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Abstract. In this paper, we propose a new large-deformation nonlinear image
registration model in three dimensions, based on nonlinear elastic regularization
and unbiased registration. Both the nonlinear elastic and the unbiased functionals
are simplified introducing, in the modeling, a second unknown that mimics the
Jacobian matrix of the displacement vector field, reducing the minimization to in-
volve linear differential equations. In contrast to recently proposed unbiased fluid
registration method, the new model is written in a unified variational form and
is minimized using gradient descent on the corresponding Euler-Lagrange equa-
tions. As a result, the new unbiased nonlinear elasticity model is computationally
more efficient and easier to implement than the unbiased fluid registration. The
model was tested using three-dimensional serial MRI images and shown to have
some advantages for computational neuroimaging.

1 Introduction

Given two images, the source and target, the goal of image registration is to find an
optimal diffeomorphic spatial transformation such that the deformed source image is
aligned with the target image. In the case of non-parametric registration methods (the
class of methods we are interested in), the problem can be phrased as a functional
minimization problem whose unknown is the displacement vector field u. Usually, the
devised functional consists of a distance measure (intensity-based, correlation-based,
mutual-information based [1] or metric-structure-comparison based [2]) and a regular-
izer that guarantees smoothness of the displacement vector field. Several regularizers
have been investigated (see Part II of [1] for a review). Generally, physical arguments
motivate the selection of the regularizer. Among those currently used is the linear elas-
ticity smoother first introduced by Broit [3]. The objects to be registered are considered
to be observations of the same elastic body at two different times, before and after
being subjected to a deformation as mentioned in [1]. The smoother, in this case, is
the linearized elastic potential of the displacement vector field. However, this model is
unsuitable for problems involving large-magnitude deformations.
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In [4], Christensen et al. proposed a viscous fluid model to overcome this issue.
The deforming image is considered to be embedded in viscous fluid whose motion is
governed by Navier-Stokes equations for conservation of momentum:

µ4v(x, t) + (ν + µ)∇(∇ · v(x, t)) = f(x, u(x, t)), (1)
v(x, t) = ut(x, t) +∇u(x, t) · v(x, t). (2)

Here, equation (2), defining material derivative of u, nonlinearly relates the velocity and
displacement vector fields.

One drawback of this method is the computational cost. Numerically, the image-
derived force field f(x, u(x, t)) is first computed at time t. Fixing the force field f, lin-
ear equation (1) is solved for v(x, t) numerically using the successive over-relaxation
(SOR) scheme. Then, an explicit Euler scheme is used to advance u in time. Recent
works [5–7] applied Riemannian nonlinear elasticity priors to deformation velocity
fields. These alternating frameworks, however, are time-consuming, which motivates
the search for faster implementations (see for instance [8] or [9] in which the instanta-
neous velocity v is obtained by convolving f with a Gaussian kernel).

In this paper, which is inspired from related works on segmentation [10] and on
two-dimensional registration [11], we propose an alternative approach to fluid registra-
tion. The new model is derived from a variational problem which is not in the form of
a two-step algorithm and which can also produce large-magnitude deformations. For
that purpose, a nonlinear elasticity smoother is introduced in three dimensions. As will
be seen later, the computation of the Euler-Lagrange equations in this case is cumber-
some. We circumvent this issue by introducing a second unknown, a matrix variable
V , which approximates the Jacobian matrix of u. The nonlinear elastic regularizer is
now applied to V , removing the nonlinearity in the derivatives of the unknown u in the
Euler-Lagrange equations. The Euler-Lagrange equations are straightforwardly derived
and a gradient descent method is used.

Also, allowing large deformations to occur may yield non-diffeomorphic defor-
mation mappings. In [4], Christensen et al. proposed a regridding technique that re-
samples the deforming image and re-initializes the process once the value of the de-
formation Jacobian drops below a certain threshold. In [12], Haber and Modersitzki
introduced an elastic registration model subjected to volume-preserving constraints.
To ensure that the transformation g(x) = x − u(x) is volume-preserving (that is, for
any domain Ω,

∫
Ω

dx =
∫

g(Ω)
dx), they proposed the following pointwise constraint:

det(I −Du(x))−1 = 0. Pursuing in the same direction in [13], the authors introduced
a minimization problem under inequality constraints on the Jacobian.

