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Abstract. We present a framework for shape alignment that generalizes
several existing methods. We assume that the shape is a closed genus zero
surface. Our framework requires a diffeomorphic surface mapping to the
2-sphere which preserves rotation. Our similarity measure is a global
spherical cross-correlation function of surface-intrinsic scalar attributes,
weighted by the cross-correlation of the parameterization distortion. The
final similarity measure may be customized according to the surface-
intrinsic scalar functions used in the application.

1 Introduction

Problems of shape alignment are ubiquitous in medical imaging. While many
problem-specific solutions exist for particularly common cases (e.g. cortex, hip-
pocampus) [1–3], high quality general shape alignment remains very much an
open problem. Our framework generalizes some existing methods without assum-
ing the existence of any landmarks or data-specific features. We assume that the
shape is a closed genus zero surface. Our framework requires a diffeomorphic sur-
face mapping to the 2-sphere which preserves rotation. Our similarity measure is
a global spherical cross-correlation function of surface-intrinsic scalar attributes,
weighted by the cross-correlation of the parameterization distortion, sometimes
known as the conformal factor. The final similarity measure may be customized
according to the surface-intrinsic scalar functions used in the application. Higher
order scalar functions such as mean and Gaussian curvature may be used in con-
junction with low order ones, like distance to mass center, to incorporate more
localized shape information in addition to global measures.

In this study we have used a global conformal mapping as the spherical
parameterization, and only the distance to mass center as intrinsic scalar shape
measure. Using our method, we created atlases and registered shapes from a
population of hippocampi.

2 Previous work

There is doubtless a galaxy of existing general shape alignment methods, and due
to space limitations we will only mention those most prevalent and those closest
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to the present work. Davies [4] has used an information-theoretic framework to
formulate shape alignment as a minimum description length (MDL) problem.
Here, each point is treated as an independent variable, while the cost function
is aimed at reducing the ”code length” of each shape’s representation in this
shape space. The beauty of this statistical approach lies in its ability to register
multiple shapes simultaneously without the need to select a ”target” shape.
Of course, this is also its limitation, as for example when a known atlas exists
and all data shapes are to be registered to it. The method requires a spherical
diffeomorphism like ours.

Variants of the well-known ICP algorithm are another variety of recent devel-
opments in rigid shape alignment. Granger [5] introduced the EM-ICP method.
ICP’s proclivity for terminating at suboptimal local minima is greatly reduced
by treating the problem as a general expectation-maximization problem. A mul-
tiscale approach is used: at coarser scales, the blurring factor is sufficient to give
crude but correct alignment, which is improved upon in later refined stages,
where the algorithm approaches the original ICP. Though quite robust, the
method depends on the scale of blurring factor being set correctly to avoid
local minima. Thus, avoiding them is not guaranteed. Our method, by contrast,
performs a global search non-iteratively. Thus, a global maximum correlation is
guaranteed irrespective of the shape’s original orientation without the need to
tune any parameters.

Much like our algorithm, some previous methods have used spherical harmon-
ics for rigid shape alignment. Among them are the first order ellipsoid (FOE)
method, popularized by Brechbuhler [6] and used extensively in medical imag-
ing [7, 8] applications and SHREC, a recent variant of the ICP algorithm. Like
ours, these methods make use of rotational properties of spherical harmonics.

FOE alignment uses the fact that a shape reconstructed from only the first
order spherical harmonics forms an ellipsoid in object space. The method works
well when the ellipsoid’s three axes have distinct lengths, which largely depends
on the shape itself and the degree to which the spherical parameterization pre-
serves area. The method gives only a crude alignment and fails when two or
more axes have similar lengths. Even with a proper ellipsoid, there is a symme-
try problem.

