout the cardiac cycle.

In the first experiment, we compare the interpolated paths between end-
systole (ES) and end-diastole (ED) using our method and LDDMM, given the
ground truth. For this comparison, we choose eighteen intermediate time points
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Fig. 3. Comparison between the ground truth and estimated temporal changes of the
cardiac chamber from ES to ED along the short-axis in 3-D. A 2-D slice shown in
green color plane is chosen to depict the changes over the cardiac cycle in the bottom
two rows. Top: 3-D shapes of LVM at ES (left) and ED (right). Middle and bottom:
computed changes using LDDMM and our method respectively. The white region rep-
resents the intersection of the ground truth and estimates, and green and magenta
represent voxels belonging to the ground truth and estimates respectively.

along the interpolated path at which the comparison is performed. This com-
parison is repeated for five different patients. A visual comparison is provided in
Fig,3. The images in the top row in Fig.3 represent 3-D shapes of LVM at ES
(left) and ED (right). For visual comparison, first, we choose a short-axis which
is presented as green planes in the top images and compare the ground truth
of the temporal change of this 2-D slice (from 3-D) with computed ones using
LDDMM and our method respectively. The middle and bottom rows in Fig.3
show the results from LDDMM and our method respectively. The white region
represents the intersection of the ground truth and estimates from the applied
algorithm, and green and magenta represent voxels which belong to the ground
truth and estimates. It is hard to tell which method estimates the ground truth
with higher quality (even though we can recognize that in the middle frames
the shapes from our method fit better to the ground truth than the ones from
LDDMM). However, quantitative comparison shows clear difference between our
method and LDDMM: We report the Dice coefficients between the ground truth
and the interpolated LVM images obtained using our method and the LDDMM
method. The results tabulated in Table 1 show that the proposed method out-
performs LDDMM using the Dice coefficient as the evaluation metric.

Ischemia Patient Classification: In the second experiment, we classify the
two groups of ischemia patients described in the previous sections. The stem-cell
therapy used in the treated patient group is supposed to improve the diastolic
filling motion of the left ventricular myocardium (LVM); therefore, an approach
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Table 1. The Dice coefficients of the estimated intermediate cardiac frames using our
method and the LDDMM.

Average Median Variance

Our method 0.912 0.908 0.0009
LDDMM 0.901 0.897 0.0018

for classification between the two groups is to measure how the diastolic filling
motion of LVM changes over six months with/without EPC therapy. The cycle
of LVM diastolic filling motion is from end-systole (ES) to end-diastole (ED),
and we take the images of segmented LVM at ES and ED as the Is’s and It’s.
We then compute the diffeomorphic path φ(t) of nine subjects in the control
group and 21 in the treated group, and all paths have ten intermediate time
points between ES and ED. Next, we express U(t),V (t), and W (t) of φ(t) =
(x+U(t), y+V (t), z+W (t) in a discrete sine and cosine (DSC) basis. We collect
all the DSC coefficients of U ,V and W into a single vector for each patient, and
the motion change of LVM over six months for each patient is measured using
the L2 distance of DSC coefficients between baseline scan and 6-months scan. We
use this as the feature for classification. In this experiment, we use the Support
Vector Machine (SVM) as the classifier with polynomial kernel of degree three.
The number of DSC basis elements for each component of φ(t) is five, and
we use a leave-one-out cross validation. Table 2 shows the classification results
using our method and LDDMM, and it is evident that our method significantly
outperforms LDDMM. Note that the LDDMM-based method results in lower
classification rates because of the inherent hard parameter selection problem
associated with it. In contrast, our method does not have any such parameter
selection issue as evident from our quadratic programming formulation.

Table 2. Classification scores using Support Vector Machine

Validation method
Classification score

The proposed method LDDMM
Control Treatment Control Treatment

Leave-one-out 77.78% 85.71% 66.67% 69.56%

5 Discussion

One of the most intensively studied frameworks for computing diffeomorphic
path is the Large Deformation Differomorphic Metric Mapping framework (LD-
DMM) [2–5]. In LDDMM, the diffeomorphic path φ is obtained by solving the
following equation

d

dt
φ(t, · ) = v(t, φ(t, · )), (12)

where v(t, · ) is a time-varying velocity field defined on Ω. For computing a diffeo-
morphic path joining two diffeomorphisms (e.g., id and ρ), φ is required to satisfy
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the boundary condition φ(1, · ) = ρ. In the registration context, LDDMM’s ob-
jective function almost always has two terms: the data term that matches images
and the regularization term that is based on the magnitude of the time-varying
vector field v measured in an appropriate norm. Therefore, the objective func-
tion requires at least one coupling constant to modulate the contributions of
the two terms. In contrast, our method detaches the registration process from
the process that computes the diffeomorphic path. Consequently, it does not
require a coupling constant whose determination is often highly nontrivial, and
the experimental comparisons presented above can be partially attributed to the
(potentially) non-optimal coupling constants used for LDDMM. Furthermore, it
is also highly nontrivial to modify the LDDMM framework for minimizing the
effect of volume-preserving diffeomorphisms (as nuisance parameters). In fact,
the diffeomoprhic paths computed by LDDMM and our method are generally
different, and projecting LDDMM’s diffeomorphic path onto the quotient space
Diff(Ω)/Diff(Ω)µ in general does not produce a geodesic on Den(Ω). The in-
ability of LDDMM to deal with the nuisance parameters at least in part explains
the difference in classification performance reported in Table 2.

