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Abstract. In neuroimaging, voxel based morphometry (VBM) has been
a valuable tool of identifying brain-wide differences between populations.
One of the key elements of VBM is to define a space for voxelwise compar-
isons. However, errors in this mapping to common space and variations
of brain morphology, both natural and pathologic can result in false posi-
tives. In this work we explore a new framework, where a spatially varying
morphological similarity graph is created between pairs of images. This
graph is then used to stratify natural and pathological variability in a
VBM-like setting. In contrast to VBM, which describes the group dif-
ferences on an average brain morphology, sVBM describes how different
brain morphologies are independently affected by pathology. Due to its
pairwise nature, this technique provides smoother and better localised
differences between populations, possibly providing novel insights into
the homogeneity of pathological effects for different brain morphologies.

1 Introduction

The characterisation of morphometric differences between healthy and patholog-
ical populations is one of the cornerstones of medical imaging. Brain morphom-
etry has been extensively studied in diverse populations, ranging from dementia
(e.g. Alzheimer’s and Huntington’s disease) and schizophrenia, to autism and
even normal ageing.

The morphometric characterisation of populations explores differences in vol-
ume, mass, shape, cortical thickness and tissue density. Due to the advent of high
resolution anatomical imaging and increased computational power, voxel-based
techniques have become the de facto tool for morphometric analysis. These tech-
niques range from the classic voxel-based morphometry [1], characterising dif-
ferences in tissue density, to tensor- [2] and deformation-based [3] morphometry,
characterising differences in the mapping tensor and deformation parameters re-
spectively. Voxel based morphometry (VBM) involves a voxel-wise comparison
of the local concentration of grey matter between two groups of subjects when
mapped to a common space. In order to reduce the bias towards the choice
of template, a mean shape/appearance space, known as the groupwise space,
is often used for the comparison[4]. Despite their seeming optimality for mor-
phometric comparison, groupwise spaces suffer from three main problems: (1)
their construction is highly dependent on the choice of image similarity metric
and regularisation [5]; (2) the mapping errors to the groupwise space can result
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Fig. 1. The ”Apples and Oranges” painting by Paul Cézanne, illustrating the discrim-
ination complexity between different but similar objects.

in morphometric mismatch, a problem which has generated wide criticism [6,
7]; (3) and groupwise spaces mix naturally occourring morphologies (e.g. sulcal
patterns, brain shape) with pathological (e.g. atrophy) effects. This work focuses
on the latter effect.

Some of the above effects have been studied to some degree. Lepore et al.
[8] and Koikkalainen et al. [9] have looked at multi-template TBM but have not
explored the stratified space statistics. Other techniques based on pattern-based,
feature-based morphometry, patch-based morphometry have also been used to
overcome some of the VBM/TBM limitations by attempting to improve the
power to detect pathological differences at the population level. However, these
techniques do not explore how pathology affects each different brain morphology
independently.

By mixing pathological effects with different morphologies, the VBM analysis
is to some degree ”comparing apples to oranges”, i.e. when two items or groups
of items cannot or should not be meaningfully compared (see Fig. 1). The use
of a groupwise space for morphometric comparison has two underlying assump-
tions: first, that pathology affects all morphologies in a similar manner, i.e. it
assumes that the pathological and natural variability in the high dimensional
space of all brain morphologies are linearly separable, even though it is well
known that different morphologies have different connectivity and functional ac-
tivation patterns [10]; second, that the point estimate of the mean and variance
of the population tissue densities assumes a monomodal distribution and accu-
rately summarises the full population (see Fig. 2-right), i.e. VBM combines all
modulated tissue densities in a groupwise space and then obtains a point esti-
mate of the difference in tissue density between populations. However, certain
phenotypes might have protective or deleterious effects on pathology, indicating
that the tissue density differences might not be monomodal.

Some groups have explored the idea of stratifying populations in different
subgroups for the purpose of segmentation [11, 12]. However, this stratification
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normally attempts to separate the groups according to their pathological status,
not taking into account the fact that there are different non-pathology-related
morphological subgroups. Subsequently, further stratification into different local
morphological subgroups is necessary. In the limit, this population stratification
process considers each subject’s morphological subgroup as a stratum. Interest-
ingly, this limit situation can be interpreted as the same problem solved by the
multi-atlas propagation and label fusion community [13, 14], where the morpho-
logical similarity between subjects is used as a hub for label propagation. This
stratification strategy was used in [15] for the purpose of classification, producing
one of the highest reported accuracy results for AD prediction.