SHREC [9] is another variation of the ICP. As in our case, the correspon-
dence search is done iteratively on the sphere via Euler’s rotation formula and
icosahedral subdivision. The mapping satisfies our conditions, while the similar-
ity measure is the RMSD. Since RMSD depends on the position of the object
in space, the algorithm requires an initial pre-alignment in both spaces. Rigid
Quaternion transform (RQT) is used to align shapes in R3 after each iteration
of parametric alignment. The main limitation of this algorithm is that it is not
guaranteed to converge to the optimal solution (i.e. a correspondence which,
when applied to RQT, minimizes RMSD). This is because the optimization in
parameter space depends on the object’s position in native space. Thus, though
the search is more global than in the original ICP, the parameter space search
is still locally biased. The original ICP suffers the same problem.
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The last algorithm uses a brute force correlation: it computes a cost function
anew for each rotation. To mitigate the cost of this, a hierarchical approach is
used. Instead, we reduce parameter space alignment to a global refined search via
the FFT. Our numerical scheme separates the effects on computation time of the
level of detail used for alignment and the number of rotation samples. In SHREC,
these two are tied together owing to their brute-force nature. This means that we
can refine rotation space tessellation while maintaining the same level of surface
detail without significantly affecting computation time. Our use of orientation-
invariant shape attributes in conjunction with scale invariant cross-correlation
makes our approach completely independent of changes in object position and
size. SHREC, by contrast, requires volume normalization as a pre-processing
step.

3 Mathematical preliminaries

3.1 Spherical harmonics

Spherical harmonics are functions f : S2 → C which are simultaneously eigen-
functions of the Laplace-Beltrami and the angular momentum operators; they
are expressed explicitly as

Y m
l (θ, φ) =

√
(2l + 1)(l − m)!

4(l + m)!
Pm

l (cosθ)eimφ (1)

for degree and order m, l ∈ Z, |m| ≤ l , where Pm
l (x) is the associated Legendre

polynomial. Spherical harmonics form a countable orthonormal basis for square-
integrable functions on the sphere. A projection of a function f ∈ L2(S

2) onto
this basis yields the SPH coefficients

f̂(l,m) =< f, Y m
l > (2)

where < f, g > is the usual L2 inner product.
A key property of spherical harmonics is their behavior under a shift on the

sphere. Given an element of the rotation group R ∈ SO(3), a rotated spherical
harmonic is expressed as

Y m
l (ω) =

l∑

n=−l

Y n
l (R−1ω)Dl

m,n(R) (3)

where

Dl
m,n(R) = e−i(mα+nγ)dl

m,n(β), (4)

α, β, γ are the Euler angles of R and dl
m,n are irreducible representations of

SO(3) [10],
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dl
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∑

t

(−1)t ×
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(l + n)!(l − n)!(l + m)!(l − m)!

(l + n − t)!(l − m − t)!(t + m − n)!t!
(5)

×(cos
β

2
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β

2
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In particular, (3) implies that

f(ω) = g(R−1ω) =⇒ f̂(l,m) =

l∑

n=−l

ĝ(l, n)Dl
m,n(R). (6)

3.2 Discrete spherical cross correlation

Given two functions f, g ∈ L2(S
2), their spherical cross-correlation is defined as

Cf,g(R) =

∫

S2

f(ω)g(R−1ω)dω. (7)

In the special case where f(ω) = g(R′−1ω), Cf,g(R) is maximized when R = R′,
assuming that f is not spherically symmetric. For bandlimited functions, i.e. for
those functions whose spherical harmonic coefficients vanish for all l ≥ B for
some bandwidth B, the correlation becomes

Cf,g(R) =

B−1∑

l=0

l∑

m=−l

f̂(l,m)Λ̂(R)g(l,m). (8)

Here, Λ(R) is the operator associated with the rotation matrix. The expression
for shifted spherical harmonic coefficients (6) implies that

Cf,g(R) =
∑

l,m,n

f̂(l,m)ĝ(l, n)Dl
m,n(R). (9)

This expression forms the basis of our similarity measure.

