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Abstract. A combinatorial optimization algorithm for detecting multiple 

anatomical landmarks is presented.  It can determine the positions of over 100 

landmarks concurrently, taking spatial correlations of all landmark pairs into 

account.  Provided that a set of landmark candidate lists is given by 

sensitivity-optimized single-landmark detectors, the proposed algorithm can 

find the most probable combination of them through solving a MAP estimation-

based combinatorial optimization problem.  Additionally, it is designed to 

handle subjects with “segmentation anomaly of the spinal column,” a common 

anatomical anomaly of the spine.  The proposed system was evaluated with 

156 landmarks in 50 datasets, using virtually created detector output sets.  In 

the result, the algorithm achieved 97.6% of spinal anomaly estimation accuracy 

even with 50 points of candidates given per landmark, as well as 96.2% of 

accuracy in landmark candidate selection.  From these results, usefulness of 

the proposed algorithm for subjects with spinal anomaly was suggested. 

Keywords: Landmark, Combinatorial optimization, MAP estimation, 

Anatomical anomaly, Computed tomography, Spine 

1   Introduction 

Landmark point detection algorithms are extensively researched and widely used in 

various medical image processing applications.  However, it is a difficult task to 

detect a large number of landmarks correctly, because the human body includes a lot 

of similar regions sharing their appearances.  Even most of frequently-used 

landmarks do not have truly unique local shape or intensity.  Consequently, 

detection results often include a certain number of false positive candidates. 

Furthermore, some sort of important anatomical landmarks can intrinsically be 

non-existent, not only in patients due to pathological condition, but even in healthy 

subjects due to anatomical anomalies (fig. 1a).  Confirming such a situation is very 

difficult by detecting each landmark independently and sequentially. 
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One solution is to determine the entire landmark positions simultaneously, taking 

their spatial relation into account.  It can be done by dividing the whole problem into 

2 sequential phases: the individual landmark detection phase and the combinatorial 

optimization phase (figs. 1b, 1c).  In the former phase, each landmark is detected by 

a single detector.  Each detector is optimized to maximize the sensitivity, not the 

specificity, so the detection result forms a candidate list which includes a lot of false 

positives.  In the latter phase, the best combination of choice from all candidate lists 

is selected with the use of a priori knowledge on the inter-landmark relationship.  

Defect of any landmark can also be detected through this optimization phase.  
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Fig. 1. (a) An example of anatomical anomaly and landmark deficit in the 5th lumbar vertebra. 

(b) A schema of the framework of the proposed method. Note that, for the non-existent 

landmark (□), all detected candidates are rejected by the following combinatorial optimization. 

Among related studies, Seifert et al. reported a framework to automatically detect 

19 landmarks. [1]  In their approach, a belief propagation algorithm is used with 

prior knowledge about landmarks’ geometric relationships such as “to the right of”, 

“close to”, etc.  Though their result was excellent, the prior knowledge used and the 

way to build it were not described precisely. 

In this paper, we introduce a framework to determine over 100 landmark positions 

reliably.  Especially, we focus upon our method to solve the landmark-set 

combinatorial optimization problem with use of maximum a posteriori (MAP) 

estimation.  The method was evaluated with 156 landmarks in 50 human body CT 

image datasets.  Virtually-created detector outputs were used in this study, rather 

than those of real detectors [2], in order to evaluate the ability of our framework to 

handle a large number of false candidates.  Furthermore, handling of common 

anomaly (alteration in the number of thoracic/lumbar vertebrae) was also evaluated. 



  Probabilistic Modeling of Landmark Distances and Structure    161 

  

2   Methods  

2.1. Definition 

2.1.1. Detector output.  Firstly, we defined a landmark detector generally.  In our 

framework, each detector has to output not only a series of candidate positions, but 

also estimated probabilities of them.  Based on this, outputs from one detector (for 

the m-th landmark) are defined as: 

 Nm number of the candidates    (0≤ Nm) 

 cm
i
 coordinates of the i-th candidate    (1≤i≤Nm) 

 pm
i
 detector-estimated probability of the i-th candidate  (0 < pm

i
 ≤ 1) 

 pm

 probability that “none of candidates cm

i
 is correct”  (0 ≤ pm


 ≤ 1) 

The whole set of output is also defined as Im=  m
N

mm
N

mmm pppN mm ,,,,,,, 11
 cc .  

