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Abstract. Diffusion tensor imaging can be studied as a deconvolution
density estimation problem on the space of positive definite symmetric
matrices. We develop a nonparametric estimator for the common density
function of a random sample of positive definite matrices. Our estimator
is based on the Helgason-Fourier transform and its inversion, the natural
tools for analysis of compositions of random positive definite matrices.
Under smoothness conditions on the density of the intrinsic error in the
random sample, we derive bounds on the rates of convergence of our
nonparametric estimator to the true density.
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1 Introduction

The appearance in medical imaging of sequences of random positive definite ma-
trices has become commonplace due to developments in diffusion tensor imaging

(DTI), a method of imaging based upon the observation that water molecules in
biological tissue are always in motion. For the purposes of mathematical mod-
eling, it is generally assumed that the diffusion of water molecules at any given
location in biological tissue follows a Brownian motion. A diffusion tensor image
then is represented by the 3 × 3 positive-definite covariance matrix of the local
diffusion process at the given location (Fletcher and Joshi [3, 4]. DTI seeks to
detect the diffusion of water protons between and within distinct tissue cells, and
to derive estimates of the dominant orientation and direction of the Brownian
motion (Le Bihan [9], Hasan, et al. [5]).

In DTI brain imaging, the diffusion of water molecules within and between
voxels, the three-dimensional volume elements that constitute an image, reveal
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both the orientation of fibers comprising white-matter tracts in the brain and
the coherence of fibers, the extent to which fibers are aligned together. DTI may
be the only non-invasive, in vivo procedure which enables the study of deep brain
white-matter fibers. Consequently, DTI has been found to be highly promising
for comparing the human brain in normal states with abnormal states caused
by strokes, epileptic seizures, tumors, white-matter abnormalities, multiple scle-
rosis lesions, HIV-infection, traumatic brain injuries, aging, Alzheimer’s disease,
alcoholism, and developmental disorders; and there are potential applications
to psychiatric conditions including schizophrenia, autism, cognitive and learning
disabilities (Neumann-Haefelin, et al. [12], Rosenbloom, et al. [14], Pomara, et al.

[13], Matthews and Arnold [10]). In addition, DTI has been applied in research
on the pathology of organ and tissue types such as the human breast, kidney,
lingual, cardiac, skeletal muscles, and spinal cord (Damon, et al. [2]).

It is well-known that magnetic resonance imaging, from which diffusion ten-
sors are derived, is endowed inhererently with random noise. Hence, DTI data
also contain noise (Basu, et al. [1]), and it is natural that statistical inferential
issues arise in the analysis of DTI data (Koltchinskii, et al. [8]; Schwartzman, et

al. [15, 16]; Zhu, et al. [18]).

In this paper, we study the problem of estimating the probability density
function of a population of positive definite matrices based on a random sample
from that population. An instance in which this problem arises may be obtained
from Schwartzman [15] who studied the two-sample comparison of twelve chil-
dren divided into two groups according to reading ability, where the issue is to
compare physical characteristics of brain tissue of the two groups on the basis
of DTI images. In addition to comparing the population parameters, it is nat-
ural to seek estimators of the underlying density functions, and then it will be
important to estimate the rates of convergence of the density estimators.

The deconvolution density estimation problem has been widely studied on
Euclidean spaces. this classical setting, the commutative nature of the underly-
ing mathematical operations renders the problem amenable to classical mathe-
matical methods. The deconvolution problem has also been studied on certain
compact manifolds. In that setting, the problem is solvable using well-known gen-
eralizations of classical Fourier analysis. By contrast, Pm, the space of m × m
positive definite matrices, is a noncompact Riemannian manifold and has an
intrinsic non-commutative nature, and it is natural to expect that the deconvo-
lution problem will be more difficult in that setting. To the best of our knowledge,
no results yet are available for the general deconvolution problem on Pm.

To date, the primary statistical emphases regarding mathematical methods
on Pm are motivated by properties of the Wishart distribution, see for example
Muirhead [11]. To solve the general deconvolution problem on Pm, more ad-
vanced mathematical methods are required. While much is known in the math-
ematical literature about the necessary methods (Helgason [6], Terras [17]), vir-
tually nothing about those methods has appeared in the statistical literature.
Using these new methods, we develop nonparametric methods for solving the
deconvolution problem on Pm.
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In summary, section 2 provides notation, and introduces the Helgason-Fourier

transform and its inversion formula, involving the Harish-Chandra c-function; we
have provided the necessary details of these concepts so as to make the paper
fully accessible to readers who are new to this area. We formalize in section 3
the statistical procedure in terms of measurement errors on Pm and present the
main results on general deconvolution density estimation on Pm and we provide
the explicit details in the case of the Wishart distribution. All proofs can be
found in Kim and Richards [7].

