
Chapter 3

3D Rotations matrices

The goal of this chapter is to exemplify on a simple and useful manifold part of the general meth-
ods developed previously on Riemannian geometry and Lie groups. This document also provide
numerically stable formulas to implement all the basic operations needed to work with rotations in
3D.

3.1 Vector rotations of R3

3.1.1 Definition

Let {i, j, k} be a right handed orthonormal basis of the vector space R3 (we do not consider it here
as a Euclidean space), and B = {e1, e2, e3} be a set of three vectors. The linear mapping from
{i, j, k} to B is given by the matrix

R = [e1, e2, e3] =

 e11 e21 e31

e12 e22 e32

e13 e23 e33

 (3.1)

If we now want B to be an orthonormal basis, we have that 〈 ei | ej 〉 = δij , which means that the
matrix R verifies

R.RT = RT.R = I3 (3.2)

This equation implies in turn that det(R.RT) = 1 (i.e. det(R) = ±1) and gives rise to the subset
O3 of orthogonal matrices of M3×3. If we want B to be also right handed, we have to impose
det(R) = 1.

SO3 = {R ∈M3×3/R.R
T = Id and det(R) = +1} (3.3)

Such matrices are called (proper) rotations. Each right handed orthonormal basis can then be
represented by a unique rotation and conversely each rotation maps {i, j, k} onto a unique right
handed orthonormal basis.

As a subset of matrices, rotations can also be seen as a subset of linear maps of R3. They
correspond in this case to their usual interpretation as transformations of R3: they are positive
isometries (maps conserving orientation and dot product): 〈R.x |R.y 〉 = 〈 x | y 〉. In particular,
they conserve the length of a vector: ||R.x|| = ||x||. Seen as a transformation group of R3 the matrix
multiplication as the composition law and Id as identity, rotations forms a non-commutative group
denoted by SO3 (3D rotation group).

The three main operations on rotations are:
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• the composition of R1 and R2: R = R2.R1 (beware of the order),

• the inverse of R: R(-1) = RT,

• and the application of R to a vector x: y = R.x.

The orthogonal group O3 is defined as a subspace of R3×3 by equation (3.2) which give rise
to 6 independent scalar equations since R.RT is symmetric. Hence O3 is a differential manifold
of dimension 3. As the determinant is a continuous function in the vector space of matrices, the
constraint det(R) = ±1 shows that O3 as a manifold has two non connected leaves. Taking into
account the constraint det(R) = 1 amounts to keep the component of identity, which is calle the
special orthogonal group SO3. Since the composition and inversion maps are infinitely differentiable,
this is moreover a Lie group. Notice that the other leave of the manifold is not a group as it does not
contain the identity and it is not stable by composition (the composition of two improper rotations
is a proper rotation).

3.1.2 From matrices to rotations

From a computational point of view, a rotation matrix is encoded as a non-constrained matrix,
and it is necessary to verify that the orthogonality constraints are satisfied before using it. If this
is not the case (or if the numerical error is too large), there is a need to recompute the most likely
rotation matrix. This can be done by optimizing for the closest rotation matrix in the sense of the
distance in the embedding space.

The Froebenius dot products on matrices is a natural metric on the vector space of matrices:

〈X | Y 〉Rn×n =
1

2
Tr(XT.Y ) =

1

2
Tr(X.Y T) =

1

2

∑
i,j

Xij .Yij

With this metric, the distance between a rotation matrix R and an unconstrained matrix K is thus
dist(R,K)2 = 1

2Tr((R−K)T.(R−K)) = 1
2Tr(K.KT) + 3

2 −Tr(R.KT). Notice incidentally that the
extrinsic distance between two rotations matrices is distFro(R1, R2)2 = 3− Tr(R1.R2).

To find the closest rotation to K, we have to maximize Tr(R.KT) subject to the constraint
R.RT = Id. This is called the orthogonal Procrustes problem in statistics, and it relates very closely
to the absolute orientation problem in photogrammetry, the pose estimation problem in computer vi-
sion and the rotational superposition problem in crystallography. Several closed form solutions have
been developed, using unit quaternions [Hor87, Kea89, Aya91, Fau93, HM93], singular value decom-
position (SVD) [Sch66, McL72, AHB87, Ume91], Polar decomposition [HHN88] or dual quaternions
[WS91]. Additional bibliography includes [Mos39, Joh66, Kab76, Kab78, Hen79, Mac84, Dia88].
We present here the SVD method because it is valid in any dimension.

