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Abstract. The conditional correlation patterns of an anatomical shape
may provide some important information on the structure of this shape.
We propose to investigate these patterns by Gaussian Graphical Mod-
elling. We design a model which takes into account both local and long-
distance dependencies. We provide an algorithm which estimates sparse
long-distance conditional correlations, highlighting the most significant
ones. The selection procedure is based on a criterion which quantifies
the quality of the conditional correlation graph in terms of prediction.
The preliminary results on AD versus control population show noticeable
differences.
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1 Introduction

It is quite natural to think that any region of the brain depends on all the other
regions at least via some detours. This is equivalent to say that these regions are
all correlated to each other. Several studies [10, 12, 5] have tried to design correla-
tion patterns by computing the correlation matrix given by correlations between
any two regions (using a PCA decomposition for example). Then, they high-
light the most significant or stable ones by thresholding. However, correlations
describe the global statistical dependencies between variables, corresponding to
both direct and indirect interactions. The direct relations between two of these
regions are less numerous and harder to capture but they carry some interesting
information as well. Focusing on these direct dependencies, called conditional
correlations, enables to see which areas directly affect the behaviour of a given
region and avoids the burden given by the indirect interactions.

We want to study the geometric conditional dependencies of a response given
by a real valued signal carried by a discrete grid. A natural approach to estimate
these conditional correlations is given by Gaussian Graphical Modelling (GGM)
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[11, 15, 7]. The response is modelled as a Gaussian random vector.The condi-
tional correlations of the response variables are depicted by a graph. Each node
represents a variable and an edge in the graph is set between two variables if
they are conditionally dependent given all the remaining ones. This corresponds
to a non-zero entry of the inverse covariance matrix called the precision matix.

In the context of medical data, we face two problems with Gaussian Graphical
Modelling. The first one is the high dimension of the data compared to the low
sample size. The second problem is that in this framework, the neighbour points
are very likely to be conditionally correlated since the medical phenomenon
is usually continuous and these local dependencies can be predominant in the
estimated graph possibly hiding any other links. We propose here an algorithm
and a selection criterion which address both questions.

The high-dimension-low-sample-size paradigm is a common issue in medical
imaging.This usually leads to non accurate and non stable statistical analysis.
In our graphical framework, this is equivalent to a high dimensional graph and
small number of measures of the random signal. To face this situation, sparse
representation is well known to be a very powerful tool in Computer Vision and
Pattern recognition [26]. Although we know that the underlying real graph is not
sparse, it is interesting to perform a sparse estimation of its structure [13, 14].
Such an estimation provides both a stable estimate of the conditional dependen-
cies and a selection of the edges with the highest conditional correlations. The
procedure proposed by [15, 13] is based on the LASSO algorithm [21]. In addi-
tion, the elastic net algorithm [27] slightly relaxes this sparse constrain providing
more accurate and robust-to-noise sparsity patterns [9]. This sparsity constraint
is crucial as it prunes the graph keeping a small number of edges.

As noticed above, local dependencies of medical images are predominant
while estimating the conditional correlations. We want to go beyond that and
focus on long-distance dependencies. To show only long distance dependencies,
the authors in [10] post-process their graph merging some nodes and edges when
the nodes are closer than a fixed threshold. However, we want to introduce this
knowledge as a prior to the estimation. We have brought in the algorithm a
neighbourhood prior: knowing that the neighbours are linked, we only look for
the other conditional dependencies which are modelled as sparse. This enables
to highlight the long distance conditional correlations and to gain in term of
statistical accuracy since the estimation of long-distance relations is less affected
by the noise and the neighbours. The prior knowledge is modelled as a neigh-
bouring graph provided by the user. Because the neighbouring graph is given
by the user, it can take into account geographical closeness or some anatomical
proximity given for example by fibres.

The estimation procedure depends on some free parameters. In order to find
suitable values, one can either use a cross-validation [13] or a theoretical analysis
based on a restrictive condition on the data [14]. Unfortunately these choices are
not satisfactory in practice and the final choice is usually done by hand looking
at the estimations. To avoid this subjective choice, Giraud [7] proposes, for the
usual sparse GGM framework, a criterion which optimises the choice of the graph
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depending on its capacity to predict one random variable given the others. We
generalise this criterion to the case of neighbourhood prior.