2 Preliminaries

Throughout the paper, we denote by G the general linear group GL(m, R), of
m×m nonsingular real matrices and by K the group, O(m), of m×m orthogonal
matrices. The group G acts transitively on Pm, the space of m × m positive
definite matrices, by the action

G × Pm → Pm, (g, x) 7→ g′xg,

g ∈ G, x ∈ Pm, where g′ denotes the transpose of g. Under this action, the
isotropy group of the identity in G is K, hence the homogeneous space K\G can
be identified with Pm by the “natural” mapping

K\G → Pm, Kg 7→ g′g. (1)

In distinguishing between left and right cosets, we place the quotient operation
on the left and right of the group, respectively.

A random matrix X ∈ Pm is said to be K-invariant if X
L
= k′Xk for all

k ∈ K, where “
L
=” denotes equality in distribution. A function f on Pm is called

K-invariant if f(k′xk) = f(x) for all k ∈ K, x ∈ Pm; we will indicate that
f is K-invariant by writing its domain as Pm/K, with a similar notation for
K-invariant positive definite random matrices.

By means of the relationship (1) between K\G and Pm, we identify K-
invariant functions on Pm with K-biinvariant functions on G, i.e., functions
f̃ : G → C which satisfy f̃(g) = f̃(k1gk2) for all k1, k2 ∈ K and g ∈ G. In
particular, Pm/K ≃ K\G/K where “≃” denotes diffeomorphic equivalence.

Consider random matrices X, ε ∈ Pm with corresponding group elements
X̃, ε̃ ∈ G, respectively. By the natural map (1), KX̃ 7→ X, equivalently X̃ ′X̃ =

X and, similarly, Kε̃ 7→ ε. Then X̃ε̃ ∈ G is mapped via (1) to

X̃ε̃ 7→ (X̃ε̃)′(X̃ε̃) ≡ ε̃ ′X̃ ′X̃ε̃ = ε̃ ′Xε̃ ∈ Pm. (2)

If ε̃ is K-biinvariant, i.e., ε̃
L
= k1ε̃k2 for all k1, k2 ∈ K then ε̃ ′ε̃ = ε = k′Λk where

k ∈ K and Λ ∈ Pm is the diagonal matrix of eigenvalues of ε. Consequently,
we define ε1/2 = k′Λ1/2k and note that, by K-biinvariance of ε̃, the relation-
ship (2) on the group G corresponds in distribution to ε1/2Xε1/2 ∈ Pm, where
X ∈ Pm and ε ∈ Pm/K. Bearing this in mind, we formally make the following
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definition. Suppose that X ∈ Pm and ε ∈ Pm/K are random matrices. Then the
composition of X and ε is

X ◦ ε = ε1/2Xε1/2 (3)

where ε1/2 is the positive definite square root of ε.
There is an alternative approach leading to compositions (3). We begin by

noting that Pm is a Riemannian manifold, hence each pair X,Y ∈ Pm defines a
unique geodesic path. Since Pm is also a homogeneous space, viz., Pm = K\G,
then there exists a unique V ∈ G such that

Y = V XV ′. (4)

This model can be viewed as a multiplicative analog of classical regression anal-
ysis, with Y serving as the dependent variable, X as the independent variable,
and V as the error variable. We can also study this relationship between X and
Y using the logarithm map on Pm. To that end, each observation on Y may be
transformed into an observation on y where exp(y) = Y with y ∈ T (Pm), the
tangent space of Pm. Similarly, each measurement on X may be transformed
into a measurement on x ∈ T (Pm) where exp(x) = X. By postulating the exis-
tence of a “small” error v ∈ T (Pm) such that y = x + v and, by exponentiating
this linear “regression” relationship between y and x, we are led naturally to (4);
see Terras [17], section 4.1-4.2 for details on the exponentiation of such linear
relationships on T (Pm).

If we assume that the measurement error V is isotropic or has no preferred
orientation, i.e., V has a K-invariant distribution, then the conclusion is the
model (4) in which V ∈ G/K. As noted in [14], in the context of DTI, the
assumption that water molecules diffuse istropically is appropriate for regions
such as the ventricles, which are large fluid-filled spaces deep in the brain. On the
other hand, water molecules located in white-matter fiber are constrained by the
axon sheath; this forces greater movement along the longitudinal axes of fibers
than across the axes, and then diffusion may be isotropic only at sufficiently
small scales.

