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Abstract: Positive definite symmetric matrices (so-called tensors in this article) are nowadays a common
source of geometric information. In this paper, we propose to provide the tensor space with an affine-
invariant Riemannian metric. We demonstrate that it leads to strong theoretical properties: the cone of
positive definite symmetric matrices is replaced by a regular manifold of constant curvature without bound-
aries (null eigenvalues are at the infinity), the geodesic between two tensors and the mean of a set of tensors
are uniquely defined, etc.

We have previously shown that the Riemannian metric provides a powerful framework for generalizing
statistics to manifolds. In this paper, we show that it is also possible to generalize to tensor fields many
important geometric data processing algorithms such as interpolation, filtering, diffusion and restoration of
missing data. For instance, most interpolation schemes and Gaussian filtering can be tackled efficiently
through a weighted mean computation. Linear and anisotropic diffusion schemes can be adapted to our
Riemannian framework, through partial differential evolution equations, provided that the metric of the
tensor space is taken into account. For that purpose, we provide intrinsic numerical schemes to compute
the gradient and Laplacian operators. Finally, to enforce the fidelity to the data (either sparsely distributed
tensors or complete tensors fields) we propose least-squares criteria based on our invariant Riemannian
distance that are particularly simple and efficient to solve.
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Un cadre riemannien pour manipuler les tenseurs

Résumé :Les matrices définies positives, ici appelées tenseurs, sont des sources d’information géométrique
de plus en plus disponibles. Dans cet article, nous proposons de munir I'espace des tenseurs d’une métrique
riemannienne invariante par transformation affine. Cela méne a des propriétés théoriques fortes, puisque le
cbne des matrices définies positives (une variété plate mais a bords) est transformé en une variété réguliere de
courbure constante et surtout sans bord (les valeurs propres nulles sont a 'infini). De plus, les géodésiques
entre deux tenseurs sont définies de maniére unique, tout comme la moyenne d’'un ensemble de tenseurs.

Nous avons auparavant montré que la géométrie riemannienne fournissait un cadre de travail puissant
pour généraliser les statistiques aux variétés. Dans cet article, nous montrons gqu'il est possible de généraliser
aussi aux champs de tenseurs de nombreux algorithmes de traitement de données géométrigues comme
l'interpolation, le filtrage, la diffusion et la restauration de données manquantes. Par exemple, la plupart
des schémas d'interpolation et le filtrage gaussien peuvent étre considérés comme des moyennes pondérées.
Les schémas de diffusion linéaire ou anisotropes peuvent étre adaptés a notre cadre riemannien au travers
d’équation d’évolution aux dérivées partielles, pourvu que la métrique de I'espace des tenseurs soit prise
en compte. Nous fournissons pour cela des schémas numériques intrinséques pour calculer les opérateurs
gradient et laplacien. Pour finir, nous proposons des critéres aux moindres carrés basés sur notre distance
riemannienne invariante pour garantir une attache aux données, que ce soit pour des champs de tenseurs
denses ou épars, qui s'averent étre particulierement simples et efficaces a résoudre.

Mots-clés : Géométrie riemannienne, champs de tenseurs, EDP, diffusion, restauration, invariance.
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Riemannian Tensor Computing 5

1 Introduction

Positive definite symmetric matrices (so-called tensors in this article) are nowadays a common source of
geometric information, either as covariance matrices for characterizing statistics on deformations, or as an
encoding of the principle diffusion directions in Diffusion Tensor Imaging (DTI). The measurements of
these tensors is often noisy in real applications and we would like to perform estimation, smoothing and
interpolation of fields of this type of features. The main problem is that the tensor space is a manifold that is
not a vector space. As symmetric positive definite matrices constitute a convex half-cone in the vector space
of matrices, many usual operations (like the mean) are stable in this space. However, problems arise when
estimating tensors from data (in standard DTI, the estimated symmetric matrix could have negative eigen-
values), or when smoothing fields of tensors: the numerical schemes used to solve the Partial Differential
Equation (PDE) may sometimes lead to negative eigenvalues if the time step is not small enough. Even when
a SVD is performed to smooth independently the rotation (eigenvectors basis trihedron) and eigenvalues,
there are continuity problem around equal eigenvalues.

In previous works[lPennec, 1996Pennec and Ayache, 1€98ve used invariance requirements to de-
velop some basic probability tools on transformation groups and homogeneous manifolds. This statistical
framework was then reorganized and extendedPenhec, 1999Pennec, 20(4for general Riemannian
manifolds, invariance properties leading in some case to a natural choice for the metric. In this paper, we
show how this theory can be applied to tensors, leading to a new intrinsic computing framework for these
geometric features with many important theoretical properties as well as practical computing properties.

In the remaining of this section, we quickly investigate some connected works on tensors. Then, we
summarize in Sectic® the main ideas of the statistical framework we developed on Riemannian manifolds.
The aim is to exemplify the fact that choosing a Riemannian metric “automatically” determines a powerful
framework to work on the manifold through the introduction of a few tools from differential geometry. In
order to use this Riemannian framework on our tensor manifold, we propose in Sgatiaffine-invariant
Riemannian distance on tensors. We demonstrate that it leads to very strong theoretical properties, as well
as some important practical algorithms such as an intrinsic geodesic gradient descent/43ectision the
application of this framework to an important geometric data processing problem: interpolation of tensor
values. We show that this problem can be tackled efficiently through a weighted mean optimization. How-
ever, if weights are easy to define for regularly sampled tensors (e.g. for linear to tri-linear interpolation),
the problem proved to be more difficult for irregularly sampled values.

With SectiorB, we turn to tensors field computing, and more particularly filtering. If the Gaussian filter-
ing may still be defined through weighted means, the partial differential equation (PDE) approach is slightly
more complex. In particular, the metric of the tensor space has to be taken into account when computing
the magnitude of the spatial gradient of the tensor field. Thanks to our Riemannian framework, we propose
efficient numerical schemes for the computation of the gradient, its amplitude, and for the Laplacian used
in linear diffusion. We also propose an adjustment of the Laplacian that realizes an anisotropic filtering.
Finally, Sectior6 focus on simple statistical approaches to regularize and restore missing values in tensor
fields. Here, the use of the Riemannian distance inherited from the chosen metric is fundamental to define
least-squares data attachment criteria for dense and sparsely distributed tensors fields that lead to simple
implementation schemes in our intrinsic computing framework.

1.1 Related work

Quite an impressive literature has now been issued on the estimation and regularization of tensor fields, espe-
cially in the context of Diffusion Tensor Imaging (DTBAsser et al., 1998ihan et al., 200]Westin et al., 200R
Most of the works dealing with the geometric nature of the tensors has been perform for the discontinuity-
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6 X. Pennec et al.

preserving regularization of the tensor fields using Partial Differential Equations (PDEC(den et al., 2004

for a recent review). For instancéCgulon et al., 2004anisotropically restores the principal direction of

the tensor, and uses the this regularized directions map as an input for the anisotropic regularization of
the eigenvalues. A quite similar idea is adoptedTisghumperle, 20(J2where a spectral decomposition

W(z) = U(x).D(x).U(z)" of the tensor field is performed at each points to independently regularize the
eigenvalues and eigenvectors (orientations). This approach requires an additional reorientation step of the
rotation matrices due to the non-uniqueness of the decomposition (each eigenvector is defined up its sign and
there may be joint permutations of the eigenvectors and eigenvalues) in order to avoid the creation of artifi-
cial discontinuities. Another problem arises when two or more eigenvalues become equal: a whole subspace
of unit eigenvectors is possible, and even a re-orientation becomes difficult. An intrinsic integration scheme
for PDE that uses the exponential map has been add&heidi’hotel et al., 20(J2 and allows to perform

PDE evolution on the considered manifold without re-projections. In essence, this is an infinitesimal version
of the intrinsic gradient descent technique on manifolds we introducdekinriec, 199@ennec, 199Jor

the computation of the mean.

In [Chefd’hotel et al., 2004 the same authors propose a rank-signature preserving flow that inherits its
properties from the matrix exponential, without a clear reference to the metric used. Their derivation leads to
an evolution equation similar to E@.that will define the geodesics of our metric in Seci®& They claim
that thisrank/signature preserving flow tends to blend the orientation and diffusivity features (eigenvalue
swelling effect) We do not observe such a behavior with our PDE evolution scheme of Sebtamdt.

The explanation lies probably in the fact that we are not using the same metric when computing the driving
gradient forces.