In Computational Anatomy, learning what characterises the population in
terms of dependencies as in [19] for Alzheimer’s disease (AD) is an important as-
pect of the analysis of the pathology. Different but complementary methods have
been used to analyse populations for instance Deformation Based-Morphometry
(DBM) [3], Tensor Based-Morphometry [25] or Feature Based-Morphometry [22].
The general idea is to compute some statistics from a sample of template-to-
subject deformations. Statistical analysis can also be done directly on the de-
formations [3, 6, 2] or by modelling the generation of images [18, 1] showing the
admissible deformations in a population. Although the global deformations give
an interesting interpretation, we may want to know what parts of the shape are
deformed jointly. Our proposed algorithm based on LASSO or elastic net has
been tested on a training set of high dimension data representing some deforma-
tions of a template hippocampus towards 101 patients’ hippocampi. The results
show some correlated regions when dealing with deformations which suggest that
this structure has regions which move together. Moreover, the population is di-
vided into two groups, controls and patients suffering from AD. The comparison
of the estimated graphs of the two groups show some noticeable differences which
may be a new characterisation of AD.

2 Gaussian Graphical Models

Fig. 1. Condi-
tionally on the
height of snow,
the number of
snowmen is in-
dependent of the
intensity of traffic
jams. This is
represented by a
two edges graph.

Let us consider p points on a given shape that will compose
the nodes of the graph. On these points, we observe n random
responses such as a discretisation (with p points) of a quan-
tification of template-to-subject deformations. The p nodes of
the graph are thus identified to p random variables denoted
(X1, ..., Xp), this vector is assumed to be distributed as a mul-
tivariate Gaussian Np(0, Σ) (data are re-centred if necessary).
The graph GΣ of conditional dependencies is defined as fol-
lows: there exists an edge between nodes a and b if and only if
the variables Xa and Xb are dependent given all the remain-

ing variables. This will be denoted a
GΣ∼ b. To illustrate the

notion of conditional dependency, let us give a toy example
illustrated in Fig. 1. The traffic jam intensity and the number
of snowmen in town are correlated due to snowstorm. But
conditionally on the height of snow, the number of snowmen
is independent of the intensity of traffic jams. This corresponds to the graph in
Fig 1 with only two edges. In particular, there is no edge between the traffic jam
and snowmen variables.

2.1 Estimation processes

The estimation is done by a regression as presented in [15]. Let Xa be the
ath node of the graph. The goal is to estimate the matrix θ such that: Xa =
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b6=a

θa,bXb + εa where εa is assumed to follow a normal distribution with zero-

mean and variance 1/(Σ−1)a,a. An important property of this modelling is that

θa,b = −Ka,b
Ka,a

where K = Σ−1 is the precision matrix. Therefore θa,b = 0 is

equivalent to a
GΣ
6∼ b. Let θ.,b be the p-dimensional vector of (θa,b)1≤a≤p and

X−a the (p−1)-dimensional random vector (X1, ..., Xa−1, Xa+1, ..., Xp). The es-
timation of θ is done by minimising an energy (which is actually the negative
penalised log likelihood of the model) given by two terms. The first one is the l2

distance between the observations and their estimation (coming from the Gaus-
sian distribution of the noise). The second term is a prior on the parameters θ to
estimate. In the case we consider, the prior is a Laplacian prior with parameter
λ. This corresponds to an l1 penalty on the energy side. The energy to minimise
is therefore the following:

∀ b ∈ {1, ..., p}, θ̂.,b = argmin
θ.,b
‖Xb −X−bθ.,b‖22 + λ‖θ.,b‖1 . (1)

This regression technique is known as the LASSO algorithm [21]. Introducing a
penalty on the estimated parameter θ enables to estimate it. Indeed, θ may be
of large dimension which prevents from using a small sample size n. Reducing
the estimation to more likely or expected matrices, enables to handle this typical
case in medical imaging.

