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Abstract. This paper presents a geometric method for parameteriza-
tion, matching, and analysis of surface shapes. Surfaces are parameter-
ized and represented by intrinsic coordinate maps derived from the con-
formal structure of the shape. This parameterization is invariant to rigid
transformations of the shape, as well as angle-preserving parameteriza-
tions of the surface. Shape matching between coordinate maps of two
surfaces is achieved by i) deforming the isothermal curves of the intrin-
sic parameterization under a nonlinear transformation, and ii) locally
reparameterizing the isothermal curves to yield invariant diffeomorphic
matchings. Experimental results are shown in synthetic data as well as
neuroanatomical shapes such as the hippocampus and the cortex.

1 Introduction

Over the past decade, we have seen diverse approaches and applications, both
in the continuous and the discrete setting for geometric shape modeling. The
different approaches for surface modeling and shape analysis are usually fine
tuned for the problem in hand. For computer aided design (CAD) applications,
the computer graphics community is interested in parameterized or even para-
metric surface modeling [1]. The spectral shape approach [2] has been originally
proposed for computer vision applications such as 3D shape retrieval and recog-
nition, although it has also been recently applied to anatomical shapes [3–5].
Similarly, Fourier-based modeling approaches such as SPHARM and its varia-
tions [6–8] have been proposed for brain subcortical structures. A slightly differ-
ent approach models the medial information in elongated shapes and represents
it using medial representations [9, 10] and its variants, M-reps [11], or contin-
uous M-reps [12]. The LDDMM approach [13] relies on high- (usually infinite)
dimensional embeddings of shapes in ambient manifolds and finds an optimal
matching between objects through momentum fields. Another interesting recent
approach [14] represents and models vector fields on surfaces and considers a
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space of such surfaces. A slightly different approach [15] uses distributions or
currents for modeling shapes of surfaces. There is also the widely used landmark
based approach [16, 17] with a well defined statistical formulation.

It is often useful to directly analyze parameterized representations of surface
shapes, where quantities such as magnitudes and directions of deformations have
convenient physical interpretations. Thus, parameterization-based approaches to
shape surface modeling are still considered beneficial and will continue to be de-
veloped. Recently, Auzias et al. [18] proposed a model-based parameterization of
the cortical surface, where sulci and gyri are constrained to a specific coordinate
system. In our work, we represent surfaces using intrinsic curves and allow a
continuous deformation based matching of the surfaces via the curves. Surfaces
have been previously approximated by curves (for example, see NURBS [1]) in
the field of computer graphics, strictly for the purpose of surface editing and
deformations, and more recently for facial recognition and analysis [19].

In this paper, we propose an approach that defines an intrinsic coordinate pa-
rameterization on the surface which is defined by the surface conformal structure,
and present a novel approach for matching the underlying coordinate mappings
across different shapes. This method is general and can be applied to a wide
variety of shapes. Our approach directly represents the coordinate system by
isothermal curves and deforms the coordinate systems via invariant mappings
between them. As shown in this paper, this idea has important implications for
analyzing anatomical form. This paper is organized as follows: Sec. 2 introduces
the surface shape representation, Sec. 3 outlines a method for elastically match-
ing the coordinate systems across shapes, followed by experimental results (Sec.
4) on synthetic data, hippocampal shapes, and the cortex.

2 Surface Representation via Intrinsic Coordinate Maps

We consider a smooth, two-dimensional, genus zero, oriented surface S, and
assume that it admits a smooth parameterization x : D → R3. The domain
D can either be a unit plane or a sphere S2, although for the purpose of this
paper, we will assume D ≡ (u, v) ⊂ R2. Specifically D ≡ [0, 1] × [0, 1]. Further
we also assume that the parameterization x is isothermal. This means that the
local coordinates of the parameterization admit a conformal mapping from a
neighborhood of the surface S to the Euclidean plane. Then the coordinate
curves of the parameterization x are also isothermal. This condition implies
that 〈∂x

∂u
,
∂x

∂u

〉
=
〈∂x
∂v
,
∂x

∂v

〉
, and

〈∂x
∂u
,
∂x

∂v

〉
= 0, (1)

thus ensuring that the isothermal curves are orthogonal to each other. We denote
the isothermal curves by ψu(v = constant), and ψv(u = constant).

