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Abstract: Positive definite symmetric matrices (so-called tensors in this article) are nowadays a common
source of geometric information. In this paper, we propose to provide the tensor space with an affine-
invariant Riemannian metric. We demonstrate that it leads to strong theoretical properties: the cone of
positive definite symmetric matrices is replaced by a regular manifold of constant curvature without bound-
aries (null eigenvalues are at the infinity), the geodesic between two tensors and the mean of a set of tensors
are uniquely defined, etc.

We have previously shown that the Riemannian metric provides a powerful framework for generalizing
statistics to manifolds. In this paper, we show that it is also possible to generalize to tensor fields many
important geometric data processing algorithms such as interpolation, filtering, diffusion and restoration of
missing data. For instance, most interpolation schemes and Gaussian filtering can be tackled efficiently
through a weighted mean computation. Linear and anisotropic diffusion schemes can be adapted to our
Riemannian framework, through partial differential evolution equations, provided that the metric of the
tensor space is taken into account. For that purpose, we provide intrinsic numerical schemes to compute
the gradient and Laplacian operators. Finally, to enforce the fidelity to the data (either sparsely distributed
tensors or complete tensors fields) we propose least-squares criteria based on our invariant Riemannian
distance that are particularly simple and efficient to solve.

Key-words: Riemannian geometry, tensors fields, PDE, diffusion, restoration, invariance.



Un cadre riemannien pour manipuler les tenseurs

Résumé :Les matrices définies positives, ici appelées tenseurs, sont des sources d’information géométrique
de plus en plus disponibles. Dans cet article, nous proposons de munir l’espace des tenseurs d’une métrique
riemannienne invariante par transformation affine. Cela mène à des propriétés théoriques fortes, puisque le
cône des matrices définies positives (une variété plate mais à bords) est transformé en une variété régulière de
courbure constante et surtout sans bord (les valeurs propres nulles sont à l’infini). De plus, les géodésiques
entre deux tenseurs sont définies de manière unique, tout comme la moyenne d’un ensemble de tenseurs.

Nous avons auparavant montré que la géométrie riemannienne fournissait un cadre de travail puissant
pour généraliser les statistiques aux variétés. Dans cet article, nous montrons qu’il est possible de généraliser
aussi aux champs de tenseurs de nombreux algorithmes de traitement de données géométriques comme
l’interpolation, le filtrage, la diffusion et la restauration de données manquantes. Par exemple, la plupart
des schémas d’interpolation et le filtrage gaussien peuvent être considérés comme des moyennes pondérées.
Les schémas de diffusion linéaire ou anisotropes peuvent être adaptés à notre cadre riemannien au travers
d’équation d’évolution aux dérivées partielles, pourvu que la métrique de l’espace des tenseurs soit prise
en compte. Nous fournissons pour cela des schémas numériques intrinsèques pour calculer les opérateurs
gradient et laplacien. Pour finir, nous proposons des critères aux moindres carrés basés sur notre distance
riemannienne invariante pour garantir une attache aux données, que ce soit pour des champs de tenseurs
denses ou épars, qui s’avèrent être particulièrement simples et efficaces à résoudre.

Mots-clés : Géométrie riemannienne, champs de tenseurs, EDP, diffusion, restauration, invariance.



Riemannian Tensor Computing 3

Contents

1 Introduction 5
1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Statistics on geometric features 6
2.1 Exponential chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Practical implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Basic statistical tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Working on the Tensor space 9
3.1 Exponential, logarithm and square root of tensors. . . . . . . . . . . . . . . . . . . . . . . 9
3.2 An affine invariant distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 An invariant Riemannian metric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Exponential and logarithm maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5 Induced and orthonormal coordinate systems. . . . . . . . . . . . . . . . . . . . . . . . . 13
3.6 Gradient descent and PDE evolution: an intrinsic scheme. . . . . . . . . . . . . . . . . . . 13
3.7 Example with the mean value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.8 Simple statistical operations on tensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Tensor Interpolation 15
4.1 Interpolation through Weighted mean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Example of the linear interpolation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Tri-linear interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Interpolation of non regular measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Filtering tensor fields 18
5.1 Gaussian Filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Spatial gradient of Tensor fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 Filtering using PDE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.3.1 The case of a scalar field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3.2 The vector case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3.3 Tensor fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3.4 Anisotropic filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Regularization and restoration of tensor fields 24
6.1 The regularization term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2 A least-squares attachment term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3 A least-squares attachment term for sparsely distributed tensors. . . . . . . . . . . . . . . . 27

6.3.1 Interpolation through diffusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Conclusion 30

RR n° 5255



4 X. Pennec et al.

INRIA



Riemannian Tensor Computing 5

1 Introduction

Positive definite symmetric matrices (so-called tensors in this article) are nowadays a common source of
geometric information, either as covariance matrices for characterizing statistics on deformations, or as an
encoding of the principle diffusion directions in Diffusion Tensor Imaging (DTI). The measurements of
these tensors is often noisy in real applications and we would like to perform estimation, smoothing and
interpolation of fields of this type of features. The main problem is that the tensor space is a manifold that is
not a vector space. As symmetric positive definite matrices constitute a convex half-cone in the vector space
of matrices, many usual operations (like the mean) are stable in this space. However, problems arise when
estimating tensors from data (in standard DTI, the estimated symmetric matrix could have negative eigen-
values), or when smoothing fields of tensors: the numerical schemes used to solve the Partial Differential
Equation (PDE) may sometimes lead to negative eigenvalues if the time step is not small enough. Even when
a SVD is performed to smooth independently the rotation (eigenvectors basis trihedron) and eigenvalues,
there are continuity problem around equal eigenvalues.

In previous works [Pennec, 1996, Pennec and Ayache, 1998], we used invariance requirements to de-
velop some basic probability tools on transformation groups and homogeneous manifolds. This statistical
framework was then reorganized and extended in [Pennec, 1999, Pennec, 2004] for general Riemannian
manifolds, invariance properties leading in some case to a natural choice for the metric. In this paper, we
show how this theory can be applied to tensors, leading to a new intrinsic computing framework for these
geometric features with many important theoretical properties as well as practical computing properties.

In the remaining of this section, we quickly investigate some connected works on tensors. Then, we
summarize in Section2 the main ideas of the statistical framework we developed on Riemannian manifolds.
The aim is to exemplify the fact that choosing a Riemannian metric “automatically” determines a powerful
framework to work on the manifold through the introduction of a few tools from differential geometry. In
order to use this Riemannian framework on our tensor manifold, we propose in Section3 an affine-invariant
Riemannian distance on tensors. We demonstrate that it leads to very strong theoretical properties, as well
as some important practical algorithms such as an intrinsic geodesic gradient descent. Section4 focus on the
application of this framework to an important geometric data processing problem: interpolation of tensor
values. We show that this problem can be tackled efficiently through a weighted mean optimization. How-
ever, if weights are easy to define for regularly sampled tensors (e.g. for linear to tri-linear interpolation),
the problem proved to be more difficult for irregularly sampled values.

With Section5, we turn to tensors field computing, and more particularly filtering. If the Gaussian filter-
ing may still be defined through weighted means, the partial differential equation (PDE) approach is slightly
more complex. In particular, the metric of the tensor space has to be taken into account when computing
the magnitude of the spatial gradient of the tensor field. Thanks to our Riemannian framework, we propose
efficient numerical schemes for the computation of the gradient, its amplitude, and for the Laplacian used
in linear diffusion. We also propose an adjustment of the Laplacian that realizes an anisotropic filtering.
Finally, Section6 focus on simple statistical approaches to regularize and restore missing values in tensor
fields. Here, the use of the Riemannian distance inherited from the chosen metric is fundamental to define
least-squares data attachment criteria for dense and sparsely distributed tensors fields that lead to simple
implementation schemes in our intrinsic computing framework.

1.1 Related work

Quite an impressive literature has now been issued on the estimation and regularization of tensor fields, espe-
cially in the context of Diffusion Tensor Imaging (DTI) [Basser et al., 1994, Bihan et al., 2001, Westin et al., 2002].
Most of the works dealing with the geometric nature of the tensors has been perform for the discontinuity-
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preserving regularization of the tensor fields using Partial Differential Equations (PDE) (see [Coulon et al., 2004]
for a recent review). For instance, [Coulon et al., 2004] anisotropically restores the principal direction of
the tensor, and uses the this regularized directions map as an input for the anisotropic regularization of
the eigenvalues. A quite similar idea is adopted in [Tschumperlé, 2002], where a spectral decomposition
W (x) = U(x).D(x).U(x)T of the tensor field is performed at each points to independently regularize the
eigenvalues and eigenvectors (orientations). This approach requires an additional reorientation step of the
rotation matrices due to the non-uniqueness of the decomposition (each eigenvector is defined up its sign and
there may be joint permutations of the eigenvectors and eigenvalues) in order to avoid the creation of artifi-
cial discontinuities. Another problem arises when two or more eigenvalues become equal: a whole subspace
of unit eigenvectors is possible, and even a re-orientation becomes difficult. An intrinsic integration scheme
for PDE that uses the exponential map has been added in [Chefd’hotel et al., 2002], and allows to perform
PDE evolution on the considered manifold without re-projections. In essence, this is an infinitesimal version
of the intrinsic gradient descent technique on manifolds we introduced in [Pennec, 1996, Pennec, 1999] for
the computation of the mean.