The minimum argument of this energy is sparse thanks to the l1 penalty.
Besides, it provides a stable estimation in terms of prediction of a variable given
the other ones. Including this constraint on the candidate matrices enables to
really focus on the most important conditional correlations. Therefore predicting
one variable from the others is not much dependent on the training set.

However, one may want to relax slightly this constraint by balancing the
effect of this l1 penalty by an l2 one which has the opposite behaviour. Instead of
looking for sparse matrix with big coefficients, it tends to spread to all elements
in the matrix. This is known as the elastic net algorithm [27] which provides
more accurate sparsity patterns [9]. The energy is:

∀ b ∈ {1, ..., p}, θ̂.,b = argmin
θ.,b
‖Xb −X−bθ.,b‖22 + λ‖θ.,b‖1 + γ‖θ.,b‖22 . (2)

These two algorithms take each node independently one after the other. This
has a drawback considering that we would like to have a symmetric relation
between nodes. Minimising either energy above does not guarantee that θ̂a,b 6= 0

at the same time as θ̂b,a 6= 0. The construction of the graph is therefore not
straightforward. Two natural choices appear to enforce the symmetry [15]. On

the one hand, we can say that only one of θ̂a,b or θ̂b,a needs to be non-zero to set

an edge in the graph between a and b. This yields a
ĜΣ∼ b if and only if θ̂a,b 6= 0

or θ̂b,a 6= 0. On the other hand, we can prefer a harder decision process by saying

that only one of the θ̂a,b or θ̂b,a needs to be zero to remove the edge between a

and b in the graph. This leads to a
ĜΣ∼ b if and only if θ̂a,b 6= 0 and θ̂b,a 6= 0.

Both will be tested in the sequel.
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2.2 Penalised criterion to choose among a family of estimated
graphs

In the two previous energies (1) and (2), there are two parameters which have
to be chosen. This may be very difficult and data depending. A classical choice
is to use cross-validation. Giraud in [7] suggests instead to set a criterion so that
after computing a family of possible graphs with different parameters, it enables
to select the best one with respect to this criterion which aims at answering the
question of how good the network is to predict one variable from the others.

To define the criterion crit(.) we need to introduce a few notations. We as-

sociate to any graph G in Ĝ, the p× p matrix

θ̂G = arg min
θ∈ΘG

∑
1≤i≤n,1≤a≤p

[X −Xθ]2i,a ,

where ΘG is the set of p× p matrices θ such that θa,b is non-zero if and only if
there is an edge between a and b in G. Then, we define the criterion crit(G) by

crit(G) =

p∑
a=1

[
‖Xa −

∑
b

Xbθ̂
G
a,b‖2n

(
1 +

pen[da(G)]

n− da(G)

)]
, (3)

where the penalty function is defined by

pen(d) = 1.1× n− d
n− d− 1

EDKhi

[
d+ 1, n− d− 1,

((
p− 1

d

)
(d+ 1)2

)−1]
. (4)

The function EDKhi[d,N, .] is the inverse of the function

DKhi[d,N, .] : x 7→ P
(
Fd+2,N ≥

x

d+ 2

)
− x

d
P
(
Fd,N+2 ≥

N + 2

Nd
x

)
,

where Fd,N denotes a Fisher random variable with d and N degrees of freedom.
See [7] and [4] for more details and more explanations on this penalty. This
Criterion (3) is implemented in a R library GGMselect [8].

3 Non local Gaussian Graphical Models

3.1 Introduction of G0

As noticed above, the neighbouring points - neighbour nodes of the graph- are
very likely to be conditionally correlated. We want to put more attention onto
the other correlations -which will be called long-distance ones in the sequel since
they do not affect the neighbours. To this purpose, we have introduced in the
estimation a neighbouring graph G0 which carries the neighbour nodes of all
the graph nodes. We assume that there exist correlations between these points
but we are not estimating them rather looking for the other ones. There are two
reasons for that. On the one hand, we are not interested in the local correlations
since they appear to be obvious. The long-distance ones however may reveal
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some important behaviour which may be characteristic from the population we
are studying. These non obvious relations between regions may show some non
random effect on the shape. This will be illustrated in the experiments.