3.3 Fast cross correlation via FFT

The material presented so far has been used in the prior works we mentioned.
Now, we present a simple lemma which leads to a great speed up in computing the
correlation (9). It suffices to make the observation that any rotation R(α, β, γ)
may be expressed as a product of two rotations:

R(α, β, γ) = R1(α + π/2, π/2, 0)R2(β + π, π/2, γ + π/2). (10)

Now using the fact that

Dl
m,n(R1 � R2) =

∑

k

Dl
m,k(R1)D

l
k,n(R2), (11)
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Fig. 1. Two randomly selected hippo surfaces. The red circle is homologous to the
north pole on the sphere; the blue circle, to the south pole; and the blue line, to φ = 0.
The initial spherical mappings do not align these two very well.

we substitute (10) into (9) to obtain

Cf,g(R(α, β, γ)) =
∑

l,m,n,k

f̂(l,m)ĝ(l, n) (12)

×Dl
m,k(α + π/2, π/2, 0)Dl

k,n(β + π, π/2, γ + π/2)

=
∑

l,m,n,k

f̂(l,m)ĝ(l, n)dl
m,k(π/2)dl

k,n(π/2) × ei(m(α+π/2)+k(β+π)+n(γ+π/2))

= IFFT{
∑

l

f̂(l,m)ĝ(l, n)dl
m,k(π/2)dl

k,n(π/2)}(α + π/2, β + π, γ + π/2).

This simple result has been shown elsewhere [11], but to the best of the
authors’ knowledge this is the first time it has been used for shape registration.

4 Shape registration with cross correlation

4.1 Similarity measure

Given a 2-manifold M ⊂ R3, a diffeomorphic spherical parameterization f : S2 7→
M and a family of rotation-invariant shape attributes si : M 7→ R, 0 < i ≤ N ,
let

Si = si ◦ f. (13)

Then, given two manifolds M1,M2 and their corresponding shape attribute
maps {S1,i}

N
i=0, {S2,i}

N
i=1, we define our shape similarity measure as
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Fig. 2. Top surface from figure 1 is correlated to the bottom one, and its signal
is shifted on the sphere without changing the shape’s position in object space. The
homologous points now appear to be in good correspondence between the surfaces.

SM1,M2
(R) = Cλ1,λ2

(R)
N∑

i=1

κiCS1,i,S2,i
(R), (14)

where κi are user-defined shape attribute weights, and λ1, λ2 are spherical maps
of the conformal factor of each manifold. These last two are used to mitigate
the fact that scalar functions which appear similar on the sphere may in fact
represent vastly differently-sized regions on the original surfaces due to varying
area distortion of the spherical map.

Because we recover shifts in object space with shifts on S2, we require that
the spherical parameterization preserve rotation in the following sense. Suppose
M2 = R ◦ M1, and f1, f2 : S2 7→ M1 ,M2 are spherical maps. Then

f2(ω) = R ◦ f1(R
−1ω). (15)

Many existing parameterizations satisfy this requirement, e.g. [6, 12].

4.2 Previous methods as special cases

SHREC and FOE are special cases of our method. FOE simply takes the confor-
mal factor λ to be constant and uses spherical harmonics up to order one only.
This is equivalent to setting the bandwidth B to 2. The single shape attribute
used is the Euclidian distance to the surface average value. This is roughly the
same as distance to mass center, especially for area-preserving spherical maps
with which FOE is typically used.

SHREC minimizes RMSD, which can be reduced to spherical cross-correlation
since 4πRMSD2

M1,M2
(R) =

∑

i∈{x,y,z}

∫

S2

||S1,i − Λ(R)S2,i||
2 (16)

=
∑

i∈{x,y,z}

∫

S2

[S2
1,i + (Λ(R)S2,i)

2 − 2S1,iΛ(R)S2,i]
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=
∑

i∈{x,y,z}

||S1,i||
2
2 + ||S2,i||

2
2 − 2CS1,i,S2,i

(R)

Fig. 3. Top surface from figure 1 is initially aligned using FOE (top row) and sub-
sequently aligned using a modified version of SHREC (bottom row). Though this is
slightly different from the original SHREC, in principle the two algorithms are the
same. Here, we see the local minimum problem suffered by SHREC, typical of an
ICP-type algorithm: there is very little change in alignment after initialization.