Theorem 1. Given a pair of orthogonal vector fields (wu,wv) at a point p ∈ S,
where dψu

dt (0) = wu,
dψv
dt (0) = wv, and ψu(0) = ψv(0) = p, there always exists a

parameterization x in the neighborhood of p such that the coordinate curves of x
are the integral curves of wu and wv.
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The proof of Theorem 1 due to Korn-Lichtenstein [20, 21] uses the notion of the
first fundamental form of surfaces, and the reader is referred to Varolin [22] for
a modern proof. The fundamental idea here is that one can always recover a
surface patch locally using the vector fields on the isothermal curves. Further,
the entire surface can be reconstructed using a collection of such overlapping
local patches. We thus represent the surface S by the coordinate map given by
the collection of curves,

Ψ ≡ ({ψu}, {ψv}),∀u, v ∈ [0, 1],where (2)

ψu, ψv : [0, 2π]→ R3
∣∣∣ ∫ 2π

0

ψ̇u(t)dt =

∫ 2π

0

ψ̇v(t)dt = 0. (3)

We list a few properties of the set Ψ below.

1. Since Ψ is defined intrinsically on the surface, it is invariant to rigid motions
(translations and rotations) of the surface.

2. Any angle-preserving mapping of the original surface generates a new Ψ
that will consist of a new family of isothermal curves. The original Ψ can be
recovered up to a diffeomorphism of the plane or the sphere.

3. The coordinate map Ψ can alternately be generated as a solution of the
Laplace’s equation ∆f = 0 for any harmonic function f : S → R.

2.1 Construction of Isothermal Curves using Conformal Mapping

 v

 u

u
v

Fig. 1: Example of coordinate
curves on a hippocampal sur-
face.

Any regular surface admits an isothermal co-
ordinate system [23]. A collection of isother-
mal coordinate systems under a particular ori-
entation defines a Riemannian structure on
the surface. Furthermore, such a surface is
locally conformal to a plane. Then the co-
ordinate functions of any two transition or
overlapping charts on this surface are holo-
morphic. We will exploit this idea to con-
struct isothermal curves on surfaces. Particu-
larly, in our work, isothermal curves are com-
puted from a global conformal mapping of the
surface with a holomorphic 1-form based method [24]. As discussed earlier, holo-
morphic functions and the associated differential forms can be generalized to
Riemann surfaces by using the notion of conformal structure. For example, a
holomorphic 1-form ω is a complex differential form, such that in each local
frame, (uα, vα), zα = uα + ivα, where i =

√
−1, the parametric representation

is ω = f(zα)dzα, where f(zα) is a holomorphic function. On a different chart
{Uβ , φβ}, with another local frame , (uβ , vβ), zβ = uβ + ivβ , where i =

√
−1,

we have ω = fβ(zβ)dzβ = fβ(zβ(zα))
dzβ
dzα

dzα, where fβ
dzβ
dzα

is still a holomor-
phic function. By Hodge theory, one may compute holomorphic 1-forms [24] on
simply connected (such as the cortex) or multiply connected (such as the hip-
pocampus) surfaces, where the computed holomorphic 1-forms induce a surface
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conformal parameterization on the Euclidean domain. For both hippocampal
and cortical surfaces, the holomorphic 1-form induces a special system of curves
on a surface, the so-called conformal net. Horizontal trajectories are the curves
that are mapped to iso-v lines in the parameter domain. Similarly, vertical tra-
jectories are the curves that are mapped to iso-u lines in the parameter domain.
The horizontal and vertical trajectories form a web on the surface. Because the
holomorphic 1-form induces a conformal parameterization, these curves become
isothermal curves defined in the prior section. For a tube-like shape or a genus
zero surface with one open boundary, the trajectory connectivity structure is
trivial (as there is no zero point). Our work uses these trajectories as the curves
defined on surface to represent an intrinsic coordinate system. Fig. 1 shows an
example of a conformal net on a hippocampal surface.