The affine-invariant Riemannian metric we detail in Secf®& may be traced back to the work of
[Nomizu, 1954 on affine invariant connections on homogeneous spaces. It is implicitly hidden under
very general theorems on symmetric spaces in many differential geometry texti@mk&ielidze, 1991
Helgason, 1978Kobayashi and Nomizu, 19p%nd sometimes considered as a well known result as in
[Bhatia, 200R In statistics, it has been introduced as the Fisher information m&kovigaard, 1984
to model geometry of the multivariate normal family. The idea of the invariant metric came to the mind
of the first author during the IPMI conference in 20@oplon et al., 200,1Batchelor et al., 20(J1 as an
application to diffusion tensor imaging (DTI) of the statistical methodology on Riemannian manifolds pre-
viously developed (and summarized in the next Section). However, this idea was not exploited until the end
of 2003, when the visit of P. Thompson (UCLA, USA) raised the need to interpolate tensors that represent
the variability from specific locations on sulci to the whole voldmiEhe expertise of the second author on
DTI [Fillard et al., 200Bprovided an ideal alternative application field. During the writing of this paper, we
discovered that the invariant metric has been independently proposé@isirier and Moonen, 19pfb
deal with covariance matrices, and very recentlyBiefcher and Joshi, 20P#br the analysis of principal
modes of sets of diffusion tensors. However, up to our knowledge, it has not been promoted to a complete
computing framework, as we propose in this paper.

2 Statistics on geometric features

We summarize in this Section the theory of statistics on Riemannian manifolds developedinmef, 1999
Pennec, 2004 The aim is to exemplify the fact that choosing a Riemannian metric “automatically” de-
termines a powerful framework to work on the manifold through the use of a few tools from differential
geometry.

1A research report on the application of the theory developed here to that problem is currently in preparation.
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Riemannian Tensor Computing 7

In the geometric framework, one can specify the structure of a mani¢ldy a Riemannian metric
This is a continuous collection of dot products on the tangent space at each point of the manifold. Thus, if we
consider a curve on the manifold, we can compute at each point its instantaneous speed vector and its norm,
the instantaneous speed. To compute the length of the curve, we can proceed as usual by integrating this
value along the curve. The distance between two points of a connected Riemannian manifold is the minimum
length among the curves joining these points. The curves realizing this minimum for any two points of the
manifold are called geodesics. The calculus of variations shows that geodesics are the solutions of a system
of second order differential equations depending on the Riemannian metric. In the following, we assume
that the manifold iggeodesically completée. that the definition domain of all geodesics can be extended
to R. This means that the manifold has no boundary nor any singular point that we can reach in a finite time.
As an important consequence, the Hopf-Rinow-De Rham theorem states that there always exists at least one
minimizing geodesic between any two points of the manifold (i.e. whose length is the distance between the
two points).

Figure 1:Left: The tangent planes at points x and y of the sphere S, are different: the vectors v and w of
TxM cannot be compared to the vectors ¢ and « of 7, M. Thus, it is natural to define the dot product on
each tangent plane. Right: The geodesics starting at x are straight lines in the exponential map and the
distance along them is conserved.

2.1 Exponential chart

Let x be a point of the manifold that we consider as a local referencémmdvector of the tangent space
Ty M at that point. From the theory of second order differential equations, we know that there exits one and
only one geodesic starting from that point with this tangent vector. This allows to develop the manifold in
the tangent space along the geodesics (think of rolling a sphere along its tangent plane at a given point). The
geodesics going through the reference point are transformed into straight lines and the distance along these
geodesics is conserved (at least in a neighborhoad. of

The function that maps to each veckgr € T, M the pointy of the manifold that is reached after a unit
time by the geodesic starting=atvith this tangent vector is called teponential mapThis map is defined
in the whole tangent spa@e M (since the manifold is geodesically complete) but it is generally one-to-one
only locally around O in the tangent space (i.e. arourid the manifold). In the sequel, we denote by
xy = log,(y) the inverse of the exponential map: this is the smallest vector such thatp, (xy). If we
look for the maximal definition domain, we find out that it is a star-shaped domain delimited by a continuous
curve C; called thetangential cut-locus The image ofCy by the exponential map is the cut locGs of
pointx. This is the closure of the set of points where several minimizing geodesics starting frozat.
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8 X. Pennec et al.

On the spheré&, (1) for instance, the cut locus of a poixis its antipodal point and the tangential cut locus
is the circle of radiusr.

The exponential map within this domain realizes a chart callecexponential chartlt covers all the
manifold except the cut locus of the development point, which has a null measure. In this chart, geodesics
starting fromx are straight lines. and the distance from the development point are conserved. This chart is
somehow the “most linear” chart of the manifold with respect to the primitive

2.2 Practical implementation

In fact most of the usual operations using additions and subtractions may be reinterpreted in a Riemannian
framework using the notion dfipoint, an antecedent of vector introduced during the 19th Century. Indeed,
one defines vectors as equivalent classes of bipoint (oriented couples of points) in a Euclidean space. This is
possible because we have a canonical way (the translation) to compare what happens at two different points.
In a Riemannian manifold, we can still compare things locally (by parallel transportation), but not any more
globally. This means that each “vector” has to remember at which point of the manifold it is attached, which
comes back to a bipoint.

However, one can also see a vedtor(attached at point) as a vector of the tangent space at that point.
Such a vector may be identified to a point on the manifold using the geodesic startingithttangent
vectorxy, i.e. using the exponential map:= exp, (xy). Conversely, the logarithmic map may be used to
map almost any bipoir, y) into a vectorky = log, (y) of Ty M.

Vector space Riemannian manifold
— —

=y - Xy = logy(y)
y=z+1y y = expy(XY)

dist(z,y) = [ly — || dist(x,y) = %7/

Table 1:Re-interpretation of addition and subtraction in a Riemannian manifold.

This reinterpretation of addition and subtraction using logarithmic and exponential maps is very power-
ful to generalize algorithms working on vector space to algorithms on Riemannian manifolds. Itis also very
powerful in terms of implementation since we can practically express all the geometric operations in these
terms: the implementation dfg, andexp, is the basis of any programming on Riemannian manifolds, as
we will see in the following.

2.3 Basic statistical tools

The Riemannian metric induces an infinitesimal volume element on each tangent space, and thus a measure
d M on the manifold that can be used to measure random events on the manifold and to define the probability
density function (if it exists) of these random primitives. It is worth noticing that the induced meastre
represents the notion ohiformity according to the chosen Riemannian metric. This automatic derivation
of the uniform measure from the metric gives a rather elegant solution to the Bertrand paradox for geomet-
ric probabilities Poincaré, 1912Kendall and Moran, 19¢3 However, the problem is only shifted: which
Riemannian metric do we have to choose ? We address this question in @3cticeal positive definite
symmetric matrices (tensors): it turns out that we will be able to require an invariance by the full linear
group, which will lead to a very regular and convenient manifold structure.

Let us come back to the basic statistical tools we would like to develop. With the probability measure
of a random primitive, we can integrate functions from the manifold to any vector space, thus defining the
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Riemannian Tensor Computing 9

expected value of this function. However, we generally cannot integrate manifold-valued functions. Thus,
one cannot define the mean or expected “value” of a random primitive using a weighted sum or an integral as
usual: we need to rely on distance-based variational formulation. The Fréchet or Karcher expected features
basically minimize globally (or locally) the variance. As the mean is now defined through a minimization
procedure, its existence and uniqueness are not ensured any more (except for distributions with a sufficiently
small compact support). In practice, one mean value almost always exists, and it is unique as soon as the
distribution is sufficiently peaked. The properties of the mean are very similar to those of the modes (that
can be defined as central Karcher values of order 0) in the vectorial case.

To compute the mean value, we designedRerinec, 199%ennec, 2004an original Gauss-Newton
gradient descent algorithm that essentially alternates the computation of the barycenter in the exponential
chart centered at the current estimation of the mean value, and a re-centering step of the chart at the point
of the manifold that corresponds to the computed barycenter (geodesic marching step). To define higher
moments of the distribution, we used the exponential chart at the mean point: the random feature is thus
represented as a random vector with null mean in a star-shaped and symmetric domain. With this represen-
tation, there is no difficulty to define the covariance matrix and potentially higher order moments. Based on
this covariance matrix, we may define a Mahalanobis distance between a random and a deterministic feature
that basically weights the distance between the deterministic feature and the mean feature using the inverse
of the covariance matrix. Interestingly, the expected Mahalanobis distance of a random primitive with itself
is independent of the distribution and is equal to the dimension of the manifold, as in the vectorial case.