On the other hand, the value of the penalty is directly related to the complex-
ity of the families of possible candidate graphs. Shrinking the families to those
of graphs containing G0 reduces their complexity and therefore the penalty. The
effect it that more edges appear and therefore the long-distance ones.

The way we introduce G0 in the estimation is as follows. The estimation of
the conditional correlations is done in the orthogonal space of the neighbouring
graph G0. This leads to replace the random variable Xa by

Xa −Xma(XT
maXma)−1XT

maXa , (5)

where XT is the transposition and Xma is the matrix defined as follow: if we
denote X the n× p matrix of all the data and ma the list of neighbours of node
a in G0, then Xma = X(.,ma) is of dimension n× card(ma).

This orthogonality constraint may have to be relaxed since the projection
may lead to ill-conditioned matrices. Moreover, it will also enable to capture
some edges with small projection onto the orthogonal of G0 which may appear
stronger since we know that the local dependencies are more likely to be the
strongest and summarise the main information. This can be express in terms of
introducing a small ridge (driven by a new parameter γ0 chosen via the criterion).
Denoting Id the identity matrix, this yields

Xa −Xma(XT
maXma + γ0Id)−1XT

maXa . (6)

3.2 Selection of graph: Change in the penalty

When we introduce an a priori graph G0, we shall change the selection criterion
to take into account this a priori knowledge. To fit with this situation, the
Criterion (3) remains unchanged, but the penalty (4) is replaced by

penG0
(a, d) = 1.1×

n− d
n− d− 1

EDKhi

[
d+ 1, n− d− 1,

((p− d0[a]− 1

d− d0[a]

)
(d− d0[a] + 1)

2

)−1
]
(7)

where d0[a] is the degree of the node a in the graph G0. This correction reflects
the change of complexity induced by the graph G0. It ensures a control of the
prediction error similar to Theorem 1 in [7]. For further details, we refer to the
Appendix. We have therefore modified GGMselect in two ways (which is included
in the new update of the package). If a prior is given, we change the data so
that the new random variable is given by eq. (5) or (6). Then we changed the
penalty criterion for eq. (7).

4 Experiments

We have tested this model on meshed surfaces of hippocampi from Johns Hopkins
University [16]. The data base contains n = 101 vectors of dimension p = 713
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corresponding to the vertices of the graph. A template surface of a hippocam-
pus was mapped onto each subject surface using Large Diffeomorphic Defor-
mation Metric Mapping [17]. Prior rigid body registration has been done on
each subject. In this common coordinate system, the log of the absolute value of
the Jacobian determinant of this deformation was discretised onto the template
meshed surface. This leads to 101 vectors with real value signal which corre-
spond to scalar deformation fields over the surface. The subjects belong to three
sub-populations. The first 57 were control patients. The 32 next were suffering
from mild Alzheimer’s disease or semantic dementia (denoted mild AD) and the
12 last were in a late stage of the disease (denote late AD in the sequel). Some
examples of the training set are presented in Fig. 2.

Fig. 2. Examples of the training set. The colour depends on the intensity of the Ja-
cobian of the deformation. Blue means a contraction and red dilatation. The intensity
itself is not important but rather its relative value with respect to the others.

4.1 Gaussian Graphical estimation without neighbour prior

The results of the graph estimations without any neighborhood prior are pre-
sented in the four graphs on the left hand side of Fig. 3. The four plots correspond
respectively to the solution of eq.(1) with both choice of symmetrisation (”or”
and ”and” resp.) and of eq.(2) again with both symmetrisation processes. For
each of these minimisation, we present the result with the lowest criterion. All
these graph present some similarities. Indeed, they all find the conditional corre-
lations between close nodes of the graph with respect to the euclidean distance.
This is what we expect since the deformations are smooth. Therefore, the defor-
mation at one point is close to the deformation on its neighbours leading to a
correlation between all nodes but only local conditional correlations. However,
one of the graphs (left one, with a slightly lower criterion) suggests that they
should be some conditional correlation not only between neighbour nodes. As we
can see, not all the part of the surface are linked through long edges. However,
this does not appear in the three other graphs which makes them uncertain.

