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Abstract. Statistical shape models are widely used to model the vari-
ability of biological shapes. They can be used to reconstruct missing
information given partial or noisy data. In case of partial data, many
different reconstructions are possible, and one is not only interested in
a plausible reconstruction but also the remaining flexibility within the
model and the reliability of the reconstruction. We present a method
to model the remaining flexibility when some part of a statistical shape
model is fixed. Using such a flexibility model, we can give answers to
questions like: Does one half of a human femur bone determine the other
half? or How much is the shape of a face determined by its contour?

1 Introduction

Statistical shape models are widely used in medical image analysis, computa-
tional anatomy, and computer vision to model the variability of biological shapes,
see [1–6] for instance. The variability of a certain class of shapes is deduced from
a representative set of example data from this class.

If the example data sets represent the class of shapes well, the model can be
fitted to virtually any individual shape within the class. It is even possible to
fit the model to partial data from an individual, [7, 8]. The missing remaining
data is automatically reconstructed by the model, yielding the most plausible
reconstruction.

However, there may be many other possible reconstructions which fit the
partial data equally well. The partial data only determines a part of the model,
while the rest of the model may remain flexible. This paper focuses on modeling
this remaining flexibility of the partially determined model.

Keeping a part xb of the complete model x fixed, how much flexibility remains
for the remaining part xa? In principle, as PCA models can be statistically inter-
preted by a multivariate Gaussian distribution with probability density function
p, we can model the remaining flexibility by the conditional distribution p(xa|xb).
We will see however, that there is no nontrivial conditional distribution if more
components are kept fixed than there are degrees of freedom in the model, as is
usually the case in models built from a small set of examples.

In this case, we propose a method which models the remaining flexibility of
the variable points when the fixed points are allowed to move slightly instead of
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being completely fixed. The method leads to a generalized eigenvalue problem
which can be solved efficiently.

The remaining paper is organized as follows. In Section 2 we will review
the well-known concept of PCA-based statistical shape models. In Section 3 we
will derive an expression of the conditional distribution p(xa|xb) and investigate
when this can actually be used. In Section 4, we will model the remaining flexi-
bility when the fixed points are allowed to move slightly. In Section 5 we will use
the proposed method to model the remaining flexibility of a shape model of the
human femur bone when its distal part is fixed, and the remaining flexibility of
a face model, when its contour is fixed.

Related Work. Virtually all cited papers deal with statistical shape models
with applications in medicine or computer vision, [1–8]. Most notably, [5] uses
Canonical Correlation Analysis to model the correlation between different parts
of a statistical model, computing model coefficients which maximize the correla-
tion between these parts. However, they do not address our problem of modeling
the remaining flexibility when one part of the model is fixed.

2 Principle Component Analysis

The 3D statistical shape models used in this paper are based on a Principle
Component Analysis (PCA) of a set of training data comprised of n 3D surfaces.
Each surface is represented by a triangular mesh with the same number m ∈ IN
of vertices, which are stacked into a data vector x = (x1, y1, z1, ...xm, ym, zm)T ∈
IRM with M = 3m. The training surfaces need to be in correspondence.

As in all PCA models, the samples are assumed to be i.i.d. samples drawn
from a multivariate normal distribution that is approximated by the estimated
multivariate normal distribution N (x̄,Σ). The mean is estimated by the arith-
metic mean x̄ = 1

n

∑n
i=1 xi of all samples. The covariance matrix Σ ∈ IRM×M

can be estimated from the mean-free data matrix X := [x1 − x̄, . . . ,xn − x̄] ∈
IRM×n as Σ = 1

nXXT .
When X is decomposed with a (reduced) Singular Value Decomposition

X = UWVT into the product of a column-orthonormal matrix U ∈ IRM×n,
a diagonal matrix W ∈ IRn×n, and an orthonormal matrix V ∈ IRn×n, the
covariance matrix can be expressed as Σ = 1

nUW2UT .
The columns ui of the matrix U are the eigenvectors of Σ. They are known

as the principal components of the model and describe the main modes of vari-
ation of the training data. Their corresponding eigenvalues σ2

i := 1
nw2

i describe
the variance of the model projected onto these eigenvalues. They are arranged
according to size so that u1 is the direction with maximal projected variance σ2