Thus, minimizing RMSD is equivalent to maximizing the correlation of the two
shapes’ spatial coordinates. These are, of course, not quite the scalar shape
attributes we intend to use in our similarity measure. SHREC′s dependence on
iterative RQT refinement for correspondence optimization makes it less robust.
This is the price of using orientation-dependent features. Further, it is not clear
whether the correspondence which, when applied to RQT, minimizes RMSD is
truly the best correspondence. One can conceive two shapes with some patches
quite similar and other very different. One may then like to align the two objects
to get the best correspondence between the similar patches without regard to the
different ones. In such a case, cross correlation of invariant features will achieve a
better alignment. Still, SHREC could be made faster with the use of FFT-based
correlation rather than a brute-force approach.

SHREC requires O(B3NR) operations, where B is again the bandwidth and
NR the number of rotation samples. This is because recomputing Dl

m,n(α, β, γ)
and the corresponding shifted spherical harmonic coefficients requires O(B3)
operations. Our method requires O(B4 +NRlog(NR)). NR is roughly also of the
order B3 even with hierarchical sampling; this means we have effectively reduced
the order of operations from O(B6) to O(B4). This allows us to sample rotation
space more finely without a significant change in execution time. It also makes
using higher order coefficients and hence greater level of detail for alignment
purposes feasible. We see this in experiments below.
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Fig. 4. Average of two shapes from figure 1 before correlation.

Fig. 5. Average of two shapes from figure 1 after correlation.

5 Results

We used a population of 45 right hippocampal surfaces extracted from healthy
elderly subjects. Our spherical parameterization was the global conformal map of
Gu. et al. [12]. Spherical harmonics were computed with the spherical FFT of [13]
and cross correlation was computed with the help of the fftw library [14]. SO(3)
was sampled at 200 X 100 X 200 samples, which yielded an angle frequency
of ∼ 1.8 degrees. A bandwidth of 64 was used throughout the testing. Only
the distance to mass center was used as an invariant shape attribute for both
populations.

As a preliminary experiment, we applied the cross correlation algorithm to a
pair of hippocampal surfaces shown in figure 1. Here we see that the initial spher-
ical maps do not provide a very good correspondence. Figure 2 shows the result
of a spherical shift based on cross correlation. Figures 4 and 5 show two point-
wise averages of the shapes, before and after cross correlation. The improvement
is obvious. For B = 64, the average running time for above experiment was 44.6
± 3.6 seconds on a Gateway 7426GX Laptop with a 2.41 GHz AMD processor
and 1 GB RAM, tested with 45 hippocampal surfaces. This includes computation
of spherical harmonics, rotation matrices dl

m,n and correlation. Shen [9] reports
an average of 23.5 seconds running time on a common laptop for SHREC, while
using B = 12. One would expect SHREC to take (64/12)3 times longer for our
bandwidth (see above), or on the order of 60 minutes. As a preliminary compar-
ison, we implemented a modified version of SHREC. The only difference with
the original is that at each iteration, our parameter alignment was initially done
with cross correlation as described above, and subsequently refined according to
the scheme outlined in [9]. Again, a bandwidth of 64 was used. Due to time lim-
itations, we could not run this program on our whole dataset. We only present
the results of one subject in figure 3. Here, we can see that the initial alignment
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determines the final result to a great degree. This example converged after only
4 iterations. Execution time was close to 7 minutes. Since the execution time
reported in [9] was for a MATLAB implementation, while ours is in C++, and
because we use a fast cross-correlation, this time is significantly lower than the
60 minute estimate.

