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Abstract. In the landmark large deformation diffeomorphic metric map-
ping (landmark-LDDMM) formulation for image registration, we con-
sider the motion of particles which locally translate image data. We then
lift the motion of the particles to obtain a motion on the entire image.
However, it is certainly possible to consider particles which also apply lo-
cal rotations, scalings, and sheerings. These locally linear transformations
manifest as a result of a non-trivial first derivative of a diffeomorphism.
In this article, we seek to understand a structurally augmented parti-
cle which applies these local transformations. Moreover, we seek to go
beyond locally linear transformations by considering the algebra behind
the k-th order Taylor expansions of a diffeomorphism, a.k.a. the k-jet
of a diffeomorphism. The particles which result from understanding the
algebra of k-jets permit the use of higher-order local deformations. Addi-
tionally, these particles have internal symmetries which lead to conserved
momenta when solving for geodesics between images. Knowledge of these
structures provide both a sanity check and guide for future implementa-
tions of the LDDMM formalism.

1 Introduction

In the Large Deformation Diffeomorphic Metric Mapping (LDDMM) formula-
tion of image registration, we begin by considering an image on a manifold
M which we transform via the diffeomorphism group, Diff(M). As a finite
dimensional representation of Diff(M) we consider the space of Landmarks,
Q := {(x1, . . . ,xN ) ∈ MN | xi 6= xj when i 6= j}. Given a trajectory q(t) ∈ Q
we can construct a diffeomorphism ϕ ∈ Diff(M) by integrating a time depen-
dent ODE obtained through a horizontal lift from TQ to T Diff(M). In partic-
ular, LDDMM is fueled by a natural lift from geodesics on Q into geodesics on
Diff(M). However, this version of LDDMM only allows for local translations of
image data (see Figure 1). If we desire to consider higher-order local transfor-
mations (such as shown in Figures 2 and 3) we should augment our particles
with extra structure. This augmentation is precisely what is done in [SNDP13].
In this paper we explore this extra structure further by finding that the space
in which these particles exist is a principal bundle, π(k) : Q(k) → Q.1 In other

1 For example, if M = Rn, we find Q(1) = GL(n)× Rn.
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words, the particles of [SNDP13] have extra structure, analogous to the gauge of
a Yang-Mills particle. As a result of Noether’s theorem, this extra symmetry will
yield conserved quantities. Identifying such conserved quantities can guide fu-
ture implementations of the LDDMM formalism. In particular, integrators which
conserve Noetherian momenta are typically very stable, and capable of accuracy
over large time-steps [HLW02]. Finally, we seek to study this symmetry using
coordinate-free notions so as to avoid restricting ourselves to Rn. This is partic-
ularly important in medical imaging wherein one often deals with the topology
of the 2-sphere [GVI04,KSKL13].

Fig. 1. A 0th-order jet Fig. 2. A 1st-order jet Fig. 3. A 2nd-order jet

2 Background

Consider LDDMM [FIAL05,YILL05] and the deformable template model [Gre94].
In this framework one seeks to minimize a cost functional on Diff(M) which pro-
vides some notion of distance between images. It is customary to use particles (or
“landmarks”) and interpolate the particle velocities in order to obtain smooth
vector fields on all of M . In certain cases, the diffeomorphisms obtained by in-
tegration of these fields satisfy a set of geodesic equations (see [MD10, §5.4] or
[HSS09, Ch. 15]). However, local translations of data do not encompass all the lo-
cal transformations of local image data. By “local image data” we mean the data
of an image which is contained in the germ of a single point in M . Such consid-
erations are articulated in [FRVK96] wherein the authors consider the truncated
Taylor expansion of gray-scale image data about a single point. There the au-
thors sought to understand how the heat equation evolves this Taylor expansion
in order to design multi-scale filtering techniques. The spirit of [FRVK96] is very
close to what will be explained here, where we will consider Taylor expansions
of diffeomorphisms (a.k.a. “jets”). It is notable that the kth-order jet of a dif-
feomorphism is precisely the (finite-dimensional) object required to advect the
Taylor expansions of image data; thus, this paper can be seen as an LDDMM
analog of [FRVK96]. In particular, we will be investigating the version of land-
marck LDDMM proposed in [SNDP13], in which the particles exhibit higher
order data. This higher order data is equivalent to the time-derivative of a k-jet
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of a diffeomorphism. For the case k = 1, we obtain particles which are capable
of locally scaling and rotating certain regions (these are called “locally affine
transformations” in [SNDP13]). These more sophisticated particles have struc-
tures analogous to the gauge symmetry of Yang-Mills particles [CMR01,YM54].
In order to understand this, we will invoke the theory of symplectic reduction
by symmetry [MW74,AM78]. In particular, we will perform subgroup reduction
[CMR01,MMO+07] to understand these new particles.

