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Abstract. One main obstacle in building a sophisticated parametric
model along an arbitary anatomical manifold is the lack of an easily
available orthonormal basis. Although there are at least two numerical
techniques available for constructing an orhonormal basis such as the
Laplacian eigenfunction approach and the Gram-Smidth orthogonaliza-
tion, they are computationally not so trivial and costly. We present a
relatively simpler method for constructing an orthonormal basis for an
arbitrary anatomical manifold. On a unit sphere, a natural orthonormal
basis is the spherical harmonics which can be easily computed. Assuming
the manifold is topologically equivalent to the sphere, we can establish a
smooth mapping ζ from the manifold to the sphere. Such mapping can
be obtained from various surface flattening techniques. If we project the
spherical harmonics to the manifold, they are no longer orthonormal.
However, we claim that there exists an orthonormal basis that is the
function of spherical harmonics and the spherical mapping ζ.

The detailed step by step procedures for the construction is given along
with the numerical validation using amygdala surfaces as an illustration.
As an application, we propose the pullback representation that recon-
structs surfaces using the orthonormal basis obtained from an average
template. The pullback representation introduces less inter-subject vari-
ability and thus requires far less number of coefficients than the tradi-
tional spherical harmonic representation. The source code used in the
study is freely available at
http://www.stat.wisc.edu/∼mchung/research/amygdala.

1 Introduction

We present a novel orthonormal basis construction method for an arbitrary
anatomical surface that is topologically equivalent to a sphere. The method
avoids the well known Gram-Smidth orthogonalization procedure [7], which is
inefficient for high resolution polygonal meshes. In order to perform the Gram-
Smidth orthogonalization as described in [7], for a surface mesh with n vertices,
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we need to perform the Choleski decomposition as well as the inversion of matrix
of size n×n. For a cortical mesh generated with FreeSurfer [6], n can easily reach
up to 200000.

On the other hand, Qiu et al. [15] constructed an orthonormal basis as the
eigenfunctions of the Laplace-Beltrami operator in a bounded regions of interest
(ROI) on a cortical surface (Figure 3). The finite element method (FEM) is used
to numerically construct the orthonormal basis by solving a system of large linear
equations. The weakness of the FEM approach is the computational burden of
inverting a matrix of size n×n. One advantage of the eigenfunction approach is
that since the eigenfunctions and eigenvalues are directly related to the Laplace-
Beltrami operator, it is trivial and geometrically intuitive to construct the heat
kernel analytically and perform a various heat kernel smoothing based modeling
[4].

We propose a completely different method that avoids the computational
bottleneck by using a conceptually different machinery. We assume an arbitrary
anatomical surface to be topologically equivalent to a sphere. Then using a
smooth mapping ζ obtained from a surface flattening technique, we project the
spherical harmonics to the anatomical surface. Obviously the projected spheri-
cal harmonics will no longer be orthonormal. However, if we correct the metric
distortion introduced from the surface flattening, we may able to make the pro-
jected spherical harmonics orthonormal somehow. This is the basic idea behind
our new proposed method. For the surface flattening, we present a new method
that treats the mapping ζ as the geodesic path of the heat equilibrium state.

As an application of the proposed technique, we present the novel pullback

representation for parameterizing anatomical boundaries that outperforms the
traditional spherical harmonic (SPHARM) representation [2] [3] [8] [16] [17]. We
claim that our proposed representation has far less intersubject variability in the
estimated parameters than SPHARM and converges faster to the true boundary
with less number of basis.

2 Methods

It is assumed that the anatomical boundary M is a smooth 2-dimensional Rie-
mannian manifold parameterized by two parameters. The one-to-one mapping ζ
from point p = (p1, p2, p3)

′ ∈ M to u = (u1, u2, u3)
′ ∈ S2, a unit sphere, can be

obtained from various surface flattening techniques such as conformal mapping
[1] [8] [9], quasi-isometric mapping [18], area preserving mapping [2] [16] [17]
and the deformable surface algorithm [13]. Since the conformal mapping tend to
introduce huge area distortion, most spherical harmonic literature tend to use
area preserving mapping [2] [16] [17].

