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Abstract. This paper presents an implicit shape representation for de-
scribing anatomical shapes with high inter-patient variability based on
the expected boundary hitting time of a random walk, which happens to
be the solution to the Poisson equation. The main contribution of this
paper is to test the validity of the Poisson-based mapping for learning
anatomical shape variability, comparing its compactness and complete-
ness with the commonly used Signed Distance Transform and using the
liver and the caudate nucleus as examples. Based on these findings, we
discuss its use as a shape prior for image segmentation.

1 Introduction

An integral part of modern disease management is treatment planning, which
involves several aspects of medical image analysis, from segmenting objects of
interest for volume measurement to intra-patient registration for monitoring size
change or morphology. Because of the difficulty of these tasks, many segmenta-
tion or registration frameworks require a shape representation for the object in
question. Shape representations can be abstractly divided into two categories:
explicit and implicit. Explicit shape representations are parameterized to create
ordered collections of components. Examples include Active Shape Models [1]
and spherical harmonics [2]. Mostly, they define a (N −1)-dimensional boundary
in a N -dimensional image space, but can include additional information such as
a medial representation [3] or, like Active Appearance Models [4], intensity and
texture.

An implicit representation of an N -dimensional shape is a function f(x) in
an N -dimensional space that takes on the value zero if and only if x is a position
on the (N − 1)-dimensional shape boundary. The function is defined over the
inside domain of the closed object, and sometimes, depending on the application,
over the entire image domain.

Implicit shape descriptions are free of topological constraints and have local
support. In recent literature, the Signed Distance Transform (SDT) has proved
to be a popular implicit shape representation – attractive for ease of compu-
tation, definition over the entire image space, and ability to fit into a level-set
segmentation framework. In addition to the SDT, Hong et al. [5] developed an
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implicit shape representation based on an approximation to the solution of the
heat equation over the shape. Their shape representation is attractive because
it can be quickly computed by convolution with a Gaussian kernel. However, it
does not adjust the Gaussian kernel to account for arbitrary shape boundaries.

To be able to summarize anatomical object variability, we seek a shape de-
scriptor which can extract characteristic global object structure while preserving
individual variations. In our work, we consider another implicit shape represen-
tation called the Poisson Transform (PT) and look at its application in learning
and modeling anatomical variation. The PT was first used by Gorelick et al. [6]
to analyze 2D shape properties on silhouettes in order to perform shape classifi-
cation and retrieval. We extended that idea in [7] to include the shape exterior
and used this in the context of deformable image registration. In the next section,
we revisit the mathematical representation of the SDT, then provide a summary
of and computational method for the PT. We use this new mapping to produce
an implicit shape representation, and then analyze it for completeness and com-
pactness in comparison to the SDT. We use Principal Component Analysis on
the SDT for our training data to summarize shape variation in the same manner
as [8–10]. We investigate the validity of the SDT representation for anatomical
objects with highly variable shape against the PT representation. Besides the
technical report by Lamecker et al. [11], no studies have assessed the compact-
ness or completeness of liver shape description. We conclude by discussing its
application to image segmentation.

2 Implicit Shape Representations

Let us define S to be the interior of the shape and assume that S ⊂ Ω, where
Ω is the entire image space. Then ∂S = S̄ − S is the boundary of S, where S̄

represents the closure of the open set S.

2.1 Signed Distance Transform

The SDT, also known as the signed Euclidean distance transform, is represented
here by WSDT . It yields two pieces of information; the magnitude provides the
Euclidean distance between a point and the closest point on ∂S, and the sign
indicates whether the current point is inside S (negative) or outside S (positive).
Mathematically speaking, WSDT is a solution to the Eikonal equation:

|∇WSDT(x)| = 1 ∀x ∈ Ω,

WSDT(x) = 0 ∀x ∈ ∂S. (1)

Examples of the SDT for the liver and caudate nucleus can be seen in Figs.
1(a) and 1(c).
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2.2 Random Walk Hitting Time

Gorelick et al. [6] presented an implicit shape representation based on the ex-
pected time for a symmetric random walk to reach the shape boundary. Based
on the solution to Poisson’s equation, this representation has several advantages
as it is differentiable everywhere and has the interior regularity property.