4.2 Non local GGM estimation

To overcome the problem of the predominance of the conditional correlations
between close nodes, we have introduced a neighbouring graphG0. Two examples
of G0s are presented in Fig. 3 (right). The estimated graphs using our proposed
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algorithm are presented in Fig. 4 where the top row corresponds to the first G0

of Fig. 3 and the bottom row to the second one. All the eight estimations are
presented: lasso (with the two possible symmetrisations) using the orthogonal
projection and the ridge regularisation and next, in the same order, the four
estimation with the elastic net energy. The orthogonal projection may appear
too strong since it requires to invert the neighbouring matrix (cf eq. (5)). This
yields no graph estimated with the lasso minimisation process with a strong
symmetrisation constraint on the first line.

We can notice that they almost all carry some long-distance correlations.
In particular, four of them show some common patterns pointing the same
connected areas (row 1, columns 2,4,5,6). The estimation remains stable when
adding or removing some edges in G0. This is shown in the bottom row of Fig
4. The results are very similar. Noticing that the orthogonal of this new G0 is
smaller (the maximum degree of this G0 is 7 whereas the first one was 3) the
resulting graphs look alike with a little less edges. In this case, the estimation
of the first graph is possible but presents very few connections. As well as for
the first G0, the lasso with a relaxed projection constrains provides very inter-
esting graphs and the elastic net does not requires this relaxation. Since some
graphs appear very dense, we removed the edges between close points w.r.t. the
Euclidean distance. We did this pruning for the marked graph (see below for
meaning of this mark) of Fig. 4. The result is presented in Fig. 5. Thanks to
this representation, the long-distance conditional correlation appear clearer and
can be easier interpreted. Indeed, this suggest that there is a strong conditional
correlation between the bottom part of the head of the hippocampus and two
regions of the body. This means that the hippocampus is subjected to defor-
mations that are not random. When the bottom area of the head is deformed
so are the two local parts of the body. Note that the conditional correlation
can be positive or negative which correspond to same and opposite behaviour
respectively.

Thanks to the criterion we can point the graph which, among the ones we
estimate, has the best power for prediction purposes. This graph is marked
with a red star. This graph looks indeed very interesting showing long-distance
dependencies that are not trivial. The power of this criterion we propose is that

Fig. 3. Left: Estimated graphs using the lasso algorithm and both symmetrisations
(called ”or” and ”and” in the sequel) and the elastic net algorithm with both sym-
metrisations as well (”or” and ”and” resp.). The results show the predominance of the
neighbours conditional correlations except for the first estimation where long-distance
conditional correlation appear. Right: two examples of possible G0s.
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Fig. 4. Estimated graphs with the eight methods using the two neighbouring graphs
presented in Fig. 3 on the top and bottom line resp. From left to right, each method
with both symmetrisations (”or” and ”and” resp.): lasso with the orthogonal projec-
tion, lasso with a relaxation on the projection, elastic net with projection, elastic net
with relaxed projection. The projection constraint may be too strong preventing from
computing the estimation (top left). In almost all graphs, long-distance dependencies
appear and are stable with respect to the prior neighbours.

it can quantify the predictive power of any other graph estimated by any other
method. We not only provide some estimation technics which take into account a
neighbourhood prior but also a way to compare them to other estimated graphs.

4.3 Clustering of the graph

In order to see the different areas which are conditionally correlated, we use the
spectral clustering method which highlights these dependencies. Spectral clus-
tering is a technique based on eigen-properties of a similarity matrix Q that par-
titions data into disjoint clusters. We compute the p eigenvectors of Q, (Vi)1≤i≤p.