Returning to (4), we apply polar coordinates on G, viz., V = kε1/2 where

k ∈ K and ε ∈ Pm. Since V is K-invariant then V
L
= k′V = k′kε1/2 = ε1/2;

hence (4) reduces to Y
L
= ε1/2Xε1/2 ≡ X◦ε, which agrees with (3) since ε = V ′V

is K-invariant. Thus, the problem is to estimate nonparametrically the density
of X based on a random sample from Y = X ◦ ε where the error matrix ε is
isotropic.

Let C∞
c (Pm) denote the collection of complex-valued, infinitely differentiable,

compactly supported functions f on Pm. For w ∈ Pm and j = 1, . . . ,m, denote
by |wj | the principal minor of order j of w. For s = (s1, . . . , sm) ∈ C

m, the power

function ps : Pm → C is defined by

ps(w) =

m∏

j=1

|wj |
sj ,

w ∈ Pm.
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Let dk denote the Haar measure on K, normalized to have total volume equal
to one. Then

hs(w) =

∫

K

ps(k
′wk) dk (5)

w ∈ Pm, s ∈ C
m, is a zonal spherical function on Pm. It is well-known that the

spherical functions play a fundamental role in harmonic analysis on symmetric
spaces; see Helgason [6]. In particular, (5) is a special case of Harish-Chandra’s
formula for the general spherical functions. If s1, . . . , sm are nonnegative inte-
gers then, except for a constant factor, (8) is an integral formula for the zonal
polynomials which arise often in aspects of multivariate distribution theory; see
Muirhead [11], pp. 231–232.

Let w = (wij) ∈ Pm. Then, up to a constant factor, the unique G-invariant
measure on Pm is

d∗w = |w|−(m+1)/2
∏

1≤i≤j≤m

dwij , (6)

where |w| is the determinant of w.
For s = (s1, . . . , sm) ∈ C

m and k ∈ K, the Helgason-Fourier transform ([17],
p. 87) of a function f ∈ C∞

c (Pm) is

Hf(s, k) =

∫

Pm

f(w) ps(k′wk) d∗w, (7)

where ps(k′wk) denotes complex conjugation and d∗w is the G-invariant measure
(6).

For the case in which f ∈ C∞
c (Pm/K), we make the change of variables

w → k′
1wk1 in (7), k1 ∈ K, and integrate with respect to the Haar measure dk1.

Applying the invariance of f and the formula (5) for the zonal spherical function,

we deduce that Hf(s, k) does not depend on k; specifically, Hf(s, k) = f̂(s)
where

f̂(s) =

∫

Pm

f(w)hs(w) d∗w, (8)

is the zonal spherical transform of f .
Let A = {diag(a1, . . . , am) : aj > 0, j = 1, . . . ,m}, denote the group of

diagonal positive definite matrices in G, and N = {n = (nij) ∈ G : nij = 0, 1 ≤
j < i ≤ m;njj = 1, j = 1, . . . ,m} be the subgroup of G consisting of upper-
triangular matrices with all diagonal entries equal to 1. It is well-known (see
Terras [17], p. 20) that each g ∈ G can be decomposed uniquely as g = kan
where k ∈ K, a ∈ A, and n ∈ N ; this result is the Iwasawa decomposition, and
(k, a, n) are called the Iwasawa coordinates of g.

For a, b ∈ C with Re(a),Re(b) > 0, let B(a, b) = Γ (a)Γ (b)/Γ (a + b) denote
the well-known beta function, where Γ (·) is the classical gamma function. For
s = (s1, . . . , sm) ∈ C

m, the Harish-Chandra c-function is

cm(s) =
∏

1≤i<j≤m−1

B
(

1
2 , si + · · · + sj + 1

2 (j − i + 1)
)

B
(

1
2 , 1

2 (j − i + 1)
) .
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Let ρ ≡ ( 1
2 , . . . , 1

2 , 1
4 (1 − m)) and set

ωm =

∏m
j=1 Γ (j/2)

(2πi)m πm(m+1)/4 m!
. (9)

We shall use the notation

C
m(ρ) = {s ∈ C

m : Re(s) = −ρ} (10)

because this subset of C
m arises frequently in the sequel, and we also define

d∗s = ωm |cm(s)|−2 ds1 · · · dsm (11)

since this measure is ubiquitous in our development.
Let M = {diag(±1, . . . ,±1)} be the collection of m × m diagonal matrices

with entries ±1 on the diagonal; then M is a subgroup of K and is of order 2m.
By factorizing the Haar measure dk on K, it may be shown ([17], p. 88) that
there exists an invariant measure dk̄ on the coset space K/M such that

∫

k̄∈K/M

dk̄ = 1.

