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Abstract. Statistical shape models are powerful tools for describing
anatomical structures and are increasingly being used in a wide vari-
ety of clinical and biological contexts. One of the promising applications
of this technology is the testing of hypotheses that entail shape differ-
ences, and visualization of those differences between cohorts. Statistical
testing of shapes, however, is difficult due the large numbers of degrees
of freedom and challenge of obtaining sufficient numbers of subjects to
ensure statistical power. To date, research in statistical shape modeling
has focused mainly on the construction of representative models, and
the field has not reached a consensus on the best approach to statistical
hypothesis testing. This paper illustrates some problems inherent in the
statistical analysis of high-dimensional shape models, and suggests a sys-
tematic approach to hypothesis testing that avoids those problems. The
proposed framework is based on research in the factor analysis statis-
tics literature, with permutation testing in the PCA space of the model,
and dimensionality reduction via a a simulation-based analysis. We also
describe two methods for visualizing group mean differences, first by di-
rect visualization of the linear discriminant implicit in the hypothesis
test metric, and second, by visualizing strain tensors from a deformation
computed between the group means. We illustrate the proposed analysis
and visualization framework on several clinical and biological datasets.

1 Introduction

Many important fields of basic research in medicine and biology now routinely
employ statistical models of shape to quantify the anatomical variation in popu-
lations. Often, researchers are also interested in hypothesis testing to evaluate or
demonstrate shape differences between populations. One such application area,
for example, is the study of gene function as it pertains to human development
and disease. Modern gene targeting technology allows researchers to create spe-
cific alterations in a mouse genome that result in different patterns of anatomical
growth and form, or phenotypes, which can be modeled as shape and compared
with normal populations to gain insight into the functionality of the targeted
genes [1, 2]. Many areas of clinical psychiatric and neurological research also
employ statistical shape analysis. The study of autism and its impact on brain
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regions is one notable example [3, 2]. Statistical models that capture the varia-
tion in the shape of brain structure, including the covariation among multiple
substructures, are increasingly necessary for researchers to gain understand into
the development and progression of neurological disorders [4, 5].

Anatomical shape from images can be represented and computed using a
variety of tools. Traditional representations of shape for phenotyping, for ex-
ample, have relied on explicitly chosen landmark positions to define relatively
low-dimensional parameterized models (e.g. [6]). Researchers in the 3D medical
imaging community, however, have more recently pioneered the use of high-
dimensional models of shape, which consist of very large collections of surface
parameters that are derived automatically from the 3D images. High-dimensional
shape models are appealing because they provide a much more detailed descrip-
tion of anatomy than landmark-based models, and do not require an a-priori
choice of surface homologies. One common strategy for high-dimensional shape
modeling is to consider shapes as embedded in images, and then to deformably
register images and perform statistics on those deformations (e.g. [7]). Another
common approach is to construct parameterized or point-based shape descrip-
tors and compute statistics on those descriptions (e.g. [4, 3]). In the latter case,
technologies exist to construct compact models that are optimized with respect
to the information content of the population[8, 2], an important consideration
for subsequent statistical analysis.

While high-dimensional models offer significant advantages for shape rep-
resentation, their statistical analysis is not straightforward. The large number
of degrees of freedom in the shape space, often coupled with a relatively low
sample size (HDLSS), means that traditional low-dimensional statistical metrics
cannot be directly applied [9]. While the shape modeling literature has proposed
methods for analysis, it has not reached a consensus regarding a systematic ap-
proach that addresses the HDLSS problem. The statistics literature addresses
the HDLSS problem with a variety of useful techniques, but these tools must be
applied systematically in order to avoid either under-powered studies or over-
optimistic conclusions. Through examples on clinical and biological datasets, this
paper illustrates some of the potential difficulties that are encountered in high-
dimensional shape analysis. We focus on the problems of hypothesis testing for
group differences, and the visualization of those group differences. For hypothe-
sis testing, we suggest permutation testing in a lower-dimensional PCA subspace
of the model. For the dimensionality reduction, we propose using a simulation-
based method to choose dimensions whose variance is distinguishable from noise.
For visualization of group differences, we describe two approaches. The first is a
direct visualization of the linear discriminant vector implicit in the hypothesis
test, and the second is a visualization of strain tensors derived from a thin-plate
spline deformation between the group mean shapes.
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2 Related Work