As for the mean, we chose iP¢nnec, 1996Pennec, 1999ennec, 20(4a variational approach to
generalize the Normal Law: we define it as the distribution that minimizes the information knowing the
mean and the covariance. Neglecting the cut-locus constraints, we show that this amounts to consider a
Gaussian distribution on the exponential chart centered at the mean point that is truncated at the cut locus (if
there is one). However, the relation between the concentration matrix (the “metric” used in the exponential
of the probability density function) and the covariance matrix is slightly more complex that the simple
inversion of the vectorial case, as it has to be corrected for the curvature of the manifold. Last but not least,
using the Mahalanobis distance of a normally distributed random feature, we can generalizé&athewe
were able to show that is has the same density as in the vectorial case up to an ordef Bighopens the
way to the generalization of many other statistical tests, as we may expect similarly simple approximations
for sufficiently centered distributions.

3 Working on the Tensor space

Let us now focus on the spadegm;’ of positive definite symmetric matrices (tensors). The goal is to find a
Riemannian metric with interesting enough properties. It turns out that it is possible to require an invariance
by the full linear group (Sectic8.3). This leads to a very regular manifold structure where tensors with null

and infinite eigenvalues are both at an infinite distance of any positive definite symmetric matrix: the cone
of positive definite symmetric matrices is replaced by a space which has an infinite development in each of
its n(n + 1)/2 directions. Moreover, there is one and only one geodesic joining any two tensors, and we
can even define globally consistent orthonormal coordinate systems of tangent spaces. Thus, the structure
we obtain is very close to a vector space, except that the space is curved.

3.1 Exponential, logarithm and square root of tensors

In the following, we will make an extensive use of a few functions on symmetric matrices. The exponential
of any matrix can be defined using the sedies(A) = >0 %f. In the case of tensors, we have some

important simplifications. LeE = U D UT be a diagonalization, whel€ is an orthogonal matrix, and
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10 X. Pennec et al.

D = DIAG(d;) is the diagonal matrix of strictly positives eigenvalues. We can write any poweiirothe
same basist* = U D* U". This means that we may factor out the rotation matrices in the series and map
the exponential individually to each eigenvalue:

+o00 Zk
exp(L) = Y 7 = U DIAG (exp(d;)) U"
k=0
The series defining the exponential function converges for any matrix argument, but this is generally not
the case for the series defining its inverse function: the logarithm. However, in our case, the rotations in
the series can be factored out just as above, and we end up with the diagonal matrix of the logarithm of the
eigenvalues, which are always well defined since the matrix is positive definite:

= (_1)k k = (_1)k k T T
log(¥) = (2= 1d)" =U | DIAG > S (d = 1) U™ = U (DIAG (log(d;))) U
k=0 k=0

Classically, one defines the (left) square root of a mdtras the se{Bi/z} ={AeGL,/AA" = B}.

One could also define the right square ro{o?o’.}f} ={A € GL,/ A" A= B}. Fortensors, we define the
square root as:

$V2 = (A eSym}t /A =%}
The square root is always defined and moreover uniqueXlet U D? UT be a diagonalization (with
positives values for thé;'s). ThenA = U D U" is of course a square root Bf which proves the existence.
For the uniqueness, let us consider two symmetric and positive square\foatsi A, of . Then,A? = %
andA3 = X obviously commute and thus they can be diagonalized in the same basis: this means that the
diagonal matrice®? and D3 are equal. As the elements bfi and D, are positive, they are also equal and
A1 = As. Last but not least, we have the property that

»12 = exp <;(log Z))

3.2 An affine invariant distance
Let us consider the following action of the linear grad,, on the tensor spacgym,!:
AxY = ATAT VA € GL, and X € Sym)

This group action corresponds for instance to the standard action of the affine group on the covariance matrix
of arandom variables in R™: if y = Az +t, thenXyy = Ely y'| = AXxxA".

This action is naturally extended to tangent vectors is the same wayt)it= ¥ +t W + O(t?) is a
curve passing at with tangent vectoiV, then the curvel x T'(t) = AX A™ +t A W AT + O(t?) passes
throughA x X with tangent vector x .

Following [Pennec and Ayache, 199&ny invariant distance afiym, verifies disfA Y1, AxYs) =

dist(X1,>9). ChoosingA = 21_1/2, we can reduce this to a pseudo-norm, or distance to the identity:
. . _1 _1 _1 _1
dlSt(El, 22) = dlSt(Id, El 22221 2) =N (El 22221 2>

Moreover, as the invariance has to hold for any transformatdshould be invariant under the action of
the isotropy group{(Id) = O,, = {U € GL,, /UU" = 1d}:

YU €O, NUSU")=N({)

INRIA



Riemannian Tensor Computing 11

Using the spectral decompositih= U D?UT, it is easy to see thaV'(3) has to be a symmetric function
of the eigenvalues. Moreover, the symmetry of the distance(3didid) = dist( Id, ¥) imposes that
N(X) = N(X). Thus, a good candidate is the sum of the squared logarithms of the eigenvalues:

n

N(2)* = [[log(2)|* = > (log())? 1
=1
This “norm” verifies by construction the symmetry and positivengdg$X) = 0 implies thato; = 1
(and conversely), so that the separation axiom is verified. What is much more difficult to show is the triangle
inequality, which should read/ (X)) + N(X3) > N(Zl_l/22221_1/2). If we can verify it experimentally,
its direct theoretical proof is, up to our knowledge, unknown (see |Etisfner and Moonen, 19p9

3.3 An invariant Riemannian metric

Another way to determine the invariant distance is through the Riemannian metric. Let us take the most
simple dot product on the tangent space at the identity matrixd;sifand W, are tangent vectors (i.e.
symmetric matrices, not necessarily definite nor positive), we define the dot product to be the standard
matrix dot product W, | Wy ) = Tr(W] W5). This dot product if obviously invariant by the isotropy group

O,. Now, if W7 and W, are two tangent vector &t, we require their dot product to be invariant by the
action of any transformation:W; | Wa )y, = (Ax Wi | A * W) 4,5. This should be true in particular for

A = ¥~1/2 which allows us to define the dot product at ahjrom the dot product at the identity:

(W | Wa)y = < STIWETE | STIWRE e > =T (2—%W12—1W22—%)

One can easily verify that this definition is left unchanged if we use any other transforrdatioti ¥ —1/2
(whereU is a free orthogonal matrix) that transporido the identity:Ax X =AY AT =U U' = Id.

To find the geodesic without going though the computation of Christoffel symbols, we may rely on a re-
sult from differential geometryGamkrelidze, 19¢Helgason, 1978&obayashi and Nomizu, 19%%hich
says that the geodesics for the invariant metrics on affine symmetric spaces are generated by the action of
the one-parameter subgroups of the acting Lie g¢ouince the one-parameter subgroups of the linear
group are given by the matrix exponentiab(t A), geodesics on our tensor manifold going throdgith
tangent vectoi’” should have the following form:

Lsw)(t) = exp(t A) X exp(t A)' with W=AYX+X A" 2)

This expression was used directly |@Hefd’hotel et al., 2004 For our purpose, we need to relate
explicitly the geodesic to the tangent vector in order to define the exponential chart>Sgmaesymmetric
matrix, there is hopefully an explicitly solution to the Sylvester equation= A ¥ + ¥ A". We get
A= 1 (W4 xl/2Z25-1/2) whereZ is a free skew-symmetric matrix. However, introducing this
solution into the equation of geodesics (2)jdoes not lead to a very tractable expression. Let us look at an
alternative solution.

Since our metric (and thus the geodesics) is invariant under the action of the group, we can focus on
the geodesics going through the origin (the identity). In that case, a symmetric solution of the Sylvester
equation isA = %W, which gives the following equation for the geodesic going through the identity with
tangent vectoiV:

t t T
F(Id,W) (t) = exp (2 W) exXp <2 W> =exp(t W).

2To be mathematically correct, we should consider the quotient spaeel = GL;} /SO, instead oiSym,} = GL,/O, so
that all spaces are simply connected.
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12 X. Pennec et al.