3 Geodesic flows on Diff(M)

Let M be a manifold and let Diff(M) be the group of smooth diffeomorphisms
on M . The Lie algebra of Diff(M) is the vector space of smooth vector field on
M , denoted X(M), equipped with the Jacobi-Lie bracket.2 In fact, any tangent
vector vϕ ∈ Tϕ Diff(M) can be viewed as a composition v ◦ ϕ for some v ∈
X(M). We can construct a right invariant metric by choosing an inner product
〈·, ·〉X(M) : X(M) × X(M) → R. Given this inner-product, the corresponding
Riemannian metric on Diff(M) is given by

〈vϕ, uϕ〉Diff(M) := 〈ρ(vϕ), ρ(uϕ)〉X(M) (1)

where ρ : vϕ ∈ T Diff(M) 7→ vϕ ◦ ϕ−1 ∈ X(M) is the right Maurer-Cartan form.
The LDDMM formalism involves computing geodesics on Diff(M) with re-

spect to a metric of the form (1). In particular this means solving the Euler-
Lagrange equations with respect to the Lagrangian L : T Diff(M) → R given
by

L(vϕ) :=
1

2
〈vϕ, vϕ〉Diff(M). (2)

Note that for any ψ ∈ Diff(M) we can act on the vector vϕ ∈ Tϕ Diff(M) by the
right action vϕ 7→ vϕ ◦ ψ. Under this action we obtain the following proposition
[HSS09,MD10].

Proposition 1. The Lagrangian of (2) is invariant with respect to the right
action of Diff(M) on T Diff(M) given by composition.

While Diff(M) is interesting, we will instead be leveraging smaller symmetry
groups via the following corollary.

Corollary 1. Let G ⊂ Diff(M) be a subgroup. Then L is G-invariant.

4 Higher-order isotropy subgroups

Consider the space of n-tuples of non-overlapping points in M denoted by

Q := {(x1,x2, . . . ,xn) ∈Mn | i 6= j =⇒ xi 6= xj}.
2 We will either assume M is compact, or if M = Rd we will only consider vector-fields

in the Schwartz space of all vector fields.
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Given any z ∈ Q we can consider the subgroup of Diff(M) given by Gz := {ψ ∈
Diff(M) | ψ(z) = z} where ψ(z) ∈Mn is short-hand for (ψ(z1), . . . , ψ(zn)) with
z = (z1, . . . , zn) ∈ Mn. The homogenous space Diff(M)/Gz ≡ Q and landmark
LDDMM can be seen as a reduction by symmetry with respect to Gz. However,
we wish to consider the version of LDDMM proposed in [SNDP13] wherein
higher-order momentum distributions are considered. To obtain particles with

orientation and shape, we consider the subgroup G
(1)
z = {ψ ∈ Gz | Tzψ = Tzid}

where id ∈ Diff(M) is the identity. In local coordinates x1, . . . , xd for M we see

that ψ ∈ G(1)
z if and only if ∂ψi

∂xj

∣∣∣
x=zk

= δij for k = 1, . . . , N .

We find that the homogenous space Diff(M)/G
(1)
z is a non-overlapping subset

of the N copies of the frame bundle of M [KMS99, Chapter 4]. This gives
1st-order particles new qualities, such as shape and orientation, and allows the
landmark LDDMM formalism to express localized transformations such as local
rotations and scalings. However, these locally linear transformations are only
the beginning. We may consider “higher-order” objects as well. This requires a
“higher-order” notion of isotropy, which in turn requires a “higher-order” notion
of the tangent functor T .