In [Chefd’hotel et al., 2004], the same authors propose a rank-signature preserving flow that inherits its
properties from the matrix exponential, without a clear reference to the metric used. Their derivation leads to
an evolution equation similar to Eq.2 that will define the geodesics of our metric in Section3.3. They claim
that thisrank/signature preserving flow tends to blend the orientation and diffusivity features (eigenvalue
swelling effect). We do not observe such a behavior with our PDE evolution scheme of Sections5 and6.
The explanation lies probably in the fact that we are not using the same metric when computing the driving
gradient forces.

The affine-invariant Riemannian metric we detail in Section3.3 may be traced back to the work of
[Nomizu, 1954] on affine invariant connections on homogeneous spaces. It is implicitly hidden under
very general theorems on symmetric spaces in many differential geometry textbooks [Gamkrelidze, 1991,
Helgason, 1978, Kobayashi and Nomizu, 1969] and sometimes considered as a well known result as in
[Bhatia, 2003]. In statistics, it has been introduced as the Fisher information metric [Skovgaard, 1984]
to model geometry of the multivariate normal family. The idea of the invariant metric came to the mind
of the first author during the IPMI conference in 2001 [Coulon et al., 2001, Batchelor et al., 2001], as an
application to diffusion tensor imaging (DTI) of the statistical methodology on Riemannian manifolds pre-
viously developed (and summarized in the next Section). However, this idea was not exploited until the end
of 2003, when the visit of P. Thompson (UCLA, USA) raised the need to interpolate tensors that represent
the variability from specific locations on sulci to the whole volume1. The expertise of the second author on
DTI [Fillard et al., 2003] provided an ideal alternative application field. During the writing of this paper, we
discovered that the invariant metric has been independently proposed by [Förstner and Moonen, 1999] to
deal with covariance matrices, and very recently by [Fletcher and Joshi, 2004] for the analysis of principal
modes of sets of diffusion tensors. However, up to our knowledge, it has not been promoted to a complete
computing framework, as we propose in this paper.

2 Statistics on geometric features

We summarize in this Section the theory of statistics on Riemannian manifolds developed in [Pennec, 1999,
Pennec, 2004]. The aim is to exemplify the fact that choosing a Riemannian metric “automatically” de-
termines a powerful framework to work on the manifold through the use of a few tools from differential
geometry.

1A research report on the application of the theory developed here to that problem is currently in preparation.
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In the geometric framework, one can specify the structure of a manifoldM by a Riemannian metric.
This is a continuous collection of dot products on the tangent space at each point of the manifold. Thus, if we
consider a curve on the manifold, we can compute at each point its instantaneous speed vector and its norm,
the instantaneous speed. To compute the length of the curve, we can proceed as usual by integrating this
value along the curve. The distance between two points of a connected Riemannian manifold is the minimum
length among the curves joining these points. The curves realizing this minimum for any two points of the
manifold are called geodesics. The calculus of variations shows that geodesics are the solutions of a system
of second order differential equations depending on the Riemannian metric. In the following, we assume
that the manifold isgeodesically complete, i.e. that the definition domain of all geodesics can be extended
toR. This means that the manifold has no boundary nor any singular point that we can reach in a finite time.
As an important consequence, the Hopf-Rinow-De Rham theorem states that there always exists at least one
minimizing geodesic between any two points of the manifold (i.e. whose length is the distance between the
two points).

v
x

w

u
t

γ

y
My

xy

xT  M

γ

0
x

Figure 1:Left: The tangent planes at points x and y of the sphere S2 are different: the vectors v and w of
TxM cannot be compared to the vectors t and u of TyM. Thus, it is natural to define the dot product on
each tangent plane. Right: The geodesics starting at x are straight lines in the exponential map and the
distance along them is conserved.

2.1 Exponential chart

Let x be a point of the manifold that we consider as a local reference and−→xy a vector of the tangent space
TxM at that point. From the theory of second order differential equations, we know that there exits one and
only one geodesic starting from that point with this tangent vector. This allows to develop the manifold in
the tangent space along the geodesics (think of rolling a sphere along its tangent plane at a given point). The
geodesics going through the reference point are transformed into straight lines and the distance along these
geodesics is conserved (at least in a neighborhood ofx).

The function that maps to each vector−→xy ∈ TxM the pointy of the manifold that is reached after a unit
time by the geodesic starting atx with this tangent vector is called theexponential map. This map is defined
in the whole tangent spaceTxM (since the manifold is geodesically complete) but it is generally one-to-one
only locally around 0 in the tangent space (i.e. aroundx in the manifold). In the sequel, we denote by−→xy = logx(y) the inverse of the exponential map: this is the smallest vector such thaty = expx(

−→xy). If we
look for the maximal definition domain, we find out that it is a star-shaped domain delimited by a continuous
curveCx called thetangential cut-locus. The image ofCx by the exponential map is the cut locusCx of
point x. This is the closure of the set of points where several minimizing geodesics starting fromx meet.
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On the sphereS2(1) for instance, the cut locus of a pointx is its antipodal point and the tangential cut locus
is the circle of radiusπ.

The exponential map within this domain realizes a chart calledthe exponential chart. It covers all the
manifold except the cut locus of the development point, which has a null measure. In this chart, geodesics
starting fromx are straight lines. and the distance from the development point are conserved. This chart is
somehow the “most linear” chart of the manifold with respect to the primitivex.

2.2 Practical implementation

In fact most of the usual operations using additions and subtractions may be reinterpreted in a Riemannian
framework using the notion ofbipoint, an antecedent of vector introduced during the 19th Century. Indeed,
one defines vectors as equivalent classes of bipoint (oriented couples of points) in a Euclidean space. This is
possible because we have a canonical way (the translation) to compare what happens at two different points.
In a Riemannian manifold, we can still compare things locally (by parallel transportation), but not any more
globally. This means that each “vector” has to remember at which point of the manifold it is attached, which
comes back to a bipoint.

However, one can also see a vector−→xy (attached at pointx) as a vector of the tangent space at that point.
Such a vector may be identified to a point on the manifold using the geodesic starting atx with tangent
vector−→xy, i.e. using the exponential map:y = expx(

−→xy). Conversely, the logarithmic map may be used to
map almost any bipoint(x, y) into a vector−→xy = logx(y) of TxM.

Vector space Riemannian manifold−→xy = y − x −→xy = logx(y)
y = x +−→xy y = expx(

−→xy)
dist(x, y) = ‖y − x‖ dist(x, y) = ‖−→xy‖x

Table 1:Re-interpretation of addition and subtraction in a Riemannian manifold.

This reinterpretation of addition and subtraction using logarithmic and exponential maps is very power-
ful to generalize algorithms working on vector space to algorithms on Riemannian manifolds. It is also very
powerful in terms of implementation since we can practically express all the geometric operations in these
terms: the implementation oflogx andexpx is the basis of any programming on Riemannian manifolds, as
we will see in the following.

2.3 Basic statistical tools

The Riemannian metric induces an infinitesimal volume element on each tangent space, and thus a measure
dM on the manifold that can be used to measure random events on the manifold and to define the probability
density function (if it exists) of these random primitives. It is worth noticing that the induced measuredM
represents the notion ofuniformityaccording to the chosen Riemannian metric. This automatic derivation
of the uniform measure from the metric gives a rather elegant solution to the Bertrand paradox for geomet-
ric probabilities [Poincaré, 1912, Kendall and Moran, 1963]. However, the problem is only shifted: which
Riemannian metric do we have to choose ? We address this question in Section3 for real positive definite
symmetric matrices (tensors): it turns out that we will be able to require an invariance by the full linear
group, which will lead to a very regular and convenient manifold structure.

Let us come back to the basic statistical tools we would like to develop. With the probability measure
of a random primitive, we can integrate functions from the manifold to any vector space, thus defining the

INRIA



Riemannian Tensor Computing 9

expected value of this function. However, we generally cannot integrate manifold-valued functions. Thus,
one cannot define the mean or expected “value” of a random primitive using a weighted sum or an integral as
usual: we need to rely on distance-based variational formulation. The Fréchet or Karcher expected features
basically minimize globally (or locally) the variance. As the mean is now defined through a minimization
procedure, its existence and uniqueness are not ensured any more (except for distributions with a sufficiently
small compact support). In practice, one mean value almost always exists, and it is unique as soon as the
distribution is sufficiently peaked. The properties of the mean are very similar to those of the modes (that
can be defined as central Karcher values of order 0) in the vectorial case.

To compute the mean value, we designed in [Pennec, 1999, Pennec, 2004] an original Gauss-Newton
gradient descent algorithm that essentially alternates the computation of the barycenter in the exponential
chart centered at the current estimation of the mean value, and a re-centering step of the chart at the point
of the manifold that corresponds to the computed barycenter (geodesic marching step). To define higher
moments of the distribution, we used the exponential chart at the mean point: the random feature is thus
represented as a random vector with null mean in a star-shaped and symmetric domain. With this represen-
tation, there is no difficulty to define the covariance matrix and potentially higher order moments. Based on
this covariance matrix, we may define a Mahalanobis distance between a random and a deterministic feature
that basically weights the distance between the deterministic feature and the mean feature using the inverse
of the covariance matrix. Interestingly, the expected Mahalanobis distance of a random primitive with itself
is independent of the distribution and is equal to the dimension of the manifold, as in the vectorial case.