Taking into account the constraints R.RT = Id and det(R) = +1, the Lagrangian is

Λ = Tr(R.KT)− 1

2
Tr (L.(R.RT − Id))− g.(det(R)− 1)

where L is a symmetric matrix and g a scalar. According to appendix A.1, we have :

∂(Tr(R.KT))

∂R
= K

∂(Tr(L.R.RT))

∂R
= 2.L.R

∂ det(R)

∂R
= det(R).R(-T) = R

Thus, the optimum is characterized by

∂Λ

∂R
= K −R.L− g.R = 0 ⇐⇒ R(L+ g Id) = K (3.4)
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Let L′ = L+ g. Id and K = U.D.V T be a singular value decomposition of K. Remember that U
and V are orthogonal matrices (but possibly improper) and D is the diagonal matrix of (positives)
singular values. As L (thus L′) is symmetric, we have:

L′
2

= (L′.RT)(R.L′) = KT.K = V.D2.V T

The symmetric matrices L′2 and L′ trivially commute. Thus, they can be diagonalized in a common
basis, which implies that L′ = V.D.S.V T, where S = DIAG(s1, . . . , sn) and si = ±1. As S = S(-1)

and SD = DS, we can simplify (3.4) into:

R.V.D = U.S.D ⇐⇒ R = U.S.V T

The positive determinant constraints gives moreover det(S) = det(U).det(V ). Inserting R =
U.S.V T in the criterions, we find that

Tr(R.KT) = Tr(U.S.D.UT) = Tr(D.S) =

n∑
i=1

di.si

Assuming that singular values are sorted in decreasing order, the maximum is obtained for s1 =
. . . = sn−1 = +1 and sn = det(U). det(V ).

We should note that the rotation R = U.S.V T is always a optimum of our criterion, but is may
not be the only one. This minimum is obviously unique if all the singular values are non zero (K
has then maximal rank), and [Ume91] shows that it ios still unique if rank(K) ≥ n− 1.

Theorem 3.1 (Least-squares estimation of a rotation from a matrix K)
Let K = U.D.V T be a singular value decomposition of a given square matrix K with (positives) sin-
gular values sorted in decreasing order in D and S = DIAG(1, . . . 1,det(U) det(V )). The optimally
closest rotation in the Least Squares (Froebenius) sense is given by

R = U.S.V T (3.5)

This optimum is unique if rank(K) ≥ n− 1.

Exercise 3.1 Orthonormalization of matrices

• Implement the SVD orthogonalization procedure Mat2RotMat(M) to compute the proper rotation
which is closest to a given unconstrained matrix M .

3.1.3 Geometric parameters: axis and angle

Let R be a 3-D rotation matrix. It is well known that it is characterized by its axis n (unit vector)
and its angle θ. To understand why, let us compute the eigenvalues of the matrix R: they are
solutions of the system det(R − λ. Id) = 0. This is a real polynomial of order 3. Thus, it has
one real zero λ1 and two complex conjugate zeros λ2,3 = µ.e±iθ. Let n be the unit eigenvector
corresponding to the real eigenvalue: R.n = λ1.n. As a rotation conserves the norm, we have
‖R.n‖ = |λ1| = ‖n‖ = 1, which means that λ1 = ±1. However, the determinant of R being one,
this imposes det(R) = λ1.µ

2 = 1, from which we conclude that λ1 = +1 and |µ| = 1. Thus, every
3D rotation has an invariant axis n which is the eigenvector associated to the eigenvalue 1, and two
unitary complex conjugate eigenvalues λ2,3 = e±iθ which realize a 2D rotation of angle θ in the 2D
plane orthogonal to that axis.
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Rodrigues’ formula: computing the rotation matrix R(θ, n)

To rotate a vector x, we have to conserve the part x‖ = n.nT.x which is parallel to n, and to rotate
the orthogonal part x⊥ = (Id−n.nT).x by an angle θ around n. Let us first notice that the rotation
of angle π/2 of x⊥ around the axis n is simply given by w = n× x⊥ = n× x. Thus the rotation of
angle θ is simply y⊥ = cos(θ).x⊥ + sin(θ).w, and the final rotated vector can be written:

y = R(n, θ).x = x‖ + y⊥ = n.nT.x+ cos(θ).( Id− n.nT).x+ n× x

Let Sx =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 be the linear operator (skew matrix) corresponding to (left) cross

product: for all vector y we have Sx.y = x × y. One easily verifies the identity S2
n = n.nT − Id.