4.1 Higher order tangent functors

Given two curves a(t), b(t) ∈ M we write a(·) ∼k b(·) if the kth-order time
derivatives at t = 0 are identical. In fact, ∼k is an equivalence class on the space
of curves on M , and we denote the equivalence class of an arbitrary curve a(·)
by [a]k. For k = 0 the quotient-space induced by this equivalence is M itself.
For k = 1 the quotient space is TM . For arbitrary k ∈ N we call the quotient
space T (k)M . In effect, T (k)M consists of points in M equipped with velocities,
accelerations, and other higher order time-derivatives up to order k.

Finally, given any ϕ ∈ Diff(M) the map T (k)ϕ : T (k)M → T (k)M is the
unique map which sends the equivalence class [a]k consisting of the position a(0),

velocity d
dt

∣∣
t=0

a(t), acceleration d2

dt2

∣∣∣
t=0

a(t), . . . , dk

dtk

∣∣∣
t=0

a(t) to the equivalence

class [ϕ ◦ a]k consisting of the position ϕ(a(0)), velocity d
dt

∣∣
t=0

ϕ(ȧ(t)), accelera-

tion d2

dt2

∣∣∣
t=0

ϕ(a(t)), . . . , dk

dtk

∣∣∣
t=0

ϕ(a(t)). In other words, T (k)ϕ([a]k) := [ϕ ◦ a]k.

It is simple to observe that T (k)ϕ : T (k)M → T (k)M is a fiber-bundle diffeomor-
phism for each ϕ ∈ Diff(M). Moreover, T (k) is truly a functor, in the sense that
T (k)(ϕ1 ◦ ϕ2) = T (k)ϕ1 ◦ T (k)ϕ2 for any two ϕ1, ϕ2 ∈ Diff(M). Equipped with
the functor T (k) we can define a notion of higher order isotropy.

4.2 Higher order isotropy subgroups

Again, choose a fixed z ∈ Q and define G
(k)
z := {ψ ∈ Gz | T (k)

z ψ = T
(k)
z id}.

We may verify that G
(k)
z is subgroup of Gz since for any two ψ1, ψ2 ∈ G(k)

z we
observe

T (k)
z (ψ1 ◦ ψ2) = T

(k)
ψ2(z)ψ1 · T (k)

z ψ2 = T (k)
z ψ1 ◦ Tzid = Tzid.
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In local coordinates x1, . . . , xd for M we see that ψ ∈ G(k)
z if and only if

∂ψi

∂xj

∣∣∣∣
x=zk

= δij ,
∂|α|ψi

∂xα

∣∣∣∣
x=zk

= 0 , 1 < |α| ≤ k , k = 1, . . . , N.

In particular, the notion of a jet becomes relevant.

Definition 1. The data which consists of local partial derivatives up to k-th
order of ϕ ∈ Diff(M) about the points of z ∈ Q is called the k-jet of ϕ with source
z and denoted by jkz (ϕ). We denote the set of jets sourced at z by J kz (Diff(M)).
We call z′ = ϕ(z) the target of the jet jkz (ϕ) and we can consider the set of jets
with target z′.

The above definition allows us to use the group structure of Diff(M) to induce
a groupoid structure on jets. Namely, given two diffeomorphism ϕ1, ϕ2 ∈ Diff(M)
such that z′ = ϕ1(z) we define the product jkz′(ϕ2) · jkz (ϕ1) = jkz (ϕ2 ◦ ϕ1), a jet

with source z and target ϕ2(z′).3 Finally, the jet-functor allows us to define G
(k)
z

as G
(k)
z = {ψ ∈ Gz | jkz (ψ) = jkz (id)}.

Before we go further we must state the following observation.

Proposition 2. For z ∈ Q, the group G
(k)
z is a normal subgroup of Gz and the

quotient space Gz/G
(k)
z is itself a group.

Proof. Let ϕ ∈ Gz and let ψ ∈ G(k)
z . We see that

T (k)
z (ϕ ◦ ψ ◦ ϕ−1) = T

(k)
ψ(ϕ−1(z))ϕ ◦ T

(k)
ϕ−1(z)ψ ◦ T

(k)
z ϕ−1.

However ϕ−1(z) = z, ψ(z) = z, and T
(k)
z ψ = T

(k)
z (id) so that

T (k)
z (ϕ ◦ ψ ◦ ϕ−1) = T (k)

z ϕ ◦ T (k)
z ψ ◦ T (k)

z ϕ−1 = T (k)
z (id).