As for the mean, we chose in [Pennec, 1996, Pennec, 1999, Pennec, 2004] a variational approach to
generalize the Normal Law: we define it as the distribution that minimizes the information knowing the
mean and the covariance. Neglecting the cut-locus constraints, we show that this amounts to consider a
Gaussian distribution on the exponential chart centered at the mean point that is truncated at the cut locus (if
there is one). However, the relation between the concentration matrix (the “metric” used in the exponential
of the probability density function) and the covariance matrix is slightly more complex that the simple
inversion of the vectorial case, as it has to be corrected for the curvature of the manifold. Last but not least,
using the Mahalanobis distance of a normally distributed random feature, we can generalize theχ2 law: we
were able to show that is has the same density as in the vectorial case up to an order 3 inσ. This opens the
way to the generalization of many other statistical tests, as we may expect similarly simple approximations
for sufficiently centered distributions.

3 Working on the Tensor space

Let us now focus on the spaceSym+
n of positive definite symmetric matrices (tensors). The goal is to find a

Riemannian metric with interesting enough properties. It turns out that it is possible to require an invariance
by the full linear group (Section3.3). This leads to a very regular manifold structure where tensors with null
and infinite eigenvalues are both at an infinite distance of any positive definite symmetric matrix: the cone
of positive definite symmetric matrices is replaced by a space which has an infinite development in each of
its n(n + 1)/2 directions. Moreover, there is one and only one geodesic joining any two tensors, and we
can even define globally consistent orthonormal coordinate systems of tangent spaces. Thus, the structure
we obtain is very close to a vector space, except that the space is curved.

3.1 Exponential, logarithm and square root of tensors

In the following, we will make an extensive use of a few functions on symmetric matrices. The exponential
of any matrix can be defined using the seriesexp(A) =

∑+∞
k=0

Ak

k! . In the case of tensors, we have some
important simplifications. LetΣ = U D U T be a diagonalization, whereU is an orthogonal matrix, and
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10 X. Pennec et al.

D = DIAG(di) is the diagonal matrix of strictly positives eigenvalues. We can write any power ofΣ in the
same basis:Σk = U Dk U T. This means that we may factor out the rotation matrices in the series and map
the exponential individually to each eigenvalue:

exp(Σ) =
+∞∑

k=0

Σk

k!
= U DIAG(exp(di)) U T

The series defining the exponential function converges for any matrix argument, but this is generally not
the case for the series defining its inverse function: the logarithm. However, in our case, the rotations in
the series can be factored out just as above, and we end up with the diagonal matrix of the logarithm of the
eigenvalues, which are always well defined since the matrix is positive definite:

log(Σ) =
+∞∑

k=0

(−1)k

k
(Σ− Id)k = U

(
DIAG

(
+∞∑

k=0

(−1)k

k
(di − 1)k

))
U T = U (DIAG(log(di)))U T

Classically, one defines the (left) square root of a matrixB as the set{B1/2
L } = {A ∈ GLn/AAT = B}.

One could also define the right square root:{B1/2
R } = {A ∈ GLn / AT A = B}. For tensors, we define the

square root as:
Σ1/2 = {Λ ∈ Sym+

n / Λ2 = Σ}
The square root is always defined and moreover unique: letΣ = U D2 U T be a diagonalization (with
positives values for thedi’s). ThenΛ = U D U T is of course a square root ofΣ, which proves the existence.
For the uniqueness, let us consider two symmetric and positive square rootsΛ1 andΛ2 of Σ. Then,Λ2

1 = Σ
andΛ2

2 = Σ obviously commute and thus they can be diagonalized in the same basis: this means that the
diagonal matricesD2

1 andD2
2 are equal. As the elements ofD1 andD2 are positive, they are also equal and

Λ1 = Λ2. Last but not least, we have the property that

Σ1/2 = exp
(

1
2
(log Σ)

)

3.2 An affine invariant distance

Let us consider the following action of the linear groupGLn on the tensor spaceSym+
n :

A ? Σ = AΣAT ∀A ∈ GLn and Σ ∈ Sym+
n

This group action corresponds for instance to the standard action of the affine group on the covariance matrix
of a random variablesx in Rn: if y = Ax + t, thenΣyy = E[y yT] = AΣxxAT.

This action is naturally extended to tangent vectors is the same way: ifΓ(t) = Σ + t W + O(t2) is a
curve passing atΣ with tangent vectorW , then the curveA ? Γ(t) = A Σ AT + t A WAT + O(t2) passes
throughA ? Σ with tangent vectorA ? W .

Following [Pennec and Ayache, 1998], any invariant distance onSym+
n verifies dist(A?Σ1, A ?Σ2) =

dist(Σ1,Σ2). ChoosingA = Σ−1/2
1 , we can reduce this to a pseudo-norm, or distance to the identity:

dist(Σ1,Σ2) = dist

(
Id, Σ

− 1
2

1 Σ2Σ
− 1

2
1

)
= N

(
Σ
− 1

2
1 Σ2Σ

− 1
2

1

)

Moreover, as the invariance has to hold for any transformation,N should be invariant under the action of
the isotropy groupH( Id) = On = {U ∈ GLn / UU T = Id}:

∀U ∈ On, N(U Σ U T) = N(Σ)

INRIA
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Using the spectral decompositionΣ = UD2U T, it is easy to see thatN(Σ) has to be a symmetric function
of the eigenvalues. Moreover, the symmetry of the distance dist(Σ, Id) = dist( Id, Σ) imposes that
N(Σ) = N(Σ(-1)). Thus, a good candidate is the sum of the squared logarithms of the eigenvalues:

N(Σ)2 = ‖ log(Σ)‖2 =
n∑

i=1

(log(σi))2 (1)

This “norm” verifies by construction the symmetry and positiveness.N(Σ) = 0 implies thatσi = 1
(and conversely), so that the separation axiom is verified. What is much more difficult to show is the triangle
inequality, which should readN(Σ1) + N(Σ2) ≥ N(Σ−1/2

1 Σ2Σ
−1/2
1 ). If we can verify it experimentally,

its direct theoretical proof is, up to our knowledge, unknown (see e.g. [Förstner and Moonen, 1999]).

3.3 An invariant Riemannian metric

Another way to determine the invariant distance is through the Riemannian metric. Let us take the most
simple dot product on the tangent space at the identity matrix: ifW1 and W2 are tangent vectors (i.e.
symmetric matrices, not necessarily definite nor positive), we define the dot product to be the standard
matrix dot product〈W1 |W2 〉 = Tr(W T

1 W2). This dot product if obviously invariant by the isotropy group
On. Now, if W1 andW2 are two tangent vector atΣ, we require their dot product to be invariant by the
action of any transformation:〈W1 |W2 〉Σ = 〈A ? W1 |A ? W2 〉A?Σ. This should be true in particular for
A = Σ−1/2, which allows us to define the dot product at anyΣ from the dot product at the identity:

〈W1 |W2 〉Σ =
〈

Σ−
1
2 W1Σ−

1
2

∣∣∣ Σ−
1
2 W2Σ−

1
2

〉
Id

= Tr
(
Σ−

1
2 W1Σ−1W2Σ−

1
2

)

One can easily verify that this definition is left unchanged if we use any other transformationA = U Σ−1/2

(whereU is a free orthogonal matrix) that transportsΣ to the identity:A ? Σ = A Σ AT = U U T = Id.
To find the geodesic without going though the computation of Christoffel symbols, we may rely on a re-

sult from differential geometry [Gamkrelidze, 1991, Helgason, 1978, Kobayashi and Nomizu, 1969] which
says that the geodesics for the invariant metrics on affine symmetric spaces are generated by the action of
the one-parameter subgroups of the acting Lie group2. Since the one-parameter subgroups of the linear
group are given by the matrix exponentialexp(tA), geodesics on our tensor manifold going throughΣ with
tangent vectorW should have the following form:

Γ(Σ,W )(t) = exp(t A) Σ exp(t A)T with W = A Σ + Σ AT (2)

This expression was used directly in [Chefd’hotel et al., 2004]. For our purpose, we need to relate
explicitly the geodesic to the tangent vector in order to define the exponential chart. SinceΣ is a symmetric
matrix, there is hopefully an explicitly solution to the Sylvester equationW = A Σ + Σ AT. We get
A = 1

2

(
W Σ(-1) + Σ1/2 Z Σ−1/2

)
, whereZ is a free skew-symmetric matrix. However, introducing this

solution into the equation of geodesics (Eq.2) does not lead to a very tractable expression. Let us look at an
alternative solution.

Since our metric (and thus the geodesics) is invariant under the action of the group, we can focus on
the geodesics going through the origin (the identity). In that case, a symmetric solution of the Sylvester
equation isA = 1

2W , which gives the following equation for the geodesic going through the identity with
tangent vectorW :

Γ( Id,W )(t) = exp
(

t

2
W

)
exp

(
t

2
W

)T

= exp(t W ).

2To be mathematically correct, we should consider the quotient spaceSym+
n = GL+

n /SOn instead ofSym+
n = GLn/On so

that all spaces are simply connected.
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12 X. Pennec et al.

We may observe that the tangent vector along this curve is the parallel transportation of the initial tangent
vector. IfW = U DIAG(wi) U T,

dΓ(t)
dt

= U DIAG (wi exp(t wi)) U T = Γ(t)
1
2 W Γ(t)

1
2 = Γ(t)

1
2 ? W

By definition of our invariant metric, the norm of this vector is constant:‖Γ(t)1/2 ? W‖2
Γ(t)1/2? Id

=

‖W‖2
Id = ‖W‖2

2. This was expected since geodesics are parameterized by arc-length. Thus, the length
of the curve between time 0 and 1 is

L =
∫ 1

0

∥∥∥∥
dΓ(t)

dt

∥∥∥∥
2

Γ(t)

dt = ‖W‖2
Id.