We may observe that the tangent vector along this curve is the parallel transportation of the initial tangent
vector. If W = U DIAG (w;) UT,

T 1 DIAG (s exp(t i) UT = D)} W (1) = T(1) W

By definition of our invariant metric, the norm of this vector is constalfity(t)'/? « WHf,(t)l/2*Id =

W3, = [W]3. This was expected since geodesics are parameterized by arc-length. Thus, the length
of the curve between time 0 and 1 is

1
c- |
0

Solving forT"(14w(1) = X, we obtain the “norm’N (X) of Eq.(1). Using the invariance of our metric, we
easily obtain the geodesic starting from any other point of the manifold using our group action:

dr(t)
“d dt = |[W||3q.

2
I'(¢)

T () = B3 % T (g 5172,y () = S exp (tZ73WE73) 3

Coming back to the distance digéE, Id) = 3. (loga;)?, it is worth noticing that tensors with null
eigenvalues are located as far from the identity as tensors with infinite eigenvalues: at the infinity. Thanks
to the invariance by the Linear group, this property holds for the distance to any (positive definite) tensor
of the manifold. Thus, the original cone of positive definite symmetric matrices (a manifold with a flat
metric but with boundaries) has been changed into a regular manifold of constant curvature with an infinite
development in each of its(n + 1) /2 directions.

3.4 Exponential and logarithm maps

As a general property of Riemannian manifolds, geodesics realize a local diffeomorphism from the tangent
space at a given point of the manifold to the manifdlgs; ) (1) = expy, (W) associates to each tangent
vectorW € TxSym,’ a point of the manifold. This mapping is called the exponential map, because it
corresponds to the usual exponential in some matrix groups. This is exactly our case for the exponential
map around the identity:

expq(UDUT) = exp(UDU") = U DIAG (exp(d;)) U"

However, the Riemannian exponential map associated to our invariant metric has a more complex expression
at other tensors: ) ) ) )
expg (W) = £7 exp (zﬁwzﬁ) 3

As we have no cut locus, this diffeomorphism is moreover global, and we can uniquely define the inverse
mapping everywhere:

logs:(A) = Y2 log (Z*%AE*%) N2
Thus,expsy. gives us a collection of one-to-one and complete maps of the manifold, centered at any point
3. As explained in SectioR.1, these charts can be viewed as the development of the manifold onto the
tangent space along the geodesics. Moreover, since there is no cut-locus, the statistical properties detailed
in [Pennec, 20(04hold in their most general form. For instance, we have the existence and uniqueness of
the mean of any distribution with a compact support.
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3.5 Induced and orthonormal coordinate systems

One has to be careful because the coordinate system of all these charts is not orthonormal. Indeed, the
coordinate system of each chart is induced by the standard coordinate system (here the matrix coefficients),
so that the vectoEA corresponds to the standard derivative in the vector space of matrices: wa kave
S+ 3A + O(HﬂHQ). Even if this basis is orthonormal at some points of the manifold (such as at the
identity for our tensors), it has to be corrected for the Riemannian metric at other places due to the manifold
curvature.

From the expression of the metric, one can observe that

—— _1 _1 _1
IZA[R = [ logg (A% = 272 logg (A) 572 ]|3q = | log(X72 x A)I3,

which shows thaE—>Ai = log(E‘% x A) € TsSym.! is the expression of the vecttrA in an orthonormal
basis. In our case, the transformatdh? € GL,, is moreover uniquely defined (as a positive square root)
and is a smooth function &f over the complete tensor manifold. Thﬁ?&l realizes an atlas of orthonormal
exponential charts which is globally smooth with respect to the developmengpdihis group action
approach was chosen in earlier worlehnec, 199@ennec and Thirion, 199Pennec and Ayache, 198
with what we called the placement function.

For some statistical operations, we need to use a minimal representation (e.g. 6 paramaters for
tensors) in a (locally) orthogonal basis. This can be realized through the classical “Vec” operator that maps
the element,; ; of an x n matrix A to thei n 4 jst element Ve€A);,; of an x n dimensional vector
Vec(A). Since we are working with symmetric matrices, we have artly+ 1)/2 independent coefficients
(say the upper triangular part). Moreover, the off-diagonal coefficients are counted twicelis ioem at
the identity:[|W||3 = Y7, wi,; + 2 D icj<n w;? ;. The corresponding projection finally gives us:

.
Vec(W) = (w1,1, V2 w1, wa2, V2 w13, V2 w23, w33, ... V2Win, ... V2Weo1)n, wn,n)

Now, for a vectorsA ee TxSym;’, we define its minimal representation in the orthonormal coordinate
system as:
e _— 1 — 1 1
Vecs (SA) = Vecq(ZA,) = Veciq (27 5 27) — Veciq (1og(2*5 *A))
The mapping Veg realizes an explicit isomorphism betwe&nSym;t andR™"+1)/2 with the canonical
metric. The reverse mappings will be denoted by giec

3.6 Gradient descent and PDE evolution: an intrinsic scheme

Let f(X) be an objective function to minimize&;; the current estimation of, andW; = 9f/0% =

[0f /0o;;] its matrix derivative at that point, which is of course symmetric. The principle of a first order
gradient descent is to go toward the steepest descent, in the direction opposite of the gradient for a short
time-stepe, and iterate the process. However, the standard operatgr= ¥; — W, is only valid for

very short time-steps, and we could easily go out of the manifold of positive definite tensors. A much more
interesting numerical operator is given by following the geodesic backward starfihgithh tangent vector

W, during a times. This intrinsic gradient descent ensures that we cannot leave the manifold and can easily
be expressed using the exponential map:

Vi1 = F(Zth)(_E) = eXPzt(—é‘Wt) = Z% exp(—eE_%WtE_%)Z%

30n most homogeneous manifolds, this can only be realized locally. For instance, on the sphere, there is a singularity at the
antipodal point of the chosen origin for any otherwise smooth placement function.
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14 X. Pennec et al.

This intrinsic scheme is trivially generalized to partial differential evolution equations (PDES) on tensor
fields such a®%(z,t) /0t = —W (z,t). We obtain(z,t + dt) = expy, ) (—dt W (z,1)).

3.7 Example with the mean value

LetY; ... Xy be a set of measures of the same Tensor. The Karcher or Fréchet mean is the set of tensors
minimizing the sum of squared distane&>.) = -~ | dis?(%, ;). In the case of tensors, there is not cut
locus, so that there is one and only one mean val{Bennec, 20(J4 Moreover, a necessary and sufficient
condition for an optimum is a null gradient of the criterion. Differentiating one step further, we obtain

a constant Hessian matrix. Thus, the intrinsic second order Newton gradient descent algorithm gives the

following mean value at estimation steg- 1:

S 1 = 1 & _ 1 1\ _1
Y41 = expg, N ZlOgit(Ei) = %7 exp N Zlog (Et R 2) Dy 3)
i=1 i=1

Notice that we cannot easily simplify more this expression as in general th&datal the mean valug,
cannot be diagonalized in a common basis. However, this gradient descent algorithm usually converges very
fast (about 10 iterations, see FRjbelow).

3.8 Simple statistical operations on tensors

As described inPennec, 2004 we may generalize most of the usual statistical methods by using the ex-
ponential chart at the mean pomt For instance, the empirical covariance matrix of a\seéew$ory:; of

mean¥ will be: N D EZ ® EZ Using ourVecmapping, we may come back to more usual matrix
notations and write its expression in a minimal representation with an orthonormal coordinate system:

N
1 — —\T
Cov= ~— z_; Vecs. (221) Vecs. (221)
One may also define the Mahalanobis distance

u?g,cov)(E) = Vecs (ﬁ)T Cov™® Vecs (i_f:)

Looking for the probability density function that minimizes the information with a constrained mean and
covariance, we obtain a generalization of the Gaussian distribution of the form:

Ngr(¥) =k exp <—;M22,r(2)>

The main difference with a Euclidean space is that we have a curvature to take into account: the in-
variant measure induced on the manifold by our metric is linked to the usual matrix measisé([B3) =
dx/det(X). Likewise, the curvature slightly modifies the usual relation between the covariance matrix,
the concentration matrik and the normalization parameteiof the Gaussian distributioiiPennec, 2004
These differences have an impact on the calculations using continuous probability density functions. How-
ever, from a practical point of view, we only deal with a discrete sample set of measurements, so that the
measure-induced corrections are hidden. For instance, we can generate a random (generalized) Gaussian
tensor using the following procedure: we sample + 1)/2 independent and normalized real Gaussian
samples, multiply the corresponding vector by the square root of the desired covariance matrix (expressed
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in our Vec coordinate system), and come back the the tensor manifold using thienvégaping. That way,
we can easily generate noisy measurements of known tensors (see €4). Fig.