Hypothesis testing for group differences using high-dimensional shape models
has been most extensively investigated for comparative studies of brain anatomy.
To date, however, researchers have typically each chosen different strategies for
analysis, and there has not been a systematic treatment of the effects of HDLSS
and dimensionality reduction choices on the statistical tests. Davies, et al. inves-
tigate hippocampus shape in schizophrenia populations with spherical harmonic
and MDL-based shape models, and perform classification trials based on linear
discriminant analysis in the high-dimensional shape space [8]. Terriberry [10] pro-
poses a framework for multivariate, permutation-based hypothesis testing using
nonlinear m-rep shape models, with an application to the lateral ventricles of
twins. Styner, et al. propose point-wise hypothesis testing on shape correspon-
dence points derived from spherical harmonic parameterizations [11, 12]. Golland
[13] proposes a Support Vector Machine algorithm for training group classifiers
of distance-transform shape representations. More recently, Gorczowski, et al.
use medial axis shape representations and distance-weighted discriminants to
compare complexes of brain structures in autistic and normal populations [3].

Several researchers have explored hypothesis testing using high-dimensional
models for mouse phenotyping. Chen, et al. perform hypothesis testing using
image-based metrics on deformation-based shape models to illustrate differences
between strains of mutant mice [7]. In a phenotyping study of Hoxd11 knock-out
mice, the authors employ univariate hypothesis testing with regression analysis
on PCA bases of point-based models of the mouse forepaw [14].

3 Challenges for HDLSS Shape Statistics

This section describes some problems and solutions in HDLSS shape statistics as
they relate to shape analysis. The concepts presented here are applicable to lin-
ear statistics using any high-dimensional model, though we will use surface-point
correspondence models as examples, computed by the particle-based optimiza-
tion described in [2]. Point-based models represent shape by sampling each shape
surface in a consistently ordered fashion so as to define homologous object surface
points called correspondences. The set of 3D positions of all m correspondences
on a shape is 3m shape vector, and the positions of the individual shapes in this
3m-dimensional shape space give rise to the statistical analysis. Hypothesis test-
ing is done on a single shape model constructed from all data without knowledge
of the group classification, which we refer to as a combined model.

In the context of point-based models, or surface samplings obtained from
parameterized models, one approach to shape statistics is point-wise analysis
of correspondences, which are elements of R3. These data are drawn from the
marginal distributions of the full shape space, and the mean shape is obtained by
computing the Euclidean averages of correspondence positions, with point-wise
differences defining local shape variation [11]. Hypothesis tests in this case reveal
regions of significant differences between groups, which can be directly visualized
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a. Uncorrected P-values b. FDR Correction

Fig. 1. Point-wise hypothesis test results for the putamen

as p-value maps on the mean shapes. Styner [11], for example, proposes statistical
analysis of the correspondences that uses a nonparametric permutation test with
the Hotelling T 2 metric with an FDR correction for the multiple-comparison
problem inherent in the analysis.

Figure 1 is an illustration of point-wise hypothesis testing as proposed in [11]
on a combined model of the right putamen from normal control subjects and
autism patients. The data is taken from an ongoing longitudinal pediatric autism
study[15]. For the test, we had 10 autism structures available with 15 matched
normals, and used 1024 correspondence points and 20,000 test permutations. The
uncorrected p-values that indicate significance at the 5% level are colored in red
on the mean normal putamen surface in Fig 1a, and suggest several distinct
areas of shape differences. Fig. 1b shows that in this case, however, which is
not uncommon in neurological shape analysis, no significant p-values remain
after FDR correction (5% bound). This example illustrates a major difficulty
encountered in point-wise analysis: the large number of comparisons results in a
very conservative correction of the hypothesis test results, significantly reducing
the statistical power of the test.