In this paper, we present a new flattening technique via the geodesic trajec-
tory of the equilibrium sate of heat diffusion. The proposed flattening technique
is numerically simpler than any other available methods and does not require
optimizing a cost function. The methodology is illustrated using the 47 amyg-
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Fig. 1. The diffusion equation with a heat source (amygdala) and a heat sink (enclosing
sphere) corresponds. After sufficient amount of diffusion, the heat equilibrium state is
reached. By tracing the geodesic path from the heat source to the heat sink using the
geodesic contours, we obtain a smooth mapping ζ.

Fig. 2. Amygala surface flattening is done by tracing the geodesic path of the heat
equilibrium state. The numbers corresponds to the different the geodesic contours. For
simple shapes like amygde, 5 to 10 contours are sufficient for tracing the geodesic path.

dala binary segmentation obtained from the 3-Tesla magnetic resonance images
(MRI).

High resolution anatomical MRI were obtained using a 3-Tesla GE SIGNA
scanner with a quadrature head coil. Details on image acquisition parameters
are given in [14]. MRIs are reoriented to the pathological plane for optimal
segmentation and comparison with an atlas. This global alignment guarantee
that amygdala are approximately aligned in the same orientation.

Manual amygdala segmentation was done by a trained expert and the relia-
bility of the manual segmentation was validated by two raters on 10 amygdale
resulting in interclass correlation of 0.95 and the intersection over the union
of 0.84 [14]. Afterwards a marching cubes algorithm was used to extract the
boundary of the binary segmentation as a triangle mesh with approximately
2000-3000 vertices. The amygdala surface is then mapped onto a sphere using
the new flattening algorithm.
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2.1 Diffusion-Based Surface Flattening

Given an amygdala binary segmentation Ma, we put a larger sphere Ms that
encloses the amygala (Figure 1 left). The amygdala and sphere serve as Dirichlet
boundary conditions for solving the Laplace equation. The amygdala is assigned
the value 1 while the enclosing sphere is assigned the value -1, i.e.

f(Ma, σ) = 1, f(Ms, σ) = −1 (1)

for all σ. The amygdala and the sphere serve as a heat source and a heat sink
respectively. Then we solve an isotropic diffusion

∂f

∂σ
= ∆f (2)

within the empty space bounded by the amygdala and the sphere. ∆ is the 3D
Laplacian. After enough diffusion, the system reaches the heat equilibrium state
where the additional diffusion does not make any difference in the heat distri-
bution (Figure 1 middle). Once we obtained the equilibrium state, we trace the
geodesic path from the heat source to the heat sink for every mesh vertices. The
trajectory of the geodesic path provides a smooth mapping from the amygdala
surface to the sphere. The geodesic path can be easily traced by constructing
geodesic contours that correspond to the level set of the equilibrium state (Figure
1 right). Then the geodesic path is constructed by finding the shortest distance
from one contour to the next and iteratively connecting the path together. Fig-
ure 2 shows the process of flattening using five contours corresponding to the
temperature 0.6, 0.2, -0.2, -0.6, -1.0.

Although we did not apply our flattening technique to other anatomical ob-
jects, the proposed method can be applied to more complex object than the
amygdala. At the equilibrium state, we no longer has change in heat change over
time, i.e. ∂f

∂σ = 0, so we have the Laplace equation

∆f = 0

with the same boundary condition. The Laplace equation has been previously
used to trace the distance between outer and inner cortical surfaces and to com-
pute cortical thickness [10] [12] [19]. Since the solution to the Laplace equation
with the boundary condition (1) is unique even for highly convoluted and folded
structures, the geodesic path will be uniquely defined.