Thus ϕ ◦ψ ◦ϕ−1 ∈ G(k)
z . As ϕ ∈ Gz and ψ ∈ G(k)

z were chosen arbitrarily we see

that G
(k)
z ⊂ Gz is normal. Normality implies that the quotient Gz/G

(k)
z is itself

a Lie group.

It is not difficult to verify that Gz/G
(k)
z is the set of k-jets of elements in Gz with

source z. Then multiplication in Gz/G
(k)
z is given by jkz (ψ1)·jkz (ψ2) = jkz (ψ1◦ψ2)

for ψ1, ψ2 ∈ Gz. In the case that k = 1 we observe Gz/G
(1)
z = GL(d)n. In the

case that k = 2 it is important to note that the set of constants cijk = ∂2ϕi

∂xj∂xj

∣∣∣
zk

form a contravariant rank 1 covariant rank 2 tensors which satisfies cijk = cikj .

We call the vector space of such tensors S1
2 and we observe that Gz/G

(2)
z is an

n-fold cartesian product of the centered semi-direct product group GL(d) ./ S1
2

[CJ13].

Finally, we denote the homogenous space Q(k) := Diff(M)/G
(k)
z . The space

Q(k) manifests in the LDDMM formalism of [SNDP13] by adding structure to
the landmarks. Just as Q(1) was a right GL(d)-principal bundle over Q, we will

find Q(k) is a right Gz/G
(k)
z -principal bundle over Q.

3 We refer the reader to [JRD13, §4] or [KMS99, Ch 4] for more information on jets
and jet groupoids.
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5 Reduction by symmetry at 0-momenta

In this section, our aim is to express Gz/G
(k)
z as a symmetry group for a re-

duced Hamiltonian system on T ∗Q(k). We will discuss reduction theory on the
Hamiltonian side as performed in [AM78,MR99,Sin01]. Of course, the reduction
theory of Lagrangian mechanics is well understood [CMR01] and we will use the
notion of a Lagrangian momentum map to simplify certain computations.

We shall assume that the reader is familiar with the transition from La-
grangian mechanics to Hamiltonian mechanics via the Legendre transformation.
In our case, this transformation yields a Hamiltonian H : T ∗Diff(M) → R. As
H admits Diff(M)-symmetry inherited from L, we obtain a Noether theorem. To
investigate this, we consider the momentum map for the cases to be considered
in this paper.

Proposition 3. Given a Lie subgroup G ⊂ Diff(M) with Lie algebra g, there ex-
ists a natural action of g ∈ G on T ∗Diff(M) given by 〈T ∗Rg(p), vϕ〉 = 〈p, TRgv〉.
The momentum map J : T ∗Diff(M) → g∗ induced by this action is given by
J(pϕ) = T ∗ϕ · pϕ|g

Proof. By the definition of the momentum map [AM78] for each ξ ∈ g and
pϕ ∈ T ∗ϕ Diff(M) it must be the case that 〈J(pϕ), ξ〉 = 〈pϕ, Tϕ·ξ〉 = 〈T ∗ϕ·pϕ, ξ〉.
By construction T ∗ϕ · pϕ ∈ (X(M))∗. We observe that the momentum J(pϕ) is
merely the restriction of T ∗ϕ · pϕ to the subspace of X(M) given by g.

Noether’s theorem states that J is constant in time along solutions of Hamil-
ton’s equations. Therefore, if J = 0 at t = 0 then J = 0 for all time. Moreover,

we know that our G
(k)
z symmetry allows us to reduce our equations of motion to

the space J−1(0)/G
(k)
z ≡ T ∗Q(k) [MMO+07, Theorem 2.2.2]. We can therefore

obtain a class of solutions to our equations of motion on T ∗Diff(M) by solving
a set of Hamilton’s equations on T ∗Q(k) with respect to a reduced Hamiltonian

H(k) ∈ C∞(T ∗Q(k)). Note that H(T ∗Rψ · pϕ) = H(pϕ) for any ψ ∈ G(k)
z , and

so H maps the entire G
(k)
z equivalence class of a pϕ ∈ T ∗Diff(M) to a single

element. In particular, for any pϕ ∈ J−1(0) we set p equal to the G
(k)
z equiva-

lence class of pϕ and define H(k)(p) = H(pϕ). This implicitly defines the reduced

Hamiltonian H(k) : J−1(0)/G
(k)
z ≡ T ∗Q(k) → R.

