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ABSTRACT

Currently there is an increase usage of CT-based bone di-
agnosis because low-radiation and cost-effective 2D imaging
modalities do not provide the necessary 3D information for
bone diagnosis. The fundamental objective of our work is
to build a model connecting 2D X-ray information to 3D CT
information through regression. As a first step we propose
an univariate non-parametric regression on individual predic-
tor variables to explore the non-linearity of the data. To later
combine these univariate models we then replace them with
parametric models. We examine two predictors, shaft length
and caput collum diaphysis angle on a database of 182 CT
images of femurs. We show that for each predictor it is pos-
sible to describe 99% of the variance through a simple up to
second order parametric model. These findings will allow us
to extend to the multivariate case in the future.

Index Terms— Non-Parametric Regression, Parametric
Regression, Log-Euclidean Framework, Diffeomorphic De-
formations, Femur

1. INTRODUCTION

Up to now, 3D bone anatomy has been generated from X-ray
images using computational tools. However these tools have
focused only on 3D bone shape reconstruction while little at-
tention has been given to 3D reconstruction of bone mineral
density, which is important in analysis of bone fragility, or-
thopedic surgery, orthopedic implant design, etc. We hypoth-
esize that full 3D bone anatomy (i.e. bone shape and bone
mineral density) for X-ray based diagnosis can be achieved
through development of computational and statistical tools,
making use of vast amount of femur CT images.

The fundamental objective is to perform multivariate re-
gression on the anatomy of bones. As predictors, the regres-
sion model uses patient-specific metadata (e.g. age, weight,
body mass index, etc.), and image features extracted from pa-
tient radiographs. The variables to predict are patient-specific
3D CT images of bones. As a first step, in this paper we
propose univariate parametric regression models based on the
exploration of non-parametric regression results for femur

bones on a selected subset of clinically meaningful morpho-
logical parameters: Femoral shaft length depicted in Fig. 1
(a,b) and caput collum diaphysis (CCD) angle in Fig. 1 (c).

(a) (b) (c)

Fig. 1: (a) Starting point of shaft length morphological pa-
rameter at the greater trochanter. (b) End point between
condyles. (c) CCD angle.

Currently in medical image regression, parametric (e.g.
[1, 2, 3]) and non-parametric (e.g. [4]) approaches have been
employed.

• On one hand, parametric-based approaches can be uti-
lized for multivariate regression without encountering
the curse of dimensionality problem, but its use pre-
imposes a statistical structure on the data.

• On the other hand, non-parametric approaches do not
impose a certain structure, but they suffer from the
curse of dimensionality when trying to optimize for
hyper-parameters in high-dimensional spaces. How-
ever, provided low-dimension subspaces can be found,
efficient optimization could be performed. Neverthe-
less, this is still an open research question [5, 6].

Therefore, we selectively combine these two approaches to
solve the problem in a low-dimensional space, without pre-
imposing a statistical data structure. For this goal we pro-
pose a two-step approach. First, we explore the data structure
through univariate non-parametric regression. This step en-
forces no assumptions on the data structure while avoiding
the curse of dimensionality problem. Second, we parametrize
the explored structures.



In [4] the authors showed kernel regression formulated
with Fréchet weighted means to take into account the non-
Euclidean nature of diffeomorphisms endowed with a right
invariant metric (LDDMM) and applied it to images of the
brain. In contrast, in this work we formulate kernel regres-
sion in an Euclidean way in a Log-Euclidean framework. This
simplifies and speeds-up the process significantly while still
taking into account a large part of the non-Euclidean nature
of the manifold-valued data. Furthermore, this simplifica-
tion allows for other computations that are out of reach to
LDDMM, such as determining the optimal kernel bandwidth
through cross-validation. The Log-Euclidean framework uses
stationary velocity fields to parametrize a diffeomorphic de-
formation, whereas in [4] non-stationary velocity fields are
used. Although the theory shows that not all diffeomorphic
deformation can be reached with stationary velocity fields;
there is no indication so far that this affects the anatomical
shape analysis in any way.

In the following, we develop the methodology and show
results obtained on femur CT images.

2. METHODS

The methods description will be divided in five parts: Log-
domain registration, Log-Euclidean statistics, non-parametric
kernel regression, cross-validation and parametrization of
principle component (PC) scores.

2.1. Log-Domain Registration

To setup correspondences between anatomical images, a set
of images are registered to a reference. We use the novel
symmetric diffeomorphic registration approach described in
[7]. What is new in this registration framework is the efficient
optimization in the log-domain. As a consequence, the re-
sults of the registration are so-called stationary velocity fields.
These velocity fields can be looked at as generators for dif-
feomorphic deformations through the group exponential map
that can be very efficiently computed using the scaling and
squaring method [8].

2.2. Log-Euclidean Statistics

Applying the Log-Euclidean framework [8] on these fields al-
lows us to compute statistics, e.g. averages, and still preserve
diffeomorphism. In the Log-Euclidean framework, velocity
fields are regular elements in a vector space; this allows us
to use simple Euclidean statistics instead of more complex
non-linear techniques, which we needed when working in the
LDDMM space of diffeomorphic transformations. To map re-
sulting velocity fields into diffeomorphic transformations the
exponential is calculated. To go from diffeomorphic transfor-
mation back to velocity fields, a logarithmic mapping is per-
formed. However, in many cases the intrinsic parametrization

of the transformation by its log in the log-domain registration
allows to avoid this numerically unstable step. For a detailed
survey of the methodology we refer to [9].