Here we use an information-theoretic approach previously introduced in [14]. In
[14], the authors considered a smooth deformation g that maps domain Ω bijectively
onto itself. Consequently, g and g−1 are bijective and globally volume-preserving. Prob-
ability density functions can thus be associated with the deformation g and its inverse
g−1. The authors then proposed to quantify the magnitude of the deformation by means
of the symmetric Kullback-Leibler distance between the probability density functions
associated with the deformation and the identity mapping. This distance, when rewrit-
ten using skew-symmetry properties, is viewed as a cost function and is combined with
the viscous fluid model for registration, which leads to an unbiased fluid registration
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model. Unlike the unbiased fluid registration model, the unbiased nonlinear elasticity
method, introduced here, allows the functional to be written “in closed form”. The new
model also does not require expensive Navier-Stokes solver (or its approximation) at
each step as previously mentioned.

2 Method

Let Ω be an open and bounded domain in R3. Without loss of generality, we assume
that the volume of Ω is 1, i.e. |Ω| = 1. Let I1, I2 : Ω → R be the two images to be
registered. We seek the transformation g : Ω → Ω that maps the source image I2 into
correspondence with the target image I1. In this paper, we will restrict this mapping to
be differentiable, one-to-one, and onto. We denote the Jacobian matrix of a deformation
g to be Dg, with Jacobian denoted by |Dg(x)| = det(Dg(x)) (thus we will use the
notation |V | := det(V ) for any 3 × 3 matrix V ). The displacement field u(x) from
the position x in the deformed image I2 ◦ g(x) back to I2(x) is defined in terms of the
deformation g(x) by the expression g(x) = x − u(x) at every point x ∈ Ω. Thus, we
consider the problems of finding g and u as equivalent.

In general, nonlinear image registration models may be formulated in a variational
framework. The minimization problems often define the energy functional E as a linear
combination of image matching term F and the regularizing term R: infu{E(u) =
F (u) + λ0R(u)}. Here, λ0 > 0 is a weighting parameter.

2.1 Registration metrics

In this paper, the matching functional F takes the form of the L2 norm (the sum of
squared intensity differences), F = FL2 , and the mutual information, F = FMI .
L2-norm: The L2-norm matching functional is suitable when the images have been
acquired through similar sensors (with additive Gaussian noise) and thus are expected
to present the same intensity range and distribution. The L2 distance between the de-
formed image I2 ◦ g(x) = I2(x− u(x)) and target image I1(x) is defined as

FL2(u) =
1
2

∫
Ω

(
I2(x− u(x))− I1(x)

)2
dx. (3)

Mutual Information: Mutual information can be used to align images of different
modalities, without requiring knowledge of the relationship of the two registered im-
ages [15, 16]. Here, the intensity distributions estimated from I1(x) and I2(x − u(x))
are denoted by pI1 and pI2

u , respectively, and an estimate of their joint intensity distri-
bution by pI1,I2

u . We let i1 = I1(x), i2 = I2(x − u(x)) denote intensity values at point
x ∈ Ω. Given the displacement field u, the mutual information computed from I1 and I2

is provided by MII1,I2
u =

∫
R2 pI1,I2

u (i1, i2) log[pI1,I2
u (i1, i2)/(pI1(i1)pI2

u (i2))] di1di2.
We seek to maximize the mutual information between I2(x−u(x)) and I1(x), or equiv-
alently, minimize the negative of MII1,I2

u :

FMI(I1, I2, u) = −MII1,I2
u . (4)
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2.2 Nonlinear Elastic Regularization

The theory of elasticity is based on the notion of strain. Strain is defined as the amount
of deformation an object experiences compared to its original size and shape. In three
spatial dimensions, the strain tensor, E = [εij ] ∈ R3×3, 1 ≤ i, j ≤ 3, is a symmetric
tensor used to quantify the strain of an object undergoing a deformation. The nonlinear
strain is defined as εij(u) = 1

2

(
∂jui + ∂iuj +

∑3
k=1 ∂iuk∂juk

)
, with the nonlinear

strain tensor matrix given by

E(u) =
1
2
(
Dut + Du + DutDu

)
. (5)

Stored energy (Saint Venant-Kirchhoff material) is defined as

W (E) =
ν

2
(trace(E))2 + µtrace(E2),

where ν and µ are Lamé elastic material constants. The regularization for nonlinear
elasticity becomes

RE(u) =
∫

Ω

W (E(u))dx.