1 .
One individual x in the object class modeled by the PCA model can be

identified by its coefficients α = (α1, . . . , αn)T ∈ IRn:

x = x̄ +
n∑

i=1

αiσiui = x̄ + 1√
n
UWα. (1)
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Under the assumption that the data x is distributed according to a multivariate
normal distribution N (x̄,Σ), the coefficient vector α is distributed according to
N (0, In).

In this paper two PCA models are used: A model of the femur bone, built
from 21 CT scans of femur bones, which were hand-segmented and brought into
correspondence with [9], and a model of the human face built from 100 face scans
that were brought in correspondence with a modification of [10].

3 Conditional Distribution

In a PCA-based statistical model, we now wish to fix a certain number l ∈ IN of
points in the model in order to investigate how flexible the model remains with
respect to the remaining m − l variable points. This means that we fix L = 3l
components of the model vector x. Without loss of generality, we can assume
that they are the last l components and x can be partitioned as x = (xa,xb)T .

As x is distributed according to a multivariate normal distribution, the con-
ditional distribution is a also a multivariate normal distribution N (µa|b,Σa|b).
Its mean and covariance can be calculated from x̄ and Σ.

The matrix of principal components U ∈ IRM×n can be partitioned according
to x. For simplicity’s sake, we define the matrix of the principal components
scaled by the diagonal matrix W ∈ IRn×n as Q := 1√

n
UW ∈ IRM×n. We have

U =
(
Ua

Ub

)
, Q = 1√

n
UW = 1√

n

(
UaW
UbW

)
=

(
Qa

Qb

)
(2)

The covariance matrix Σ ∈ IRM×M can be calculated from Q by Σ =
1
nUW2UT = QQT . We can partition Σ as follows:

Σ =
(
Σaa Σab

Σba Σbb

)
=

(
QaQT

a QaQT
b

QbQT
a QbQT

b

)
. (3)

Note that it is only possible to calculate a nontrivial conditional distribution
if the matrix Σbb is invertible. A necessary condition for Σbb to be invertible
is that the number of fixed degrees of freedom L is less the number of training
examples n of the statistical model. Let us, for the moment, assume that Σbb

is invertible and calculate the conditional distribution according. According to
[11], the covariance matrix Σa|b of the can be expressed as:

Σa|b = Σaa −Σab Σ−1
bb Σba (4)

= QaQT
a −QaQT

b (QbQT
b )−1 QbQT

a (5)

= Qa

(
In −QT

b (QbQT
b )−1Qb

)
QT

a , (6)
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where In denotes the (n × n) identity matrix. While the original matrix U is
column-orthonormal, the sub-matrix Ub defined in Equation (2) in not. There-
fore, we perform an additional a singular value decomposition Qb = ŪbWbVT

b

with a column-orthonormal Ūb. Thus, the expression can be expanded to:

Σa|b = Qa

(
In −VbWbŪT

b ŪbW−2
b ŪT

b ŪbWbVb

)
QT

a (7)

= Qa

(
In −VT

b Vb

)
QT

a . (8)

Where, in the last step, we have used ŪT
b Ūb = In. Similarly, the mean µa|b is

given as:

µa|b = x̄a + ΣabΣ−1
bb (xb − x̄b) (9)

= x̄a + QaVbW−1
b ŪT

b (xb − x̄b), (10)

with x̄ = (x̄a, x̄b)T .
Provided that Σbb is invertible, xa can be reconstructed from xb as µa|b. This

is the reconstruction presented in [7] as the maximum a posteriori reconstruction.
All other reconstructions which fit xb are modeled by N (µa|b,Σa|b). The more
flexibility this distribution allows, the less reliable the reconstruction by µa|b is.