For some anatomical shapes, we label two consistent landmark curves at the
anterior and the posterior end. For example, in case of the hippocampus, we rep-
resent its anterior junction with the amygdala, and its posterior limit as it turns
into the white matter of the fornix. These are biologically valid and consistent
landmarks across subjects. We call this process topological optimization. Given
the hippocampal tube-like shape, the landmarks curves can be automatically
identified by finding the extreme points by searching along the first principal
direction of geometric moments of the surface [25]. By cutting along these two
landmark curves, a hippocampal surface is modeled by a cylinder-like surface,
i.e. a multiply connected surface. Alternately, the cortex is represented by a
genus zero surface with one open boundary by cutting along the boundary of
the corpus callosum.

3 Elastic Shape Matching between Surfaces

Given two surfaces S1 and S2, and their coordinate maps Ψ1 and Ψ2, we will
find an optimal mapping by deforming the coordinate maps from one surface
to the other. Since the map Ψ is not scale invariant, we normalize the scale
as follows. First in a neighborhood of a point p ∈ S, we have the local curve
parameterizations ψu : t ∈ [0, 2π) → R3, and ψv : t ∈ [0, 2π) → R3, that are
used to define the local surface parameterization as ∂x

∂u = dψu
dt

dt
du ,

∂x
∂v = dψv

dt
dt
dv .

Then the scale normalization is achieved using,

Ψ̃ =
Ψ√∫

D ||
∂x
∂u ×

∂x
∂v ||du dv

(4)

With a slight abuse of notation, we will refer to the scale-normalized map Ψ̃
as Ψ throughout the paper. For rotational alignment, we will first compute the
centroids of the set of any one of the coordinate curves. For example, for surface

S1, we compute σ1
u =

∫ 1

0
ψudu,∀u ∈ [0, 1]. Here σ1

u ∈ R3,∀u ∈ [0, 1]. Similarly,

for surface S2, we compute σ2
u =

∫ 1

0
ψudu,∀u ∈ [0, 1]. Then the optimal rotation

(Ô ∈ SO(3)) is initialized by carrying out a singular value decomposition Ô =



Surface Matching using Intrinsic Coordinates 63

ADBT =
∫ 1

0
σ1
uσ

2
udu, where A and B are left and right unitary matrices, and D

is a matrix given by

D =

1 0 0
0 1 0
0 0 |A||B|

 . (5)

Our approach is as follows. We simultaneously obtain a global as well as a locally
optimal matching of the surface via its isothermal curves. Instead of explicitly
imposing a Riemannian metric on the underlying geometrical structure, as done
in [14, 26], we propose a distance function on the coordinate curves directly.
Figure 2 shows the schematic of the workflow.

Global 
Matching

Local Curve 
Matching

�̂v

v0

1

1

Surface Matching

2⇡0

2⇡

0 2⇡

2⇡

2⇡0

2⇡

�̂v

v0

1

1vkvi vj

�̂vi
u

�̂vj
u

�̂vk
u

u

u

u

Fig. 2: Illustration of the global and local surface matching procedure. For each
v ∈ [0, 1], there is a local diffeomorphism of the isothermal curve.