The regularization term RE(u) can be minimized with respect to u. However, since the
regularization term is written in terms of partial derivatives of components of u, the
Euler-Lagrange equations become complicated and are computationally expensive to
minimize. Instead, following earlier theoretical work [17], we minimize an approximate
functional by introducing the matrix variable

V ≈ Du (6)

and thus consider a new form of nonlinear elasticity regularization functional

RE(u, V ) =
∫

Ω

W (V̂ ) dx +
β

2

∫
Ω

||V −Du||2F dx, (7)

where V̂ =
1
2
(
V t + V + V tV

)
, β is a positive constant, and || · ||F denotes the Frobe-

nius norm. For β large enough, RE(u) is well approximated by RE(u, V ). In the limit
as β → +∞, we obtain Du ≈ V in the L2- topology.

The idea of duplication of variables was also used in previous work [18] by Cachier
et al. but for a different problem. In their case, the registration energy depends on two
variables that are both vector fields. The first vector field C is a set of correspondences
between points based on intensity similarity, while the second, denoted by T, is a
smooth vector field constrained by the regularization energy and attracted by the set
of correspondences C.
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2.3 Unbiased Registration Constraint

In [14], the authors proposed an unbiased fluid image registration approach. Contrary
to classical methods for which the term unbiased is used in the sense of symmetric
registration, in [14], unbiased means that the Jacobian determinants of the deformations
recovered between a pair of images follow a log-normal distribution, with zero mean
after log-transformation. The authors argued that this distribution is beneficial when
recovering change in regions of homogeneous intensity, and in ensuring symmetrical
results when the order of two images being registered is switched. As derived in [14]
using information theory, the unbiased regularization term is given as

RUB(u) =
∫

Ω

(
|D(x− u(x))| − 1

)
log |D(x− u(x))|dx. (8)

It is important to note that RUB generates inverse-consistent deformation maps. The
inverse-consistent property of the unbiased technique was shown in a validation study of
the unbiased fluid registration methods [19]. Also, to see why minimizing equation (8)
leads to unbiased deformation in the logarithmic space, we observe that the integrand
is always non-negative, and only evaluates to zero when the deformation g is volume-
preserving everywhere (|Dg| = 1 everywhere). Thus, by treating it as a cost, we recover
zero-change by minimizing this cost when we compare images differing only in noise.

Given equation (6), we have Dg = I −Du ≈ I − V , where I is the 3× 3 identity
matrix. Therefore, as in subsection 2.2, to simplify the discretization, we introduce

RUB(V ) =
∫

Ω

(|I − V | − 1) log |I − V | dx. (9)

Recall that here |I − V | = det(I − V ).

2.4 Unbiased Nonlinear Elasticity Registration

The total energy functional employed in this work, is given as a linear combination of
the similarity measure F (which is either FL2 from (3) or FMI from (4)), nonlinear
elastic regularization RE in (7), and unbiased regularization RUB in (9):

E(u, V ) = F (u) + RE(u, V ) + λRUB(V ). (10)

The explicit weighting parameter is omitted in front of RE(u, V ), since this term is
weighted by Lamé constants ν and µ. We solve the Euler-Lagrange equations in u
and V using the gradient descent method, parameterizing the descent direction by an
artificial time t,

∂u
∂t

= −∂Eu(u, V ) = −∂uF (u)− ∂uRE(u, V ), (11)

∂V

∂t
= −∂EV (u, V ) = −∂V RE(u, V )− λ∂V RUB(V ), (12)

which gives systems of three and nine equations, respectively. Explicit expressions for
the gradients in these equations are given in Section 3.



6 I. Yanovsky et al.

Remark 1. The regularization on the deformation g proposed in this work can be ex-
pressed in a general form R(g) =

∫
Ω

R1(Dg)dx +
∫

Ω
R2(|Dg|)dx, with |Dg| :=

det(Dg). For the minimization, an auxiliary variable can also be introduced to simplify
the numerical calculations, removing the nonlinearity in the derivatives.

3 Implementation

3.1 The Energy Gradients

Computing the first variation of functional RE(u, V ), in equation (7), with respect to u
gives the following components of gradient ∂uRE(u, V ):

∂uk
RE(u, V ) = β

(
∂1vk1 + ∂2vk2 + ∂3vk3 −4uk

)
, k = 1, 2, 3.