For each of these reconstructions, the fixed values xb are matched equally
well. Indeed, if we take a closer look at the expression for the covariance matrix
Σa|b in Equation (8) we notice that the inner part (In −VT

b Vb) is a projection
onto the orthogonal complement of the column space of Vb. As Vb is the “input
matrix” of the SVD of Qb, this projection is a projection onto the kernel of Qb.
This means that the distribution N (µa|b,Σa|b) models only linear combinations
Qaα of the scaled principal components for which α is in the kernel of Qb, i.e.
Qbα = 0. So for all α ∼ N (µa|b,Σa|b), the deformation of the fixed points is
zero.

Invertibility of Σbb. So far, we have assumed that Σbb = QbQT
b ∈ IRL×L is in-

vertible, i.e. rank(Σbb) = L. However, if Qb has less than L linearly independent
columns we have rank(Σbb) < L. In particular, if the statistical model is built
from less than L examples or less than L principal components are used, the
rank of Σbb will be less than L and the above calculations involving an inversion
of Σbb are not valid. In this case there is no nontrivial conditional distribution
p(xa,xb).

In this case the mean µa|b can still be approximated by using the pseudo-
inverse of Σbb instead of its inverse, [7]. However, if we try to use the pseudo-
inverse for calculating the covariance matrix according to Equation (4), we get
Σa|b = 0.

The problem is that the conditional distribution N (µa|b,Σa|b) models only
coefficient vectors from the kernel of Qb. Without a nontrivial kernel of Qb, it
is not possible to calculate a nontrivial conditional distribution. Therefore, we
propose that instead of looking for coefficient vectors α ∈ kerQb, i.e. Qbα = 0,
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we will look for coefficients for which Qbα is small. This means that we relax
the constraint of keeping the fixed points completely fixed to allowing them to
move slightly.

It also has to be noted that even if there is a nontrivial kernel of Qb, it will
most likely still be of interest to consider deformations which allow slight changes
of the fixed points xb when considering the remaining flexibility of the model.

4 Generalized Eigenvalues

The aim is to model the flexibility of the variable points xa when the fixed points
xb are allowed to move slightly. The deformations are given as Qaα and Qbα. A
measure for the change caused by these deformations is the squared Euclidean
norm of these vectors:

‖Qaα‖2 = αT QT
a Qaα, ‖Qbα‖2 = αT QT

b Qbα. (11)

As we are first and foremost interested in the coefficients α which change the
variable points xa as much as possible, we can formulate our aim as a constrained
maximization problem:

max
α∈IRk

αT QT
a Qaα (12)

subject to αT QT
b Qbα = c, (13)

where c ∈ IR+ quantifies the amount of change allowed in the fixed coefficients.
Introducing a Lagrangian multiplier λ and differentiating with respect to α

leads to the generalized eigenvalue problem:

QT
a Qaα = λQT

b Qbα. (14)

Both matrices QT
a Qa and QT

b Qb are positive definite and symmetric. The gen-
eralized eigenvalue problem can be solved efficiently with standard software
(LAPACK, MATLAB), yielding a set of generalized eigenvectors {α1, . . . ,αk}
arranged according to the size of their corresponding generalized eigenvalues
{λ1, . . . , λk}. The eigenvectors are scaled so that ‖Qbαi‖2 = αT

i QT
b Qbαi = 1

for i = 1, . . . , k. If we pre-multiply Equation (14) by αT , we see that for an
eigenvector αi and its eigenvalue λi, we have

‖Qaαi‖2 = λi‖Qbαi‖2. (15)

This means that, measured in the squared Euclidean norm, the deformation
determined by the coefficient vector αi ∈ IRk changes the variable model points
λi times as much the fixed ones. Therefore, the eigenvector α1 corresponding to
the largest eigenvalue λ1 is the coefficient vector which causes the largest change
on the variable points (with a squared Euclidean norm of λ1), changing the fixed
points only slightly (with a deformation with a squared Euclidean norm of 1).
The last eigenvectors change the fixed points more than the variable ones. In
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Fig. 1. In a statistical shape model of the human femur bone, the two first flexibility
components α1 and α2 model those deformations that change the proximal part (gray)
as much as possible, while changing the distal part (colored) as little as possible.

fact, exchanging fixed and variable points leads to the same eigenvalues, only
inverted.