The space of diffeomorphisms Diff(Ω) is infinite-dimensional, which readily
explains the difficulty of computing diffeomorphic paths. Using the projection
map Φ (Equation 1), the tangent space of Diff(Ω) at ρ has the following natural
decomposition (given a Riemannian metric on Diff(Ω))

TρDiff(Ω) = TidDiff(Ω)µ ⊕TΦ(ρ)Den(Ω), (13)

where TidDiff(Ω)µ is the tangent space of Diff(Ω)µ at the identity id and
TΦ(ρ)Den(Ω) is the tangent space of Den(Ω) at Φ(ρ). Direct minimization of
the norm of the time-dependent velocity field v as in LDDMM requires consid-
ering the entire tangent space TρDiff(Ω), and it is often fraught with problems,
not the least because there are no guarantees on the quality of the solution.
Compared with LDDMM, the minimization specified in Equation 7 requires
only TidDiff(Ω)µ-component as the TΦ(ρ)Den(Ω)-component is fixed by the
Jacobian constraint. Therefore, our method reduces the dimension by half, and
although still infinite-dimensional, the reduction provides a more restricted do-
main for optimization that can be easier to analyze and optimize.

Recently, after submitting our work, we were made aware of a novel frame-
work that shares a significant conceptual similarity with ours. The paper [7]
introduces the notion of irrotational diffeomorphisms iDiff based on Brenier’s
polar factorization theorem for diffeomorphisms: an arbitrary diffeormorphism
ϕ = S ◦ ψ in Rn can be uniquely factorized as the composition of a volume-
preserving diffeomorphism S and an irrorational diffeomorphism ψ ∈ iDiff(Rn).
In particular, |Dϕ| = |Dψ|, and Φ(ϕ) = Φ(ψ). Using the language of quotient
space, the result in [7] can be interpreted as an explicit construction of a sec-
tion of the projection Φ in Equation 1. In other words, the projection map Φ
restricted to the irrotational diffeomorphisms iDiff is bijective onto the image
of Φ. With this interpretation, the appearance of the square-root of the deter-
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minant of the Jacobian in the following main formula (Equation 17 in [7])

P : iDiff(Rd)→ L2(Rd) , P (ψ) = 2
√
|Dψ| − 1 = 2(Φ(ψ)− 1) (14)

becomes less surprising. Furthermore, at tangent space-level, the factorization
corresponds to the Helmholtz-Hodge decomposition of the vector fields that de-
compose the tangent space TidDiff(Ω) as the direct sum of divergence-free
vector fields and their orthogonal complement, which corresponds to the decom-
position in Equation 13 above with TidDiff(Ω)µ identified with divergence-free
vector fields. However, an important and subtle difference is that [7] works with
diffeomorphisms on Rn with compact support while we work with diffeomor-
phisms on a connected compact domain in Rn. The compactness of the domain
implies that it has finite volume, and this translates into the fact that the im-
age of Φ is on a sphere of finite radius (Equation 2) with nonzero curvature.
The above map P : iDiff(Rd) → L2(Rd) can be interpreted geometrically as
spherical chords centered at Φ(id), and due to the curvature of the sphere, the
image of P is never an open neighborhood of zero in L2(Rd) when the domain
has finite volume. However, the flatness result in [7] can be readily seen (as a
limit) from the following heuristic argument6.

Let n = 2 and D1 ⊂ D2 ⊂ ... ⊂ R2 denote a nested sequence of domains
where Dk = {(x, y) ∈ R2‖ |x| ≤ k, |y| ≤ k }. Each pair (Dk, µ), k = 1, 2, ... is a
compact domain in R2 with area (volume) 4k2. Correspondingly, we will denote
iDiff1 ⊂ iDiff2... ⊂ iDiff(R2) the nested sequence of subsets of iDiff(R2),
where iDiffn contains irrotational diffeomorphisms with support in Dn. The
set of irrotational diffeomorphisms with compact support is then the union of
iDiffn:

iDiff(R2) =

∞⋃
n=1

iDiffn.

Therefore, under the projection map Φ, iDiffk maps to a convex set on the
sphere of radius 4k2. Recall that the curvature of a sphere with radius 4k2 is
1

4k2 , and this shows that as k →∞, Φ maps iDiff(R2) to a sphere with infinite
radius, i.e., a space with zero curvature.

6 Conclusions

In this paper, we have applied the novel framework introduced in [1] for comput-
ing a diffeomorphic path interpolating two given diffeomorphisms from a cardiac
cycle. We have argued that the volume-preserving diffeomorphisms should be
considered as nuisance parameters, and clinically relevant diffeomorphic paths
should be induced from smooth paths in the corresponding quotient space, tak-
ing out the effect of the nuisance parameters. The diffeomorphic path computed
by our method enjoys the property that its projection onto the quotient space is
indeed a geodesic. The proposed algorithm has two main steps. First, it projects

6 A more detailed comparison of these two approaches will be presented in a forth-
coming paper
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the two given diffeomorphisms computed from any image registration process
onto the quotient space that has been shown to be a convex subset of the infinite-
dimensional sphere, and it computes the geodesic between these two projected
points in closed form. Second, it lifts this geodesic path on the sphere back to the
space of diffeomorphisms using an L2-regularization that results in a quadratic
programming problem with trilinear constraints for 3-D problems that can be
efficiently solved using the augmented Lagranigian method.

We have applied our algorithm to two cardiac motion analysis experiments.
In the first experiment, the result has shown that the proposed method performs
better than LDDMM in estimating the diffeomorphic path between end-systole
(ES) and end-diastole (ED). The result from the second experiment has demon-
strated the features extracted from the diffeomorphic paths are relevant and
useful for patient classification (treated and untreated groups). Our future re-
search will focus on developing more statistical analysis methods in the quotient
space described in this paper.
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