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Abstract. Here we develop a multi-template analysis for tensor-based
morphometry (TBM) which aims to reduce error from the registration
step. In conventional TBM, a single template is nonlinearly registered to
all images in the study, and the deformation field statistics are computed
from the transformations. Using an MRI dataset from 23 monozygotic
and 23 dizygotic twin pairs, we instead registered each individual twin
image to 9 additional brain templates using a Riemannian fluid algo-
rithm [3]. Average deformation tensors from multiple registrations were
computed within each image, using a log-Euclidean framework [1]. To
quantify improvements as the number of registration templates increased
from 1 to 9, sequential t-tests assessed the significance of any error re-
duction, as each new template was added. For each number of templates,
we also computed two tensor-derived metrics, and maps of the intraclass
correlation of local volume differences, to evaluate any power advantages
of multi-atlas TBM.

1 Introduction

Template selection is an important step in group analyses of brain MR images. In
particular, in tensor-based morphometry (TBM), a set of images is non-linearly
registered to a common reference image, and a statistical analysis is performed
on the deformation tensors S =

√
JT J , where J represents the Jacobian matrices

derived from the deformation fields.
Detection power depends on several factors, and key among these is the qual-

ity of the non-linear registration, which also depends on the common target to
which all images are mapped. Typically, nonlinear registration is performed ei-
ther to one of the controls, or to an average of them [8, 7, 13]. In theory the
construction of a mean anatomical atlas can reduce the bias induced by regis-
tering images to an individual control subject. In practice however, anatomical
boundaries and image gradients are often blurrier in the average image, which
may reduce the accuracy of the registration. In [5] for instance, the ICBM53
average brain was compared to a single individual template in a TBM study of
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HIV/AIDS patients. Greater effect sizes per voxel were found with the single
template when compared with those found using the ICBM53 brain as a regis-
tration target. Even so, individual variability may cause a bias in the registration
when a single template is used, as the template may have a shape and inten-
sity distribution that is closer to some subjects than to others. For instance, in
[15], statistical power for TBM with single template registration was found to
depend on which particular individual was selected as reference. Templates that
were most average- in the sense of inducing the smallest deformation tensors
when registered to other brains in the study- tended to generate more powerful
statistics.

Our aim here was to design a new method that eliminates the dependence on
individual variability, while retaining the sharp features associated with registra-
tion to a single target. One way to combine both of these requirements consists
of moving the averaging step until after the non-linear registration. The gist of
our averaging method consists of the following steps: starting from a set of brain
MR images and a set of templates, we non-linearly register all images to all tem-
plates individually. We then compute the deformation tensors for each image
as an average of those generated from the registration to individual templates.
Other solutions to the template selection problem include ’targetless’ normaliza-
tion as in [22], [19], [21], [10], and the selection of the optimal individual target
[9, 15].

In the standard version of TBM [19, 2], statistics are performed on the de-
terminants of the Jacobian matrices, detJ , or equivalently on the determinants
of the deformation tensors generated from the deformation field. In [14], mul-
tivariate statistics were computed instead on the full deformation tensors. As
deformation tensors do not form a vector space under standard matrix addition
and scalar multiplication, computations were performed in the log-Euclidean
framework [1]. Since statistics are computed on the deformation tensors or a
function of its components, for example the determinant, here we also perform
a log-Euclidean averaging on those tensors.

Our analysis was performed on a dataset of MR images from 23 monozygotic
(MZ) and 23 dizygotic (DZ) twin pairs, as well as 10 template brain MR images
from identically scanned healthy subjects who did not belong to those pairs.
We used the intraclass correlation of the detJ as a statistic to characterize the
influence of shared genes on local brain volume. Voxelwise permutation statistics
were computed to assess the significance of the results.

2 Method

2.1 Data

3D T1-weighted images were acquired from 23 pairs of monozygotic twins (MZ;
20 males/26 females; 25.11.5SD years old) and 23 pairs of same-sex dizygotic
twins (DZ; all same-sex pairs; 20 males/26 females; 23.52.2 years), as well as 10
individuals of comparable age, scanned identically. All MR images were collected
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using a 4 Tesla Bruker Medspec whole body scanner (Bruker Medical, Ettingen,
Germany) at the Center for Magnetic Resonance (University of Queensland, Aus-
tralia). Three-dimensional T1-weighted images were acquired with an inversion
recovery rapid gradient echo (MP-RAGE) sequence to resolve anatomy at high
resolution. Acquisition parameters were as follows: inversion time (TI)/repetition
time (TR)/echo time (TE) = 1500/2500/3.83 msec; flip angle =15 degrees; slice
thickness = 0.9 mm, with an acquisition matrix of 256 x 256 x 256. The study was
approved by the Institutional Review Boards at the University of Queensland
and at UCLA; all subjects gave informed consent.