Let the vectors Yj = (V ji )2≤i≤p be the contatenation of the jth coordinates of
each eigenvector. The clustering is done using a k-mean algorithm on these vec-
tors. The choice of the similarity matrix is given as follows. If two nodes i and
j are connected through the graph but not in the neighbouring graph G0 then
Q(i, j) = 1/Z. If this condition is not satisfied then Q(i, j) = f(‖xi − xj‖)/Z
where Z is a renormalisation constant, xi is the pose of node i and f is the Gaus-
sian density function with fixed variance (chosen with respect to the spreading
of the data, here 50 whereas max(xi − xj)2 = 7185). Q(i, i) is set so that the
sum of the ith row is 0. The result using 5 clusters is presented in Fig. 5 where
each node has a colour corresponding to its cluster. We can clearly see that the
regions that are in the same cluster (same colour) correspond to areas that share
a link in the pruned graph (Left of Fig. 5). This shows that several connected
parts of the shape (red, black, green and dark blue) seem to have condition-
ally independent behaviour whereas some nodes (cyan) are clearly related. This
result confirms the segmentation in [24].
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Fig. 5. Best graph analysed. Left: the edges between close nodes have been removed
for better visualisation. Right: k-mean clustering.

4.4 Population different

Since we are provided with three sub-groups, it is interesting to see whether
they carry differences with respect to conditional correlations. However, since
the late AD group is pretty small, we only cluster it into two groups: controls
versus AD (both mild and late together). The goal is to see if the disease changes
the kind of conditional correlated deformations that are present in a population.
This is actually what Fig 6 tends to show. The deformations of the hippocampus
in a control population are not completely random since some important long
distance conditional correlations appear. This reduces the safe deformations to
a subset where these joint behaviour occurs. However, the AD population seems
to have less long-distance conditional correlation. This would suggests that the
disease affects the hippocampus by removing the direct dependencies of different
regions. This effect cannot be seen when no neighbourhood obvious correlations
are taken into account (graphs on the left of Fig. 6). However, when introduc-
ing the projection onto the orthogonal of a neighbouring graph (the first one
presented above), the differences appear and are stable with respect to the esti-
mation process (the criterions are of the same range for these four tests).

5 Conclusion

This paper presents a new way of analysing populations of shapes in terms
of random graphs which carry sparse conditional correlations between areas of
a shape. We have introduced a neighbourhood prior. It stabilises the estima-
tion and highlights the long-distance conditional correlations which are the non
obvious ones. This neighbouring graph is given by the user allowing for non
trivial closeness notion as some anatomical ones. The results on the deformed
hippocampi reveal some important conditional correlations between particular
sub-regions which are stable along the estimation processes as well as with re-
spect to a change in the neighbouring graph. Moreover, it emphasises differences
between the control subjects which have more long-distance edges than the AD
group. Provided with a larger database would help confirming this first trend. In
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Controls

AD patients

Fig. 6. Comparison of the estimated graphs from the two sub-groups. Left: estimations
without a prior on the neighbours (lasso ”and” and elastic net ”or” resp.). Right:
estimations using the first G0 presented above (lasso ”and” with orthogonal projection
and the ridge relaxation, elastic net ”or” with projection (when computable) and ridge
relaxation resp.). The graph without the prior are very similar and does not enable
any discrimination. Introducing the prior knowledge enables to catch the differences:
the AD group present less long-distance conditional correlations.

addition, we provide the user with a criterion which quantifies the quality of any
graph (not only the one estimated with our algorithm). The estimation has been
done here for anatomical shapes but is more general and it would be interested
to test this on functional data to catch direct long-distance dependencies in the
brain connectivity network and compare with for eg [23] and [20].

6 Appendix

The penalty penG0
is a complexity penalty built from the theory of Giraud [7]. For

a given integer D and a graph G0, we introduce the collection MD(G0) of graphs of
degree less than D and containing G0. A careful inspection of the proof of Theorem 1
in [7] shows that for each node a the penalty penG0

(a, d) must ensures the control∑
ma∈M0(a)

(|ma|+ 1)DKhi

(
|ma|+ 1, n− |ma| − 1,

(n− |ma| − 1)pen(a,ma)

K(n− |ma|)

)
≤ log(n),

where M0(a) =
{
{b : b

G∼ a}, G ∈MD(G0)
}

.This control is achieved by eq (7).
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