In order to derive the Poisson Transform, consider a shape S defined on
a 3-dimensional discrete lattice with isotropic spacing h. Now consider a par-
ticle initially at position (x, y, z) ∈ S. If the particle undergoes a symmetric
random walk, then we define U(x, y, z) to be the expected time (in number of
steps) for the particle to reach any point on the boundary of S, given that the
particle started at (x, y, z). This expected time is also known as the ”hitting
time” because it represents the average time it will take the particle to ”hit” the
boundary. Therefore, if (x, y, z) ∈ ∂S, then U(x, y, z) = 0. If (x, y, z) ∈ S, then
the hitting time at (x, y, z) can be related to the hitting time at each of its six
neighbors by a conditioning argument:

U(x, y, z) = 1 +
1

6

(

U(x + h, y, z) + U(x − h, y, z)

U(x, y + h, z) + U(x, y − h, z) (2)

U(x, y, z + h) + U(x, y, z − h)
)

.

Note that (2) is a discretized version of the Poisson equation

∆U(x, y, z) = −
6

h2
, (3)

with ∆U = Uxx + Uyy + Uzz denoting the Laplacian of U . For simplicity, we
chose h = 1.

To use comparable notation with the SDT definition, let WPT replace U to
represent the symmetric random walk hitting time to the shape boundary in
an open domain, and let x = (x, y, z) for the remainder of this paper. Like the
SDT, we seek to use the sign of the metric values to define points inside and
outside the boundary shape, which results in changing the sign of (3), while the
magnitude of those values still provides the symmetric random walk time to a
point on the boundary. Thus, for the shape interior, the Poisson Transform WPT

satisfies

∆WPT(x) = 6 ∀x ∈ S,

WPT(x) = 0 ∀x ∈ ∂S. (4)

On the exterior of the shape, if no further boundary conditions are prescribed,
the random walk analogy fails and the Poisson equation has infinitely many
solutions. Therefore, in order to provide an extension of this shape representation
to the entirety of Ω̄, we need to define some sort of external boundary condition.
One option is to enforce Neumann boundary conditions on ∂Ω; however, this
choice gives undesirable behavior of the gradient of the Poisson Transform at the
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image boundaries. Instead, we choose to define an open sphere T ⊃ Ω̄ centered
on the centroid of Ω, and solve the following boundary value problem:

∆WPT(x) = −6 ∀x ∈ T − S̄,

〈∇WPT(x) ,n(x)〉 = 0 ∀x ∈ ∂T, (5)

WPT(x) = 0 ∀x ∈ ∂S,

where n(x) is the outward pointing normal vector to the surface ∂T at x. The
Neumann boundary condition on ∂T effectively reflects the symmetric random
walk in the direction normal to the sphere. Once WPT has been found on T , it
can be cropped to Ω̄.

Computing a discrete approximation of WPT inside S can be done in linear
time with a multigrid algorithm [6]. This algorithm can be extended to approx-
imate WPT inside T − S̄ by appropriately discretizing the Neumann boundary
conditions, as established by Cahill et al. [7]. We have found that applying two
w-cycles that employ naive boundary conditions at the coarse levels (placing
the boundary at the nearest coarse grid points, instead of modifying the nearby
coarse equations to account for the fine, pixel-level location of the boundary)
provides a good approximation. For further details on the multigrid method, see
[12].

Examples of the SDT for the liver and caudate nucleus can be seen in Figs.
1(b) and 1(d).

(a) SDT (b) PT (c) SDT (d) PT

Fig. 1. Slices from example 3D liver and caudate nucleus images of both implicit func-
tions, inside and outside the shape

3 Application to Segmentation

In medical image segmentation, image data information is typically balanced
by integrating a priori knowledge into the algorithm through a shape prior,
providing a global constraint in a segmentation framework.
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3.1 Shape Representation

Using a shape prior for image segmentation requires an application-specific
choice of shape representation. Selecting a shape representation or descriptor
is a function of the information to be extracted from an image, the signal-to-
noise of the image, the anatomical object in question, and the ultimate goal
of the task. For the purpose of segmentation, the shape descriptor also subse-
quently affects the dissimilarity measure for comparing shapes and method of
integration for a model into a segmentation framework. Golland et al. [13] found
that the choice of shape representation changed their classifier function results
by about 15%, independent of shape analysis and alignment.