To avoid the multiple-comparisons problem, we can analyze high-dimensional
shape model data in the full shape space, i.e. the joint-space of the correspon-
dences. The analysis in this case, however, is also difficult because traditional
statistical metrics no longer apply [9]. At issue is the fact that the convergence
of any estimator in very high dimensional space is prohibitively slow with the
respect to the number of samples. A common solution is to employ dimension-
ality reduction by choosing a subspace of the 3m-dimensional shape in which to
project the data for traditional multivariate analysis. Principal component anal-
ysis (PCA) is often an attractive choice because the basis vectors are orthogonal
and determined solely from the data. With PCA, we can find no more than
n− 1 modes that have non-zero variance, meaning that the problem is reduced
to d < n without loss of information. Other basis functions such as wavelets
[12] have also been used for dimensionality reduction, with the difference being
that they impose an a-priori choice of how the space of the model should be
decomposed.
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Fig. 2. Hotelling T 2 test results with increasing numbers of PCA modes for 3 brain
structures from a pediatric autism study.

In a suitably low-dimensional shape space, such as basis vectors from PCA,
we can apply traditional statistical methods such as nonparametric Hotelling T 2

testing. There are two challenges for dimensionality reduction in shape analysis,
however. First, is the the factor analysis problem of how many basis vectors
to choose, which can be hard to resolve when the choice of different numbers
of factors leads to different statistical results. The second challenge is how to
visualize group differences, which is important for researchers in order to relate
the outcomes of statistical tests to scientific hypotheses regarding the growth
and form of anatomy. The remainder of this section addresses the problem of
choosing the number of bases, and then proposes two visualization strategies for
understanding the group differences.

To illustrate the number-of-bases problem, Figure 2 shows the p-value results
of Hotelling T 2 permutation tests using increasing numbers of PCA modes on
three brain structures from the pediatric autism study referenced above. Several
trends can be observed that pose a challenge for the analysis. First, is the trend
at higher numbers of modes towards increasing p-values, which is due to the
cumulative effects of noise in the these lower-variance modes of the PCA. The
second trend is that the p-value curves do not smoothly decrease to a minimum
value, but rather, tend to bounce around with lower numbers of higher-variance
modes. The challenge is to choose as many modes as possible that contain mean-
ingful variation, i.e. variation that is distinguishable from noise, with the caveat
that too few modes may result in the loss of information that is useful for group
discrimination.

Many methodologies have been proposed to address the number-of-bases
problem, and good reviews such as [16], are available. Methodologies range
from simple conventions, such as choosing only PCA modes that account for
at least 5% of the total variance, to more systematic approaches that attempt
to model the problem based on its dimensionality and sample sizes. Notable
among these latter approaches, parallel analysis is commonly recommended as
the best method for determining modes with variance that is distinguishable
from noise[17], and is described in more detail in Section 4.
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In contrast to the point-wise statistical method illustrated in Figure 1, a
significant drawback of hypothesis testing in a PCA subspace is that the group
differences in this space are not necessarily easy to visualize and interpret from
an anatomical perspective. The hypothesis test poses the question of whether
there are significant group differences. The next logical question of interest to
researchers is what are the group differences. One possible approach to gain in-
sight into this question is to transform the group differences measured in the
PCA space back into the full shape space, where they can be visualized on the
mean shape surfaces. Implicit in the Hotelling T 2 metric, for example, is a lin-
ear discriminant which indicates the direction in the PCA space along which
the maximum group difference is observed. This discriminant vector can be ro-
tated back into the full shape space for visualization. Another standard approach
for visualizing group differences is a comparison of the differences in the mean
shapes. Thin-plate spline analysis is commonly used in morphometric studies,
for example, to visualize the deformations between shapes parameterized with
landmarks (sparse correspondences) [18], and a similar approach can be applied
in the context of high-dimensional point-based shape models. We discuss these
visualization strategies further in the next section, along with the development
of the dimensionality reduction and hypothesis testing.

4 Methodology

For a correspondence point shape model in 3D, we have a 3m× n shape matrix
P, where columns of P are the shape vectors of correspondence points for the
set of all samples. For dimensionality reduction, we first project P onto the basis
vectors determined by PCA analysis, i.e. P̃ = EP, where columns of E are the
eigenvectors of the covariance matrix of correspondences, in decreasing order of
the magnitude of their eigenvalues.