On the Lagrangian side we may define the Lagrangian momentum map

JL : T Diff(M) → g
(k)
z given by composing J with the Legendre transform

[AM78, Corollary 4.2.14]. Traversing a parallel path on the Lagrangian side will

lead us to the reduced phase space TQ(k) ≡ J−1
L (0)/G

(k)
z . The reduced La-

grangian is defined by noting that for any vϕ ∈ T Diff(M), the G
(k)
z symmetry

of L implies that L sends the entire G
(k)
z -equivalence class of vϕ to a single num-

ber. Thus there exists a function L(k) : TQ(k) ≡ J−1
L (0)/G

(k)
z → R defined by

L(k)(jkz (vϕ)) = L(vϕ) for any vϕ ∈ J−1(0). We can then solve geodesic equations
on TQ(k) to obtain geodesics on Diff(M) via reconstruction.
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Existing implementations of landmark LDDMM implicitly use this reduc-
tion to construct diffeomorphism by lifting paths in Q(0) to paths Diff(M)
[BGBHR11,MD10]. In the context of particle methods for incompressible flu-
ids, this correspondence is described explicitly in [JRD13]. In particular, the ap-
proach outlined in [SNDP13] suggests lifting paths in Q(k) to paths in Diff(M),
and provides an implementation for k = 1. These more sophisticated particles
contain extra structure, which opens the potential for extra symmetries. In par-

ticular, the fact that the system on TQ(k) (or T ∗Q(k)) is obtained by a G
(k)
z

reduction of systems with Gz symmetry has a consequence.

Theorem 1. The reduced Hamiltonian and Lagrangian systems on T ∗Q(k) and

TQ(k) respectively have Gz/G
(k)
z symmetry.

Proof. Elements of Gz/G
(k)
z are represented by jkz (ψ) for some ψ ∈ Gz. We

observe the natural action on Q(k) is given by jkz (ϕ) · jkz (ψ) := jkz (ϕ◦ψ). We can
lift this action to TQ(k) in the natural way by viewing a vector vϕ ∈ Tϕ Diff(M)
as the tangent of a curve ϕt ∈ Diff(M) with ϕ0 = ϕ. In any case, we define the
k-jet of vϕ sourced at z to be

jkz (vϕ) =
d

dt

∣∣∣∣
t=0

jkz (ϕt) ∈ T (J kz (Diff(M))).

We then observe

jkz (vϕ) · jkz (ψ) =
d

dt

∣∣∣∣
t=0

jkz (ϕt ◦ ψ) =
d

dt

∣∣∣∣
t=0

jkz (ϕt) = jkz (vϕ).

Under this tangent lifted action we find

L(k)(jkz (vϕ) · jkz (ψ)) = L(k)(jkz (vϕ ◦ ψ)) = L(vϕ ◦ ψ) = L(vϕ) = L(k)(jkz (vϕ)).

Thus L(k) is Gz/G
(k)
z . As H(k) is merely the Hamiltonian associated to the

Lagrangian L(k) it must be the case that H(k) also inherits this symmetry.

By Noether’s theorem we find the following

Corollary 2. Let J : T ∗Q(k) → g∗ be the momentum map associated to the

right action of G = Gz/G
(k)
z on T ∗Q(k). Then J is conserved along solutions to

Hamilton’s equations with respect to the Hamiltonian H(k) ∈ C∞(T ∗Q(k)).

6 Examples in Rd

From this point on, let M = Rd and choose an inner product on X(Rd) given by
the expression

〈u, v〉X(Rd) =

∫
u(x) · [I(v)](x)dx

where I : X(M) → X(M) is a SE(d) invariant psuedo-differential operator with
a Ck kernel given by K : Rd → R. For example, we could consider I = (1 −

1
k+1∆)k+1.
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6.1 0th-order particles in Rd

Let us consider a single particle with initial condition 0 ∈ Rd. In this case we
consider the isotropy group G0, and the Lagrangian momentum map is given by

〈JL(vϕ), ξ〉 =

∫
[I(ρ(vϕ))] · ξ(x)dx ∀ξ ∈ g0.