3.2 Shape Analysis Methods

With highly variable anatomical shapes, large numbers of samples, or training
shapes, are required to correctly portray a shape population. Shape models are
used to efficiently summarize the training shape space.

Much research looks for the best shape analysis method to summarize the
shape space, while some methods never question the validity of its use, such as
with Principal Component Analysis (PCA). That method is utilized to reduce
the dimensionality of the training shape space, while preserving the most vari-
ation. PCA is often challenged because of its sensitivity to low sample size, as
well as the assumption of a Gaussian uni-modal distribution for the features
measured in the resulting model. In the case of the SDT and PT, the shape
representation space is not closed under linear operations, but PCA is still often
employed. Shape analysis alternatives include independent component analysis
[14], principal factor analysis [15], and support vector machines [13]. Addition-
ally, methods to work around obstacles in PCA have shown some success. They
transform training data into a feature space via Mercer kernels [16], or into a
vector space using Fourier approximation [17] or the logarithm of odds ratio [18],
where linear operations of shape representation transformations are closed.

With the SDT, PCA has been consistently employed for shape analysis for
the purpose of learning shape variability in creating a statistical shape model.
Notwithstanding, Hong et al. [5] used their integral kernel shape representation
as a template with a deformation field for segmentation, removing the need for
any shape analysis.

3.3 Implicit Anatomical Shape Priors

In image segmentation of highly variable shapes, it is essential to integrate a
priori information as a global constraint with data-driven energy functions. We
concentrate here on statistical shape models (SSMs), as opposed to deformable
shape models or classifiers.

Leventon et al. [8] employed SSMs from implicit shape representations, using
the SDT to represent shapes and PCA to summarize the shape space to create
a shape prior in image segmentation. Thereafter, literature involving implicit
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shape models concentrates on shape alignment prior to PCA and shape prior
integration into a region-based level-set segmentation framework. Rousson et al.
[10] used the sum of squared distances as a dissimilarity measure between the
prior and target, while minimizing the rotation and translation pose parameters
during the level set evolution. Tsai et al. [9] similarly proposed an alignment
method, but also included scale as a pose parameter and explored three energy
functionals, optimizing the functionals via gradient descent. Yang et al. [19] took
another step by introducing neighbor priors, developing a hierarchical multi-
object segmentation. Accounting for neighboring structures in the shape prior,
however, gave rise to concerns about closedness of linear combination of signed
distance functions. Neighboring structures were modeled by the difference of
their representative SDTs, however any linear combination of these differences
may not represent neighboring structures as mutually exclusive.

3.4 Analysis of Implicit Shape Representations SDT and PT

While any dimensionality reduction method can arguably be more suitable for
shape analysis, we wish to show that a shape descriptor that suppresses redun-
dancy in variability, yet elicits distinguishing global features, will result in more
meaningful factors. PCA is the most widely used form of shape analysis in med-
ical imaging because of its ease of computation and interpretation. For these
reasons, we have thus chosen to use PCA for a comparative shape analysis study
on the SDT and PT.

The nature of the PT allows us to combine global and local shape extraction
– we can see a common shape for each structure, while local variations are
preserved closer to the boundary (Figs. 3(b) and 2(b)). Consequently, we believe
PT is best suited to represent objects with high shape variability, for which the
liver and caudate nucleus are well known and well studied.

(a) Signed distance function (b) Poisson function

Fig. 2. Inside level sets of the liver from SDT and PT
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(a) Signed distance function (b) Poisson function

Fig. 3. Inside level sets of the caudate nucleus from SDT and PT

Consider the case of representing the shape of the liver. Although liver shape
has consistent convexities, concavities, and ridges, it is still very highly variable
across the population. It is also adjacent to structures of similar density, making
it extremely difficult to segment in Computed Tomography (CT) images. Liver
image segmentation has been a well-established problem in medical imaging
analysis. A variety of published methods range from deformable models using
the evolutionary algorithm [20] and data-driven methods [21] to graph-cuts [22],
demonstrating the difficulty of the task.

The shape of the caudate nucleus is often investigated in order to identify
brain abnormalities. An irregular shape in longitudinal studies and intra-patient
asymmetric shape can reveal developmental disorders, such as schizophrenia [23].