Following projection into the PCA space, we perform parallel analysis to
choose the number of PCA bases for hypothesis testing. In the context of princi-
pal components analysis (PCA) of n, vector-valued data samples of dimension-
ality 3m, the goal of parallel analysis is to identify the subset of the components
that contain variation distinguishable from the expected variation resulting from
noise, where noise is modeled by an isotropic, multivariate unit Gaussian, i.e.
a random 3m−vector X ∼ N (0, I). To make such a distinction, we need an
estimator E for the expected values of the variances in the ordered PCA modes
of random samplings from X, given the fixed sample size n. Due to the ordering
problem, there is no obvious closed-form expression for E, so it is estimated
using Monte Carlo simulation. Many random sample sets of size n are indepen-
dently drawn from X, followed by PCA on each sample set and ordering of the
associated eigenvalues. The ordered eigenvalues are then averaged to produce
an estimate of the Gaussian noise variance profile across modes. Note that the
eigenvalues in this case quantify variance, and the percentage of total variance
for a PCA mode is equivalent to the ratio of its eigenvalue to the sum of all
eigenvalues.
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In order to determine the number of modes to use from parallel analysis, the
percent-total-variance profiles from the Monte Carlo simulation and the PCA of
the true data are compared, and only modes where the percent-total-variance
in the true data is greater than the simulation data are retained. Figure 3, for
example, is a scree plot of the percent-variances associated with shape data of a
putamen brain structure (n = 25, 3m = 3000) [19] (solid line) and the variances
from the Monte Carlo noise variance simulation (dashed line). The two lines
intersect just before mode 6, and so we would consider only modes 1-5 in the
analysis.
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Fig. 3. Parallel analysis for the putamen data

Once we have chosen the set of k PCA basis vectors by parallel analysis,
we project the correspondences into that subspace. Hypothesis testing for group
differences can now be done using a nonparametric, permutation test with the
Hotelling T 2 metric, with the null hypothesis that the two groups are drawn
from the same distribution.

The Hotelling T 2, two-sample metric is given by

T 2 =
(nanb)(na + nb − 2)

na + nb
(µa − µb)T w,

w = (Σa + Σb)−1(µa − µb)
(1)

where µa and µb are the means, Σa and Σb are the covariances, and na and nb

are the sample sizes of the two groups, respectively. Note that the vector w is also
Fisher’s linear discriminant, which is well known to be the line along which the
between-group variance is maximized with respect to within-group variance[20].
The Hotelling T 2 metric is therefore a scaled projection of the group difference
onto the discriminant line. We therefore propose to visualize the morphological
differences that are driving the statistical test results by transforming w back
from PCA space into the full-dimensional shape space, i.e. ŵ = E−1w̃, where w̃
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Fig. 4. LDA visualization for the HoxD11 phenotype study

is w padded to n-dimensions with n−k zeros. The components of the 3m vector
ŵ can then be mapped onto a visualization of the n mean correspondence point
positions, such as a surface mesh. This resulting linear discriminant analysis
(LDA) visualization indicates group differences in shape that the test metric
identified as the most effective for discrimination.

To visualize deformations between the group mean shapes, we can compute
metrics on the displacement field describing the mapping from points x on one
group mean to corresponding points x′ on the another. Using the set of corre-
spondence points, a smooth transformation T (x) = x′, can be computed using a
thin-plate spline interpolation. Details for computing T (x) are omitted here for
brevity, and good descriptions can be found elsewhere (e.g. [18, 21]). We propose
to visualize strain, a measure on the Jacobian J of the deformation field x−T (x)
that describes the local stretching and compression caused by the deformation.
The Lagrangian strain tensor is a symmetric, second order tensor given by

E =
1
2
(J + JT + JT J). (2)

The eigenvectors of E indicate the principal directions of strain, and the eigen-
values of E indicate the unit elongations in those directions. An effective visu-
alization for the strain tensor is an ellipsoid with principal axes given by the
eigenvalues and oriented along the eigenvector directions.

5 Results and Discussion

This section presents two shape analysis experiments that illustrate the effec-
tiveness of the proposed hypothesis testing and visualization methodology for
phenotyping studies of gene function, and for the analysis of clinical neurolog-
ical datasets. As an example of the application of our method to phenotyping,
we analyzed differences between wild-type mice and a population of mice de-
ficient in the gene Hoxd11. The data for this study are segmentations of the
second phalange of the first digit of the right forepaw, derived from micro-CT
images of normal and mutant strains acquired by the authors [14]. We computed
a combined shape model of the normal (n=20) and mutant population (n=20)
using the particle system method from [2], and applied the hypothesis testing
framework from Section 4.
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Fig. 5. LDA visualization of the right putamen from an autism study