The first variation of RE(u, V ) with respect to V , with V = [vij ], gives ∂V RE(u, V ):

∂v11RE(u, V ) = β(v11 − ∂1u1) + νc1(1 + v11) + µ
(
c2(1 + v11) + c5v12 + c6v13

)
,

∂v12RE(u, V ) = β(v12 − ∂2u1) + νc1v12 + µ
(
c3v12 + c5(1 + v11) + c7v13

)
,

∂v13RE(u, V ) = β(v13 − ∂3u1) + νc1v13 + µ
(
c4v13 + c6(1 + v11) + c7v12

)
,

∂v21RE(u, V ) = β(v21 − ∂1u2) + νc1v21 + µ
(
c2v21 + c5(1 + v22) + c6v23

)
,

∂v22RE(u, V ) = β(v22 − ∂2u2) + νc1(1 + v22) + µ
(
c3(1 + v22) + c5v21 + c7v23

)
,

∂v23RE(u, V ) = β(v23 − ∂3u2) + νc1v23 + µ
(
c4v23 + c6v21 + c7(1 + v22)

)
,

∂v31RE(u, V ) = β(v31 − ∂1u3) + νc1v31 + µ
(
c2v31 + c5v32 + c6(1 + v33)

)
,

∂v32RE(u, V ) = β(v32 − ∂2u3) + νc1v32 + µ
(
c3v32 + c5v31 + c7(1 + v33)

)
,

∂v33RE(u, V ) = β(v33 − ∂3u3) + νc1(1 + v33) + µ
(
c4(1 + v33) + c6v31 + c7v32

)
,

where

c1 = v11 + v22 + v33 +
1
2
(
v2
11 + v2

21 + v2
31 + v2

12 + v2
22 + v2

32 + v2
13 + v2

23 + v2
33

)
,

c2 = 2v11 + v2
11 + v2

21 + v2
31, c5 = v21 + v12 + v11v12 + v21v22 + v31v32,

c3 = 2v22 + v2
12 + v2

22 + v2
32, c6 = v31 + v13 + v11v13 + v21v23 + v31v33,

c4 = 2v33 + v2
13 + v2

23 + v2
33, c7 = v32 + v23 + v12v13 + v22v23 + v32v33.

We can compute the first variation of (9), obtaining ∂V RUB(V ). We first simplify
the notation, letting J = |I − V |. Also, denote L(J) = (J − 1) log J . Hence, L′(J) =
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dL(J)/dJ = 1 + log J − 1/J . Thus,

∂v11RUB(V ) = −
(
(1− v22)(1− v33)− v32v23

)
L′(J),

∂v12RUB(V ) = −
(
v23v31 + v21(1− v33)

)
L′(J),

∂v13RUB(V ) = −
(
v21v32 + (1− v22)v31

)
L′(J),

∂v21RUB(V ) = −
(
v32v13 + v12(1− v33)

)
L′(J),

∂v22RUB(V ) = −
(
(1− v11)(1− v33)− v13v31

)
L′(J),

∂v23RUB(V ) = −
(
v12v31 + v32(1− v11)

)
L′(J),

∂v31RUB(V ) = −
(
v12v23 + v13(1− v22)

)
L′(J),

∂v32RUB(V ) = −
(
v21v13 + v23(1− v11)

)
L′(J),

∂v33RUB(V ) = −
(
(1− v11)(1− v22)− v12v21

)
L′(J).

3.2 Algorithm

We are now ready to give the algorithm for the unbiased registration via nonlinear elas-
tic regularization.

Algorithm 1 Unbiased Registration via Nonlinear Elastic Regularization
1: Initialize t = 0, u(x, 0) = 0, and V (x, 0) = 0.
2: Calculate V (x, t) using equation (12).

Steps 3-5 describe the procedure for solving equation (11).
3: Calculate the perturbation of the displacement field R(x) = −∂Eu(u, V ).
4: Time step 4t is calculated adaptively so that 4t · max(||R||2) = δu, where δu is the

maximal displacement allowed in one iteration. Results in this work are obtained with δu =
0.1.

5: Advance equation (11), i.e. ∂u(x, t)/∂t = R(x), in time, with time step from step 4, solving
for u(x, t).

6: If the cost functional in (10) decreases by sufficiently small amount compared to the previous
iteration, then stop.

7: Let t := t + 4t and go to step 2.

4 Results and Discussion

We tested the proposed unbiased nonlinear elastic registration model and compared
the results to those obtained with the unbiased fluid registration method [14], where
the unbiased regularization constraint (8) was coupled with the L2 matching functional
(3) and fluid regularization (1), (2). Here, both methods were coupled with the L2 and
mutual information (MI) based similarity measures. In our experiments, we used a pair
of serial MRI images (220 × 220 × 220) from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI). Since the images were acquired one year apart, from a subject with
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Volume I1

Volume I2

Fig. 1. Serial MRI images from the ADNI follow-up dataset (images acquired one year apart) are
shown. Volumes I1 (row 1) and I2 (row 2) are depicted as a brain volume (column 1) and from
sagittal (column 2), axial (column 3), and coronal (column 4) views. Nonrigid registration aligns
volume I2 into correspondence with volume I1.