In 3D, we computed the SDT and PT for 33 liver images and 20 caudate
nucleus images. Slices through the mapping for each transform and class are
shown in Fig. 1, and 3D renderings of the inner level sets are shown in Figs. 3
and 2.

3.5 The Data

Our data has been obtained from the MICCAI 3D Segmentation Challenge [24]
and the Churchill Hospital, part of the Oxford Radcliffe Hospitals NHS Trust
in Oxford, UK. We used the segmented training data sets from MICCAI, and
we manually segmented the additional liver data sets subject to the approval
of a clinician. All binary images were rescaled to physical Cartesian coordinates
and smoothed to remove aliasing effects. The liver surfaces were aligned as bi-
nary images using the Principal Axis Transformation [25], while the caudate
nucleus shapes were aligned using first-order moments, with a few slight manual
rotations.
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3.6 Analysis

For each case, we ran PCA over the entire data set, Figs. 4(a) and 5(a), and
then for randomly chosen sets in multiples of 5, to show the number of modes
needed to summarize a cumulative variance threshold of 95% given the changing
number of training shapes, Figs. 4(b) and 5(b).
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Fig. 4. Compactness and completeness of the SDT and PT for the shape of the liver

We defined compactness of a shape description as requiring as few parameters
as possible and show relative compactness here in comparison to the SDT. From
Figs. 4(a) and 5(a), we see that to summarize 95% of shape variance for the
liver and the caudate nucleus, the SDT requires 15 and 8 modes, while the PT
requires only 5 and 3, respectively – approximately a 3-fold improvement in both
cases.

3.7 Discussion

With a large number of training data, we would expect that the number of modes
required should approach a constant value, as we would expect in a complete
shape model. If the number of modes required grows with the number of training
data, then it can be inferred that every randomly chosen set of 5 training data
added were somehow orthogonal to the existing set, which is improbable. Then
PCA might be incapable of accurately reducing the dimensionality of a shape
space spanned by the SDT on liver and caudate nucleus shapes. As another
possibility, the SDT might be an inadequate representation of highly variable
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Fig. 5. Compactness and completeness of the SDT and PT for the shape of the caudate
nucleus

anatomical objects and create a shape space where common factors are difficult
to resolve.

For a SSM based on the liver for image segmentation, Lamecker et al. [11]
used a subsampled geometric mesh representation. Mesh point values, like all
values in a SDT-map, are directly affected by any noise on the shape surface.
Lamecker report compactness and completeness curves consistent with that of
the signed distance function in their liver SSM analysis, and required 18 modes
to summarize 95% variance for 33 training shapes and 21 modes for 42 training
shapes.

In contrast, the PT completeness curve flattens quickly as the number of
training shapes grows, converging to a fixed number of modes, as we should
expect in a complete model (Fig. 4(b)). Through our comparative PCA study
we can see the PT is a relatively more compact and complete shape descriptor
than SDT.

For high dimensional data and low sample size data sets, PCA is argued to be
incomplete. That is to say some actual shapes may be unrealizable from the basis,
which is chosen for low-approximation while summarizing the most variance.
Yet one can argue that the shape analysis results are dependent on what has
been extracted from the original data into the shape representation. Boundary
representations give information about the object delineation, and SDT-maps
propagate boundary variations beyond the neighborhood of occurrence, creating
superfluous variations throughout the image domain. However, the PT-maps
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reveal global shape information from a data set yet adapt to individual object
boundaries (see Figs. 1–2).

4 Conclusion and Future Work

In this paper, we introduced using a new implicit shape representation called
the Poisson Transform, an extrapolation of Gorelick’s innovative approach to
shape characterization. In our comparative dimensionality reduction study, we
showed that the PT gives approximately a 3-fold improvement over the SDT in
the number of principal components required to represent 95% of the liver and
caudate nucleus data set variance. The PT is capable of local support on the
boundary for individual instances but substantially stable against those varia-
tions to give rise to a characteristic object shape across a data set. This balance
in description enables optimized learning for highly variable anatomical objects.
We are currently working on methods of integrating a shape model based on the
PT into an image segmentation framework and overcoming obstacles mentioned
in [13, 18].
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