This work explores a novel approach for stratified voxel-based morphometry
(sVBM). We re-interpret the question behind VBM as a morphology specific pro-
cess. This approach is built on the Geodesic Information Flows (GIF) implicit-
graph construct proposed by Cardoso et al. [16], which stratifies the subjects in a
population with the use of an implicit spatially variant graph (see Fig. 2-right).
This stratified space is then used for morphometric comparison. Overall, this
work attempts to answer the question: how is each brain morphology affected
by pathology?

2 Methods

This section will first introduce the mathematical framework and the undirected
graph for geodesic information flow (GIF), followed by the introduction of the
morphological distance metric between images. The GIF framework will then be
used for voxel-based tissue density comparison in order to separate naturally-
occurring from pathological effects. These stratified effects are then combined in
a groupwise space for population analysis.

Sulcal Patterns
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Fig. 2. Left) Representation of how the tissue density flows between subjects in a
groupwise approach, representing the average shape and appearance of the popula-
tion. Right) In a pairwise approach, a spatially varying implicit graph is constructed.
At a certain voxel location, the neighbourhood of each subject is dependent on the
morphological similarity.
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2.1 The geodesic information flows framework

Let a set Y of N images be the full set of observed T1-weighted MRI data
with the i-th image of this set denoted by Yi. Each image Yi is a vector of size
Li, with the voxel v denoted by Yi(v). In this framework, all images in the
database need to be independently non-rigidly mapped to every other image
(pairwise registration). The mapping between image Yi and image Yj at voxel v
is denoted by Ti→j(v). As the framework requires a symmetric, inverse consistent
and diffeomorphic coordinate transformation, we use a symmetric variant of a
non-rigid free-form registration algorithm as described in [17].

As in [16], let D be a set of distance matrices characterising the morphological
similarity between images, with the i-th matrix of this set denoted by Di. Here,
Di will be an Li × (N − 1) matrix describing the distance between the image Yi
and each one of the remaining (N − 1) images at every voxel position v. More
specifically, Dij(v) will contain the distance between the v-th voxel of image
Yi and its corresponding location in image Yj . Under this assumption, a heat
kernel decay function Wij(v) is then used as a weight to diffuse information

between images. This kernel is defined as Wij(v) = exp(−Dij(v)
t ), with t being

the temperature of the heat kernel that will determine the distance and the speed
of information diffusion and Dij(v) is a morphological distance defined as in
Cardoso et al. [16]. Here, t is set to 1 and its optimisation is out of the scope of this
work. Note that the graph is undirected only if the distances are a semi-metric
(subadditivity is not required). In short, the morphological neighbourhood of a
voxel in a certain subject will be restricted to the most similar subjects from
each group. In this work, α (as defined in [16]) will be set to 0.9, reducing
the influence of the co-ordinate mapping in the morphological similarity metric.
This information will be later introduce through Jacobian modulation. Also, no
truncation is applied to Wij(v), making it spann the full space of morphologies.

2.2 Tissue Segmentation

All Ni images are segmented into their 3 constituent tissue classes: white-matter
(WM), grey-matter (GM) and cerebrospinal-fluid (CSF). The tissue segmen-
tation is obtained using AdaPT [18], an EM-based probabilistic segmentation
algorithm. This algorithm reduces the bias introduced in the tissue segmentation
by the choice of tissue priors through a patient-specific prior sampling procedure.
Here, Sc

i (v) represents the probability for voxel v in image i to belong to tissue
class c. All images are skull-stripped using STEPS [19].

2.3 Stratified VBM

In VBM framework, all tissue segmentations are mapped to a groupwise space
and commonly modulated by the Jacobian determinants of the transformation.
The modulated segmentation of image i at voxel v in the groupwise space for
tissue X is denoted by M c

i←GW(v) = Sc
i (Ti←GW(v)) × |Jac(Ti←GW(v))|. The
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global affine transformation between the images was removed from the Jacobian
estimation in order to reduce the influence of head size.

Unlike VBM, which compares all the segmentations in a groupwise space,
sVBM compares the segmentations in the space of every image in the database.
For a subject i, the segmentation of tissue type C of all other subjects j ∈ N \{i}
is mapped to the space of i and modulated by the Jacobian determinants. The
modulated segmentations are denoted by M c

i←j . The same process is repeated
for all i ∈ N . Thus, N × (N − 1) modulated probability images are generated
per tissue type. Each modulated probability is smoothed by a 2mm isotropic full
width at half maximum (FWHM) Gaussian filter. This filtering is intrinsically
smaller than in VBM as the pairwise registration and the weighting scheme
reduces the registration errors.