Alzheimer’s disease, real anatomical changes are present, which allows methods to be
compared in the presence of true biological changes.

In the tests performed using unbiased nonlinear elasticity coupled with L2 match-
ing, values of β = 20000 in equation (7) and λ = 2000 in equation (10) were chosen.
For MI matching, β = 80 and λ = 8 were used. The values of the Lamé coefficients
were chosen to be equal, µ = ν, in all experiments. Bigger values of µ and ν allow for
more smoothing. For unbiased fluid registration model, described in [14], λ = 500 was
chosen for L2 matching, and λ = 5 for MI matching.

Figure 2 shows the images being registered along with the resulting Jacobian maps.
Results generated using the fluid and nonlinear elasticity based unbiased models are
similar, both suggesting a mild volume reduction in gray and white matter and ven-
tricular enlargement that is observed in Alzheimer’s disease patients. The advantages
of the unbiased nonlinear elasticity model is its more locally plausible reproduction of
atrophic changes in the brain and its robustness to original misalignment of brain vol-
umes, which is especially noticeable on the brain surface. The unbiased nonlinear elas-
ticity model coupled with L2 matching generated very similar results to those obtained
with the MI similarity measure, partly because difference images typically contain only
noise after registration. Unbiased fluid registration method, however, is more effective
in modeling the regional neuroanatomical changes, showing more clearly which parts
of the volume have undergone largest tissue changes, such as ventricular enlargement
as shown in Figure 2.

Figure 3 shows deformed grids generated with unbiased fluid and unbiased nonlin-
ear elastic registration models. Figure 4 shows the energy decrease per iteration for both
models.

In Figure 5, we examined the inverse consistency of the mappings [20] generated
using unbiased nonlinear elastic registration. Here, the deformation was computed in
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Unbiased Registration via Viscous Fluid Flow coupled with L2 matching

Unbiased Registration via Nonlinear Elasticity coupled with L2 matching

Unbiased Registration via Viscous Fluid Flow coupled with Mutual Information

Unbiased Registration via Nonlinear Elasticity coupled with Mutual Information

Fig. 2. Nonrigid registration was performed on the Serial MRI images from the ADNI Follow-
up dataset using unbiased fluid registration and unbiased nonlinear elasticity registration, both
coupled with L2 and MI matching. Jacobian maps are superimposed on the target volume.

both directions (time 2 to time 1, and time 1 to time 2) using mutual information match-
ing. The forward and backward Jacobian maps were concatenated (in an ideal situation,
this operation should yield the identity), with the products of Jacobians having values
close to 1.

The unbiased nonlinear elasticity model does not require expensive Navier-Stokes
solver (or its approximation), which is employed at each iteration for fluid flow mod-
els. Hence, in our experiments, unbiased nonlinear elasticity iteration (based on explicit
scheme) took 15-20% less time than the unbiased fluid step. Convergence was obtained
after roughly the same number of iterations for both methods, resulting in better perfor-
mance for the unbiased nonlinear elasticity model.

To conclude, we have provided an alternative unified minimization approach to
the unbiased fluid registration model and have compared both models. The proposed
method proves to be easier to implement and is less computationally intensive. Also, a
key benefit of the variational framework and of the numerical scheme of the unbiased
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Unbiased models with L2 matching Unbiased models with MI matching
Fluid Nonl.Elasticity Fluid Nonl.Elasticity

Fig. 3. Results obtained using unbiased fluid registration and unbiased nonlinear elasticity regis-
tration, both coupled with L2 and MI matching. The generated grids are superimposed on top of
2D cross-sections of the 3D volumes (row 1) and are shown separately (row 2).
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Fig. 4. Energy per iteration for the unbiased fluid registration and unbiased nonlinear elasticity
registration, both coupled with L2 and MI matching.

nonlinear elastic registration model is its robustness to numerical constraints such as
CFL conditions. The method allows to remove the nonlinearity in the derivatives of the
unknown u in the Euler-Lagrange equations. Future studies will examine the registra-
tion accuracy of the different models where ground truth is known, and will compare
each model’s power for detecting inter-group differences or statistical effects on rates
of atrophy.
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