Solving forΓ( Id,W )(1) = Σ, we obtain the “norm”N(Σ) of Eq.(1). Using the invariance of our metric, we
easily obtain the geodesic starting from any other point of the manifold using our group action:

Γ(Σ,W )(t) = Σ
1
2 ? Γ( Id,Σ−1/2?W)(t) = Σ

1
2 exp

(
t Σ−

1
2 WΣ−

1
2

)
Σ

1
2

Coming back to the distance dist2(Σ, Id) =
∑

i(log σi)2, it is worth noticing that tensors with null
eigenvalues are located as far from the identity as tensors with infinite eigenvalues: at the infinity. Thanks
to the invariance by the Linear group, this property holds for the distance to any (positive definite) tensor
of the manifold. Thus, the original cone of positive definite symmetric matrices (a manifold with a flat
metric but with boundaries) has been changed into a regular manifold of constant curvature with an infinite
development in each of itsn(n + 1)/2 directions.

3.4 Exponential and logarithm maps

As a general property of Riemannian manifolds, geodesics realize a local diffeomorphism from the tangent
space at a given point of the manifold to the manifold:Γ(Σ,W )(1) = expΣ(W ) associates to each tangent
vectorW ∈ TΣSym+

n a point of the manifold. This mapping is called the exponential map, because it
corresponds to the usual exponential in some matrix groups. This is exactly our case for the exponential
map around the identity:

exp Id(UDU T) = exp(UDU T) = U DIAG (exp(di)) U T

However, the Riemannian exponential map associated to our invariant metric has a more complex expression
at other tensors:

expΣ(W ) = Σ
1
2 exp

(
Σ−

1
2 WΣ−

1
2

)
Σ

1
2

As we have no cut locus, this diffeomorphism is moreover global, and we can uniquely define the inverse
mapping everywhere:

logΣ(Λ) = Σ
1
2 log

(
Σ−

1
2 ΛΣ−

1
2

)
Σ

1
2

Thus,expΣ gives us a collection of one-to-one and complete maps of the manifold, centered at any point
Σ. As explained in Section2.1, these charts can be viewed as the development of the manifold onto the
tangent space along the geodesics. Moreover, since there is no cut-locus, the statistical properties detailed
in [Pennec, 2004] hold in their most general form. For instance, we have the existence and uniqueness of
the mean of any distribution with a compact support.
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3.5 Induced and orthonormal coordinate systems

One has to be careful because the coordinate system of all these charts is not orthonormal. Indeed, the
coordinate system of each chart is induced by the standard coordinate system (here the matrix coefficients),
so that the vector

−→
ΣΛ corresponds to the standard derivative in the vector space of matrices: we haveΛ =

Σ +
−→
ΣΛ + O(‖−→ΣΛ‖2). Even if this basis is orthonormal at some points of the manifold (such as at the

identity for our tensors), it has to be corrected for the Riemannian metric at other places due to the manifold
curvature.

From the expression of the metric, one can observe that

‖−→ΣΛ‖2
Σ = ‖ logΣ(Λ)‖2

Σ = ‖Σ− 1
2 logΣ(Λ)Σ−

1
2 ‖2

Id = ‖ log(Σ−
1
2 ? Λ)‖2

2,

which shows that
−→
ΣΛ⊥ = log(Σ−

1
2 ? Λ) ∈ TΣSym+

n is the expression of the vector
−→
ΣΛ in an orthonormal

basis. In our case, the transformationΣ1/2 ∈ GLn is moreover uniquely defined (as a positive square root)
and is a smooth function ofΣ over the complete tensor manifold. Thus,

−→
ΣΛ⊥ realizes an atlas of orthonormal

exponential charts which is globally smooth with respect to the development point3. This group action
approach was chosen in earlier works [Pennec, 1996, Pennec and Thirion, 1997, Pennec and Ayache, 1998]
with what we called the placement function.

For some statistical operations, we need to use a minimal representation (e.g. 6 parameters for3 × 3
tensors) in a (locally) orthogonal basis. This can be realized through the classical “Vec” operator that maps
the elementai,j of a n × n matrix A to thei n + jst element Vec(A)i n+j of a n × n dimensional vector
Vec(A). Since we are working with symmetric matrices, we have onlyn(n + 1)/2 independent coefficients
(say the upper triangular part). Moreover, the off-diagonal coefficients are counted twice in theL2 norm at
the identity:‖W‖2

2 =
∑n

i=1 w2
i,i + 2

∑
i<j≤n w2

i,j . The corresponding projection finally gives us:

VecId(W ) =
(
w1,1,

√
2 w1,2, w2,2,

√
2 w1,3,

√
2 w2,3, w3,3, . . .

√
2 w1,n, . . .

√
2 w(n−1),n, wn,n

)T

Now, for a vector
−→
ΣΛ ∈∈ TΣSym+

n , we define its minimal representation in the orthonormal coordinate
system as:

VecΣ(
−→
ΣΛ) = VecId(

−→
ΣΛ⊥) = VecId

(
Σ−

1
2
−→
ΣΛ Σ−

1
2

)
= VecId

(
log(Σ−

1
2 ? Λ)

)

The mapping VecΣ realizes an explicit isomorphism betweenTΣSym+
n andRn(n+1)/2 with the canonical

metric. The reverse mappings will be denoted by Vec(-1)
Σ .

3.6 Gradient descent and PDE evolution: an intrinsic scheme

Let f(Σ) be an objective function to minimize,Σt the current estimation ofΣ, andWt = ∂f/∂Σ =
[∂f/∂σij ] its matrix derivative at that point, which is of course symmetric. The principle of a first order
gradient descent is to go toward the steepest descent, in the direction opposite of the gradient for a short
time-stepε, and iterate the process. However, the standard operatorΣt+1 = Σt − εWt is only valid for
very short time-steps, and we could easily go out of the manifold of positive definite tensors. A much more
interesting numerical operator is given by following the geodesic backward starting atΣ with tangent vector
Wt during a timeε. This intrinsic gradient descent ensures that we cannot leave the manifold and can easily
be expressed using the exponential map:

Σt+1 = Γ(Σt,Wt)(−ε) = expΣt
(−εWt) = Σ

1
2 exp(−εΣ−

1
2 WtΣ−

1
2 )Σ

1
2

3On most homogeneous manifolds, this can only be realized locally. For instance, on the sphere, there is a singularity at the
antipodal point of the chosen origin for any otherwise smooth placement function.
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14 X. Pennec et al.

This intrinsic scheme is trivially generalized to partial differential evolution equations (PDEs) on tensor
fields such as∂Σ(x, t)/∂t = −W (x, t). We obtainΣ(x, t + dt) = expΣ(x,t)(−dt W (x, t)).

3.7 Example with the mean value

Let Σ1 . . .ΣN be a set of measures of the same Tensor. The Karcher or Fréchet mean is the set of tensors
minimizing the sum of squared distance:C(Σ) =

∑N
i=1 dist2(Σ, Σi). In the case of tensors, there is not cut

locus, so that there is one and only one mean valueΣ̄ [Pennec, 2004]. Moreover, a necessary and sufficient
condition for an optimum is a null gradient of the criterion. Differentiating one step further, we obtain
a constant Hessian matrix. Thus, the intrinsic second order Newton gradient descent algorithm gives the
following mean value at estimation stept + 1:

Σ̄t+1 = expΣ̄t

(
1
N

N∑

i=1

logΣ̄t
(Σi)

)
= Σ̄

1
2
t exp

(
1
N

N∑

i=1

log
(

Σ̄
− 1

2
t ΣiΣ̄

− 1
2

t

))
Σ̄

1
2
t (3)

Notice that we cannot easily simplify more this expression as in general the dataΣi and the mean valuēΣt

cannot be diagonalized in a common basis. However, this gradient descent algorithm usually converges very
fast (about 10 iterations, see Fig.2 below).

3.8 Simple statistical operations on tensors

As described in [Pennec, 2004], we may generalize most of the usual statistical methods by using the ex-
ponential chart at the mean point. For instance, the empirical covariance matrix of a set ofN tensorΣi of

meanΣ̄ will be: 1
N−1

∑n
i=1

−−→
Σ̄Σi ⊗

−−→
Σ̄Σi. Using ourVecmapping, we may come back to more usual matrix

notations and write its expression in a minimal representation with an orthonormal coordinate system:

Cov =
1

N − 1

N∑

i=1

VecΣ̄
(−−→
Σ̄Σi

)
VecΣ̄

(−−→
Σ̄Σi

)T

One may also define the Mahalanobis distance

µ2
(Σ̄,Cov)(Σ) = VecΣ̄

(−→̄
ΣΣ

)T

Cov(-1) VecΣ̄
(−→̄
ΣΣ

)

Looking for the probability density function that minimizes the information with a constrained mean and
covariance, we obtain a generalization of the Gaussian distribution of the form:

NΣ̄,Γ(Σ) = k exp
(
−1

2
µ2

Σ̄,Γ(Σ)
)

The main difference with a Euclidean space is that we have a curvature to take into account: the in-
variant measure induced on the manifold by our metric is linked to the usual matrix measure bydM(Σ) =
dΣ/det(Σ). Likewise, the curvature slightly modifies the usual relation between the covariance matrix,
the concentration matrixΓ and the normalization parameterk of the Gaussian distribution [Pennec, 2004].
These differences have an impact on the calculations using continuous probability density functions. How-
ever, from a practical point of view, we only deal with a discrete sample set of measurements, so that the
measure-induced corrections are hidden. For instance, we can generate a random (generalized) Gaussian
tensor using the following procedure: we samplen(n + 1)/2 independent and normalized real Gaussian
samples, multiply the corresponding vector by the square root of the desired covariance matrix (expressed
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Riemannian Tensor Computing 15

in our Vec coordinate system), and come back the the tensor manifold using the Vec(-1) mapping. That way,
we can easily generate noisy measurements of known tensors (see e.g. Fig.7).