As previously mentioned, Wij(v) characterises the morphological similarity
between image i and j at voxel v. Thus, Wij(v) can be used to weight the
modulated tissue densities by the morphological similarity between subjects.

Let the N subjects be divided into two sub-populations of interest: e.g.
healthy-controls (NHC), and diseased subjects (NP ). Within the space of a
specific subject i, the difference in modulated tissue densities between the two
groups at voxel v and for tissue X, here denoted by Dc

i (v), will be given by:

Dc
i (v) =

∑
∀j∈NP \{i}Wij(v)×M c

i←j(v)∑
∀j∈NP \{i}Wij(v)

−
∑
∀j∈NHC\{i}Wij(v)×M c

i←j(v)∑
∀j∈NHC\{i}Wij(v)

These density difference maps are obtained for every subject i and tissue c,
resulting inN×C modulated tissue difference maps between the two populations.
Each one of these maps, Dc

i , provides voxel-wise information about the difference
in the density of tissue type c between the two populations, weighted by the
local similarity between each subject j and the subject i. Note that the current
implementation does not take into account the presence of covariates like age
and gender, as the testing data is balanced. However, this can be easily added
through a weighted least-squares GLM, using Wij as weights.

2.4 Groupwise projection

The values of Dc
i already characterise the differences between the populations

for each of the subjects’ morphological cluster. Thus, one can now map them
to the groupwise space without entangling the pathological with the naturally-
occurring variability. For all subjects and tissue types, the tissue density differ-
ences are then mapped to the groupwise space, in a similar fashion to the VBM
approach. However, in contrast to VBM, where only a point estimate of the
populations tissue density difference is obtained at each voxel, in sVBM, a non-
parametric distribution of tissue density differences for the different morpholo-
gies and between the diseased and heathy populations is obtained at each voxel
v of the groupwise space. The vector of tissue density differences at voxel v in the
groupwise space is denoted byDc

GW (v) = {Dc
1(T1←GW(v)), . . . , Dc

N (TN←GW(v))} .
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2.5 Sampling the null distribution

In order to test the significance of the findings, a non-parametric strategy sim-
ilar to permutation testing is employed. Permutation methods (also known as
randomisation methods) can be used for inference and thresholding of statistic
maps when the null distribution is not known due to noise, population sample
and the use of non-standard statistics. Ideally for sVBM, the null distribution
should be constructed in the space of each patient’s morphology in order to
provide information about the null distribution of density differences for each
subject’s morphological cluster. For a relatively large number N , this process
would be computationally very time consuming. Furthermore, the multiple null
distributions on the space of each subject’s morphology would have to be prop-
agated to the groupwise space using Ti←GW(v), breaking the null distribution’s
independence criterion for each voxel. Instead, an approximation of the true null
distribution of Dc

GW is obtained by permuting the labels of M c
i←GW [20]. A 6mm

isotropic FWHM Gaussian filter smoothing is necessary here to correct for the
problem of low variance [21] and also in order to account for minor mapping
errors to the groupwise space. In this work, 20,000 random label samples were
used per voxel to build the null distribution H0. An example of the null distri-
bution for a voxel in the parahippocampal gyrus can be seen in purple in Fig.
3. The probability that a sample of Dc

GW comes from H0 will thus be given
by

∫
f(Dc

GW )× f(H0), with f(Dc
GW ) and f(H0) being the probability density

function of Dc
GW and H0 respectively.

3 Data

Due to the computational complexity of the pairwise registration strategy, only
100 ADNI2 (http://adni.loni.ucla.edu) data sets (50 healthy-controls and

0.20-0.2-0.4-0.6 0.20-0.2-0.4-0.6

Fig. 3. The null distribution H0 (in purple) for a voxel in the parahippocampal gyrus.
Left) The green line represents the voxel’s GM tissue density difference; Right) A
smoothed probability density function of the samples in Dc

GW (in green) suggesting a
non-gaussian distribution of pathological effects for the different brain morphologies.
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50 AD subjects) were used for validation. The 50 subjects of each group were
chosen as the 50 first subjects ranked by scan number. The list of subjects
used in this work will be made available on the author’s website at the time of
publication. No age and gender statistical differences were found between the
two populations.