3.1 Global Matching between Surfaces

In order to simplify the global matching, we observe that the isothermal curves
ψv can also be written as functions of u, since ψu can be reconstructed from
ψv owing to orthogonality. We will thus simplify the notation in Eqn. 3 and by
slight abuse of notation, denote the surface by the collection,

Ψ ≡ {ψv(u)},where u ∈ [0, 2π), (6)

ψv : [0, 2π]→ R3
∣∣∣ ∫ 2π

0

ψ̇v(u)du = 0,∀v ∈ [0, 1]. (7)

Let the coordinate maps Ψ1, and Ψ2 be given by {ψ1
v(u)}, and {ψ2

v(u)} respec-
tively. Then we define the matching problem as the minimizer,

dS(Ψ1, Ψ2) = min
φv

∫ 1

0

dψ(ψ1
v , Ô ψ2

φv )2[1 + φ̇v]dv, (8)

where φv : [0, 1] → [0, 1] is a diffeomorphism, and v ∈ [0, 1] is the index of the
isothermal curve. Furthermore dψ is the distance between isothermal curves v,
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and φv for a given v, and is defined in Sec. 3.2. Ideally, we would like the distance
dS to be inverse-consistent and invariant to reparameterizations by the index of
the isothermal curve s.

Proposition 1. The distance dS is invariant to reparameterization by the index
function of the isothermal curves.

Proof. In order to check for invariance due to reparameterization, we evalu-
ate Eqn. 8 under an arbitrary reparameterization of the time parameter λ(v) :
[0, 1]→ [0, 1]. Without loss of generality, we set Ô = I, an identity matrix Thus
Eqn. 8 becomes

dS(Ψ1(λ(v)), Ψ2(λ(v))) = argmin
φλ(v))

∫ 1

0

dψ
(
ψ1
λ(v), ψ

2
φ(λ(v))

)2
[1 + φ̇(λ(v))]λ̇(v)dv.

(9)
By performing a change of variables λ(v) = g, and letting λ(0) = 0, λ(1) = 1
without loss of generality, we get dg = λ̇(v)dv. Also we note that d

dvφ(λ(v)) =

φ̇(λ(v))λ̇(v)dv. Thus the reparameterized distance becomes

argmin
φg

∫ 1

0

dψ
(
ψ1
g , ψ

2
φg )2[1 + φ̇g]dg, (10)

which is same as Eqn. 8.

Proposition 2. Given that the distance between the isothermal curves dψ is
symmetric, then the distance dS is an inverse-consistent (symmetric) distance
between coordinate maps.

Proof. In order to check for inverse-consistency, we need to verify that dS(Ψ1, Ψ2)

under the optimal time warp φ̂v is same as dS(Ψ2, Ψ1) under the optimal time

warp φ̂−1v . Again, without loss of generality, we set Ô = I, an identity matrix.
Noting that d

dvφ
−1
v = 1

φ̇(φ−1
v )

under the inverse function theorem, we rewrite Eqn.

8 as

dS(Ψ2, Ψ1) = min
φ−1
v

∫ 1

0

dψ
(
ψ2
v , ψ

1
φ−1
v

)2[
1 +

1

φ̇v(φ
−1
v )

]
dv. (11)

Again by change of variables we let φ−1v = t. Thus dv = φ̇vdt. Therefore the
above distance becomes

dS(Ψ2, Ψ1) = min
φ−1
v

∫ 1

0

dψ(ψ1
v , ψ

2
φv )2[φ̇(t) + 1]dt, (12)

which is same as Eqn. 8.

3.2 Local Curve Matching of Coordinate Parameterizations

The objective function (Eqn. 8) for global matching involves the curve distance
between isothermal curves, and further requires it to be symmetric. To obtain an
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efficient, invariant and symmetric mapping between coordinate curves ψ1
v , and