To verify the implementation of our charts and geodesic marching algorithms, we have generated 10000
random Gaussian tensors around a random tensorΣ̄ with a variance ofγ = 1. We computed the mean using
the algorithm of Eq.3. The convergence is clearly very fast (Fig.2, left). Then, we computed statistics on
the Mahalanobis distance to the mean (since we used a unit variance for generating our random tensors, this
corresponds to the squared distance): the distribution closely follows aχ2

6 distribution, as expected, with an
empirical mean of 6.031 and a variance of 12.38 (expected values are 6 and 12).

Figure 2: Mean of 10000 random Gaussian tensors. Left: evolution of the distance between successive
iterations. The convergence is clearly very fast. Right: Histogram of the squared-distance to the computed
mean. Since we used a unit mean for the variance, this is also an histogram of the Mahalanobis distance.

4 Tensor Interpolation

One of the important operations in geometric data processing is to interpolate values between known mea-
surements. In 3D image processing, (tri-) linear interpolation is often used thanks to its very low computa-
tional load and comparatively much better results than nearest neighbor interpolation. Other popular meth-
ods include the cubic and, more generally, spline interpolations [Thévenaz et al., 2000, Meijering, 2002].

The standard way to define an interpolation on a regular lattice of dimensiond is to consider that the
interpolated functionf(x) is a linear combination of samplesfk at integer (lattice) coordinatesk ∈ Zd:
f(x) =

∑
k w(x − k) fk. To realize an interpolation, the “sample weight” functionw has to vanish at all

integer coordinates except 0 where it has to be one. A typical example where the convolution kernel has
an infinite support is the sinus cardinal interpolation. With the nearest-neighbor, linear (or tri-linear in 3D),
and higher order spline interpolations, the kernel is piecewise polynomial, and limited to a few neighboring
points in the lattice.

When it comes to an irregular sampling (i.e. a set of measurementsfk at positionsxk), interpolation
may still be defined using a weighted mean:f(x) =

∑N
k=1 wk(x) fk. To ensure that this is an interpo-

lating function, one has to require thatwi(xj) = δij (whereδij is the Kronecker symbol). Moreover, the
coordinates are usually normalized so that

∑
i=1N wk(x) = 1 for all positionx within the domain of inter-

est. Typical examples in triangulations or tetrahedrizations are barycentric and natural neighbor coordinates
[Sibson, 1981] (see Section4.4below).
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16 X. Pennec et al.

4.1 Interpolation through Weighted mean

To generalize interpolation methods defined using weighted means to our tensor manifolds, let us assume
that the sample weightswk(x) are defined as above inRd. Thanks to their normalization, the valuef(x)
interpolated from vectorsfk verifies

∑N
i=1 wi(x) (fi − f(x)) = 0. Thus, similarly to the Fréchet mean,

we can define the interpolated valueΣ(x) on our tensor manifold as the tensor that minimizes the weighted
sum of squared distances to the measurementsΣi: C(Σ(x)) =

∑N
i=1 wi(x) dist2(Σi, Σ(x)). Of course, we

loose in general the existence and uniqueness properties. However, for positive weights, the existence and
uniqueness theorems for the Karcher mean can be adapted. In practice, this means that we have a unique

tensor that verifies
∑N

i=1 wi(x)
−−−−→
Σ(x)Σi = 0. To reach this solution, it is easy to adapt the Gauss-Newton

scheme proposed for the Karcher mean. The algorithm becomes:

Σt+1(x) = expΣt(x)

(
N∑

i=1

wi(x) logΣt(x)(Σi)

)
(4)

= Σt(x)
1
2 exp

(
N∑

i=1

wi(x) log
(
Σt(x)−

1
2 ΣiΣt(x)−

1
2

))
Σt(x)

1
2 (5)

Once again, this expression cannot be easily simplified, but the convergence is very fast (usually less than
10 iterations as for the mean).

4.2 Example of the linear interpolation

The linear interpolation is somehow simple as this a walk along the geodesic joining the two tensors. We
have the closed-form expression:Σ(t) = expΣ1

(t logΣ1
(Σ2)) = expΣ2

((1 − t) logΣ2
(Σ1)) for t ∈ [0; 1].

To compare, the equivalent interpolation in the standard matrix space would giveΣ′(t) = (1− t)Σ1 + tΣ2.
We displayed in Fig.3 the flat and the Riemannian interpolations between 2D tensors of eigenvalues (5,1)
horizontally and (1,50) at 45 degrees, along with the evolution of the eigenvalues, their mean (i.e. trace of
the matrix) and product (i.e. determinant of the matrix or volume of the ellipsoid).

With the standard matrix coefficient interpolation, the evolution of the trace is perfectly linear (which
was expected since this is a linear function of the coefficients), and the principal eigenvalue regularly grows
almost linearly, while the smallest eigenvalue slightly grows toward a local maxima before lowering. What
is much more annoying is that the determinant (i.e. the volume) does not grow regularly in between the
two tensors, but goes through a maximum. If we interpret our tensors as covariance matrices of Gaussian
distributions, this means that the probability of a random point to be accepted as a realization of our distri-
bution is larger in between than at the measurement points themselves! On the contrary, one can clearly see
a regular evolution of the eigenvalues and of their product with the interpolation in our Riemannian space.
Moreover, there is a much smoother rotation of the eigenvectors than with the standard interpolation.

4.3 Tri-linear interpolation

The bi- and tri-linear interpolation of tensors on a regular grid in 2D or 3D are almost as simple, except
that we do not have any longer an explicit solution using geodesics since there are more than two reference
points. After computing the (bi-) tri-linear weights with respect to the neighboring sites of the point we
want to evaluate, we now have to go through the iterative optimization of the weighted mean (Eq.4) to
compute the interpolated tensor. We display an example in Figure4. One can see that the volume of the
tensors is much more important with the classical than with the Riemannian interpolation. We also get a
much smoother interpolation of the principal directions with our method.
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Figure 3:Top: Linear interpolation between 2D tensors of eigenvalues (5,1) horizontally and (1,50) at 45
degrees. Left: interpolation in the standard matrix space (interpolation of the coefficients), and right: in our
Riemannian space. Bottom: evolution of the eigenvalues, their mean (i.e. trace of the matrix) and product
(i.e. determinant of the matrix or volume of the ellipsoid).

4.4 Interpolation of non regular measurements

When tensors are not measured on a regular grid but “randomly” localized in space, defining neighbors be-
comes an issue. One solution, proposed by [Sibson, 1981] and later used for surfaces by [Cazals and Boissonnat, 2001],
is the natural neighbor interpolation. For any pointx, its natural neighbors are the the points of{xi} whose
Voronoi cells are chopped off upon insertion ofx into the Voronoi diagram. The weightwi of each natural
neighborxi is the proportion of the new cell that is taken away byx to xi in the new Voronoï diagram. One
important restriction of these interesting coordinates is that they are limited to the convex hull of the point
set (otherwise the volume or surface of the cell is infinite).

Another idea is to rely on radial-basis functions to define the relative influence of each measurement
point. For instance, a Gaussian influence would give a weightwi(x) = Gσ(x− xi) to the measurementΣi

located atxi. Since weights need to be renormalized in our setup, this would lead to the following evolution
equation:

Σt+1(x) = expΣt(x)

(∑N
i=1 Gσ(x− xi)

−−−−−→
Σt(x)Σi∑N

i=1 Gσ(x− xi)

)
(6)

The initialization could be the (normalized) Gaussian mean in the matrix space. An example of the result
of this evolution scheme is provided on top of Figure10. However, this algorithm does not lead to an
interpolation, but rather to an approximation, since the weights are not zero at other measurement points.
Moreover, we have little control on the quality of this approximation. It is only at the limit whereσ goes to
zero that we end-up with a (non-continuous) closest point interpolation.
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Figure 4: Top: Bi-linear interpolation between the 4 2D tensors at the corners. Bottom: A slice of the
tri-linear interpolation between 3D tensors. Left: interpolation in the standard matrix space (interpolation of
the coefficients), and right: in our Riemannian space.

We will describe in Section6.3 a last alternative that performs the interpolation and extrapolation of
sparsely distributed tensor measurements using diffusion.