For the mouse data, we have a clear biological hypothesis as to the group
differences between mutant and normal mouse strains. Through a series of gene-
targeting experiments, Boulet, Davis and Capecchi have shown that Hoxd11
is important for the normal development and patterning of the appendicular
skeleton, and suggest group differences between wild-type and mutant mice in
the length of several of the digits of the forepaw [1, 22]. The proposed hypothesis
test method applied to the phalange model indicates highly significant group
differences (p � .01), with the parallel analysis choosing the first two PCA
modes for the hypothesis test. Figure 4 depicts the length in the surface normal
direction of each of the point-wise vector components of the discriminant ŵ on a
surface reconstruction of the mean wild-type population correspondence points.
In the figure, the direction of the arrows are from the wild-type to the mutant
population. The linear discriminant visualization reveals two clear morphological
differences: a reduction in bone length and an increase in bone thickness in
the Hoxd11-deficient population. This analysis has, therefore, quantified and
statistically validated one of the major conclusions from empirical studies of the
Hoxd11 gene, as well as revealing a new significant phenotypic effect.

As a second example, we present the analysis of the three brain structure
model described from the pediatric autism study described in Sect.3. The p-value
results for the amygdala, putamen, and hippocampus models, respectively, are
0.003, 0.046, and 0.100, with the number of PCA modes chosen as 5, 6, and 5.
Of particular interest is the fact that the result for the putamen indicates group
differences at the 5% significant level, which is in contrast to the point-wise hy-
pothesis testing shown in Fig. 1 that indicates no significance. This difference
illustrates the increased statistical power of the proposed testing method, which
avoids the multiple-comparisons problem. The discriminant vector is visualized
for the putamen in Fig.5 for the mean normal population correspondence points,
with arrows indicating the direction from patient to the normal control popu-
lations. The visualization indicates a shortening of the anterior and posterior
regions of the putamen, with a thickening in the medial region.

Figure 6 is a visualization of the strain tensors computed from the defor-
mation from the mean patient shape to the mean normal control shape for
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Fig. 6. Strain tensors for the right putamen from an autism study. Tensor scale is
exaggerated for visualization.

the putamen data. The strain tensors were computed from a thin-plate spline
deformation, as described in the previous section. In the figure, the three prin-
cipal axes of each ellipsoid are scaled by the three principal eigenvalues of the
strain tensor at each correspondence position, and oriented according to their
corresponding eigenvectors. Ellipsoids and the surrounding surface are colored
according to the value of the first principal eigenvector (the longest axis), with
yellow indicating negative (compression) and blue indicating positive (stretch-
ing). While a clinical interpretation of this result is beyond the scope of this
paper, this visualization clearly offers a more detailed insight into how groups
differ than, for example, the LDA visualization. Note, however, that that in this
case we have no indication of the statistical significance of these differences.

In summary, the proposed hypothesis testing and visualization methodolo-
gies offer an intuitive approach to analysis of anatomical shape from images
for biological and clinical research, and avoid the problems inherent in HDLSS
statistics. We have illustrated the effectiveness of the framework by statistically
validating a biological hypothesis regarding Hoxd11 gene function that was pre-
viously only based on empirical evidence, and we have shown how the method
can be useful in exploring new patterns in shape from clinical data which have
not previously been observed, or that are not observable with lower-powered
statistical methods.

Acknowledgments

This work was funded by the Center for Integrative Biomedical Computing, Na-
tional Institutes of Health (NIH) NCRR Project 2-P41-RR12553-07. This work
is also part of the National Alliance for Medical Image Computing (NAMIC),
funded by the National Institutes of Health through the NIH Roadmap for Med-
ical Research, Grant U54 EB005149.