2.2 Orhonormal basis in two sphere S
2

Suppose a unit sphere S2 is represented as a high resolution triangle mesh con-
sisting of the vertex set V(S2). We have used an almost uniformly sampled mesh
with 2562 vertices and 5120 faces. Let us parameterize coordinates u ∈ S2 with
parameters θ, ϕ:

(u1, u2, u3) = (sin θ cos ϕ, sin θ sin ϕ, cos θ),
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where (θ, ϕ) ∈ N = [0, π]⊗ [0, 2π). The polar angle θ is the angle from the north
pole and ϕ is the azimuthal angle. The orthonormal basis on the unit sphere is
given by the eigenfunctions of

∆f + λf = 0,

where ∆ is the spherical Laplacian. The eigenfunction Ylm corresponding to the
eigenvalue l(l + 1) is called the spherical harmonic of degree l and order m [5].
With respect to the inner product

〈f, g〉S2 =

∫

S2

f(u)g(u) dµ(u), (3)

with measure dµ(u) = sin θdθdϕ, Ylm form the orthonormal basis in L2(S2), the
space of square integrable functions on S2, i.e.

〈Ylm, Yl′m′〉S2 = δll′δmm′ . (4)

The inner product can be numerically computed as the Riemann sum over
mesh vertices as

〈Ylm, Yl′m′〉S2 ≈
∑

uj∈V(S2)

Ylm(uj)Yl′m′(uj)DS2(uj), (5)

where DS2(uj) is the discrete approximation of dµ(u). Let T 1
uj

, T 2
uj

, · · · , T jm
uj

be
the area of triangles containing the vertex uj . Then we estimate DS2(uj) as

DS2(uj) =
1

3

jm
∑

k=1

T k
uj

. (6)

The discrete approximation (6) defines the area of triangles at a mesh vertex.
The factor 1/3 is chosen in such a way that

∑

uj∈V(S2)

DS2(uj) = 12.5514 = 4 · 3.1378,

analogous to the relationship
∫

S2

dµ(p) = 4π.

The discrepancy between the integral and its discrete counter part is due to the
mesh resolution and it should become smaller as the mesh resolution increases.

Based on the proposed discretization scheme, we have computed the inner
product (5) for all degrees 0 ≤ l, l′ ≤ 20. Figure 3 (left) shows the inner products
for every possible pairs. Since for up to the k-th degree, there are total (k +
1)2 basis functions, we have total 4412 possible inner product pairs, which is
displayed as a matrix. For the diagonal terms, we obtained 0.9988±0.0017 while
for the off-diagonal terms, we have obtained 0.0000±0.0005 indicating our basis
and the discretization scheme is orthonormal with two decimal accuracy.
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2.3 Orthonormal basis on manifold M

For f, g ∈ L2(M), the orthonormality is defined with respect to the inner product

〈f, g〉M =

∫

M

f(p)g(p) dµ(p).

Using the spherical harmonics in S2, it is possible to construct an orthonormal
basis in M numerically without the computational burden of solving the large
matrix inversion associated with the eigenfunction method or the Gram-Smidth
orthogonalization. Since the spherical harmonics are orthonormal in S2 and, the
manifolds S2 and M can be deformed to each other by the mapping ζ, one
would guess that the orthonormal basis in M can be obtained somehow using
the spherical harmonics. Surprisingly this guess is not wrong as we will show in
this section.

For f ∈ L2(S2), let us define the pullback operation ∗ as

ζ∗f = f ◦ ζ.

While f is defined on S2, the pullbacked function ζ∗f is defined on M. The
schematic of the pull back operation is given in Figure 6 (a). Then even though
we do not have orthonormality on the pullbacked spherical harmonics, i.e.,

〈ζ∗Ylm, ζ∗Yl′m′〉M 6= δll′δmm′ ,

we can make them orthonormal by using the Jacobian determinant of the map-
ping ζ somehow.

Consider the Jacobian Jζ of the mapping ζ : p ∈ M → u ∈ S2 defined as

Jζ =
∂u(θ, ϕ)

∂p(θ, ϕ)
.