4 Validation

All subjects were affinely mapped to a template’s physical space without resam-
pling by updating the header information. All these affinely-aligned images were
then non-rigidly mapped to each other in order to obtain Ti→j(v), Wi→j(v) and
Mi→j(v), requiring 9900 registrations (100 × 99). All density difference maps
Dc

GW and segmentations were also mapped to a mean deformation space, here
called the groupwise space. The segmentations were modulated by the Jacobian
determinant and smoothed with a 6mm FWHM Gaussian filter (M c

i←GW), sim-
ilar to VBM, accounting for possible mapping errors. These modulated segmen-
tations were then used to sample H0 and the p-values (P-map) of the sVBM’s
population differences map. For comparison purposes, the same smoothed mod-
ulated segmentations were also used to estimate a regular VBM-based difference
map between the AD and HC populations and its associated p-values. All p-
maps are presented uncorrected for multiple comparisons and masked to regions
with density above 0.1. Results for the GM are shown in Fig. 4.

5 Discussion

The proposed method shows a well localised and anatomically plausible pattern
of atrophy for AD when compared to HC. By stratifying the naturally-occurring
image morphologies from the estimation of pathological effects, the mean density
differences between the populations become shaper and more pronounced. More
interesting than the accuracy of density difference localisation are the character-
istics of the non-parametric distribution DGW (see Fig. 4-bottom). The mean,
std, 10th and 90th percentiles of the density difference distribution DGW at
each voxel are presented in Fig. 4. Note that the least pathologically-affected
brain morphologies (90th percentile) still suffer from atrophy in the temporal
lobe and thalami area. However, the most pathologically-affected morphologies
(10th percentile) suffer from atrophy in nearly all brain regions. The skewness
and standard deviation (std) of DGW suggest that the disease process does not
affect all morphologies in a similar manner, with some specific local brain mor-
phologies showing almost no pathological effects (see Fig. 4-bottom right).

6 Conclusion

The proposed work presents a novel technique for morphometric characterisation
of population differences. In contrast to VBM, which provides an answer to
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Groupwise VBM P-map sVBM P-map

Groupwise GM VBM Difference sVBM Mean Difference

DGW std DGW 10th percentile DGW 90th percentile

Fig. 4. The first row shows the groupwise mean image, and the positive and negative
VBM and sVBM p-maps thresholded at 0.05, showing sharper atrophy localisation. The
red and blue colours represent atrophy and expansion respectively. Note the improved
localisation accuracy of the pathological differences in sVBM. The second row shows the
mean GM segmentation, the VBM GM density difference and the sVBM GM density
difference mean, both between the AD and HC populations. The last row shows the
std and the 10th and 90th percentile of the density difference distribution DGW .

the question “How does pathology affect an average brain morphology?”, the
proposed work attempts to answer the question “How does pathology affect
each individual brain morphology?”. By answering a different question, sVBM
could provide a complementary and possibly richer source of information about
neurodegeneration.
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15. Coupé, P., Eskildsen, S.F., Manjón, J.V., Fonov, V.S.: Scoring by nonlocal image
patch estimator for early detection of Alzheimer’s disease. NeuroImage: Clinical
(2012)

16. Cardoso, M.J., Wolz, R., Modat, M., Fox, N., Rueckert, D., Ourselin, S.: Geodesic
Information Flows. In Ayache, N., Delingette, H., Golland, P., Mori, K., eds.:
Medical Image Computing and Computer-Assisted Intervention – MICCAI 2012.
Springer Berlin / Heidelberg, Berlin, Heidelberg (2012) 262–270

17. Modat, M., Cardoso, M.J., Daga, P., Cash, D., Fox, N.C., Ourselin, S.: Inverse-
Consistent Symmetric Free Form Deformation. In: WBIR. (July 2012)

18. Cardoso, M.J., Melbourne, A., Kendall, G.S., Modat, M., Robertson, N.J., Marlow,
N., Ourselin, S.: AdaPT: An adaptive preterm segmentation algorithm for neonatal
brain MRI. NeuroImage (August 2012)

19. Jorge Cardoso, M., Leung, K.K., Modat, M., Keihaninejad, S., Cash, D., Barnes,
J., Fox, N.C., Ourselin, S., for the Alzheimer’s Disease Neuroimaging Initiative:
STEPS: Similarity and Truth Estimation for Propagated Segmentations and its
application to hippocampal segmentation and brain parcelation. MedIA (March
2013)

20. Nichols, T.E., Holmes, A.P.: Nonparametric permutation tests for functional neu-
roimaging: a primer with examples. Human Brain Mapping 15(1) (January 2002)
1–25

21. Ridgway, G.R., Omar, R., Ourselin, S., Hill, D.L.G., Warren, J.D., Fox, N.C.:
Issues with threshold masking in voxel-based morphometry of atrophied brains.
NeuroImage 44(1) (2009) 99–111