5 Filtering tensor fields

Let us now consider that we have a tensor field, for instance like in Diffusion Tensor Imaging (DTI)
[Bihan et al., 2001], where the tensor is a first order approximation of the anisotropic diffusion of the water
molecules at each point of the images tissues. In the brain, the diffusion is much favored in the direction of
oriented structures (fibers of axons). One of the goal of DTI is to retrieve the main tracts along these fibers.
However, the tensor field obtained from the images is noisy and needs to be regularized before being further
analyzed. A naive but simple and often efficient regularization on signal or images is the convolution by
a Gaussian. The generalization to Tensor fields is quite straightforward using once again weighted means
(Section5.1below). An alternative is to consider a regularization using possibly anisotropic diffusion. This
will be the subject of Section5.3.
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5.1 Gaussian Filtering

In the continuous setting, the convolution of a vector fieldF0(x) by a Gaussian is:

F (x) =
∫

y
Gσ(y − x) F0(y) dy

In the discrete setting, coefficients are renormalized since the neighborhoodV is usually limited to points
within one to three times the standard deviation:

F (x) =

∑
u∈V(x) Gσ(u) F0(x + u)∑

u∈V(x) Gσ(u)
= arg min

F

∑

u∈V(x)

Gσ(u) ‖F0(x + u)− F‖2

Like previously, this weighted mean can be solved on our manifold using our intrinsic gradient descent
scheme. Starting from the measured tensor fieldΣ0(x), the evolution equation is

Σt+1(x) = expΣt(x)

(∑
u∈V Gσ(u)

−−−−−−−−−−→
Σt(x)Σt(x + u)∑

u∈V Gσ(u)

)

We illustrate in Fig.5 the comparative Gaussian filtering of a slice of a DT MR image using the flat
metric on the coefficient (since weights are positive, a weighted sum of positive definite matrices is still
positive definite) and our invariant Riemannian metric. Figure9 displays closeups around the ventricles to
compare the different regularization methods (including the anisotropic filters of Section5.3.4). One can see
a more important blurring of the corpus callosum fiber tracts using the flat metric. However, the integration
of this filtering scheme into a complete fiber tracking system would be necessary to fully evaluate the pros
and cons of each metric.

Figure 5: Regularization of a DTI slice around the corpus callosum by isotropic Gaussian filtering. On
the left: raw estimation of the tensors. The color codes for the direction of the principal eigenvector (red:
left/right, green anterior/posterior, blue: top/bottom). On the middle: Gaussian filtering of the coefficients
(5x5 window, σ = 2.0). On the right: equivalent filtering (same parameters) using the Riemannian metric.
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5.2 Spatial gradient of Tensor fields

On an-dimensional vector fieldF (x) = (f1(x1, . . . xd), . . . fn(x1, . . . xd))T overRd, one may express the
spatial gradient in an orthonormal basis as:

∇F T =
(

∂F

∂x

)
= [∂x1F, . . . ∂xd

F ] =




∂f1

∂x1
, . . . ∂f1

∂xd
...

...
...

∂fn

∂x1
, . . . ∂fn

∂xd




Notice the linearity of the derivatives implies that we could use directional derivatives in more than the
d orthogonal directions. This is especially well adapted to stabilize the discrete computations: the finite
difference estimation of the directional derivative is∂uF (x) = F (x + u)− F (x). By definition, the spatial
gradient is related to the directional derivatives through∇F T u = ∂uF (x). Thus, we may compute∇F as
the matrix that best approximate (in the least-square sense) the directional derivatives in the neighborhood
V (e.g. 6, 18 or 26 connectivity in 3D):

∇F (x) = arg min
G

∑

u∈V
‖GT u− ∂uF (x)‖2 =

(∑

u∈V
u uT

)(−1) (∑

u∈V
u ∂uF (x)T

)

'
(∑

u∈V
u uT

)(−1) (∑

u∈V
u (F (x + u)− F (x))T

)

We experimentally found in other applications (e.g. to compute the Jacobian of a deformation field
in non-rigid registration) that this gradient approximation scheme was more stable and much faster than
computing all derivatives using convolutions, for instance by the derivative of the Gaussian.

To quantify the local amount of variability independently of the space direction, one usually takes the
norm of the gradient:‖∇F (x)‖2 =

∑d
i=1 ‖∂xiF (x)‖2. Once again, this can be approximated using all

directional derivatives in the neighborhood

‖∇F (x)‖2 ' d

Card(V)

∑

u∈V

‖F (x + u)− F (x)‖2

‖u‖2
(7)

Notice that this approximation is consistent with the previous one only if the directionsu are normalized to
unity.

For a manifold valued fieldΣ(x) define onRd, we can proceed similarly, except that the directional
derivatives∂xiΣ(x) are now tangent vectors ofTΣ(x)M. They can be approximated just like above using
finite “differences” in our exponential chart:

∂uΣ(x) ' logΣ(x)(Σ(x + u)) =
−−−−−−−−−−→
Σ(x) Σ(x + u) = Σ(x)

1
2 log

(
Σ(x)−

1
2 Σ(x + u) Σ(x)−

1
2

)
Σ(x)

1
2 (8)

As observed in Section3.5, we must be careful that this directional derivative is expressed in the standard
matrix coordinate system (coefficients). Thus, the basis is not orthonormal: to quantify the local amount of
variation, we have to take the metric at the pointΣ(x) into account, so that:

‖∇Σ(x)‖2
Σ(x) =

d∑

i=1

‖∂xiΣ(x)‖2
Σ(x) '

d

Card(V)

∑

u∈V

∥∥∥log
(
Σ(x)−

1
2 Σ(x + u) Σ(x)−

1
2

)∥∥∥
2

2

‖u‖2
(9)

INRIA



Riemannian Tensor Computing 21

Figure 6:Norm of the gradient of the tensor field. On the left: computed on the coefficients with Eq. 7 (with
the flat metric). On the middle: we computed the directional derivatives with the exponential map (Eq. 8),
but the norm is taken without correcting for the metric. As this should be very close to the flat gradient norm,
we only display the difference image. The main differences are located on very sharp boundaries, where
the curvature of our metric has the most important impact. However, the relative differences remains small
(less than 10%), which shows the stability of both the gradient and the log / exp computation schemes.
On the right: Riemannian norm of the Riemannian gradient (Eq. 9). One can see much more detailed
structures within the brain, which will now be preserved during an anisotropic regularization step.

5.3 Filtering using PDE

Regularizing a scalar, vector or tensor fieldF aims at reducing the amount of its spatial variations. The first
order measure of such variations is the spatial gradient∇F that we dealt with in the previous section. To
obtain a regularity criterion over the domainΩ, we just have to integrate:Reg(F ) =

∫
Ω ‖∇F (x)‖2 dx.

Starting from an initial fieldF0(x), the goal is to find at each step a fieldFt(x) that minimizes the regularity
criterion by gradient descent in the space of (sufficiently smooth and square integrable) functions.

To compute the first order variation, we write a Taylor expansion for an incremental step in the direction
of the fieldH. Notice thatH(x) is a tangent vector atF (x):

Reg(F + ε H) = Reg(F ) + 2 ε

∫

Ω
〈 ∇F (x) | ∇H(x)〉 dx + O(ε2).

We get the directional (or Gâteau) derivative:∂HReg(F ) = 2
∫
Ω 〈 ∇F (x) | ∇H(x)〉 dx. To compute

the steepest descent, we now have to find the gradient∇Reg(F ) such that for all variationH, we have
∂HReg(F ) =

∫
Ω 〈 ∇Reg(F )(x) |H(x)〉F (x) dx. Notice that∇Reg(F )(x) andH(x) are elements of the

tangent space atF (x), so that the dot product should be taken atF (x) for a Tensor field.

5.3.1 The case of a scalar field

Let f : Rd → R be a scalar field. Our regularization criterion isReg(f) =
∫
Ω ‖∇f(x)‖2 dx. Let us

introduce the contravariant derivative div(.) = 〈 ∇ | .〉 and the Laplacian operator∆f = div(∇f). The
divergence is usually written∇T = (∂/∂x1, . . . , ∂/∂xd), so that in an orthonormal coordinate system we
have∆f = 〈 ∇ | ∇f 〉 =

∑d
i=1 ∂2

xi
f . Using the standard differentiation rules, we have:

div(h∇f) = 〈 ∇ | h∇f 〉 = h ∆f + 〈 ∇h | ∇f 〉
Now, thanks to the Green’s formula (see e.g. [Gallot et al., 1993]), we know that the flux going out of

the boundaries of a (sufficiently smooth) regionΩ is equal to the integral of the divergence inside this region.
If we denote byn the normal pointing outward at a boundary point, we have:

∫

∂Ω
〈 h∇f | n〉 dn =

∫

Ω
div(h∇f) =

∫

Ω
h ∆f +

∫

Ω
〈 ∇h | ∇f 〉
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This result can also be interpreted as an integration by part inRd. Assuming homogeneous Neumann bound-
ary conditions (gradient orthogonal to the normal on∂Ω: 〈 ∇f | n〉 = 0), the flow across the boundary
vanishes, and we are left with:

∂hReg(f)(x) = 2
∫

Ω
〈 ∇f(x) | ∇h(x)〉 dx = −2

∫

Ω
h(x) ∆f(x) dx

Since this last formula is no more than the dot product on the spaceL2(Ω,R) of square integrable functions,
we end-up with the classical Euler-Lagrange equation:∇Reg(f) = −2∆f(x). The evolution equation
used to filter the data is thus

ft+1(x) = ft(x)− ε∇Reg(f)(x) = ft(x) + 2 ε∆ft(x)

5.3.2 The vector case

Let us decompose our vector fieldF (x) into its n scalar componentsfi(x). Likewise, we can decompose
thed × n gradient∇F into the gradient of then scalar components∇fi(x) (columns). Thus, choosing an
orthonormal coordinate system on the spaceRn, our regularization criterion is decoupled inton independent
scalar regularization problems:

Reg(F )(x) =
n∑

i=1

∫

Ω
‖∇fi(x)‖2 dx =

n∑

i=1

Reg(fi)

Thus, each componentfi has to be independently regularized with the Euler-Lagrange equation:∇Reg(fi) =
−2∆fi. With the convention that the Laplacian is applied component-wise (so that we still have∆F =
div(∇F ) = ∇T ∇F = (∆f1, . . .∆fn)T), we end-up with the vectorial equation:

∇Reg(F ) = −2∆F for Reg(F ) =
∫

Ω
‖∇F (x)‖ dx

The associated evolution equation isFt+1(x) = Ft(x) + 2 ε∆Ft(x).