Using this matrix, we can rewrite the rotation formula in a matrix form which is valid for all vectors
x. This expression is called Rodrigues formula:

R = Id+ sin θ.Sn + (1− cos θ).S2
n = cos θ. Id+ sin θ.Sn + (1− cos θ).n.nT (3.6)

Computing the angle and axis parameters from the rotation matrix

Conversely, we can determine the angle and axis of a rotation R using:

θ = arccos

(
Tr(R)− 1

2

)
and Sn =

R−RT

2. sin θ
(3.7)

The equation for the axis is valid only when θ ∈]0;π[. Indeed, for θ = 0 (i.e. identity) the rotation
axis n is not determined, and sin(θ) = 0 for reflections (i.e. when θ = π). From a computational
point of view, this is creating numerical instabilities around the values θ = 0 and θ = π that need
to be adressed.

R close to identity: θ is small Since the axis n is not defined for identity, there is a singularity
and a numerical instability around it. However, we can compute the rotation vector with a Taylor
expansion:

Sr = θ Sn =
θ

2 sin θ
.(R−RT) =

1

2
.

(
1 +

θ2

6

)
.(R−RT) +O

(
θ4
)

R close to a reflection: π − θ is small The axis is this time well defined, but we have to use
another equation. From Rodrigues formula, we get R + RT − 2. Id = 2.(1 − cos θ).S2

n, and since
S2
n = n.nT − Id, we have

n.nT = Id+
1

2.(1− cos θ)
. (R+RT − 2. Id)

Let % = 1/(1− cos θ); taking diagonal terms gives

n2
i = 1 + %.(Ri,i − 1) ⇒ ni = εi

√
1 + %.(Ri,i − 1)

The off diagonal terms are used to determine the signs εi: considering that the sign of n1 is
ε ∈ {−1; +1}, we can compute that

sign(nk) = ε.sign(R1,k +Rk,1)
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If we have an exact reflection, the sign ε does not matter since rotating clockwise or counter-
clockwise gives the same result, but for a quasi-reflection, this sign is important. In this case, the
vector w = 2. sin θ.n is very small but not identically null: it can be computed without numerical
instabilities with Sw = R − RT. Since θ < π, the largest component wk in absolute value of this
vector must have the same sign as the corresponding component nk of vector n.

The rotation vector r = θ.n

As a conclusion, the rotation angle and axis are not always numerically stable (in particular around
θ = 0 and θ = π), but we can always compute a stable compound version: the rotation vector
r = θ.n.

From an algorithmic point of view, the rotation vector is thus a representation of choice for 3D
rotations. This representation of rotations is studied since a long time (see for instance [Stu64]), but
it takes a particular importance in robotics [Pau82, Lat91] and computer vision [Kan93]. Although
the geometric angle and axis parameters were well known, their combination into the rotation
vector was not practically used before [Aya89, chap. 12].

As this angle is defined up to 2π, all the vectors rk = (θ + 2.k.π).n (k ∈ Z) represent the
same rotation R = R(θ, n). Thus, a first chart is rotations vectors r = θ.n from the open ball
D = B(0, π). To define an atlas, we should define at least three other charts. Following [Aya89],
one could keep the same representation r = θ.n with different definition domains, for instance the
half open ball B1 = {r ∈ B(0, 2π)/r1 > 0} (respectively B2 and B3) covering the rotations having
a non null component of the axis of rotation along e1 (respectively e2 and e3).