To verify the implementation of our charts and geodesic marching algorithms, we have generated 10000
random Gaussian tensors around a random tensdth a variance ofy = 1. We computed the mean using
the algorithm of Eq3. The convergence is clearly very fast (FR).left). Then, we computed statistics on
the Mahalanobis distance to the mean (since we used a unit variance for generating our random tensors, this
corresponds to the squared distance): the distribution closely follggsiatribution, as expected, with an
empirical mean of 6.031 and a variance of 12.38 (expected values are 6 and 12).

Square distance from the mean tensor (N=10000 tensors)
T T T

800

08

08

04

Distance between successive iterations

02

L
0 2 4 6 8 10 12 14 16

Number of iterations .

0 5 10 15 20 25 30

Figure 2: Mean of 10000 random Gaussian tensors. Left: evolution of the distance between successive
iterations. The convergence is clearly very fast. Right: Histogram of the squared-distance to the computed
mean. Since we used a unit mean for the variance, this is also an histogram of the Mahalanobis distance.

4 Tensor Interpolation

One of the important operations in geometric data processing is to interpolate values between known mea-
surements. In 3D image processing, (tri-) linear interpolation is often used thanks to its very low computa-
tional load and comparatively much better results than nearest neighbor interpolation. Other popular meth-
ods include the cubic and, more generally, spline interpolatibhé\Jenaz et al., 2000eijering, 2002.

The standard way to define an interpolation on a regular lattice of dimerdd®to consider that the
interpolated functionf(z) is a linear combination of samplgs at integer (lattice) coordinatés ¢ 7
f(x) = >, w(xz — k) fr. To realize an interpolation, the “sample weight” functiorhas to vanish at all
integer coordinates except 0 where it has to be one. A typical example where the convolution kernel has
an infinite support is the sinus cardinal interpolation. With the nearest-neighbor, linear (or tri-linear in 3D),
and higher order spline interpolations, the kernel is piecewise polynomial, and limited to a few neighboring
points in the lattice.

When it comes to an irregular sampling (i.e. a set of measurenfgr@spositionsry), interpolation
may still be defined using a weighted meaf(z) = ijzl wk(x) fr. To ensure that this is an interpo-
lating function, one has to require thaj(z;) = J;; (whered;; is the Kronecker symbol). Moreover, the
coordinates are usually normalized so that_,~ wi(z) = 1 for all positionz within the domain of inter-
est. Typical examples in triangulations or tetrahedrizations are barycentric and natural neighbor coordinates
[Sibson, 198]l(see Sectio@.4 below).
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16 X. Pennec et al.

4.1 Interpolation through Weighted mean

To generalize interpolation methods defined using weighted means to our tensor manifolds, let us assume
that the sample weights; (x) are defined as above R?. Thanks to their normalization, the valyéz)
interpolated from vectorgy, verifiesZﬁV:1 wi(x) (fi — f(x)) = 0. Thus, similarly to the Fréchet mean,

we can define the interpolated valtiér) on our tensor manifold as the tensor that minimizes the weighted

sum of squared distances to the measurentent€’'(3(z)) = ZiN:1 w;(z) dist(X;, X(z)). Of course, we

loose in general the existence and uniqueness properties. However, for positive weights, the existence and
uniqueness theorems for the Karcher mean can be adapted. In practice, this means that we have a unique
tensor that verifieS"Y | w;(z)2(x)%; = 0. To reach this solution, it is easy to adapt the Gauss-Newton
scheme proposed for the Karcher mean. The algorithm becomes:

N
Yipi(z) = €XPy,(z) (Zwi(x) logzt(w)(Ei)> (4)
i=1
N
= Si@)fexp (Z wiz) log (Et<x>—%zizt<x>‘%)> AL (5)
i=1

Once again, this expression cannot be easily simplified, but the convergence is very fast (usually less than
10 iterations as for the mean).

4.2 Example of the linear interpolation

The linear interpolation is somehow simple as this a walk along the geodesic joining the two tensors. We
have the closed-form expressidi(t) = expy, (t logy, (¥2)) = expy, ((1 —t) logs, (X1)) for t € [0;1].

To compare, the equivalent interpolation in the standard matrix space woull'giye= (1 —¢) X1 + ¢ Xs.

We displayed in Fig3 the flat and the Riemannian interpolations between 2D tensors of eigenvalues (5,1)
horizontally and (1,50) at 45 degrees, along with the evolution of the eigenvalues, their mean (i.e. trace of
the matrix) and product (i.e. determinant of the matrix or volume of the ellipsoid).

With the standard matrix coefficient interpolation, the evolution of the trace is perfectly linear (which
was expected since this is a linear function of the coefficients), and the principal eigenvalue regularly grows
almost linearly, while the smallest eigenvalue slightly grows toward a local maxima before lowering. What
is much more annoying is that the determinant (i.e. the volume) does not grow regularly in between the
two tensors, but goes through a maximum. If we interpret our tensors as covariance matrices of Gaussian
distributions, this means that the probability of a random point to be accepted as a realization of our distri-
bution is larger in between than at the measurement points themselves! On the contrary, one can clearly see
a regular evolution of the eigenvalues and of their product with the interpolation in our Riemannian space.
Moreover, there is a much smoother rotation of the eigenvectors than with the standard interpolation.

4.3 Tri-linear interpolation

The bi- and tri-linear interpolation of tensors on a regular grid in 2D or 3D are almost as simple, except
that we do not have any longer an explicit solution using geodesics since there are more than two reference
points. After computing the (bi-) tri-linear weights with respect to the neighboring sites of the point we
want to evaluate, we now have to go through the iterative optimization of the weighted mea4) (eq.
compute the interpolated tensor. We display an example in F@ju@ne can see that the volume of the
tensors is much more important with the classical than with the Riemannian interpolation. We also get a
much smoother interpolation of the principal directions with our method.
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Figure 3:Top: Linear interpolation between 2D tensors of eigenvalues (5,1) horizontally and (1,50) at 45
degrees. Left: interpolation in the standard matrix space (interpolation of the coefficients), and right: in our
Riemannian space. Bottom: evolution of the eigenvalues, their mean (i.e. trace of the matrix) and product
(i.e. determinant of the matrix or volume of the ellipsoid).

4.4 Interpolation of non regular measurements

When tensors are not measured on a regular grid but “randomly” localized in space, defining neighbors be-
comes anissue. One solution, proposed®ggon, 198]Jland later used for surfaces l@4zals and Boissonnat, 2(J01
is the natural neighbor interpolation. For any paintts natural neighbors are the the point§ of} whose
Voronoi cells are chopped off upon insertionsointo the Voronoi diagram. The weight; of each natural
neighborz; is the proportion of the new cell that is taken awayabip x; in the new Voronoi diagram. One
important restriction of these interesting coordinates is that they are limited to the convex hull of the point
set (otherwise the volume or surface of the cell is infinite).

Another idea is to rely on radial-basis functions to define the relative influence of each measurement
point. For instance, a Gaussian influence would give a weight) = G,(x — z;) to the measuremeit,
located atr;. Since weights need to be renormalized in our setup, this would lead to the following evolution
equation:

(6)

S Gol ) Ee(x)X
1 Go(x — 27) B(x) %
Yt+1(7) = expy, () < =1 : )

Zi\le Go(x — ;)
The initialization could be the (normalized) Gaussian mean in the matrix space. An example of the result
of this evolution scheme is provided on top of Figii@ However, this algorithm does not lead to an

interpolation, but rather to an approximation, since the weights are not zero at other measurement points.

Moreover, we have little control on the quality of this approximation. It is only at the limit whegees to
zero that we end-up with a (non-continuous) closest point interpolation.
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Figure 4: Top: Bi-linear interpolation between the 4 2D tensors at the corners. Bottom: A slice of the
tri-linear interpolation between 3D tensors. Left: interpolation in the standard matrix space (interpolation of
the coefficients), and right: in our Riemannian space.

We will describe in Sectiol®.2 a last alternative that performs the interpolation and extrapolation of
sparsely distributed tensor measurements using diffusion.