ψ2
v , we consider the following distance function:

dψ(ψ1
v , ψ

2
v) = argmin

r,O∈SO(3),γu∈S1

1

2

∫ 2π

0

[〈
ψ1
v − r ·O(ψ2

v ◦ γu), ψ1
v − r ·O(ψ2

v ◦ γu)
〉

+
〈
ψ2
v − r ·O(ψ1

v ◦ γ−1u ), ψ2
v − r ·O(ψ1

v ◦ γ−1u )
〉]
du,
(13)

where the operation r · ψ1
v = ψ1

v(s − r)|mod2π, simply shifts the starting point
of the curve, O ∈ SO(3) is a local rotation, and γ : S1 → S1 is a local repa-
rameterization. For a discretized version of the curve, the shift in origin r is
found exhaustively, and the optimal rotation is found using singular value de-
composition as described before. Finally, given an optimal shift and rotation,
we solve Eqn. 13 using dynamic programming. Eq. 13 is symmetric, which also
causes the distance defined in Eq. 8 to be symmetric. It should be noted that
the Eq. 8 jointly optimizes the mapping in both u and v directions via the global
parameterization φv in Eqn. 8 and the local parameterization γu in Eqn. 13.

4 Results

4.1 Synthetic Data

Target Euclidean 
Matching

Elastic
Matching

Fig. 3: Comparison of Euclidean and elastic surface matching for synthetic data.
Top row shows the matching features in color. Bottom row shows the corre-
sponding parameterizations.

The synthetic data consists of two cylindrical shapes that differ by the lo-
cations of the protrusions along the length. We use the same method as the
hippocampal surface to induce isothermal curves on them. Although this is a
manufactured example, the alignment resulting from shape matching provides
insights about the behavior of the algorithm. Fig. 3 (top row) shows the target
and the source shapes color coded according to the parameterization in the v
direction. The middle column shows the Euclidean matching of the source to the
target. This is achieved by setting φv = id,∀v ∈ [0, 1], and γu = id for each v.
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The last column shows the elastic shape matching of the source by minimizing
Eq. 8 and Eq. 13. The bottom row shows the respective parameterizations result-
ing from the matching. In the last column, we observe that the optimal matching
is achieved by shifting the bump downward, while preserving the features (shown
by color) on the bump. Thus the corresponding parameterization (last row, last
column) shows large stretching before the bump, and compression immediately
after. We also show a smooth deformation between the target to the source for

A

B
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ea

n 
A
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ge
El
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tic

A
ve
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ge

Fig. 4: Left panel: Smooth deformations between the target and the source shapes
for A. Euclidean matching, and B. Elastic matching. Right panel: Average shapes
using Euclidean and elastic matching.

both Euclidean matching (Fig. 4 A) and the elastic matching (Fig. 4 B). The
right panel in Fig. 4 also shows the average shapes. The average shape for the
elastic matching preserves the bump as well as the parameterization (shown by
color) compared to the Euclidean case.

4.2 Cortical Registration

Here, we show an example of matching intrinsic coordinate maps between two
cortical surfaces, extracted using the MNI protocol [27]. Fig. 5 shows compar-
isons of Euclidean and elastic matching of the coordinate maps for the cortical
surfaces. It should be noted that no sulcal curves were traced on the surfaces,
and that the shape matching is landmark-free. The circles highlight where there
is a noticeable improvement in cortical homology due to the elastic matching.
While this example is for demonstration purposes only, and the nature of the
cortical correspondence warrants careful validation, our goal here was to illus-
trate the potential for a simple elastic curve registration based method to solve
a general surface matching problem.

4.3 Hippocampal shape analysis

For the purpose of hippocampal morphometry, the imaging data consisted of high
resolution T1 MRI images of 40 healthy subjects (15 Males / 25 Females) in the
age range 18 − 80 years with the mean age of 44 ± 20 years. The hippocampal
surface meshes were segmented using Freesurfer [28] and the intrinsic coordinate
maps were generated using the procedure in Sec. 2.1. Fig. 6 shows the shape
alignment between pairs of target and the source hippocampi from this dataset.
Each row of Fig. 6 shows the source hippocampus followed by the aligned target
due to Euclidean matching, and the aligned target shape due to elastic matching.
All shapes are color-coded according to the underlying parameterization, and
the structural alignment can be visualized by similar colors. Visually, the elastic
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Fig. 5: Cortical surface mapping between the target shape (top) and the source
shape using Euclidean (middle) and elastic matching (bottom). Also shown are
the coordinate curves colored according to the parameterization. Circles denote
improvement in registration due to elastic matching.

matching yields a better alignment as observed in the anterior (top), central,
and the posterior regions.