Rodrigues’ formula allow us to compute directly the rotation matrix from the rotation vector:

R = Id+
sin θ

θ
.Sr +

(1− cos θ)

θ2
.S2
r with θ = ‖r‖

To get avoid numerical instabilities around θ = 0, one can use the following Taylor expansions:

sin θ

θ
= 1− θ2

6
+O

(
θ4
)

et
(1− cos θ)

θ2
=

1

2
− θ2

24
+O

(
θ4
)

Exercise 3.2 Rotation matrix to rotation vector

• Implement the operator Sn (SkewSymMat(r)).

• Verify that it corresponds to the left cross product.

• Implement a function RotVect2RotMat(r) converting a rotation vector to a rotation matrices and its
inverse RotMat2RotVect(r).

3.1.4 Uniform random rotation

For testing our computational framework on rotations, we will need to generate some random
rotations. Although any distribution covering the whole space would be sufficient for that, it is
more satisfying to have a distribution that covers uniformly the manifold. In the context of a
groups, uniformity is defined in terms of invariance by left or right translation: the measure µ is
left invariant if µ(R.S) = µ(R) for any rotation R and set S ⊂ SOn.

For any locally compact topological groups, the left (resp. right) Haar’s measure µl (resp µr)
is the unique (up to a multiplicative constant) left-invariant Borel measure on the group. Left
and right Haar’s measure are generally different (we have µr(S) = µl(S

(-1))) , unless the group is
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unimodular which is the case of rotations. Moreover, as our Riemannian metric is left and right
invariant, the induced Riemannian measure is exactly the Haar measure.

Algorithms to generate random uniform orthogonal matrices from square matrices with Gaus-
sian entries have been developed based on the QR recomposition (the orthogonal matrix Q is
uniform as long as the diagonal of R contains only positive entries) [Ste80] or more efficiently on
the subgroup algorithm [DS87], which iteratively builds an (n+1)× (n+1) orthogonal matrix from
an nn one and a uniformly distributed unit vector of dimension n + 1 by applying a Householder
reflection from the vector to the smaller matrix (embedded in M(n+1)×(n+1) with 1 in the bottom
corner).

In our case, as the efficiency is not our main concern, it is more consistent to continue
with the SVD. Let us assume a rotationally symmetric (spherical) distribution on the embed-
ding space of square matrices (considered as a vector space with the standard Froebenius norm)
[FH84]. Rotational invariance means that the pdf of the matrix K does only depend on its norm:
p(K) = ϕ(Tr(K.KT). Let K = U.S.V T be a SVD decomposition; this can be further simplified into
p(K) = ϕ(

∑
i si). Thus, the orthogonalization procedure K = U.S.V T → R = U.V T amounts to

marginalize with respect to the singular values, and we have that p(R) =
∫
ϕ(
∑

i si).
∏
i dsi = Cte

with respect to the restriction of the embedding measure to the manifold. A zero mean and unit
vraiance Gaussien distribution on each matrix being a rotationally symmetric distribution, its or-
thogonalization using the SVD method is thus a uniform distribution on SOn.

Exercise 3.3 Random uniform rotations

• Implement a uniform random rotation matrix generator UnifRndRotMat().

• Verify that the distribution of the rotation angle is proportional to sin(θ/2)2.

• Verify the orthogonality of the SVD orthogonalization and the consistency of the transformation
between rotation matrices and rotation vectors on large number of random rotations.

3.1.5 Differential properties

Tangent spaces

Let R(t) = R + t.Ṙ + O(t2) be a curve drawn on SO3, considered as an embedded manifold into
the set of matrices M3×3. The constraint (3.2) is differentiated into

Ṙ.RT +
(
Ṙ.RT

)T

= 0 or RT.Ṙ+
(
RT.Ṙ

)T

= 0

which means that Ṙ.RT and RT.Ṙ are skew-symmetric matrices (these two conditions are equiv-
alent). Since 3 × 3 skew-symmetric matrices have 3 free components, we have determined all the
tangent vectors of the 3-dimensional tangent spaces:

Theorem 3.2 the tangent space T IdSO3 of SO3 at identity is the vector space of skew matrices.
The tangent space TRSO3 at R ∈ SO3 is given by

TRSO3 = {X ∈M3×3/X.R = −(X.R)T} = {X ∈M3×3/R.X = −(R.X)T}
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Left and right translations