We call the coefficient vectors αi the flexibility components. α1 is the first
flexibility component. Just like the principal components of the PCA model,
they can be scaled and added together to achieve different deformations from the
mean. When a flexibility component αi is scaled by

√
r it causes a deformation

of squared Euclidean norm r of the fixed points and of λi r of the variable points.
The larger the eigenvalues λi are, the more flexibility remains for the fixed points
and the less reliable a reconstruction of xa from xb is considered. In order to
meat the constraint from Equation (13), the vectors have to be scaled by

√
c.

The squared Euclidean norm is not a very intuitive measure of the deforma-
tion as it implicitly depends on the number l of fixed points. A more intuitive
measure is the mean squared norm, averaged over all l fixed points:

1
l

l∑
k=1

(Qbαi)2k =
1
l
‖Qbαi‖2. (16)

Therefore, if we scale the coefficient vectors αi by
√

l, and the coordinates of
the model are given in millimeters, the squared deformation of one model point
is 1 millimeter on average.
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Fig. 2. For the examples shown in Figures 4 and 1, the deformation of the fixed ver-
tices (blue) is compared with the flexibility of the full shape (red). The first flexibility
components strongly affect the full shape, while they hardly alter the fixed vertices.

Regularization. The flexibility components αi are calculated as generalized
eigenvectors. As outlined in Section 2, the coefficients α of the PCA model are
distributed according to a multivariate normal distribution N (0, In). Without
regularization, it is possible that some of the entries of αi can be extremely
large. In terms of the distribution N (0, In), such extremely large values are very
unlikely and in practice they cause unnatural deformations of the modeled shape.

Up to a normalizing factor, the probability of a deformation caused by α
can be calculated by e−

1
2‖α‖

2
. By minimizing ‖α‖2 = αT α, the probability of

the deformation is maximized. Therefore, we propose replacing the constraint in
Equation (13) by the following constraint:

αT QT
b Qbα + η αT α = c, (17)

with a regularizing parameter η ∈ IR+. In this way, we limit not only the de-
formation of the fixed points given by ‖Qbα‖2 but also the improbability of the
deformation, given by ‖α‖2. The corresponding generalized eigenvalue problem
is a regularized version of Equation (14) and is given by:

QT
a Qaα = λ (QT

b Qb + ηIn)α. (18)

This system no longer admits extremely large values in the generalized eigen-
vectors αi. The parameter η controls the balance between the original problem
and the regularizing effect of allowing only probable shapes.

Note that when we deform not the mean but a certain individual x, which
is defined by coefficients β, the deformation coefficients α are not distributed
according to N (0, In) but according to N (−β, In). Therefore it would make
more sense to minimize ‖α + β‖2 = (α + β)T (α + β). However, it is not obvi-
ous how to include such a constraint into a generalized eigenvalue problem like
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(a) (b) (c)

Fig. 3. The vertices on the contour in profile view are fixed (a). The 1st (b) and 2nd
(c) flexibility components (see Figure 4) don’t change the contour in profile view.

Equation (18). Therefore, we content ourselves with the proposed regulariza-
tion, which penalizes large deformations, even though its statistical motivation
is perfectible.

Nontrivial kernel of Qb. We have introduced the generalized eigenvalue problem
Equation (14) in order to model the remaining flexibility of the variable points
when it is not possible to calculate the conditional distribution p(xa|xb), which
is the case if and only if Qb has only the trivial kernel kerQb = {0}.

But what happens to the generalized eigenvalue problem if Qb does have a
nontrivial kernel? In this case, we can split up the space of all coefficients α
into the kernel of Qb and its orthogonal complement. In the kernel, we have all
deformations which do not change the fixed points at all, which can be modeled
by the conditional distribution. The covariance matrix in the kernel is simply
QaQT

a , as in the kernel, the projection term from Equation (8), (In −VT
b Vb) =

In. In the complement, we can compute the generalized eigenvalue problem in
order to additionally allow deformations which change the fixed points slightly.