180 J. Cates et al.

References

1. Davis, A., Capecchi, M.: Axial homeosis and appendicular skeleton defects in mice
with targeted disruption of hoxd-11. Development 120 (1995) 2187–2198

2. Cates, J., Fletcher, P.T., Styner, M., Shenton, M., Whitaker, R.: Shape modeling
and analysis with entropy-based particle systems. In: Information Processing in
Medical Imaging (IPMI 2007), LNCS 4584. (2007) 333–345

3. Gorczowski, K., Styner, M., Jeong, J., Marron, J., Piven, J., Hazlett, H., Pizer, S.,
Gerig, G.: Statistical shape analysis of multi-object complexes. In: Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition, IEEE (2007) 1–8

4. Styner, M., Lieberman, J.A., Pantazis, D., Gerig, G.: Boundary and medial shape
analysis of the hippocampus in schizophrenia. Medical Image Analysis (2004)

5. Pizer, S.M., Jeong, J.Y., Lu, C., Muller, K.E., Joshi, S.C.: Estimating the statis-
tics of multi-object anatomic geometry using inter-object relationships. In: Deep
Structure, Singularities, and Computer Vision. Volume 3753 of LNCS. (2005) 60–71

6. Klingenberg, C.P.: Morphometrics and the role of the phenotype in studies of the
evolution of developmental mechanisms. Gene 287 (2002) 3–10

7. Chen, X.J., Kovacevic, N., Lobaugh, N.J., Sled, J.G., Henkelman, R.M., Hender-
son, J.T.: Neuroanatomical differences between mouse strains as shown by high-
resolution 3d mri. NeuroImage 29 (2005) 99–105

8. Davies, R.H., Twining, C.J., Allen, P.D., Cootes, T.F., Taylor, C.J.: Shape dis-
crimination in the hippocampus using an mdl model. In: IPMI. (2003) 38–50

9. Ahn, J., Marron, J.S., Muller, K.M., Chi, Y.: The high-dimension, low-sample-size
geometric representation holds under mild conditions. Biometrika 94(3) (2007)
760–766

10. Terriberry, T., Joshi, S., Gerig, G.: Hypothesis testing with nonlinear shape models.
In: IPMI’05. (2005) 15–26

11. Styner, M., Oguz, I., Xu, S., Brechbühler, C., Pantazis, D., Levitt, J., Shenton, M.,
Gerig, G.: Framework for the statistical shape analysis of brain structures using
SPHARM-PDM. The Insight Journal (2006)

12. Nain, D., Niethammer, M., Levitt, J., Shenton, M., Gerig, G., Bobick, A., Tannen-
baum, A.: Statistical shape analysis of brain structures using spherical wavelets.
In: IEEE Symposium on Biomedical Imaging ISBI. (2007) in print

13. Golland, P., Grimson, W., Shenton, M., Kikinis, R.: Detection and analysis of
statistical differences in anatomical shape. Medical Image Analysis 9 (2005) 69–86

14. Cates, J., Fletcher, P.T., Warnock, Z., Whitaker, R.: A shape analysis framework
for small animal phenotyping with application to mice with a targeted disruption
of hoxd11. In: Proc. 5th IEEE International Symposium on Biomedical Imaging
(ISBI ’08). (2008) 512–516

15. Hazlett, H., Poe, M., Gerig, G., Smith, R., Provenzale, J., Ross, A., Gilmore, J.,
Piven, J.: Magnetic resonance imaging and head circumference study of brain size
in autism: Birth through age 2 years. Arch Gen Psych 62 (2005) 1366–1376

16. Fabrigar, L.R., Wegener, D.T., MacCallum, R.C., Strahan, E.J.: Evaluating the
use of exploratory factor analysis in psychological research. Psychological Methods
4 (1999) 272–299

17. Glorfeld, L.W.: An improvement on horn’s parallel analysis methodology for se-
lecting the correct number of factors to retain. Educational and Psychological
Measurement 55 (1995) 377–393

18. Bookstein, F.: Principal warps: Thin plate splines and the decomposition of defor-
mations. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(6)
(1989)



A Hypothesis Testing Framework for High-Dimensional Shape Models 181

19. Cates, J., Fletcher, P., Styner, M., Hazlett, H., Whitaker, R.: Particle-based shape
analysis of multi-object complexes. In: Proceedings of the 11th International Con-
ference on Medical Image Computing and Computer Assisted Intervention, MIC-
CAI (2008) to appear

20. Timm, N.H.: Applied Multivariate Analysis. Springer-Verlag (2002)
21. Whitbeck, M., Guo, H.: Multiple landmark warping using thin-plate splines. In:

IPCV. (2006) 256–263
22. Boulet, A.M., Capecchi, M.R.: Duplication of the hoxd11 gene causes alterations

in the axial and appendicular skeleton of the mouse. Developmental Biology 249
(2002) 96–107