5.3.3 Tensor fields

For a tensor fieldΣ(x), the procedure appears to be more complex. However, a tangent vector to a tensor
field (e.g.∂uΣ(x)) is simply a vector field that maps to each pointx ∈ Rd a vector ofTΣ(x)Sym+

n . Thus,
we may simply apply the above framework. Our regularization criterion is:

Reg(Σ) =
∫

Ω
‖∇Σ(x)‖2

Σ(x) dx =
d∑

i=1

∫

Ω
‖∂xiΣ(x)‖2

Σ(x) dx =
d∑

i=1

∫

Ω

∥∥∥Σ−
1
2 ∂xiΣ(x) Σ−

1
2

∥∥∥
2

2
dx (10)

and its gradient is simply:

∇Reg(Σ)(x) = −2∆Σ(x) = −2
d∑

i=1

∂2
xi

Σ(x)

In the above formula, is should be noticed that the second order spatial derivative∂2
xi

Σ(x) is the derivative
of a tangent vector∂xiΣ(x). Thus,∇Reg(Σ)(x) is a vector ofTΣ(x)Sym+

n that is expressed in the same
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coordinate system as the tangent vector∂xiΣ(x). Finally, the gradient descent on the regularization criterion
with the intrinsic geodesic scheme of Section3.6 leads to:

Σt+1(x) = expΣt(x) (−ε∇Reg(Σ)(x)) = expΣt(x) (2 ε ∆Σ(x)) (11)

For the numerical computation of the Laplacian, let us observe that, from the Taylor expansion of a
vector fieldF atx, we have:

(
F (x + u)− F (x)

)
+

(
F (x− u)− F (x))

)
= ∂2

uF (x) + O(‖u‖3). Thus, we
may approximate the second order tensor derivative by

∂2
uΣ(x) ' −−−−−−−−−→

Σ(x)Σ(x + u) +
−−−−−−−−−→
Σ(x)Σ(x− u). (12)

In this formula, all vectors belong toTΣ(x)Sym+
n so that we do not have any problem with the coordinate

system used. Finally, like for the computation of the gradient, we may improve the computation of the
Laplacian by using second order derivatives in all possible directions in the neighborhoodV. Assuming a
symmetric neighborhood (i.e. bothu and−u belong toV), this can be further simplified into:

∆Σ(x) =
d

Card(V)

∑

u∈V

∂2
uΣ(x)
‖u‖2

' 2 d

Card(V)

∑

u∈V

−−−−−−−−−→
Σ(x)Σ(x + u)

‖u‖2
(13)

5.3.4 Anisotropic filtering

In practice, we would like to filter within the homogeneous regions, but not across their boundaries. The ba-
sic idea is to penalize the smoothing in the directions where the derivative is important [Perona and Malik, 1990,
Gerig et al., 1992]. If c(.) is a weighting function decreasing fromc(0) = 1 to c(+∞) = 0, this can be real-
ized directly in the discrete implementation of the Laplacian (Eq.13): the contribution of∂2

uΣ is weighted
by c(‖∂uΣ‖/‖u‖). With our finite difference approximations, this leads to the following modified Lapla-
cian:

∆anisoΣ(x) =
d

Card(V)

∑

u∈V
c

(
∂uΣ(x)
‖u‖

)
∂2

uΣ(x)
‖u‖2

' 2 d

Card(V)

∑

u∈V
c




∥∥∥−−−−−−−−−→Σ(x)Σ(x + u)
∥∥∥

Σ(x)

‖u‖



−−−−−−−−−→
Σ(x)Σ(x + u)

‖u‖2

Figures7 and8 present example results of this very simple anisotropic filtering scheme on synthetic and
real DTI images. We used the functionc(x) = exp

(−x2/κ2
)
, where the thresholdκ controls the amount

of local regularization. For both synthetic and real data, the histogram of the gradient norm is very clearly
bimodal so that the thresholdκ is easily determined.

In Fig. 7, we generated a tensor field with a discontinuity, and add independent Gaussian noises ac-
cording to Section3.8. The anisotropic smoothing perfectly preserves the discontinuity while completely
smoothing each region. In this synthetic experiment, we retrieve tensor values that are very close to the
initial tensor field. This could be expected since the two regions are perfectly homogeneous. After enough
regularization steps, each region is a constant field equal to the mean of the 48 initially noisy tensors of the
region: the regularized tensors should be roughly 7 times more accurate than the noisy ones.

In Figure8, we display the evolution of (a slice of) the tensors, the norm of the gradient and the fraction
anisotropy (FA) at different steps of the anisotropic filtering of a 3D DTI. The FA is based on the normalized
variance of the eigenvalues. It shows the differences between an isotropic diffusion in the brain (where the
diffusion tensor is represented by a sphere, FA=0) and a highly directional diffusion (cigar-shaped ellipsoid,
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Figure 7: Left: 3D synthetic tensor field with a clear discontinuity. Middle: The field has been corrupted
by a Gaussian noise (in the Riemannian sense). Right: result of the regularization after 30 iterations (time
step ε = 0.01).

FA=1). Consequently, the bright regions in the image are the potential areas where nervous fibers are located.
On can see that the tensors are regularized in “homogeneous” regions (ventricles, temporal areas), while the
main tracts are left unchanged. It is worth noticing that the fractional anisotropy is very well regularized
even though this measure has almost nothing in common with our invariant tensor metric.

Figure9 displays closeups around the ventricles to compare the different regularization methods devel-
oped so far. The ventricles boundary is very well conserved with an anisotropic filter and both isotropic
(ventricles) and anisotropic (splenium) regions are regularized. Note that the U-shaped tracts at the bound-
ary of the grey/white matter (lower left and right corners of each image) are preserved with an anisotropic
filter and not with a Gaussian filter.

6 Regularization and restoration of tensor fields

The pure diffusion is efficient to reduce the noise in the data, but it also reduces the amount of information.
Moreover, the amount of smoothing is controlled by the time of diffusion (time stepε times the number
of iterations), which is not an easy parameter to tune. At an infinite diffusion time, the tensor field will be
completely homogeneous (or homogeneous by part for some anisotropic diffusion schemes), with a value
corresponding to the mean of the measurements over the region (with Neumann boundary conditions). Thus,
the absolute minimum of our regularization criterion alone is of little interest.

To keep close to the measured tensor fieldΣ0(x) while still regularizing, a more theoretically grounded
approach is to consider an optimization problem with a competition between a data attachment term and a
possibly non-linear anisotropic regularization term:

C(Σ) = Sim(Σ, Σ0) + λ Reg(Σ)

Like before, the intrinsic evolution equation leading to a local minimum is:

Σt+1(x) = expΣt(x) (−ε (∇Sim(Σ, Σ0) + λ∇Reg(Σ)(x)))

6.1 The regularization term

As we saw in the previous section, the simplest regularization criterion is the norm of the gradient of the field
Reg(F ) =

∫
Ω ‖∇F (x)‖2 dx. To preserve the discontinuities, the gradient of this criterion (the Laplacian)

may be tailored to prevent the smoothing across them, as we have done in Section5.3.4. However, there
is no more convergence guaranty, since this anisotropic regularization “force” may not derive from a well-
posed criterion (energy). Following the pioneer work of [Perona and Malik, 1990], there has been quite
an extensive amount of work to propose well posed PDE for the non-linear, anisotropic and non-stationary
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Figure 8:Anisotropic filtering of a DTI slice (time step 0.01, κ = 0.046). From left to right: at the beginning,
after 10 and after 50 iterations. Top: A 3D view of the tensors as ellipsoids. The color codes for the direction
of the principal eigenvector. The results could be compared with the isotropic Gaussian filtering displayed
in Figure 5. Middle: norm of the Riemannian gradient. Bottom: fractional anisotropy.
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Figure 9:Closeup on the results of the different filtering methods around the splenium of the corpus callo-
sum. The color codes for the direction of the principal eigenvector (red: left-right, green: posterior-anterior,
blue: inferior-superior). Upper left: Original image. Upper right: Gaussian filtering using the flat metric (5x5
window, σ = 2.0). This metric gives too much weight to tensors with large eigenvalues, thus leading to clear
outliers in the ventricles or in the middle of the splenium tract. Lower right: Gaussian filtering using the Rie-
mannian metric (5x5 window, σ = 2.0). Outliers disappeared, but the discontinuities are not well preserved,
for instance in the ventricles at the level of the cortico-spinal tracts (upper-middle part of the images). Lower
left: Anisotropic filtering in the Riemannian framework (time step 0.01, 50 iterations). The ventricles bound-
ary is very well conserved with an anisotropic filter and both isotropic (ventricles) and anisotropic (splenium)
regions are regularized. Note that the U-shaped tracts at the boundary of the grey/white matter (lower left
and right corners of each image) are preserved with an anisotropic filter and not with a Gaussian filter.
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regularization of vector fields (see e.g. [Weickert, 1998, Sapiro, 2001] to cite only a few recent books). Some
of these techniques were recently adapted to work on some manifolds [Tschumperle and Deriche, 2002,
Chefd’hotel et al., 2004].