5 Filtering tensor fields

Let us now consider that we have a tensor field, for instance like in Diffusion Tensor Imaging (DTI)
[Bihan et al., 200]1. where the tensor is a first order approximation of the anisotropic diffusion of the water
molecules at each point of the images tissues. In the brain, the diffusion is much favored in the direction of
oriented structures (fibers of axons). One of the goal of DTI is to retrieve the main tracts along these fibers.
However, the tensor field obtained from the images is noisy and needs to be regularized before being further
analyzed. A naive but simple and often efficient regularization on signal or images is the convolution by
a Gaussian. The generalization to Tensor fields is quite straightforward using once again weighted means
(Sectiors.1below). An alternative is to consider a regularization using possibly anisotropic diffusion. This
will be the subject of Sectidh.3
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5.1 Gaussian Filtering

In the continuous setting, the convolution of a vector figjdz) by a Gaussian is:
F(o) = [ Goly -~ 2) Fo(w) dy
Yy

In the discrete setting, coefficients are renormalized since the neighbovhsogsually limited to points
within one to three times the standard deviation:

D uev(a) Go(u) Fo(z + u)

F(ﬂf) = Zuev(x) GO-(U)

_ ; _ 2
= argmin Z Go(u) || Fo(z +u) — F||
ueV(z)

Like previously, this weighted mean can be solved on our manifold using our intrinsic gradient descent
scheme. Starting from the measured tensor figl(k), the evolution equation is

2 uey Go (1) Bi(x)Eo(x + u)
Zuev GU (u)

We illustrate in Fig.5 the comparative Gaussian filtering of a slice of a DT MR image using the flat
metric on the coefficient (since weights are positive, a weighted sum of positive definite matrices is still
positive definite) and our invariant Riemannian metric. Figidisplays closeups around the ventricles to
compare the different regularization methods (including the anisotropic filters of SBcigh One can see
a more important blurring of the corpus callosum fiber tracts using the flat metric. However, the integration
of this filtering scheme into a complete fiber tracking system would be necessary to fully evaluate the pros
and cons of each metric.

Yt41(7) = expy, () <

Figure 5: Regularization of a DTI slice around the corpus callosum by isotropic Gaussian filtering. On
the left: raw estimation of the tensors. The color codes for the direction of the principal eigenvector (red:
left/right, green anterior/posterior, blue: top/bottom). On the middle: Gaussian filtering of the coefficients
(5x5 window, o = 2.0). On the right: equivalent filtering (same parameters) using the Riemannian metric.
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5.2 Spatial gradient of Tensor fields

On an-dimensional vector field" (z) = (fi(x1,...24),... fo(z1,...24))" overR?, one may express the
spatial gradient in an orthonormal basis as:

OF . v
VFT_<&E>_[8J;1F,...6$(1F]_ : .. :
Ofn Ofn

ox1’ " Oxgq

Notice the linearity of the derivatives implies that we could use directional derivatives in more than the
d orthogonal directions. This is especially well adapted to stabilize the discrete computations: the finite
difference estimation of the directional derivativé)igF'(z) = F(z + u) — F(z). By definition, the spatial
gradient is related to the directional derivatives thro8gf" v = 9, F'(x). Thus, we may comput& F’ as
the matrix that best approximate (in the least-square sense) the directional derivatives in the neighborhood
V (e.g. 6, 18 or 26 connectivity in 3D):

(-1)
VF(z) = argmmZHGTu—auF )12 = (Zuu) (Zu&uF(:ﬂ)T>
u€ey u€ey uey
(-1)
~ (ZUUT) (Zu(F(:v—I—u)—F(:v))T)
u€ey uey

We experimentally found in other applications (e.g. to compute the Jacobian of a deformation field
in non-rigid registration) that this gradient approximation scheme was more stable and much faster than
computing all derivatives using convolutions, for instance by the derivative of the Gaussian.

To quantify the local amount of variability independently of the space direction, one usually takes the
norm of the gradient]| VF(x)|? = Zle |0., F(z)||*. Once again, this can be approximated using all
directional derivatives in the neighborhood

z+u) — F(x)|?
HVF(x)||2:CMC;(V)u;)HF( +u) — F(z)| -

lul?

Notice that this approximation is consistent with the previous one only if the direatians normalized to
unity.

For a manifold valued fiel®(z) define onR¢, we can proceed similarly, except that the directional
derivativesd,., () are now tangent vectors @f;,,) M. They can be approximated just like above using
finite “differences” in our exponential chart:

OuS(x) = 10gs () (B(x + ) = D(x) S(x + 1) = B(z)? log (B(2) 7 Do +w) B(2) ) T(2)? (8)

As observed in Sectic8.5, we must be careful that this directional derivative is expressed in the standard
matrix coordinate system (coefficients). Thus, the basis is not orthonormal: to quantify the local amount of
variation, we have to take the metric at the padift:) into account, so that:

1 _1\||I?
IV2(@)[3 Zua%z [ caﬁw)ZHlog(Ew Efuuj =@ )], o

uey
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Figure 6:Norm of the gradient of the tensor field. On the left: computed on the coefficients with Eq. [7! (with
the flat metric). On the middle: we computed the directional derivatives with the exponential map (Eq. 8),
but the norm is taken without correcting for the metric. As this should be very close to the flat gradient norm,
we only display the difference image. The main differences are located on very sharp boundaries, where
the curvature of our metric has the most important impact. However, the relative differences remains small
(less than 10%), which shows the stability of both the gradient and the log / exp computation schemes.
On the right: Riemannian norm of the Riemannian gradient (Eq. 19). One can see much more detailed
structures within the brain, which will now be preserved during an anisotropic regularization step.

5.3 Filtering using PDE

Regularizing a scalar, vector or tensor fiéldaims at reducing the amount of its spatial variations. The first
order measure of such variations is the spatial gradigfitthat we dealt with in the previous section. To
obtain a regularity criterion over the domdin we just have to integratekeg(F) = [, ||VF(z)|? dx.
Starting from an initial fieldFy(x), the goal is to find at each step a fidlg ) that minimizes the regularity
criterion by gradient descent in the space of (sufficiently smooth and square integrable) functions.

To compute the first order variation, we write a Taylor expansion for an incremental step in the direction
of the field H. Notice thatH (z) is a tangent vector &t (z):

Reg(F +¢ H) = Reg(F) +25/Q<VF(95) | VH(z)) dx + O(e%).

We get the directional (or Gateau) derivativ@; Reg(F) = 2 [, (VF(x) | VH(x)) dx. To compute

the steepest descent, we now have to find the gradidtig(F') such that for all variatior, we have

OnReg(F) = [ (VReg(F)(z) | H(x)) p(y) dz. Notice thatV Reg(F)(z) andH (z) are elements of the
tangent space & (x), so that the dot product should be taker¥ét) for a Tensor field.

5.3.1 The case of a scalar field

Let f : R — R be a scalar field. Our regularization criterionReg(f) = |, IV f(x)||* dx. Letus
introduce the contravariant derivative liv= (V |.) and the Laplacian operatdxf = div(Vf). The
divergence is usually writteW"™ = (9/0x1,...,0/0z4), so that in an orthonormal coordinate system we
haveAf = (V |Vf) = Zle 92 f. Using the standard differentiation rules, we have:

div(hVf)=(V |AVf)=hAf+(Vh|Vf)

Now, thanks to the Green’s formula (see e/@allot et al., 1998, we know that the flux going out of
the boundaries of a (sufficiently smooth) regidis equal to the integral of the divergence inside this region.
If we denote byn the normal pointing outward at a boundary point, we have:

/aQ<th|n) d”:/gzdiv(hvf):/glhAf-F/(z(Vh|Vf>
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This result can also be interpreted as an integration by p&t.il\ssuming homogeneous Neumann bound-
ary conditions (gradient orthogonal to the normalase: (Vf |n) = 0), the flow across the boundary
vanishes, and we are left with:

OnReg(f)(x) = 2 /Q (Vf(z) | Vh(z)) dz = -2 /Q h(z) Af(z) de

Since this last formula is no more than the dot product on the shaé® R) of square integrable functions,
we end-up with the classical Euler-Lagrange equati®iReg(f) = —2Af(x). The evolution equation
used to filter the data is thus

fer1(@) = fi(x) — eVReg(f)(x) = fi(z) + 2eAfi(x)

5.3.2 The vector case

Let us decompose our vector field ) into its n scalar components (x). Likewise, we can decompose
thed x n gradientV F' into the gradient of the scalar component¥ f;(x) (columns). Thus, choosing an
orthonormal coordinate system on the spR€&eour regularization criterion is decoupled inténdependent
scalar regularization problems:

Reg(F)(x) =Y /Q IVFi(@)]? de = Reg(f:)
=1 =1

Thus, each componelfithas to be independently regularized with the Euler-Lagrange equatiBay( f;) =
—2A f;. With the convention that the Laplacian is applied component-wise (so that we stillhave-
div(VF) =VTVF = (Af1,...Af,)"), we end-up with the vectorial equation:

VReg(F) = —2AF for Reg(F) = / |\VF(x)| dz
Q
The associated evolution equatiorfis 1 (z) = Fi(z) + 2 eAFy(x).