We see that JL(vϕ) = 0 if and only if I(ρ(vϕ)) is a constant vector-field times a
dirac-delta centered at 0. That is to say

〈JL(vϕ), ξ〉 = 0 ⇐⇒
∫

[I(ρ(vϕ))] · u(x)dx = ai · ui(0)

for some constants a1, . . . , ad ∈ R. By inspection, the statement holds if and
only if

ρ(vϕ)(x) = eia
iK(x) (3)

where ei is the ith basis vector of Rd. For example, if I = limk→∞(1− 1
k∆)k then

K(x) = exp(−‖x‖2/2) [MMar]. Moreover, JL(vϕ) = 0 if and only if ρ(vϕ)(x) =

a exp(−‖x‖2/2) for some a ∈ Rd. AsG
(k)
0 = G0 we find that the symmetry group

for 0th-order particles is the trivial group G0/G0 = {e}. In other words, 0th-
order particles admit trivial internal symmetry, and the reduced configuration
manifold is simply Rd.

6.2 1st-order particles in Rd

In this case we consider the isotropy group G
(1)
0 , and the Lagrangian momentum

map is given by

JL(vϕ) · ξ =

∫
[I(ρ(vϕ))] · ξ(x)dx ∀ξ ∈ g

(1)
0 .

We see that JL(vϕ) = 0 if and only if I(ρ(vϕ)) is the sum of a velocity field of
the form (3) plus a second vector field which satisfies the derivative reproducing
property ∫

I(ρ(vϕ))(x)u(x)dx = −bij∂jui(0)

for some set of constants bij . If K is differentiable then a simple integration by
parts argument reveals that

ρ(vϕ)(x) = ei(a
iK(x) + bij∂jK(x)) (4)

for some set of real numbers ai, bij ∈ R [SNDP13, c.f equation (4.1)]. For example,

if I = limk→∞(1 − 1
k∆)k then K(x) = exp

(
−‖x‖2/2

)
and JL(vϕ) = 0 if and

only if

ρ(vϕ)(x) = eia
i exp

(
−‖x‖2

2

)
+ eib

i
jx
j exp

(
−‖x‖2

2

)
.
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These are the affine particles mentioned in [SNDP13]. A schematic of one of these
particles is shown in Figure 2. It is simple to verify that the reduced configuration
manifold is Q(1) = Rd ×GL(d).

6.3 Symmetries for 1st-order particles in Rd

The symmetry group for a single 1st-order particle is G
(1)
0 /G0 = GL(d). We can

verify this by noting that for each ψ ∈ G0, the jet j1
0(ψ) is described by the

partial derivative ∂ψi

∂xj

∣∣∣
x=0

. Moreover, by the chain rule we find

∂

∂xj

∣∣∣∣
x=0

(ψi1 ◦ ψ2) =
∂ψi1
∂xk

∂ψk2
∂xj

∣∣∣∣
x=0

which is the coordinate expression for the definition of the jet-groupoid com-
position j1

0(ψ1) · j1
0(ψ2) = j1

0(ψ1 ◦ ψ2). It is notable that the group of scalings
and rotations is contained in GL(d). These transformations were leveraged in
[SNDP13] to create “locally affine” transformations.

Finally, GL(d) acts on the GL(d) component of Q(1) = Rd ×GL(d) by right
matrix multiplication. This makes Q(1) a trivial right GL(d)-principal bundle
over Rd.

6.4 2nd order particles in Rd (and beyond)

In this case we consider the isotropy group G
(2)
0 . We see that JL(vϕ) = 0 if and

only if I(ρ(vϕ)) is the sum of a velocity field of the form (4) plus a second vector
field which satisfies the second-derivative reproducing property∫

I(ρ(vϕ))(x)u(x) = cijk∂j∂ku
i(0)

for some set of constants cijk. If K is twice-differentiable, then a second integra-
tion by parts reveals

ρ(vϕ)(x) = ei(a
iK(x) + bij∂jK(x) + cijk∂j∂kK(x)). (5)

For example, if I = limk→∞(1− 1
k∆)k then K(x) = exp

(
−‖x‖2/2

)
and JL(vϕ) =

0 if and only if

ρ(vϕ)(x) = eia
i exp

(
−‖x‖2

2

)
+ eib

i
jx
j exp

(
−‖x‖2

2

)
+ eic

i
jk(xjxk − δkj ) exp

(
−‖x‖2

2

)
.