Two important and canonical maps on a Lie group are very useful for studying the tangent space:
these are the left and right translations. In SO3 this is nothing else than the left and right
composition by a fixed rotation R0

SO3 −→ SO3

LR0 : R 7−→ LR0(R) = R0.R
RR0 : R 7−→ RR0(R) = R.R0

(3.8)

Their differentials realize canonical isomorphisms between the tangent spaces of SO3 at different
points. Let X be a vector of TRSO3 and RX(t) = R + t.X + O(t2) be a curve on SO3 going

through R with tangent vector dRX(t)
dt = X. The left translation of RX is the curve R0.RX(t) =

R0.R + t.R0.X + O(t2) and its tangent vector at 0 is Y = R0.X. The differential DLR0 of LR0 is
then for any R in SO3

TRSO3 −→ TR0.RSO3

DLR0 : X 7−→ DLR0(X) = R0.X

Notice that LR and its differential DLR take the same form in the embedding space of matrices
although they act on different subspaces. The differential DRR0(X) = X.R0 is defined similarly.

For R = Id, this gives two canonical isomorphisms between the tangent space at identity TSO3

and the tangent space TRSO3 at any point R (since the formulations of DLR0 and DRR0 and
independent of R, we denote their restriction to R = Id by the same names).

T IdSO3 −→ TRSO3

DLR : X 7−→ R.X
DRR : X 7−→ X.R

(3.9)

Differential properties of rotations are then reducible to differential properties around identity in
T IdSO3.

Bases of tangent spaces

In order to be able to compute in tangent spaces, we need to have coordinates and thus to define
bases. Any skew-symmetric X matrix verifies Xij = −Xji so that only off diagonal components
are non-null. Moreover, the lower triangular part is completely determined by the upper triangle
one. Thus, a basis of TSO3 is given by

E1 =

 0 0 0
0 0 −1
0 1 0

 E2 =

 0 0 1
0 0 0
−1 0 0

 E3 =

 0 −1 0
1 0 0
0 0 0


The projection in this basis determines an isomorphism between the tangent space at identity

and the vector space R3:

x =

 x1

x2

x3

 ∈ R3 7→ Sx =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 ∈ T IdSO3 (3.10)

In order to minimize the number of notations, the basis has been chosen so that the matrix Sn is
the skew matrix corresponding to (left) cross product, as defined before.
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To obtain bases of all other tengent spaces, we could find ad-hoc bases from the embedding
space. However, we have two canonical ways to transport a structure from the tangent plane at
identity to any point: the left and right translations of Ei are Eli = R.Ei and Eri = Er.R. The
coordinates in these two bases give rise to two different canonical isomorphisms between the tangent
space at any point and R3:

Given dR ∈ TRSO3, ∃ ωr, ωl ∈ R3 such as dR = Sωr .R = R.Sωl
(3.11)

Exercise 3.4 Bases and coordinates in tangent spaces

• Implement functions Ei(i), Ei l(R,i) and Ei r(R,i) that gives the above basis vectors of T IdSO3, and
their left and right translation which constitute bases of TRSO3 at any rotation R.

• Implement a projection projection TgCoordRotId(dR) : dR ∈ T IdSO3 7→ dr ∈ R3 which compute
the coordinates in the above basis. Remark: compute the projection error because dR might not
numerically be exactly skew symmetric.

• Extend that projection by left and right translations to obtain coordinates in the left and right trans-
lated bases: TgCoordRot r(R, dR) and TgCoordRot r(R, dR).

• Implement the reverse functions InvTgCoordRotId(dr) : dr ∈ R3 7→ dR ∈ T IdSO3 , InvTgCoor-
dRot r(R, dr) and InvTgCoordRot r(R, dr).

• Verify that dR = InvTgCoordRot(TgCoordRot(R, dR)) for random tangent vectors at random rotation
matrices.