5.3.3 Tensor fields

For a tensor field(x), the procedure appears to be more complex. However, a tangent vector to a tensor
field (e.g.d,X(x)) is simply a vector field that maps to each paint R¢ a vector ofTE(x)Sym,f. Thus,
we may simply apply the above framework. Our regularization criterion is:

2
| dz (10)

d d
_1 _1
Reg(®) = [ V2@ =3 JACRCTE o =3 ||z 0z =

and its gradient is simply:
d
VReg(E)(z) = —2A%(z) = -2 07,5(x)
=1

In the above formula, is should be noticed that the second order spatial derdative:) is the derivative
of a tangent vectod),, X (x). Thus,V Reg(X)(x) is a vector ofly,,)Sym,! that is expressed in the same
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coordinate system as the tangent ve&tok: (). Finally, the gradient descent on the regularization criterion
with the intrinsic geodesic scheme of Seci&f leads to:

Yi+1(x) = expy,(5) (—€ VReg(X)(7)) = expy, (y) (26 AX(2)) (11)

For the numerical computation of the Laplacian, let us observe that, from the Taylor expansion of a
vector fieldF atz, we have:(F(z + u) — F(z)) 4+ (F(z — u) — F(z))) = 02F (z) + O(||u[|®). Thus, we
may approximate the second order tensor derivative by

F2%(x) ~ SES(x + ) + SEOD(x — u). (12)

In this formula, all vectors belong 6, ,)Sym,! so that we do not have any problem with the coordinate
system used. Finally, like for the computation of the gradient, we may improve the computation of the
Laplacian by using second order derivatives in all possible directions in the neighbdrhdssuming a
symmetric neighborhood (i.e. bothand—u belong toV), this can be further simplified into:

o 25(x)  2d Se0S(x+ )
A%() = ) 2 Tl? = Card) 2 [l >
u€y uey

5.3.4 Anisotropic filtering

In practice, we would like to filter within the homogeneous regions, but not across their boundaries. The ba-
sicidea s to penalize the smoothing in the directions where the derivative is imp&#aobp and Malik, 1990
Gerig et al., 199p If ¢(.) is a weighting function decreasing frorf0) = 1 to ¢(4o00) = 0, this can be real-

ized directly in the discrete implementation of the Laplacian (E3): the contribution 0b2Y is weighted

by c(||0.X]|/|lu||). With our finite difference approximations, this leads to the following modified Lapla-

cian:
A 5 — d . 0u2(x)\ 02%(z)
B (@) = Gty 2 () %
L
Card(V) = [l [Jull

Figures7 and8 present example results of this very simple anisotropic filtering scheme on synthetic and
real DTl images. We used the functiofr) = exp (—z*/x?), where the thresholgl controls the amount
of local regularization. For both synthetic and real data, the histogram of the gradient norm is very clearly
bimodal so that the thresholdis easily determined.

In Fig. [7, we generated a tensor field with a discontinuity, and add independent Gaussian noises ac-
cording to Sectiol8.8 The anisotropic smoothing perfectly preserves the discontinuity while completely
smoothing each region. In this synthetic experiment, we retrieve tensor values that are very close to the
initial tensor field. This could be expected since the two regions are perfectly homogeneous. After enough
regularization steps, each region is a constant field equal to the mean of the 48 initially noisy tensors of the
region: the regularized tensors should be roughly 7 times more accurate than the noisy ones.

In Figure8, we display the evolution of (a slice of) the tensors, the norm of the gradient and the fraction
anisotropy (FA) at different steps of the anisotropic filtering of a 3D DTI. The FA is based on the normalized
variance of the eigenvalues. It shows the differences between an isotropic diffusion in the brain (where the
diffusion tensor is represented by a sphere, FA=0) and a highly directional diffusion (cigar-shaped ellipsoid,
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Figure 7: Left: 3D synthetic tensor field with a clear discontinuity. Middle: The field has been corrupted
by a Gaussian noise (in the Riemannian sense). Right: result of the regularization after 30 iterations (time
step e = 0.01).

FA=1). Consequently, the bright regions in the image are the potential areas where nervous fibers are located.
On can see that the tensors are regularized in “homogeneous” regions (ventricles, temporal areas), while the
main tracts are left unchanged. It is worth noticing that the fractional anisotropy is very well regularized
even though this measure has almost nothing in common with our invariant tensor metric.

Figure9 displays closeups around the ventricles to compare the different regularization methods devel-
oped so far. The ventricles boundary is very well conserved with an anisotropic filter and both isotropic
(ventricles) and anisotropic (splenium) regions are regularized. Note that the U-shaped tracts at the bound-
ary of the grey/white matter (lower left and right corners of each image) are preserved with an anisotropic
filter and not with a Gaussian filter.

6 Regularization and restoration of tensor fields

The pure diffusion is efficient to reduce the noise in the data, but it also reduces the amount of information.
Moreover, the amount of smoothing is controlled by the time of diffusion (time stapes the number
of iterations), which is not an easy parameter to tune. At an infinite diffusion time, the tensor field will be
completely homogeneous (or homogeneous by part for some anisotropic diffusion schemes), with a value
corresponding to the mean of the measurements over the region (with Neumann boundary conditions). Thus,
the absolute minimum of our regularization criterion alone is of little interest.

To keep close to the measured tensor fiejdx) while still regularizing, a more theoretically grounded
approach is to consider an optimization problem with a competition between a data attachment term and a
possibly non-linear anisotropic regularization term:

C(X) = Sim(3,%0) + A Reg(X)
Like before, the intrinsic evolution equation leading to a local minimum is:

i+1(x) = expy, (5 (—€ (VSIm(E,X0) + A VReg(E)()))

6.1 The regularization term

Aswe saw in the previous section, the simplest regularization criterion is the norm of the gradient of the field
Reg(F) = [, IVF(2)||? dz. To preserve the discontinuities, the gradient of this criterion (the Laplacian)
may be tailored to prevent the smoothing across them, as we have done in SegdbriHowever, there

iS N0 more convergence guaranty, since this anisotropic regularization “force” may not derive from a well-
posed criterion (energy). Following the pioneer work Befona and Malik, 1990there has been quite

an extensive amount of work to propose well posed PDE for the non-linear, anisotropic and non-stationary
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Figure 8:Anisotropic filtering of a DT slice (time step 0.01, x = 0.046). From left to right: at the beginning,
after 10 and after 50 iterations. Top: A 3D view of the tensors as ellipsoids. The color codes for the direction
of the principal eigenvector. The results could be compared with the isotropic Gaussian filtering displayed
in Figure 5. Middle: norm of the Riemannian gradient. Bottom: fractional anisotropy.
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middle part of the images). Lower

but the discontinuities are not well preserved,

)

superior). Upper left: Original image. Upper right: Gaussian filtering using the flat metric (5x5

= 2.0). This metric gives too much weight to tensors with large eigenvalues,

g
outliers in the ventricles or in the middle of the splenium tract. Lower right: Gaussian filtering using the Rie-

mannian metric (5x5 window, o = 2.0). Outliers disappeared
regions are regularized. Note that the U-shaped tracts at the boundary of the grey/white matter (lower left

left: Anisotropic filtering in the Riemannian framework (time step 0.01, 50 iterations). The ventricles bound-
ary is very well conserved with an anisotropic filter and both isotropic (ventricles) and anisotropic (splenium)
and right corners of each image) are preserved with an anisotropic filter and not with a Gaussian filter.

sum. The color codes for the direction of the principal eigenvector (red: left-right, green: posterior-anterior,

blue: inferior

Figure 9:Closeup on the results of the different filtering methods around the splenium of the corpus callo-
window,

for instance in the ventricles at the level of the cortico-spinal tracts (upper
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regularization of vector fields (see e.@Vegickert, 1998Sapiro, 200]Lto cite only a few recent books). Some
of these techniques were recently adapted to work on some maniftddaymperle and Deriche, 2002
Chefd’hotel et al., 2004