We see that the collection of constants {cijk} transform as (and therefore must
be equal to) contravariant rank 1 covariant rank 2 tensors. Moreover, we see
observe the symmetry cijk = cikj . We will denote the set of such tensors by S1

2
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so that the reduced configuration space is Q(2) = Rd ×GL(d) × S1
2 . See Figure

3 for a schematic of one of these particles.

At this point, we may deduce that for reduction by G
(k)
z , the set J−1

L (0)
consists of vectors vϕ ∈ T Diff(M) which satisfy ρ(vϕ)(x) =

∑
|α|≤k eic

i
α∂αK for

some series of cα ∈ R, where the dummy index α is a multi-index. The reduced
configuration space is Q(k) = Rd ×GL(d)× S1

2 × · · · × S1
k.

6.5 Symmetries for 2nd-order particles in Rd

In the case for a single second order particle in Rd, the symmetry group is

G
(2)
0 /G0. We see that the 2-jet of a ψ ∈ G0 is described by the numbers ∂ψi

∂xj (0)

and ∂2ψi

∂xk∂xj (0). By representing the 2-jets concretely as partial derivatives, we

arrive at the following description for Gz/G
(2)
z .

Proposition 4. The group G
(2)
0 /G0 is isomorphic to the centered semi-direct

product GL(d) ./ S1
2 where S1

2 is the vector space of rank (1, 2) tensors on Rd
which are symmetric in the lower indices.

Proof. For any ψ,ϕ ∈ G0 we find that

∂

∂xj

∣∣∣∣
x=0

(ϕi ◦ ψ) =
∂ϕi

∂xk
· ∂ψ

k

∂xj

∣∣∣∣
x=0

and

∂2

∂xk∂xj

∣∣∣∣
x=0

(ϕi ◦ ψ) =
∂

∂xk

∣∣∣∣
x=0

(
∂ϕi

∂x`
(ψ(x)) · ∂ψ

`

∂xj
(x)

)
=

(
∂2ϕi

∂x`∂xm
∂ψ`

∂xj
∂ψm

∂xk
+
∂ϕi

∂xj
∂2ψj

∂xj∂xk

)∣∣∣∣
x=0

Observe that ∂2∂
∂xj∂xk

∣∣∣
x=0

is a contravariant rank 1 covariant rank 2 tensor, sym-

metric in the covariant indices. In other words, it is an element of S1
2 . Moreover,

the above formulas match the composition rule for a centered semi-direct prod-
uct GL(d) ./ S1

2 where we use the natural left action of GL(d) on S1
2 given

by
(b · c)ijk = bi` · c`jk b ∈ GL(d), c ∈ S1

2

and the natural right action given by

(c · b)ijk = ci`mb
`
jb
m
k b ∈ GL(d), c ∈ S1

2 .

In particular, the group composition is given by (b, c) · (b̃, c̃) = (b · b̃, b · c̃+ c · b̃).
For more a verification that this is a well defined group we refer the reader to
[CJ13].

Given this symmetry group, we find that Q(2) = Rd ×GL(d) ./ S1
2 is a (trivial)

right GL(d) ./ S1
2 -principal bundle over Q = Rd.
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7 Conclusion

In this paper we have identified a family of isotropy groups which can be used
to perform reduction by symmetry of geodesic equations on Diff(M). We then
observed that the reduced configuration spaces consisted of particles with extra
group symmetries much like Yang-Mills particles. This extra structure was in-
terpreted as a “localized transformation” and corresponds to the higher-order
structures described in [SNDP13]. Computations for M = Rd were performed,
and the appropriate velocity fields matched those described in [SNDP13]. Fi-
nally, the symmetry groups for two classes of higher-order particles were com-
puted to be GL(d) and GL(d) ./ S1

2 . This extra structure can be leveraged to
provide greater accuracy and flexibility in existing implementations of landmark
LDDMM.
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