The Lie algebra of SO3

We already know that T IdSO3 is the vector space of skew symmetric matrices, identifiable with
R3. If we now consider that (R3,+,×) is an algebra (× is the cross product), we can induce an
algebra on T IdSO3. Let X = Sx and Y = Sy be two vectors of TSO3, then the vector Z = S(x×y)

belongs to TSO3 and is called the bracket of X and Y :

Z = S(x×y) = Sx.Sy − Sy.Sx = X.Y − Y.X = [X,Y ]

Hence (T IdSO3,+, [., .]) is an algebra with the standard matrix commutator [X,Y ] = X.Y − Y.X.
This is not by chance, it is in fact the Lie algebra of the group SO3.

3.1.6 A bi-invariant metric on SO3

The next step is to give a metric to the group. Consider the Froebenius dot products on matrices
〈X | Y 〉Rn×n = 1

2Tr(XT.Y ). The factor 1/2 is there to compensate the fact that we are counting
twice each off diagonal coefficient of the skew-symmetric matrices. This induces on any tangent
space TRSO3 at R the scalar product

〈X | Y 〉TRSO3

def
=

1

2
.Tr(X.Y T)

This metric is obviously invariant by left and right translation as for any rotation U since we have

〈 U.X | U.Y 〉TU.RSO3
=

1

2
.Tr(U.X.(U.Y )T) =

1

2
.Tr(X.Y T) = 〈X | Y 〉TRSO3

.
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and equivalently for the right translation:

〈X.U | Y.U 〉TR.USO3
=

1

2
.Tr(X.U.(Y.U)T) =

1

2
.Tr(X.Y T) = 〈X | Y 〉TRSO3

.

Such a metric is called a bi-invariant Riemannian metric.

Notice that the existence of such a metric is not ensured for more general non-commutative and
non-compact groups. Moreover, changing the choice of the scalar product of the embedding space
(other than by a global scaling) will induce a new metric on all tangent spaces which will not be
left nor right invariant.

In order to understand what this scalar product is, let us investigate its expression is a local
coordinate system. At the identity, the coordinate vector x of X is such that X =

∑
i xi.Ei. By

linearity, the scalar product of two vector X and Y is reduced to the one of two basis vectors :
〈X | Y 〉T IdSO3

=
∑

i,j xi.yj . 〈 Ei | Ej 〉T IdSO3
. With the above Froebenius metric and the basis we

chose, the expression of the metric tensor is particularly simple:

〈 Ei | Ej 〉T IdSO3
=

1

2
.Tr(Ei.E

T
j ) = δij

Thus, our basis is in fact ortho-normal and the Froebenius scalar product corresponds to the
canonical dot product of R3 through our isomorphism:

〈 Sx | Sy 〉T IdSO3
= 〈 x | y 〉R3 = xT.y

In the tangent at rotation R, we can use the coordinates xl of X in the basis Eli = R.Ei or the
coordinates xr in the basis Eri = Ei.R. We can easily see that these two basis are also orthonormal:

〈X | Y 〉TRSO3
=
〈
R.Sxl

∣∣R.Syl 〉TRSO3
=

1

2
.Tr(ST

xl .R
T.R.Syl) =

1

2
.Tr(ST

xl .Syl) = xl
T
.yl = xrT.yr

Theorem 3.3 The tangent space of SO3 at identity T IdSO3 is the vector space of skew symmetric
matrices. With the Lie bracket [., .] and the Euclidean metric 〈X | Y 〉 = 1

2 .Tr(XT.Y ), it forms a
metric algebra which is canonically isomorphic to (R3,+,×, 〈 . | .〉R3).

The tangent space TRSO3 at R is transported from T IdSO3 with the left or right translation by
equation (3.9).

Exercise 3.5 Bi-invariant scalar product in tangent spaces

• Implement the scalar product ScalRotId(X, Y) = Tr(X.Y T)/2.

• Verify that ScalRotId(Ei(i),Ei(j)) = δij

• Verify that dR = 〈 dR | E1 〉.E1 + 〈 dR | E2 〉.E2 + 〈 dR | E3 〉.E3 for random skew symmetric matrices.

• Implement the scalar product ScalRot(R, X, Y) at any rotation R using left translation.

• Generate Gaussian random vectors in the tangent plane at a random rotation R and verify numerically
that their scalr product corresponds to the scalar product of the embedding space.
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3.1.7 Group exponential and one-parameter subgroups

The matrix exponential is defined for any matrix X as the limit of the series

exp(X) = Id+X/1! +X2/2! + . . . =
+∞∑
k=0

Xk

k!