In stating the inversion formula for the Helgason-Fourier transform, we make
particular use of the notation (9)-(11). The inversion formula then is the following
result.

For f ∈ C∞
c (Pm) and w ∈ Pm,

f(w) =

∫

Cm(ρ)

∫

k̄∈K/M

Hf(s, k) ps(k
′wk) dk̄ d∗s. (12)

In particular, if f ∈ C∞
c (Pm/K) then

f(w) =

∫

Cm(ρ)

f̂(s)hs(w) d∗s. (13)

We refer to Terras [17], p. 87 ff. for a detailed treatment of this inversion formula
and many references to the literature.

For f ∈ L1(Pm) and h ∈ L1(Pm/K) we define f ∗ h, the convolution of f
and h, by

(f ∗ h)(w) =

∫

Pm

f(z)h(z−1/2wz−1/2) d∗z,

w ∈ Pm. Thus, if f and h are the density functions of independent random
matrices X ∈ Pm and ε ∈ Pm/K, respectively, then f ∗h is the density function
of the composition X ◦ ε.

For f ∈ C∞
c (Pm) and h ∈ C∞

c (Pm/K), the convolution property of the

Helgason-Fourier transform is that

H(f ∗ h)(s, k) = Hf(s, k) ĥ(s), (14)

s ∈ C
m, k ∈ K; see Terras [17], Theorem 1, p. 88.
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3 Deconvolution density estimation on Pm

On the group G, the deconvolution problem arises from the statistical model

Ỹ
L
= X̃ε̃ (15)

where X̃ is a random unobservable, ε̃ is an independent random error, and Ỹ
is the observed random measurement. We assume that feε, the density of ε̃, is
known and K-biinvariant and that the unknown densities f eX and feY of X̃ and

Ỹ , respectively, are K-invariant. Under the equivalence K\G ≃ Pm, we have

ε̃ 7→ ε, X̃ 7→ X, and Ỹ 7→ Y together with the identification fε(g̃) = fε(g̃
′g̃),

fX(g̃) = fX(g̃′g̃) and fY (g̃) = fY (g̃′g̃), g ∈ G. Since X̃ and ε̃ are independent
then X and ε also are independent, and (15) implies that

Y
L
= ε1/2Xε1/2; (16)

hence fY = fX ∗ fε.
Applying to (16) the convolution property (14) of the Helgason-Fourier trans-

form, we obtain
HfY (s, k) = HfX(s, k) f̂ε(s), (17)

s ∈ C
m, k ∈ K. Given a random sample Y1, . . . , Yn from Y , we estimate the

density function fX as follows. We form HnfY , the empirical Helgason-Fourier

transform,

HnfY (s, k) =
1

n

n∑

ℓ=1

ps(k′Yℓk). (18)

Substituting (18) in (17), together with the assumption that f̂ε(s) 6= 0, s ∈ C
m,

we obtain

HnfX(s, k) =
HnfY (s, k)

f̂ε(s)
,

s ∈ C
m, k ∈ K.

In analogy with classical Euclidean deconvolution, we introduce a smoothing
parameter T = T (n) where T (n) → ∞ as n → ∞, and then we apply the
Helgason-Fourier inversion formula (12) using a spectral cut-off.

We introduce the notation

C
m(ρ, T ) = {s ∈ C

m(ρ) : λs < T}

where Cm(ρ) is defined in (10). As an estimator of the population density fX ,
we define the density estimator fn

X given by

fn
X(w) =

∫

Cm(ρ,T )

∫

k̄∈K/M

HnfY (s, k̄)

f̂ε(s)
ps(k̄

′wk̄) dk̄ d∗s,

w ∈ Pm. The estimator fn
X will serve as our nonparametric deconvolution esti-

mator of the density fX .
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Let {an} and {bn} be sequences of real numbers. We write an ≪ bn to mean
an ≤ Cbn for some constant C > 0, as n → ∞ (the Vinogradov notation). We
use the notation an = o(bn) to mean an/bn → 0, as n → ∞. We also write
an ≍ bn if both an ≪ bn and bn ≪ an; and we write an ∼ bn if an/bn → 1 as
n → ∞.

For technical reasons, we will also assume the moment condition
∫

Pm

|w1|
−1 · · · |wm−1|

−1 |w|(m−1)/2 fY (w) d∗w < ∞, (19)

on the principal minors |y1|, . . . , |ym| of y ∈ Pm. This assumption will be main-
tained throughout the rest of the paper.