We then performed statistical analysis of the morphology of the hippocampus
to model the effect of age on the shape. We selected an arbitrary shape in
the dataset as the template and aligned all the surfaces to it using the elastic
shape matching. Then all the aligned surfaces were grouped together, and an
average shape of the hippocampal surfaces was computed for both the left and
the right hemisphere in the brain. Finally for each aligned surface, we computed
the radial distance from each vertex on the surface to the medial axis. This
distance was used as the shape variable in the statistical analysis. We used a
general linear model for inferring the effect of age after covarying for gender on
the hippocampal morphology. Fig. 7 shows the statistically significant p-values
(after correcting for multiple comparisons using the false discovery rate yielding
a cut-off value p = 0.01) overlaid on three different views of the averages of
the left and the right hippocampus. These shapes were uniformly scaled, so the
results show contractions exclusively due to shape with the progression of age.
This result is in agreement with the established knowledge that the brain volume
and also the hippocampal volume atrophies with age. Finally we also performed
supervised classification to determine the accuracy of hippocampal shape as a
predictor for age. We defined the two classes as subjects with age ≤ 30 years,
and those with age > 30 years. We then computed the distance given in Eqn. 8
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Target Euclidean
Matching

Elastic 
Matching

Fig. 6: Shape matching for hippocampal surfaces, colored according to the pa-
rameterization. Each row shows a different matched pair of hippocampal shapes.

L R L R L R

Posterior Anterior

0.05

-0.05
-0.01

0.01
0

Fig. 7: Significant age effects (corrected for multiple comparisons) on hippocam-
pal shape shown by p-values after applying a general linear model (GLM) co-
varying for gender. The colormap is shown at the bottom.

between the individual shapes to the mean and used it as a classifier in a support
vector machine (SVM) framework. When computing distances, we computed
the shape distances in the following ways i) based on exhaustive matching of
the conformal nets, and ii) based on partial matching (± 20 coordinate curves
from the center) of the conformal nets from individuals to the mean shape. Fig.
8 shows the accuracy for predicting the age based on hippocampal shape for
the two strategies. We observed that the average accuracy improved from 57.5%
to 62.5% when we restricted the matching to the subset of the conformal nets.
This may be because the classification of age may be sensitive to morphological
changes near the center of the shape (Also see Fig. 7).

5 Discussion

We presented a geometric approach for mapping intrinsic coordinate systems
across shapes. The coordinate systems are derived from the holomorphic 1-form
that exploits the conformal structure of the surface. Bidirectional coordinate
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Age < 30 Age > 30

11 8

9 12

Age < 30

Age > 30

57.5% Age < 30 Age > 30

11 6

9 14

Age < 30

Age > 30

62.5%

(a) (b)

Fig. 8: Percent Accuracy and confusion matrix for age prediction from hippocam-
pal shape after training a 10-fold SVM classifier. Percent accuracy differs depend-
ing upon (a) Exhaustive matching of conformal nets from individual to mean,
and (b) Partial matching of conformal nets from individual to mean.

matching is achieved jointly using both a global diffeomorphic warping function
as well as a local diffeomorphic function invariant to local coordinate reparam-
eterizations. This achieves both global shape alignment while optimizing local
shape correspondences. In the future, we will investigate methods for performing
statistical shape analysis of surfaces via the coordinate map representation, as
well as perform detailed validation and comparisons with other approaches such
as the spectral methods for subcortical shapes, as well as fluid-based registration
approaches for cortical surfaces.
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