For any element X of the Lie algebra of SO3, the skew symmetry implies that X3 = −θ2.X (with
θ = ‖X‖) so that the series reduces to

exp(X) = Id+
sin θ

θ
.X +

1− cos θ

θ2
.X2 = Id+ sin θ.Sn + (1− cos θ).S2

n

We recognize here Rodrigues’ formula:t the matrix exponential of the skew symmetric matrix
associated to the rotation vector r = θ.n is the rotation of angle θ around the unit axis n:
exp(θ.Sn) = R(n, θ).

One parameter subgroups

Let RX(s) be a one parameter subgroup of SO3 (homomorphism from (R,+) to (SO3, .). This is a
continuous curve which is also a subgroup of SO3. By definition and since (R,+) is commutative

RX(s+ t) = RX(s).RX(t) = RX(t).RX(s)

This means in particular that RX(t) and RX(s) commute. Thus, they have the same rotation
axis n. RX(s) is thus a rotation of axis n and angle θ(s). Reporting this in the definition of
one parameter subgroups, we find θ(s + t) = θ(s) + θ(t) and hence θ(s) = λ.s with some λ ∈ R.
Computing the derivatives, we find

dRX
ds

∣∣∣∣
0

= X = λ.Sn ∈ TSO3 and
dRX
ds

∣∣∣∣
s

= X.RX(s) = RX(s).X ∈ TRX
SO3

We established that to each one-parameter subgroup RX(s) = R(n, λ.s) = exp(λ.s.Sn) of SO3

corresponds a unique vector X = λ.Sn of TSO3. The converse is also true and RX(s) is called
the integral curve of X. It is to be noted that X and λ.X generate the same integral curve with
proportional parameterizations.

This is a particular case of a more general theorem for Lie groups which state that there is a
one to one correspondence between one parameter subgroups of the Lie group and one dimensional
sub-algebras of its Lie algebra.

Group exponential map

Let X = θ.Sn with ‖n‖ = 1 be a vector of T IdSO3 and RX(s) = R(n, θ.s) = exp(λ.s.Sn) the
integral curve of X. The group exponential map is defined as the map from to Lie algebra (the
tangent plane at identity) to the group SO3 which assigns RX(1) to X. Hence

X ∈ T IdSO3 7→ exp(X) = exp(θ.Sn) = R(n, θ) ∈ SO3

The term exponential maps comes from fact that one-parameter subgroups of matrix groups can
be computed using the matrix exponential. Using the isomorphism between R3 and T IdSO3 we
can also define the exponential of the rotation vector r = θ.n:

R(r) = exp(Sr) = R(n, θ) with θ = ‖r‖ and n =
r

θ
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The exponential map is a sort of “development” of SO3 onto its tangent space TSO3: each
one-dimensional subspace R.Sn is mapped on its integral curve R(n,R) and we will see that the
length along these curves are conserved.

3.1.8 Metric properties

Definitions

Let R : s ∈ [a, b] ⊂ R 7→ R(s) ∈ SO3 be a piecewise curve on SO3 and Ṙ the tangent vector of R
at s. The length of the curve R is defined by

L(R) =

∫ b

a

√〈
Ṙ(s)

∣∣∣ Ṙ(s)
〉
R(s)

.ds (3.12)

Let now Γ be the set of curves joining rotations R1 and R2. The map

SO3 × SO3 −→ R
ρ : (R1, R2) 7−→ infR∈Γ L(R)

(3.13)

is the canonical metric on SO3. The curves R minimizing the criterion L(R) are called geodesics.