For functions f, g ∈ L2(S2), we have the following change of variable relationship:

〈f, g〉S2 =

∫

M

ζ∗f(p)ζ∗g(p)|det Jζ | dµ(p). (7)

Similarly we have the inverse relationship given as

〈ζ∗f, ζ∗g〉M =

∫

S2

f(u)g(u)|det Jζ−1 | dµ(u). (8)

By letting f = Ylm and g = Yl′m′ in (7), we obtain

δll′δmm′ =

∫

M

ζ∗Ylmζ∗Yl′m′ |det Jζ | dµ(p) (9)

Equation (9) demonstrates that functions

Zlm = |det Jζ |1/2ζ∗Ylm (10)

are orthonormal in M. We will refer l as degree and m as order of the basis
function. Using the Riesz-Fischer theorem [11], it is not hard to show that Zlm

form a complete basis in L2(M).
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Fig. 3. Left: inner products of eigenfunctions of the Laplacian for every pairs [15]. The
pairs are rearranged from low to high degree. Right: representative eigenfunctions Ψj

on the left amygdala template surface obtained by solving ∆Ψj + λjΨj = 0.

2.4 Numerical Implementation

Although the expression (10) provides a nice analytical form for an orthonormal
basis for an arbitrary manifold M, it is not practical. If one want to use the basis
(10), the Jacobian determinant needs to be numerically estimated somehow. We
present a new discrete estimation technique for the surface Jacobian determinant
that avoids estimating unstable spatial derivative estimation.

The Jacobian determinant Jζ of the mapping ζ can be expressed in terms
of the Riemannian metric tensors associated with the manifolds S2 and M.
Consider determinants det gS2 and det gM of the Riemannian metric tensors
associated with the parameterizations u(θ, ϕ) and p(θ, ϕ) respectively. Note that
the integral of the area elements

√
det gS2 and

√
det gM with respect to the

parameter space N gives the total area of the manifolds, i.e.

∫

N

√

det gS2 dµ(θ, ϕ) = 4π,

∫

N

√

det gM dµ(θ, ϕ) = µ(M).

Then we have the relationship

|det Jζ−1 | =

√
det gM√
det gS2

, |det Jζ | =

√
det gS2√
det gM

.

Note that the Jacobian determinant detJζ measures the amount of contraction
or expansion in the mapping ζ from M to S2. So it is intuitive to have this
quantity to be expressed as the ratio of the area elements. Consequently the
discrete estimation of the Jacobian determinant at mesh vertex uj = ζ(pj) is
obtained as

|det Jζ | ≈
DS2(uj)

DM(pj)
.
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Fig. 4. Left: inner products of spherical harmonics computed using formula (3) for
every pairs. The pairs are rearranged from low to high degree and order. There are total
(20 + 1)2 = 441 possible pairs for up to degree 20. Right: representative orthonormal
basis Zlm on the left amygdala template surface.

Then our orthonormal basis is given by

Zlm(pj) =

√

DS2(ζ(pj))

DM(pj)
ζ∗Ylm(pj). (11)

The numerical accuracy can be determined by computing the inner product

〈Zlm, Zl′m′〉M ≈
∑

pj∈V(M)

Zlm(pj)Zlm(pj)DM(pj).

=
∑

pj∈V(M)

ζ∗Ylm(pj)ζ
∗Yl′m′(pj)DS2(ζ(pj))

=
∑

uj∈V(S2)

Ylm(uj)Yl′m′(uj)DS2(uj)

= 〈Ylm, Yl′m′〉S2

Since this is tautology, the order of the numerical accuracy in Zlm is identical to
that of spherical harmonics given in the previous section. There is no need for
additional validation other than given in the previous section. Hence we conclude
that our basis is in fact orthonormal within two decimal accuracy. Figure 4 shows
the result of our numerical procedure applied to the average amygdala surface
template. The template surface is constructed by averaging the surface using the
spherical harmonic correspondence given in [3].

We have also constructed an orthonormal basis on a cortical surface with
more than 40000 mesh vertices (Figure 5). The diagonal elements in the inner
product matrix are 0.9999 ± 0.0001 indicating that our basis is orthonormal
within three decimal accuracy. As the mesh resolution increases, we expect to
have increased accuracy. The proposed orthonormal basis construction methods
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Fig. 5. Orthonormal basis Zlm on a cortical surface. The basis is projected on a sphere
to show how the nonuniformity of the Jacobian determinant is effecting the spherical
harmonics Ylm. The color scale is thresholded at ±0.003 for better visualization.

avoids inverting matrix of size larger than 40000 × 40000 associated with the
eigenfunction approach and the Gram-Smidth orthogonalization process.