Any output Im must satisfy 1
 i

mm pp . 

Letting the true landmark position be xm, the detector-estimated probability pm
i
 can 

be interpreted as a conditional probability with a certain detector output Im. 

 mi
mm

i
m pp I|cx   (1) 

If pm

>0, it indicates that there are some possibilities of “no true landmark position 

is included in the candidate set  mNmm cc ,,1
 .”  The proposed algorithm can consider 

such a situation, and handles it as one extra state which will be represented as 

“  mx ” in this paper.  The state  can be a “true answer” when the target landmark 

is out of the imaging range, or corresponding landmark does not exist anywhere (e.g., 

due to some anatomical anomaly or pathological condition).  In this describing 

method, the probability pm

 can also be interpreted as a conditional probability as 

 mmm pp I|


x .
 (2) 

2.1.2. The prior probability distribution of LM positions.  Secondly, the prior 

probability function for all possible landmark position sets has to be defined in 

advance. 

Let x1, x2, …, xM be the positional vectors of total M landmarks, and X = (x1
t
 x2

t
 … 

xM
t
)

t
 be the concatenated form of them.  Each element xm can be regarded as a 

stochastic variable whose domain is  mNmmm ccx ,,, 1
 .  The aim is to approximate 

the prior probability distribution of X as a single function p(X), in order to use in the 

following MAP estimation. 

In this study p(X) is defined as a function of the squared distances between all 

landmark pairs.  When any xm (1≤m≤M) satisfies xm=, however, the corresponding 

term of p(X) is replaced by a conventionally-defined constant term.  The calculation 

method of p(X) without considering  is discussed in the next chapter, which will be 
followed by the general definition of p(X). 
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(i) When xm≠, m.  Let  

di,j =
2

ji xx   (1≤i<j≤M) 
(3) 

be the squared distance between the i-th and j-th landmarks.  Note that di,j is defined 

only if both xi and xj are not .  Then, the distance is normalized by its average 

E(di,j) and variance V(di,j) in the training datasets.  The normalized distance gi,j 

follows the equation 

 
 

 Mji
d
dd

g ji
ji

jiji
ji 


 1. ,if

V
E

,

,,
, xx  

(4) 

Let a vector  t,MMji,, gggg 1,3121  G  be the concatenated normalized squared 

distances between all landmark pairs.  Note that the vector G has  
2

1C2



MM

M  
of 

elements.  Then, the prior probability distribution p(X) was approximated by a 

multivariate normal distribution of the vector G.  That is,  
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where V represents the covariance matrix of G, which is calculated from training sets, 

and V  is the determinant of V.  The size of the matrix V is MC2×MC2. 

(ii) General definition.  Eq. (5) can be written in an extended form 
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where {V
-1

}(i,j),(k,l) is the corresponding element of the matrix V
-1

.  Here, the summed 

term      lklkjiji gg ,,,,
1

,  
V  is not available when any of xi, xj, xk or xl is .  In order 

to define p(X) generally, we replaced them as follows: 
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(7) 

When (i,j)≠(k,l), the summed term t(i,j),(k,l) evaluates how gi,j and gk,l are correlated 

as like that of training sets.  When no prior information on gi,j (or gk,l) is available, 

the expected value of this term should be zero.  That is why it should be replaced by 

zero in case of . 

On the other hand, when (i,j)=(k,l), the term t(i,j),(i,j) = { V
-1

}(i,j),(i,j) · gi,j
2
 always has a 

positive value which evaluates how the distance di,j varies from that of the training 

sets.  Therefore, we replaced it by a positive constant γ.  Because increasing this 
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parameter will reduce the probability p(X) for any xm=, γ can be regarded as a 

parameter which controls how the algorithm avoids the state , or how it prefers any 

detected candidate cm
i
, for each landmark.  We empirically selected γ=2 based on our 

preliminary experiments (the data is not shown). 