To test the effect of higher coefficients on correlation quality, we increased the
bandwidth to 128, while keeping the same rotation tessellation and correlated
6 of the 45 subjects in our HP population. Running time increased to 404 ±
10.4 seconds, while the shape distance to the target hippocampus decreased on
average only 3.9 ± 9.4 %. To test for the effect of rotation sampling frequency,
we also decreased NR to 100 X 50 X 100 samples, while keeping the bandwidth
at 64. Running time was 38.2 ± 3.5 seconds, an insignificant improvement in
speed. In another experiment, we limited our bandwidth to 16 and reran cross
correlation based alignment while keeping angle resolution at 200 X 100 X 200.
Execution time was reduced to about 3 seconds.

Fig. 6. Average of 45 right hippocampi with cross correlation, bandwidth = 64.

Fig. 7. Average of 45 right hippocampi with FOE.

We constructed hippocampal averages using FOE and two versions of cross
correlation (B = 16 and B = 64) and compared results. First, a shape was
selected, and all remaining shapes registered to it using each of the methods.
Then, the shapes were averaged, normalized for volume (after registration, only
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Fig. 8. Average of 45 right hippocampi with cross correlation, bandwidth = 16.

for a fair distance comparison) and a rigid quaternion transform applied to each
shape to align it both to the target subject and to the volume-normalized av-
erage shape. Our shape distance was defined as vertex-wise distance between
the surfaces, weighted by product of the sum of areas of adjacent triangles in
each mesh. The results are in table 1. The table does not show a notable fact:
distance to the target subject was improved by our method for every subject
compared to FOE. Minimal improvement was 8%, and maximal 117%. All but
one subject registered with B = 64 had superior alignment to the result of us-
ing B = 16. Compared to FOE, B = 16 reduced shape distance for all but 5
subjects. Table 2 shows a summary of intra-subject differences by registration
method. Using a bandwidth of 16 gives a significant improvement compared to
FOE, but the results are still much improved by using a bandwidth of 64. Fig-
ures 6 - 8 illustrate the hippocampal averages achieved with the three methods.
Note that these averages were computed without spatially aligning the subjects
to the target. Doing so would have likely given a more detailed shape.

Method Distance to Target Distance to Average

FOE 4.14 ± 1.33 2.89 ± 1.05
Cross cor. 2.64 ± 0.92 2.36 ± 0.75
B = 16 3.38 ± 1.06 2.33 ± 0.85

Table 1. Weighted point-wise distance of 45 (44) hippocampal surfaces by registration
method.

We should note here that the poor result of the FOE average is due in part
to the large area distortion of the conformal map. The tail of the hippocampus is
mapped to such a small region on S2 that it is very hard to match well. We see in
figure 7 that the tail suffers the most. The resulting spherical harmonic represen-
tation contains much redundant information; hence, the area distortion partially
cancels out the benefits of using high order coefficients. The mapping used in
[6, 9] is by contrast area-preserving, and hence better suited for alignment. The
results of [6, 8] look closer to the one achieved here with cross correlation. This
is, however, indicative of the potential our method has when applied to area-
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preserving spherical maps, and we intend to experiment with this idea in the
immediate future.

common shape FOE vs. B = 64 FOE vs. B = 16 B = 16 vs. B = 64

target 61 % ± 26 % 25 % ± 23 % 30 % ± 18 %
average 24 % ± 29 % 26 % ± 22 % -6 % ± 29 %

Table 2. Intra-subject improvement by registration method, in percentage of the sec-
ond method’s result.

6 Conclusion

We have presented a framework for shape alignment which generalizes several
existing methods. Our method is robust, fast and allows for use of greater detail
in alignment than was possible before. The correspondence search is performed
globally and no pre-alignment is required; thus, the result and computation time
are independent of the shape’s size and initial orientation. Reaching a global
maximum is always guaranteed. Our method can be tailored to suit a particular
application by selecting the appropriate shape features for a particular data type.
We intend to experiment with various shape attributes, apply area-preserving
spherical maps to our method and extend the technique to automated patch
selection and matching. Lastly, all software used here is available thorugh the
LONI Pipeline environment. Please contact the authors for more details.
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