From a practical point of view, when kerQb 6= {0} and therefore QT
b Qb

is singular, the aforementioned LAPACK or MATLAB routines return a basis
for the kernel as generalized eigenvectors with eigenvalues infinity, as for these
vectors we have QT

b Qbαi = 0. The remaining eigenvalues span the complement
of the kernel and are computed as usual.

If we use the regularized form of the generalized eigenvalue problem Equa-
tion (18), there will be no infinite eigenvalues, as the matrix (QT

b Qb + ηIn) is
always nonsingular. However, for vectors α ∈ kerQb, we have (QT

b Qb +ηIn)α =
ηα. Therefore, on kerQb, we effectively solve the eigenvalue problem:

αT QT
a Qaα = λ ηα, (19)

whose eigenvectors corresponding to the largest eigenvalues maximize ‖Qa‖2.
In this regularized case, there is no strict decomposition into kerQb and its
complement.
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Fig. 4. A statistical shape model of human faces is used to model the remaining flexi-
bility with fixed contour. The vertices on the contour in profile view (see also Figure 3)
are fixed. The flexibility components model the remaining variability within the model.
The 1st/2nd flexibility components is shown in the 1st/2nd row.

5 Experiments and Conclusion

We demonstrate the use of the flexibility models for two different scenarios with
two different models, one for the shape of human faces and one for the human
femur bone.

In the case of the femur bone, we are interested in determining how well
the distal (bottom) part of the femur determines the proximal (top) part, in
order to estimate how reliable the model can be for reconstruction of missing
or injured parts of the bone. In Figure 1, the distal part of the bone is colored.
It corresponds to the fixed points xb. From the generalized eigenvalue problem
Equation (18), the flexibility components αi are calculated. The regularization
parameter was chosen as η = 10. Figure 1 illustrates the effect of deforming the
mean by ±2.2

√
l times the first two flexibility components α1 and α2. Clearly,

both the distal and the proximal part are changed, but the proximal part is
much more heavily deformed. In Figure 2, the amount of deformation is plotted,
measured in the mean and the maximum of the Euclidean norm of the defor-
mation at each point. For the mean norm, the ratio is approximately equal to
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the corresponding eigenvalue. For the mean squared norm, which is not plotted
here, it is of course exactly equal to this eigenvalue.

In case of the face model we are interested in the question: Given the vertices
on the contour, how much is the shape of the face determined? Here, the fixed
vertices xb are the vertices of the occluding contour in profile view, as shown in
Figure (3 a)). This is the contour for one individual represented by its model
coefficients β. Again, the flexibility components αi are computed using Equa-
tion (18), with η = 10. To visualize the result, the surface with the coefficients
β±1.1

√
lαi is shown in Figure 4. We see that the first two flexibility components

heavily deform the model, while the vertices at the contour are almost fixed, see
Figure 3 b,c). The resulting deformations measures are plotted in Figure 2. The
ratio is much higher than in the femur case as less points are kept fixed and the
model is built from many more examples, making it more expressive.

Conclusion. We have introduced a way to model the remaining flexibility of a
statistical shape model when a part of the model is kept as fixed as possible,
even in the absence of a nontrivial conditional distribution. In future work, we
will apply this technique in the fitting of statistical models to partial data.
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9. Dedner, A., Lüthi, M., Albrecht, T., Vetter, T.: Curvature guided level set regis-
tration using adaptive finite elements. In: Pattern Recognition. (2007) 527–536

10. Amberg, B., Romdhani, S., Vetter, T.: Optimal Step Nonrigid ICP Algorithms for
Surface Registration. Computer Vision and Pattern Recognition, 2007. CVPR’07.
IEEE Conference on (2007) 1–8

11. Bishop, C.: Pattern recognition and machine learning. Springer (2006)