Non-brain tissues were removed from all images using the Brain Surface Ex-
traction tool (BSE) of BrainSuite [18]. The masked image was spatially normal-
ized to the Colin27 standard brain by a 9-parameter (3 translations, 3 rotations,
3 scales) transformation, using the FLIRT software [11].

2.2 Template averaging

Each individual image I was non-linearly registered to each of 9 templates using
a fluid (large-deformation) version of a Riemannian registration algorithm [3,
17, 6], which guarantees diffeomorphic mappings. In order to compute averages
in a common space, all templates were also registered to a tenth template. The
deformation fields resulting from the first registration step were concatenated
with those of the second registration to obtain 9 sets of deformation fields in the
common space for each image I. The deformation tensors S1(x, I) for the single
template case were then computed at each voxel x.

In the log-Euclidean framework, the deformation tensors are projected to
the tangent plane of the manifold on which they are defined, via their matrix
logarithm. Tensor addition is performed in this space and the result is projected
back to the original manifold. Thus, the n-templates average deformation tensor
Sn(x, I) at voxel x on image I is given by:

Sn(x, I) = exp
1

n
Σn

j=1 log S1
j (x, I) (1)

2.3 Selecting the number of templates

Two measures were used to determine any improvements from increasing the
number of templates. We describe both procedures in this section. Briefly, our
first comparison method consists of comparing the total magnitude of defor-
mation tensors before and after the addition of a new template. In effect, this
amounts to determining how ’average’ the effective template would have to be to
generate the given set of deformation tensors. The second method we use begins
with the assumption that the registration error diminishes with the number of
templates used. Thus we wish to compare the distance between the deformation
tensors obtained from a given number of templates to that which would have
been found had we had access to an infinite number of templates. In practice,
we will use values found with 9 templates as our gold standard.
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In the log-Euclidean framework, the distance between two deformation ten-
sors S1 and S2 is

d(S1, S2) = || log S1 − log S2||,
where ||.|| denotes a norm, and log is the matrix logarithm. Following [1], here
we use

d(S1, S2) = (Trace(log S1 − log S2)
2)1/2. (2)

A measure of the size En
i of the tensors Sn(., i) for n templates integrated

over image i is given in this framework by [13]:

En(i) =

∫
|| log Sn(x, i)||2d3x =

∫
Tr(log(Sn(x, i))2)d3x (3)

For our first test, the En(i) are computed for each image and a t-test is performed
between the sets of En−1(i)’s and the E9(i)’s to assess the significance of the
results.

For the second test, we start with the following hypothesis

log Sn(x, i) = log S∞(x, i) + en(x, i) (4)

where en(., i) is the error in the logarithm of the deformation tensors in image i
from using n templates, and S∞(., i) is the hypothetical deformation tensor field
that would be obtained from averaging with an infinite number of templates.
Integrating over the image volume, we obtain

||en||i =

∫
Tr(log(Sn(x, i) − S∞(x, i))2)d3x (5)

Here a t-test is again performed, in this case between the errors ||en+1||i and
||en||i. In practice, as we do not have the value of S∞, we compare all tensors
to the ones found using all 9 templates.

2.4 Twin statistics

The determinants detJ were computed at each voxel, to assess local tissue vol-
ume differences between individuals, after global brain scale differences across
subjects were discounted using 9-parameter registration. DetJ > 1 and detJ < 1
respectively represent larger and smaller local volumes in the subject studied,
with respect to the reference (template) image. We use the intraclass correlation
(ICC) as a statistic to assess the influence of genes on these parameters. The
ICC measures the correlation between unordered pairs and is defined as:

ICC = σ2
b/(σ2

b + σ2
w). (6)

Here σ2
b is the pooled variance between pairs, while σ2

w is the variance within
pairs. The voxelwise intraclass correlation is computed over the whole brain
volume, and the significance assessed by comparing the ICC values to a per-
mutation distribution [16], for which we randomly reassign subject labels (5000
permutations).
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3 Results