2.1.3. a posteriori probability distribution.  Once the detector outputs are given, 

the probability a posteriori can be calculated with Bayes' theorem.  From the series 

of detector outputs I1, I2, …, IM and the prior probability distribution p(X), the 

posterior probability can be calculated by the Bayes’ as: 

 
   

 M

M
M p

ppp
I,...,I,I,I

|I,...,I,I,II,...,I,I,I|
321

321
321

XX
X


  

(8) 

The denominator is constant and independent of X.  Therefore, the maximum a 

posteriori estimation of landmark position set X is as follows: 

     XXXX
XX

ppp MM  |I,...,I,I,ImaxargI,...,I,I,I|maxargˆ
321321

 (9) 

We assumed that all detector outputs are independent of each other, as well as 

independent on the positions of the other landmarks.  It means that each detector 

output is only dependent on the corresponding landmark position.  Then the term 

 X|I,...,I,I,I 321 Mp  in (9) can be divided into the product of single-landmark 

conditional probabilities p(Im | xm).  That is, 
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 (10) 

The term p(Im) in this formula is independent of X, so it can be ignored through the 

MAP estimation.  The denominator p(xm) is also can be ignored, because the term is 

the probability distribution of one single landmark position xm without any prior 

information.  Ignoring the term is equivalent to regarding it to be constant and 

homogeneous anywhere.  The remaining term p(xm | Im) is the detector-estimated 

probability as described in Eqs. (1) and (2).  That is,  
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In conclusion, the MAP estimation will be performed by the following formula: 
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(12) 
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2.2. Implementation 

2.2.1. Tikhonov’s regularization.  In practice, the dimension of G in Eq. (5) (or Eq. 

(7)), which equals  
2

1C2



MM

M
, can be much greater than the number of training 

cases N.  In such a case, the covariance matrix V will be rank-deficit and has no 

inverse matrix V
-1

.  To avoid them, Tikhonov’s regularization [3] was performed by 

replacing V with its regularized matrix Vreg as follows: 

IVV reg  (13) 

We empirically selected λ = 1.0 for this study. 

  Note that the calculation of Eq. (5) can be speeded up by using the following 

formula (derived from the Woodbury matrix identity), 

      UIDUIIDUUIVV
11121111 ' 

  tt
reg .

 (14) 

Here, D is a (N-1)×(N-1) diagonal matrix whose diagonal elements are nonzero 

eigenvalues of V, and U is a (N-1)×MC2 matrix whose row vectors are corresponding 

eigenvectors.  I and I’ are identity matrices whose sizes are MC2 and N-1, 

respectively. 

2.2.2. Combinatorial optimization.  The maximization of Eq. (12) for all 

combinations of X={xm},  mNmmm ccx ,,, 1
  is performed by a Gibbs’ sampler-

based simulated annealing algorithm reported by Geman & Geman [4].  In the 

algorithm, a virtual temperature T is introduced to modify the probability distribution.  

The distribution in (12) was modified as follows: 

     
TM

m
mm pp

Z
Tp

1

1
modified I|1;























  XxX  

(15) 

Z is a normalization factor in order to make the sum of probability 1. 

When T=1, the modified distribution equals to the original in (12).  With higher T, 

the modified distribution is almost homogenous for any X in its domain.  However, 

it becomes sharper and more local with lower T.  In the limiting case of T→+0, the 

modified distribution has nonzero probability only at its global maximum point. (Fig. 

2) 
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Fig. 2.  A simple example how the probability distribution is modified by the temperature.  

The green curve illustrates an original distribution (a unary mixture Gaussian distribution for 

example).  The modified distributions with T = 10 and 0.1 are illustrated with red and blue 

curves, respectively.  Note that the distribution becomes flat with higher temperature, while it 

becomes sharper with lower temperature. 

In the simulated annealing, each xm (m = 1, 2, …, M) is sequentially and repeatedly 

sampled from the modified distribution by a Gibbs’ sampler.  The sampling begins 

with very high T, which decreases gradually, and finally it gets so low that the system 

converges to the maximum point.  In this study the simulated annealing were 

performed for 100 cycles with T=1000 (in order to cancel the effect of the initial 

condition; so-called burn-in), then it was gradually cooled down to T=0.01 through 

1000 cycles. 