2.3. Non-Parametric Kernel Regression

We use a kernel regression method to compute the deforma-
tion of the template that best predicts the images based on
prediction variables x, in our case shaft length and CCD an-
gle. Our kernel regression function is

m̂σ(x) = exp

(∑N
i=1Kσ(x− xi)vi∑N
i=1Kσ(x− xi)

)
, (1)

where N , xi, Kσ , exp and vi are the total number of im-
ages, shaft length or CCD angle for image i, a Gaussian kernel
function with σ bandwidth, the mapping from velocity fields
to diffeomorphic deformations and the ith velocity field, re-
spectively.

2.4. Cross-Validation

The quality of kernel regression methods strongly depends on
the selection of bandwidth parameters. To select a bandwidth
parameter we apply cross-validation with penalty functions.
The penalty and corresponding weighting functions penalize
very small bandwidth values. Bandwidth values equal to zero
are not interesting because they are just a nearest neighbor
interpolation of the data. In our case we solve the following
minimization problem:

σ̂ = argmin
σ∈R

N∑
i=1

|| log(m̂σ(xi))− vi||2Ξ(Wσ,i(xi)), (2)

where N , log, σ, Ξ are total number of images, mapping
from diffeomorphic deformations to velocity fields, band-
width and penalty function, respectively, and Wσ,i(xi) =
K1(0)/

∑N
j=1K1(σ−1(xi − xj)) is the weighting function.

For details we refer to [10]. By solving this optimization
problem we obtain a kernel bandwidth greater than zero
which minimizes the regression function’s prediction error
for all images N .

2.5. Parametrization of Univariate Kernel Regression

To parametrize the non-linear regression function that we
have established via kernel regression, the regressed velocity
fields are reduced in dimension using principle component
analysis (PCA). The data points are then projected onto a
low-dimensional space covering 99% of the variance and
evaluated for possible parametrization. In all cases that we
have observed so far it is possible to fit a polynomial to each
PC. The procedure can be summarized as follows:

1. Regress velocity fields



2. PCA on regressed velocity fields

3. Plot scores for each PC

4. Fit parametric function to each score plot

The new parameterized regression model is then:

m̂(x) = exp

(
µ+

M∑
i=1

pi(x)zi

)
, (3)

where µ is the mean regressed velocity field, pi(·) is the ith
polynomial function representing ith PC scores, z are PCs
and M the number of PCs describing 99% of the variance.

Regression is done on 50 predictor values drawn from a
normal distribution we obtained on the original data. This
way we avoid conducting PCA on the original data and still
get a reasonable representation of the original data structure.

3. RESULTS

Considering generalized cross-validation (GCV), Ξ(u) =
(1 − u)−2, as the penalty function in (2) we obtain 2.1 for
shaft length and 1.6 for CCD angle. With these bandwidth
values, prediction is performed on a dataset of 182 left femur
CT images.

To validate the results, 50 velocity fields were predicted
with prediction values drawn from the normal distribution of
the original data. Then the exponential was taken of these
fields and the shaft length and CCD angle were measured in
the exponentiated fields.

3.1. Shaft Length Regression

To find the best parametric model, different polynomials were
evaluated. Our evaluation showed that the best fit is linear
for all PCs. In Fig. 2 the score plots are depicted and in
Tab. 1 four different parametrization and the root mean square
(RMS) prediction error are listed. Parametric model 4 per-
forms similar to the non-parametric model.

In Fig. 3 the prediction values are compared in a more
qualitative manner.

PC1 PC2 PC3 RMS [mm]

Parametric 1 1 2 5 1.37
Parametric 2 1 2 3 2.26
Parametric 3 2 2 5 0.97
Parametric 4 1 1 1 0.83
Non-parametric - - - 0.84

Table 1: Shaft length parametrization comparison. PCn
columns show the order of the polynomial fit used for the
corresponding PC.
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Fig. 2: Score values for the first three PCs.
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Fig. 3: Comparison of parametric and non-parametric regres-
sion results for shaft length.

3.2. Caput Collum Diaphysis Angle Regression

Similar to the shaft length low order polynomial give better
prediction results. The best prediction results are reached us-
ing a linear parametrization for the first PC and quadratic for
the second (Tab. 2). This parametric model even outperforms
the non-parametric model. See Figs. 4 and 5 for score and
prediction error plot.

4. DISCUSSION AND CONCLUSIONS

Only three PCs for shaft length and two for CCD angle are
needed to describe 99% of the variance in the velocity fields.
This fact enables us to evaluate each predictor individually.
Surprisingly, in both experiments low order polynomial pa-
rameterizations provided the best results. One possible reason
for this could be the behavior of polynomials at the boundary
data points. In both cases the parametric slightly outperforms
the non-parametric model. It seems that the non-parametric
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Fig. 4: Score values for the first two PCs.
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Fig. 5: Comparison of parametric and non-parametric regres-
sion results for CCD angle.

model overfits on the training data. Therefore, we gain in
three ways from parametric models: Simplicity of the model,
computational efficiency and reduction of overfitting.

We plan to evaluate other parametric functions to avoid
possible problems at boundary data points. The shown vali-
dation can only test the consistency of the method, therefore
we will further validate our method by comparing the predic-
tion to manual segmentation results. In future work, simplic-
ity and efficiency, will allow us to use univariate exploration
methods to build multivariate regression models with two and
more predictors.
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