In Fig. 1a, ΣI
i=1E

n(i) is plotted against n. The p-values in Table 1 give the
significance of the error reduction from adding each successive template, i.e.,
as n increases. For both the MZs and DZs, the averaging converges for 4 tem-
plates, in the sense that no statistically significant energy reduction is detected.
The registration error summed over all images, ΣI

i=1||en||i, is shown in Fig.1b.
P -values for MZs are below the 0.05 threshold for significance for the first 3
templates, while the DZs converge after the second averaging. In all cases, the
size of the improvement decreases with an increasing number of templates.
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Fig. 1. Left: Size of the deformation tensors for the MZ (red line) and the DZ (blue
line) groups. The x-axis shows the number of templates n included in the averaging,
while the y-axis represents Σi=1:IEn(i), the size of the deformation tensors summed
over all images in either the MZ or DZ dataset. Here I is the total number of subjects
in each of the two groups. For each value of n, a Students t-test was performed between
En

i and E9
i to assess the significance of adding one more image to the sample, when

compared to the result of using all 9 templates. The p-values derived from these tests
are shown in Table 1. Right: Magnitude of the registration error for the MZ (red line)
and the DZ (blue line) groups. The x-axis is the number of templates n, and the error
Σi=1:I ||e

n||i is plotted on the y-axis. A t-test was again performed for each successive
value of n, this time between ||en||i and ||en+1||i to assess the significance of adding
one more reference image. The p-values are shown in Table 1.

In order to verify our results in a TBM analysis, we computed the intra-
class correlation for the MZs and the DZs for each number of templates. These
analyses would be expected to show higher correlations in cases where less reg-
istration error was present, if other factors were equal. Fig.2 shows the p-values
that were found using the optimal number of templates, which we determined to
be 4 from Table 1. The p-values indicate the statistical significance of the corre-
lation (p < 0.05 are shown in red). As expected, the p-values are generally lower
in the MZ twins (denoting higher intraclass correlations), as MZ twins share
all of their genes, and regional brain volumes are known to be under genetic
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no of templates 2 3 4 5 6 7 8 9

En(i) p-values for the MZs > 0.0001 0.053 0.014 0.72 0.23 0.42 0.64 0.85

En(i) p-values for the DZs > 0.0001 0.0065 0.0032 0.92 0.60 0.49 0.71 0.26

||en||i p-values for the MZs > 0.0001 0.0027 > 0.0001 0.77 0.082 0.92 0.91 N/A

||en||i p-values for the DZs 0.0016 0.46 0.69 0.87 0.94 0.98 0.71 N/A

Table 1. The first two rows show the p-values from perfoming a t-test comparing the
En

i ’s to the En

i + 1 for all n’s. P -values from a t-test comparing the error ||en||i to
||en||i.

control. This is indeed the case.We also computed the cumulative distribution
functions of the p-values for maps derived using 1,4 and 9 templates, for each of
the two groups. For a null distribution, the cumulative distribution function is
expected to fall along the x = y line. Larger upward deviations from the diagonal
are generally indicative of greater statistical power and larger effect sizes [14].
However, none ofthe distributions differed significantly from each other, indicat-
ing thus indicating that statistical powerwas not detectably different for the 3
maps using progressively higher number of templates. Despite this, any detected
differences may have greater validity as the analysis removes the potential bias
resulting from selecting an individual brain as a registration target, which may
affect the accurate quantification of regional brain volumes.

Fig. 2. Maps of p-values for the intraclass correlation, shown here in logarithmic scales.
Left: MZ twins. Right: DZ twins. Red p-values indicate ICCs significant at a level of
p = 0.05.
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4 Discussion

Here we presented a new multi-atlas version of Tensor-Based Morphometry. A
log-Euclidean averaging procedure was performed on the deformation tensors
generated from the multiple registrations, resulting in the reduction of regis-
tration error and improved statistical power. At least for the case presented
here, the error was significantly reduced up to an averaging of 4 templates. Fu-
ture studies will assess how much multi-template TBM boosts power relative to
other influential factors, including the sample sizes used, scan quality or field
strength, the regularization model and data fidelity term [5, 3], and the tensor
statistics used [14].
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