Although the pattern of tiling in the eigenfunction approach (Figure 3) and
the pullback based method (Figure 4) looks different, it can be shown that they
are actually linearly dependent.

3 Application: Pullback Representation

As an application of the proposed orthonormal basis construction, we present
a new variance reducing Fourier Series representation that outperforms the tra-
ditional spherical harmonic representation [2] [3] [8] [16] [17]. We will call this
method as the pullback representation.

The spherical harmonic (SPHARM) representation models the surface coor-
dinates with respect to a unit sphere as

p(θ, ϕ) =

k
∑

l=0

l
∑

m=−l

p0
lmYlm(θ, ϕ) (12)

where p0
lm = 〈p, Ylm〉S2 are spherical harmonic coefficients, which can be viewed

as random variables. The coefficients are estimated using the iterative residual

fitting algorithm [3] that breaks a larger least squares problem into smaller ones
in an iterative fashion. The MATLAB code for performing the iterative residual
fitting algorithm for arbitrary surface mesh is given in http://www.stat.wisc.edu

/∼mchung/softwares/weighted-SPHARM/weighted-SPHARM.hmtl. Note that all MRIs
were reoriented to the pathological plane guaranteeing an approximate global
alignment before the surface flattening to increase the robustness of the coeffi-
cient estimation.
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Fig. 6. Left: schematic showing how the pullback operation ∗ is working. Point p ∈ M

is mapped to u ∈ S2 via our new flattening technique. As an illustration f = Y3,2 +
0.6Y2,1 is plotted on S2. The function f is pulled back onto M by ζ. Right: sample
standard deviation of Fourier coefficients of for 47 subjects plotted over the index
of basis. In average, the traditional SPHARM representation (black) has 88% more
variability than the pull back method (red).

The shortcoming of the spherical harmonic representation is that the recon-
struction is respect to a unit sphere that is not geometrically related to the
original anatomical surface. On the other hand, the pullback representation will
reconstruct the surface with respect to the average template surface reducing
substantial amount of variability compared to SPHARM.

In the pullback representation, we represent the surface coordinates with
respect to the template surface M as

p(θ, ϕ) =

k
∑

l=0

l
∑

m=−l

p1
lmZlm(θ, ϕ) (13)

with p1
lm = 〈p, Zlm〉M. Then we claim that the pullback representation has

smaller variance in the estimated coefficients so that

Var(p1
lm) ≤ Var(p0

lm). (14)

The equality in (14) is obtained when the template M becomes the unit sphere,
in which case the spherical mapping ζ collapses to the identity, and the in-
ner products coincide. We have computed the sample standard deviation of
Fourier coefficients for 47 subjects using the both representations. In average, the
SPHARM contains 88% more intersubject variability compared to the pullback
representation (Figure 6 right). This implies that SPHARM is an inefficient rep-
resentation and requires more number of basis to represent surfaces compared
to the pullback method.

Although the pullback method is more efficient, the both representations
(12) and (13) converge to each other as k goes to infinity. We have computed the
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Fig. 7. Comparison of SPHARM and the pullback representations for degree 5 to 25.
Red colored numbers are the average Euclidean distance between two representations
in mm.

squared Euclidean distance between two representations numerically (Figure 7).
In average, the difference is 0.0569 mm for 20 degree representation negligible for
1mm resolution MR. Figure 7 also visually demonstrate that the pullback rep-
resentation converges to the true manifold faster than SPHARM again showing
the inefficiency of the SPHARM representation.

4 Conclusion

We have introduced a computationally efficient way to construct an approxi-
mate orthonormal basis on an arbitrary manifold by pulling back the spherical
harmonics to the manifold and accounting for the metric distortion using the
Jacobian determinant. The proposed technique is very general so that it can be
applicable to other types of anatomical manifolds. The constructed basis on an
amygdala is used to show the new pullback representation that reconstruct the
manifold as linear combination of the basis functions.
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