2.2.3. Handling of vertebral anomalies.  A majority of human beings have 12 

thoracic and 5 lumbar vertebrae.  Segmentation anomaly of the spinal column is a 

common anatomical anomaly in which the subject has 11 or 13 thoracic, and/or 4 or 6 

lumbar, vertebrae.  The prevalence is, in a report, about 9 % [5].  This anomaly is 

very problematic in both defining and detecting vertebral landmarks (fig. 1a).  The 

“state ” approach described in chapter 2.1. is not enough for them, because it is not 

only a local banishment of a single anatomical entity but causing a global 

morphological change in the spine. 

To overcome this, a series of “anomaly landmark position set converters” are 

introduced.  One converter can convert any landmark position set in a subject with a 

certain type of anomaly (e.g., 6 lumbar vertebrae, or “6L”) into a virtually normalized 

landmark position set (i.e., a landmark position set as if she or he has only 5 lumbar 

vertebrae).  It is simply performed by replacing each landmark coordinates by an 

appropriate internally dividing point between two of them (fig. 3).  Because 7 types 

of anomalies (11T, 13T, 4L, 6L, 11T+6L, 13T+4L) were considered in this study, 7 

different converters were designed.  Through one of these converters, abnormal 

spines can be converted into a “normalized” one, with which the prior probability 

p(X) can be calculated. 
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Fig. 3.  The anomaly conversion.  In this example, (a) a landmark position set in a case of 4-

lumbar vertebra (4L) anomaly is virtually converted into (b) a “normal” landmark set with 5 

vertebrae.  With this conversion, the posterior probability p(X) of the given landmark position 

set can be calculated in the same manner as in the cases with (c) normal 5-lumbar spines. 

Because the algorithm do not know which anomaly is correct, it must estimate it.  

It can be done by (i) hypothesizing one anomaly (or normal), (ii) calculating the 

posterior probability under the hypothesis and (iii) comparing the probabilities 

between all hypotheses.  In detail, two different strategies were evaluated: 

(i) Comparison after all optimization.  Firstly, a series of combinatorial optimization 

with all converters are performed.  Then, the converter with the largest probability is 

chosen as the estimated anomaly (or normal). 

(ii) Comparison in situ.  The comparison is performed at the end of every cycle in 

the simulated annealing.  In other words, the state “which converter is currently 

selected” is also dealt with as one extra variable to be optimized. 

2.3. Evaluation 

2.3.1. Virtual detector output construction.  The detector outputs were virtually 

created for each landmark and for each CT dataset.  If the target landmark existed in 

the subject’s real body, it was included as a candidate, as well as 25, 50, 75 or 100 of 

false positive candidates.  Each false positive candidate was determined randomly 

following a 3-D Gaussian probability distribution (the center corresponds to the true 

point, and the standard deviations were σx = σy = σz = 3
1 ·100 millimeters).  Any 

false candidates within 20 millimeters from the true point were removed.  If the 

target landmark did not exist in reality, only false positive points were added, using 

another adjacent landmark as the distribution center.  The detector-estimated 

probability pm

 was fixed to be 0.05, and all of pm

i
 were set to be uniform. 

2.3.2. Experimental settings.  The experiments were performed on a workstation 

with an Intel
®

 Core™ i7-2600 processor and one NVIDIA
®
 Tesla™ C2050 GPU 
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computing processor.  The latter was utilized to speed up the calculation.  The 

processing times were 9.7 minutes per case for comparison after all optimization 

strategy and 3.6 minutes for comparison in situ strategy with 100 candidates per 

landmark. 

5 times of experiments were performed for each experimental setting, using 

different sets of virtual detector outputs. 

The statistical model of squared distances (the mean E(di,j), variance V(di,j) and the 

covariance matrix V) was calculated by leave-one-case out method. 

3   Results and discussion 

The proposed algorithm was evaluated with 156 bony landmark points which were 

manually inputted in 50 thin-slice clinical human body CT datasets.  The list of 

landmark used is available in [2].  Among the 50 datasets, total 9 had a segmentation 

anomaly (three 13T, one 11T, three 6L, two 4L and none of 13T+4L or 11T+6L). 

The summary of results is shown in Table 1.  An example result is also shown in 

Figure 4.  The accuracies of anomaly estimation were from 87.6 to 97.6%, varying 

among strategies and number of candidates.  The accuracy of anomaly estimation 

was better in comparison after optimization strategy than in comparison in situ 

strategy.  Though the former strategy takes approximately 3 times longer time, it 

seems to be useful especially for a larger number of candidates. 