Estimation will proceed in the Sobolev class of functions,

Hσ(Pm) =
{
f ∈ C∞(Pm) : ‖∆σ/2f‖2 < ∞

}
,

where 2σ > dimPm = m(m + 1)/2, ∆ is the Laplacian on Pm and, for f ∈
C∞(Pm),

‖f‖ =
( ∫

Pm

|f(w)|2 d∗w
)1/2

denotes the L2(Pm)-norm with respect to the invariant measure d∗w. For Q > 0,
we also define the bounded Sobolev class,

Hσ(Pm, Q) =
{
f ∈ C∞(Pm) : ‖∆σ/2f‖2 < Q

}
,

where 2σ > dimPm = m(m + 1)/2.

Theorem 1. Suppose there exists β ≥ 0 such that

|f̂ε(s)|
−2 ≪ T β

as T → ∞, for all s ∈ C
m(ρ, T ). If fX ∈ Hσ(Pm, Q) and σ > 1

2 dimPm ≡
m(m + 1)/4 then, as n → ∞,

E ‖fn
X − fX‖2 ≪ n−2σ/(2σ+2β+dimPm).

Corollary 1. Suppose the distribution of ε is concentrated at Im. If fX ∈
Hσ(Pm, Q) where σ > 1

2 dimPm then as n → ∞,

E ‖fn
X − fX‖

2
≪ n−2σ/(2σ+dimPm).

We shall also obtain a result for the situation in which the hypothesis in
Theorem 1 is replaced by an exponential bound. In such a situation, we have
the following result.

Theorem 2. Suppose there exists β, γ > 0 such that

|f̂ε(s)|
−2 ≪ exp(T β/γ),

as T → ∞, for all s ∈ C
m(ρ, T ). If fX ∈ Hσ(Pm, Q) with σ > 1

2 dimPm then,

as n → ∞,

E ‖fn
X − fX‖2 ≪ (log n)−σ/β .
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In this situation, we consider the special case in which

f̂ε(s) = exp(−γ−1 λβ
s ),

s ∈ C
m, where γ > 0 is a scale parameter. Again by the inversion formula (13),

the underlying density function is

fε(w) =

∫

Cm(ρ)

exp(−γ−1 λβ
s )hs(w) d∗s,

w ∈ Pm. The case in which β = 1 is particularly important and is called the
heat or Gaussian kernel, since the latter is the fundamental solution to the heat
equation on Pm, see Terras [17], pp. 106-107. As a consequence, we obtain the
following result.

Corollary 2. Suppose that fε is Gaussian. If fX ∈ Hσ(Pm, Q) where σ >
1
2 dimPm then, as n → ∞,

E ‖fn
X − fX‖

2
≪ (log n)−σ.

A case which is familiar in multivariate statistics is that of the Wishart
distribution, Wm(N,Σ), where Σ ∈ Pm and N > m− 1. For s = (s1, . . . , sm) ∈
C

m define the multivariate gamma function,

Γm(s1, . . . , sm) = πm(m−1)/4
m∏

j=1

Γ
(
sj + · · · + sm −

1

2
(j − 1)

)
,

where Re(sj + · · · + sm) > (j − 1)/2, j = 1, . . . ,m. Relative to the invariant
measure d∗w in (6), the probability density function of the standard Wishart
distribution Wm(N, Im) is

fε(w) =
1

Γm(0, . . . , 0, N/2)
|
1

2
w|N/2 exp

(
−

1

2
tr w

)
, (20)

w ∈ Pm. We note that (20) is K-invariant and its Helgason-Fourier transform is
well-known (Muirhead [11], p. 248; Terras [17], pp. 85-86),

f̂ε(s) =
Γm((0, . . . , 0, N/2) + s∗)

Γm(0, . . . , 0, N/2)
hs(

1

2
Im)

where s∗ = (sm−1, sm−2, . . . , s2, s1,−(s1 + · · · + sm)).
For N > m − 1, the Wishart distribution Wm(N, Im) satisfies

|f̂ε(s)|
−2 ≪ exp

(
πT 1/2

)
,

as T → ∞, where s ∈ C
m(ρ, T ).

Consequently we deduce the following result.

Theorem 3. Suppose that ε follows the Wishart distribution (20) with N >
m − 1. If fX ∈ Hσ(Pm, Q) with σ > dimPm/2 then, as n → ∞,

E‖fn
X − fX‖2 ≪ (log n)−2σ.
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