Geodesics and metric on SO3

Since the metric is bi-invariant on SO3, the length criterion (3.12) is invariant by left and right
translations and finding geodesics amounts to find geodesics starting from identity. Moreover, for
a Lie group with a bi-invariant Riemannian metric, it turns out that geodesics starting from iden-
tity, one-parameter subgroups and integral curves (starting also from identity) are three different
approaches for the same curves [Spi79, chap.10]. Let RX(s) = exp(λ.s.Sn) be such a curve. Its
derivative at identity is ṘX(0) = X = λ.Sn and ṘX(s) = X.RX(s) = RX(s).X elsewhere. Hence〈

Ṙ(s)
∣∣∣ Ṙ(s)

〉
= 〈X |X 〉 = λ2. 〈 n | n〉 = λ2

and the distance from identity to R(n, θ) = RX(θ/λ) is

ρ(I3,R(n, θ)) =

∫ θ/λ

0

√
λ2.ds = θ

With an arc-length parameterization, we obtain RSn(θ) = R(n, θ) = exp(θ.Sn). These curves are
2π-periodic and RSn(θ) = R(−Sn)(−θ). Hence shortest paths (or minimizing geodesics) are uniquely
defined for θ < π and doubly defined for θ = π.

Theorem 3.4 The canonical metric on SO3 is given by

ρ(R1, R2) = ρ(I3, R
T
1 .R2) = θ(RT

1 .R2) = arccos

(
(Tr(RT

1 .R2)− 1)

2

)
Geodesics of SO3 starting from identity are the curves θ 7→ R(n, θ) = exp(θ.Sn). Shortest paths
from identity to the non reflection rotation R = exp(θ.Sn) (0 ≤ θ < π) are given by

t ∈ [0, θ] 7→ exp(t.Sn)

Shortest paths from identity to reflection R = exp(πSn) are doubly defined by the above formula
(θ = π) with n and −n as unit vectors. Other geodesics are obtained by left or right translation.
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Riemannian Exp and Log maps

Let X = Sx be a vector of T IdSO3. From the above results, we know that γ( Id,X)(t) = exp(t.X)
the unique geodesic starting at Id with tangent vector X. The Riemannian exponential map at
the identity for the bi-invariant metric is then defined by:

X ∈ T IdSO3 7→ Exp Id(X) = γ( Id,X)(1) = exp(X) ∈ SO3

According to the above theorem, this function is a diffeomorphism for ‖X‖ = θ < π, and the reverse
is given by the

R ∈ SO3 7→ Log Id(R) = Sr ∈ T IdSO3 where r = θ.n is the rotation vector of R = R(n, θ).

Geodesics starting at any other points are defined by left (or right) translation. For instance,
γ(R,R.X)(t) = R. exp(t.X) is the unique geodesic starting at R with tangent vector Y = R.X, which
can be rewritten γ(R,Y )(t) = R. exp(t.RT.Y ). This corresponds to the following reasonning: to find
the geodesic starting at R with tangent vector Y , we first translate (R, Y ) on the left by Rtrp,
wich give ( Id,RT.X), take the geodesic at that point, and left translate back its result by R. Since
the metric is by invariant, the same mechanism can be implemented with right translation. The
formula for the exponential map at any point is thus:

X ∈ TRSO3 7→ ExpR(X) = γ(R,X)(1) = R.Exp Id(R
T.X) = R. exp(RT.X) = exp(X.RT).R ∈ SO3

Likewise, to compute the log map of rotation U at rotation R, we first left translate both rotations
by RT, take the log map of RT.U at Id, and left translate back to result by R:

U ∈ SO3 7→ LogR(U) = R.Log Id(R
T.U) = R.Sx ∈ TRSO3 where x = θ.n is the rotation vector of RT.U.

A similar expression is obtained using the right translation, and both are equal thanks to bi-
invariance.

Exercise 3.6 Exp and log maps

• Compute Exp map at Id: ExpRotId(dR)

• Verify that the exponential of any tangent vector at identity corresponds to the matrix exponential.

• Compute Log Map at Id LogRotId(dR)

• Verify that the log at identity of a random rotation corresponds to the matrix logarithm.

• Compute Exp and Log maps at any rotation R using the left invariance

• Verify that the construction using the right invariance give the same result and the consistency of Exp

• Verify the consistency of Exp(R, Log(R,U)) for random rotations and the one of Log(R, Exp(R, X))
for tangent vectors X that are within the cut locus.

3.2 Additional literature

There is a large literature on 3D rotations. From a mathematical point of view, [Alt86], [Kan90,
chap. 3 & 6] and [Fau93] give quite exhaustive syntheses. Most of the algorithmic parts of this
chapter are extracted from [Pen96, PT97].