One of the main idea is to replace the usual simple regularizationlﬁegﬁF fQ |IVE(z)||? dz by
an increasing functio® of the norm of the spatial gradienReg(F') = [, ®(||VF(x)||) dx. With some
regularity conditions on thé-function, one can redo the previous derlvatlons with @hiinction, and we
end-up with Aubert and Kornprobst, 20(:1

V Reg(F)(z) = —2 div (W ) 22@57 (Wﬁxi}?>

This continuous scheme can be adapted to the Riemannian framework using the proper gradient norm. How-
ever, designing an efficient discrete computation scheme is more difficult. We may compute the directional
derivatives using finite differences in the flat matrix space and use the intrinsic evolution scheme, but we
believe that there are more efficient ways to do it using the exponential map. We are still investigating that
aspect. In the following, we keep the isotropic regularization based on the squared amplitude of the gradient

6.2 A least-squares attachment term

Usually, one consider that the data (e.g. a scalar image or a displacement vects (fig)dare corrupted

by a uniform (isotropic) Gaussian noise independent at each space position. With a maximum likelihood
approach, this amounts to consider a least-squares critgiiot\F’) = |, [|F(z) — Fy(x)||* dz. Like in the
previous section, we compute the first order variation by writing the Taylor expansion

Sim(F +¢e H) = Sim(F) + 25/ (H(z) | F(x) — Fo(x)) dx + O(£?).
Q
This time, the directional derivativey Sim (L) is directly expressed using a dot product within the
proper functional space, so that the steepest ascent direcNostiia (F') = 2 (F'(x) — Fp(x)).

On the tensor manifold, assuming a uniform (generalized) Gaussian noise independent at each position
also leads to a least-squares criterion thought a maximum likelihood approach. The only difference is that
is uses our Riemannian distance:

Sim(S / dist (S(x) , So(x)) dz = /Q HZ(X)ZO(X)H;x) do

Thanks to the properties of the exponential map, one can show that the gradient of the squared distance is:
_— ——

Vs disB(X, Zy) = —2 X%, [Pennec, 20(}4 One can verify that this is a tangent vectobaivhereas. %

is not. Finally, we obtain a steepest ascent direction of our criterion which is very close to the vector case:

VSim(X)(z) = —2 X(x)2o(x) (14)

6.3 A least-squares attachment term for sparsely distributed tensors

Now, let us consider the case where we do not have a dense measure of our tensor field,uhealures
3; at irregularly distributed sample points. Assuming a uniform Gaussian noise independent at each
position still leads to a least-squares criterion:

N
Sim(S Z dis? (S(zi) , %) = /Q S dist (S(2) , %) 8z — ) da
=1
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In this criterion, the tensor field(z) is related to the data only at the measures paiptthough the

Dirac distributionsé(z — ;). If the introduction of distributions may be dealt with for the theoretical
differentiation of the criterion with respect to the continuous tensor figldt is a real problem for the
numerical implementation. In order to regularize the problem, we consider the Dirac distribution as the
limit of the Gaussian functiott, wheno goes to zero. Using that scheme, our criterion becomes the limit
cases = 0 of:

N
Simy (%) = /QZ dist (X(z) , %) Go(z — ;) da (15)
=1

From a practical point of view, we need to use a value @fhich is of the order of the spatial resolution of

the grid on whichX(z) is evaluated, so that all measures can at least influence the neighboring nodes.
Now that we came back to a smooth criterion, we may differentiate it exactly as we did for the dense

measurement setup. The first order variation is:

N

Z Gg(x — 1‘,) E(X)Zi> dr + 0(52)7

i=1

Simg (X +el) = Simg(2) — 2 E/Q < A(z)

so that we get:

e r—

N
VSimg(x) = =2 Golx — 2;) B(x); (16)
=1

6.3.1 Interpolation through diffusion

With the sparse data attachment terh@)(and the isotropic first order regularization ter@0), we are
looking for a tensor field that minimizes its spatial variations while interpolating (or more precisely approx-
imating at the desired precision) the measurement values:

N
C(E) =) Gola — ;) dist (S(ai) , L) + A /Q IVE@)Il ) deo
=1

According to the previous sections, the gradient of this criterion is

e —

N
VC(D)(x) = =2 ) Golz — 2;) B(x)T; — 2 A AX(z)
=1

Using our finite difference approximation scheme (E8), the intrinsic geodesic gradient descent scheme
(Sec.3.6) is finally:

N _—
S (@) = XDy, (2) (5 {Z Go(x — ;) (%)X + N Z E(X)”Zu(’)‘;_'_u)}) a7
=1

uey

Last but not least, we need an initialization of the tensor figjdz) to obtain a fully operational al-
gorithm. This is easily done with any radial basis function approximation, for instance the renormalized
Gaussian scheme that we investigated in SeatidnFigure1C displays the result of this algorithm on the
interpolation between 4 tensors. On can see that the soft closest point approximation is well regularized into
a constant field equal to the mean of the four tensors if data attachment term is neglected. On the contrary,
a very small value o is sufficient for regularizing the field between known tensors (as soeni@much
smaller than the typical spatial distance between two measures).
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Figure 10: Interpolation and extrapolation of tensor values from four measurements using diffusion. Top
left: The four initial tensor measurements. Top right: Initialization of the tensor field using a soft closest
point interpolation (mean of the four tensors with a renormalized spatial Gaussian influence). Bottom left:
result of the diffusion without the data attachment term (1000 iterations, time-step ¢ = 1, A = +00). Bottom
right: result of the diffusion with an attachment term after (1000 iterations, time-stepe =1, A=0.01,0 =1
pixel of the reconstruction grid). The algorithm did in fact converge in about 100 iterations.
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7 Conclusion

We propose in this paper an affine invariant metric that gives to the space of positive define symmetric
matrices (tensors) a very regular manifold structure. In particular, tensors with null and infinite eigenvalues
are both at an infinite distance of any positive definite symmetric matrix: the cone of positive definite
symmetric matrices is replaced by a space which has an infinite development in each (of itsl)/2
directions. Moreover, there is one and only one geodesic joining any two tensors, and we can even define
globally consistent orthonormal coordinate systems of tangent space. Thus, the structure we obtain is very
close to a vector space, except that the space is curved. We exemplify some the the good metric properties
for some simple statistical operations. For instance, the Karcher mean in Riemannian manifolds has to be
defined through a distance-based variational formulation. With our invariant metric on tensor, the existence
and uniqueness is insured, which is generally not the case.

A second contribution of the paper is the application of this framework to important geometric data
processing problem such as interpolation, filtering, diffusion and restoration of tensor fields. We show that
interpolation and Gaussian filtering can be tackled efficiently through a weighted mean computation. How-
ever, if weights are easy to define for regularly sampled tensors (e.g. for linear to tri-linear interpolation), the
problem proved to be more difficult for irregularly sampled values. The solution we propose is to consider
this type of interpolation as a statistical restoration problem where we want to retrieve a regular tensor field
between (possibly noisy) measured tensors values at sparse points. This type of problem is usually solved
using a PDE evolution equation. We show that the usual linear regularization (minimizing the magnitude
of the gradient) and some anisotropic diffusion schemes can be adapted to our Riemannian framewaork, pro-
vided that the metric of the tensor space is taken into account. We also provide intrinsic numerical schemes
for the computation of the gradient and Laplacian operators. Finally, simple statistical considerations led us
to propose least-squares data attachment criteria for dense and sparsely distributed tensors fields. The dif-
ferentiation of these criterion is particularly efficient thanks to the use of the Riemannian distance inherited
from the chosen metric.

From a theoretical points of view, this paper is a striking illustration of the general framework we are
developing sinceFennec, 199a&o work properly with geometric objects. This framework is based on the
choice of a Riemannian metric on one side, which leads to powerful differential geometry tools such as the
the exponential maps and geodesic marching techniques, and on the transformation of definitions based on
linear combination or integrals into minimization problems on the other side. The Karcher mean and the
generalized Gaussian distribution are a typical example that we have previously investgateed, 2004
In the present paper, we provide new examples with interpolation, filtering and PDE on Riemannian-valued
fields.

Many research avenues are still left open, in particular concerning the choice of the metric to use. In
a more practical domain, we believe that investigating new intrinsic numerical schemes to compute the
derivatives in the PDEs could lead to important gains in accuracy and efficiency. Last but not least, all
the results presented in this paper still need to be confronted to other existing methods and validated in the
context of medical DTI applications. We are currently investigating another very interesting application field
in collaboration with P. Thompson and A. Toga at UCLA: the analysis and the modeling of the variability
of brain.
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