Table 1.  The entire result of anomaly estimation and combinatorial optimization.  

 No. of 
cands 

anomaly estimation accuracy (%) landmark determination: 
existent-in-reality LMs (%) 

non-existent 
LMs (%) 

anomaly 
cases normal cases overall TP FN FPcandidate TN FPexi-

stence 

co
m

pa
ris

on
 

af
te

r o
pt

. 

25 88.9 ±13.6 99.5 ±1.1 97.6 ±3.3 96.60 ±2.90 0.09 ±0.13 3.31 ±2.78 

100 
±0 

0 
±0 

50 88.9 ±7.9 99.5 ±1.1 97.6 ±1.7 96.25 ±0.34 0.08 ±0.05 3.67 ±0.32 

75 86.7 ±14.5 99.0 ±1.3 96.8 ±2.7 94.40 ±0.39 0.09 ±0.08 5.51 ±0.36 

100 77.8 ±11.1 94.6 ±4.0 91.6 ±3.0 91.33 ±1.03 0.26 ±0.09 8.42 ±1.00 

co
m

pa
ris

on
 

in
 si

tu
 

25 84.4 ±12.7 100 ±0 97.2 ±2.3 97.65 ±0.36 0.09 ±0.08 2.26 ±0.32 

50 73.3 ±18.6 100 ±0 95.2 ±3.4 95.67 ±0.70 0.17 ±0.12 4.15 ±0.59 

75 64.4 ±19.9 99.5 ±1.1 93.2 ±3.9 93.37 ±1.02 0.24 ±0.15 6.40 ±0.91 

100 48.9 ±14.9 96.1 ±2.8 87.6 ±2.6 89.64 ±0.61 0.40 ±0.05 9.96 ±0.57 
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Fig. 4. An example result of a case with 6 lumbar vertebra (6L) anomaly.  (a) The false 

(green) and true (orange) candidates outputted by the virtual detector for the tip of right 

transverse process of the 4th lumbar vertebra.  (b) The optimization result for 156 landmarks. 

The optimization result of each landmark in each case was also evaluated.  Any 

landmark which existed in reality was classified as one of TP, FPcandidate or FN.  

Within them, TP means that the algorithm correctly selected the true position 

candidate.  FPcandidate means that the algorithm selected any false position candidate.  

If the algorithm concluded that the target landmark did not exist, but in reality it 

existed, it was categorized as FN.  In this study, the accuracy ratios (ratios of TP) for 

existent landmarks were varied from 89.64 to 97.65%. 

Additionally, all of non-existing landmarks were classified as either TN or 

FPexistence.  TN means that the target landmark did not exist in reality and the 

algorithm correctly found it (either by adopting some anomaly hypothesis which does 

not include the target landmark, or by selecting the state  for the landmark.)  If the 

algorithm chose any candidate other than , it was classified as FPexistence.  In this 

study all of non-existent landmarks were determined as TN, so the accuracy was 

100%. 

It is noticeable that, throughout all experimental condition, none of non-existing 

landmarks were mistaken as FPexistence.  In fact, without any exception, all mistakes in 

anomaly estimation were underestimation of thoracic / lumbar vertebral number.  It 

may imply that our algorithm was not sufficiently optimized for the problem, favoring 

anomalies having less vertebral number, and yet to be investigated in the future work.  

Also, we are now planning to overcome this limitation by adding some additional 

term, which evaluates the regularity of vertebral bones’ alignment, to the MAP 

estimation. 

4   Conclusion 

 A novel combinatorial optimization algorithm for landmark detection and 

anomaly estimation was presented.  The proposed method showed fair results even 

with a large number of landmark position candidates.  Additionally, its feasibility to 

estimate segmentation anomaly of the vertebrae, which is one of the most common 

and problematic anomalies in detecting bone landmarks, has been shown.  Therefore, 

we believe that our algorithm is useful in medical image analysis such as a pre-
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process for computer-assisted detection/diagnosis (CAD) applications.  The future 

work will include improvement of accuracy in anomaly estimation and evaluation 

with real detector outputs with a large number of datasets. 
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