One of the main idea is to replace the usual simple regularization termReg(F ) =
∫
Ω ‖∇F (x)‖2 dx by

an increasing functionΦ of the norm of the spatial gradient:Reg(F ) =
∫
Ω Φ(‖∇F (x)‖) dx. With some

regularity conditions on theΦ-function, one can redo the previous derivations with thisΦ-function, and we
end-up with [Aubert and Kornprobst, 2001]:

∇Reg(F )(x) = −2 div

(
Φ′(‖∇F‖)
‖∇F‖ ∇F

)
= −2

d∑

i=1

∂xi

(
Φ′(‖∇F‖)
‖∇F‖ ∂xiF

)

This continuous scheme can be adapted to the Riemannian framework using the proper gradient norm. How-
ever, designing an efficient discrete computation scheme is more difficult. We may compute the directional
derivatives using finite differences in the flat matrix space and use the intrinsic evolution scheme, but we
believe that there are more efficient ways to do it using the exponential map. We are still investigating that
aspect. In the following, we keep the isotropic regularization based on the squared amplitude of the gradient

6.2 A least-squares attachment term

Usually, one consider that the data (e.g. a scalar image or a displacement vector fieldF0(x)) are corrupted
by a uniform (isotropic) Gaussian noise independent at each space position. With a maximum likelihood
approach, this amounts to consider a least-squares criterionSim(F ) =

∫
Ω ‖F (x)−F0(x)‖2 dx. Like in the

previous section, we compute the first order variation by writing the Taylor expansion

Sim(F + ε H) = Sim(F ) + 2 ε

∫

Ω
〈H(x) | F (x)− F0(x)〉 dx + O(ε2).

This time, the directional derivative∂HSim(F ) is directly expressed using a dot product withH in the
proper functional space, so that the steepest ascent direction is∇Sim(F ) = 2 (F (x)− F0(x)).

On the tensor manifold, assuming a uniform (generalized) Gaussian noise independent at each position
also leads to a least-squares criterion thought a maximum likelihood approach. The only difference is that
is uses our Riemannian distance:

Sim(Σ) =
∫

Ω
dist2 (Σ(x) , Σ0(x)) dx =

∫

Ω

∥∥∥−−−−−−−→Σ(x)Σ0(x)
∥∥∥

2

Σ(x)
dx

Thanks to the properties of the exponential map, one can show that the gradient of the squared distance is:
∇Σ dist2(Σ , Σ0) = −2

−−→
ΣΣ0 [Pennec, 2004]. One can verify that this is a tangent vector atΣ whereas

−−→
Σ0Σ

is not. Finally, we obtain a steepest ascent direction of our criterion which is very close to the vector case:

∇Sim(Σ)(x) = −2
−−−−−−−→
Σ(x)Σ0(x) (14)

6.3 A least-squares attachment term for sparsely distributed tensors

Now, let us consider the case where we do not have a dense measure of our tensor field, but onlyN measures
Σi at irregularly distributed sample pointsxi. Assuming a uniform Gaussian noise independent at each
position still leads to a least-squares criterion:

Sim(Σ) =
N∑

i=1

dist2 (Σ(xi) , Σi) =
∫

Ω

N∑

i=1

dist2 (Σ(x) , Σi) δ(x− xi) dx
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In this criterion, the tensor fieldΣ(x) is related to the data only at the measures pointsxi though the
Dirac distributionsδ(x − xi). If the introduction of distributions may be dealt with for the theoretical
differentiation of the criterion with respect to the continuous tensor fieldΣ, it is a real problem for the
numerical implementation. In order to regularize the problem, we consider the Dirac distribution as the
limit of the Gaussian functionGσ whenσ goes to zero. Using that scheme, our criterion becomes the limit
caseσ = 0 of:

Simσ(Σ) =
∫

Ω

N∑

i=1

dist2 (Σ(x) , Σi) Gσ(x− xi) dx (15)

From a practical point of view, we need to use a value ofσ which is of the order of the spatial resolution of
the grid on whichΣ(x) is evaluated, so that all measures can at least influence the neighboring nodes.

Now that we came back to a smooth criterion, we may differentiate it exactly as we did for the dense
measurement setup. The first order variation is:

Simσ(Σ + εΛ) = Simσ(Σ)− 2 ε

∫

Ω

〈
Λ(x)

∣∣∣∣∣
N∑

i=1

Gσ(x− xi)
−−−−→
Σ(x)Σi

〉
dx + O(ε2),

so that we get:

∇Simσ(x) = −2
N∑

i=1

Gσ(x− xi)
−−−−→
Σ(x)Σi (16)

6.3.1 Interpolation through diffusion

With the sparse data attachment term (16) and the isotropic first order regularization term (10), we are
looking for a tensor field that minimizes its spatial variations while interpolating (or more precisely approx-
imating at the desired precision) the measurement values:

C(Σ) =
N∑

i=1

Gσ(x− xi) dist2 (Σ(xi) , Σi) + λ

∫

Ω
‖∇Σ(x)‖2

Σ(x) dx

According to the previous sections, the gradient of this criterion is

∇C(Σ)(x) = −2
N∑

i=1

Gσ(x− xi)
−−−−→
Σ(x)Σi − 2 λ ∆Σ(x)

Using our finite difference approximation scheme (Eq.13), the intrinsic geodesic gradient descent scheme
(Sec.3.6) is finally:

Σt+1(x) = expΣt(x)

(
ε

{
N∑

i=1

Gσ(x− xi)
−−−−→
Σ(x)Σi + λ′

∑

u∈V

−−−−−−−−−→
Σ(x)Σ(x + u)

‖u‖2

})
(17)

Last but not least, we need an initialization of the tensor fieldΣ0(x) to obtain a fully operational al-
gorithm. This is easily done with any radial basis function approximation, for instance the renormalized
Gaussian scheme that we investigated in Section4.4. Figure10 displays the result of this algorithm on the
interpolation between 4 tensors. On can see that the soft closest point approximation is well regularized into
a constant field equal to the mean of the four tensors if data attachment term is neglected. On the contrary,
a very small value ofλ is sufficient for regularizing the field between known tensors (as soon asσ is much
smaller than the typical spatial distance between two measures).
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Figure 10: Interpolation and extrapolation of tensor values from four measurements using diffusion. Top
left: The four initial tensor measurements. Top right: Initialization of the tensor field using a soft closest
point interpolation (mean of the four tensors with a renormalized spatial Gaussian influence). Bottom left:
result of the diffusion without the data attachment term (1000 iterations, time-step ε = 1, λ = +∞). Bottom
right: result of the diffusion with an attachment term after (1000 iterations, time-step ε = 1, λ = 0.01, σ = 1
pixel of the reconstruction grid). The algorithm did in fact converge in about 100 iterations.
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7 Conclusion

We propose in this paper an affine invariant metric that gives to the space of positive define symmetric
matrices (tensors) a very regular manifold structure. In particular, tensors with null and infinite eigenvalues
are both at an infinite distance of any positive definite symmetric matrix: the cone of positive definite
symmetric matrices is replaced by a space which has an infinite development in each of itsn(n + 1)/2
directions. Moreover, there is one and only one geodesic joining any two tensors, and we can even define
globally consistent orthonormal coordinate systems of tangent space. Thus, the structure we obtain is very
close to a vector space, except that the space is curved. We exemplify some the the good metric properties
for some simple statistical operations. For instance, the Karcher mean in Riemannian manifolds has to be
defined through a distance-based variational formulation. With our invariant metric on tensor, the existence
and uniqueness is insured, which is generally not the case.

A second contribution of the paper is the application of this framework to important geometric data
processing problem such as interpolation, filtering, diffusion and restoration of tensor fields. We show that
interpolation and Gaussian filtering can be tackled efficiently through a weighted mean computation. How-
ever, if weights are easy to define for regularly sampled tensors (e.g. for linear to tri-linear interpolation), the
problem proved to be more difficult for irregularly sampled values. The solution we propose is to consider
this type of interpolation as a statistical restoration problem where we want to retrieve a regular tensor field
between (possibly noisy) measured tensors values at sparse points. This type of problem is usually solved
using a PDE evolution equation. We show that the usual linear regularization (minimizing the magnitude
of the gradient) and some anisotropic diffusion schemes can be adapted to our Riemannian framework, pro-
vided that the metric of the tensor space is taken into account. We also provide intrinsic numerical schemes
for the computation of the gradient and Laplacian operators. Finally, simple statistical considerations led us
to propose least-squares data attachment criteria for dense and sparsely distributed tensors fields. The dif-
ferentiation of these criterion is particularly efficient thanks to the use of the Riemannian distance inherited
from the chosen metric.

From a theoretical points of view, this paper is a striking illustration of the general framework we are
developing since [Pennec, 1996] to work properly with geometric objects. This framework is based on the
choice of a Riemannian metric on one side, which leads to powerful differential geometry tools such as the
the exponential maps and geodesic marching techniques, and on the transformation of definitions based on
linear combination or integrals into minimization problems on the other side. The Karcher mean and the
generalized Gaussian distribution are a typical example that we have previously investigated [Pennec, 2004].
In the present paper, we provide new examples with interpolation, filtering and PDE on Riemannian-valued
fields.

Many research avenues are still left open, in particular concerning the choice of the metric to use. In
a more practical domain, we believe that investigating new intrinsic numerical schemes to compute the
derivatives in the PDEs could lead to important gains in accuracy and efficiency. Last but not least, all
the results presented in this paper still need to be confronted to other existing methods and validated in the
context of medical DTI applications. We are currently investigating another very interesting application field
in collaboration with P. Thompson and A. Toga at UCLA: the analysis and the modeling of the variability
of brain.
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