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To my wife Myriam.

Forward

During the last decade, my main research topic was on medical image analysis, and more par-
ticularly on image registration. However, I was also following in background a more theoretical
research track on statistical computing on manifolds. With the recent emergence of computational
anatomy, this topic gained a lot of importance in the medical image analysis community. During
the writing of this habilitation manuscript, I felt that it was time to present a more simple and
unified view of how it works and why it can be important. This is why the usual short synthesis of
the habilitation became a hundred pages long text where I tried to synthesizes the main notions of
statistical computing on manifolds with application in registration and computational anatomy. Of
course, this synthesis is centered on and illustrated by my personal research work.

Manuscript Organization

The manuscript is divided in two parts. The first part details the scientific work. After an executive
summary of the contributions, Chapter 2 describes the theory of intrinsic statistics on Rieman-
nian manifolds, and show how we can turn it into a practical computing framework. Chapter 3
extends this framework to manifold-valued images with the important example of diffusion tensors.
With Chapter 4, we turn to more classical image analysis applications with rigid and non-rigid
registration. The performance evaluation framework we proposed for rigid registration is a direct
application of the statistical computing framework on manifolds, while inter-subject non-rigid reg-
istration problems drove our interest towards the emerging field of computational anatomy. We
present in Chapter 5 our contributions in this area, based on the three previous chapters. Finally,
Chapter 6 presents a few perspectives for future research.

The second part of the manuscript provides a summary of my activities in terms of education,
responsibilities, supervision of students and publications. As the first part of this habilitation
extensively covers my research work, I felt that it was not necessary to attach to this manuscript
the main journal papers covering these topics. However, the principal publications on which the
text is based are bold-faced in my publication list at the end of the document and an URL link is
provided to retrieve them.
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Chapter 1

Extended summary

The quality of biomedical images is ever increasing: better spatial and temporal resolution, better
signal-to-noise ratio. New imaging protocols bring new information about the anatomy, the func-
tion or the physiology of living systems. The dimensionality of the data also increases: to the usual
three spatial dimensions, one often adds a fourth temporal dimension which can be at the level of
the second (heart beats) or years (growth or pathology follow-up). At yet another scale, one could
conceive a fifth dimension by considering the variability of an organ in a population. Computational
anatomy is an emerging discipline that aim at analyzing and modeling the biological variability of
the human anatomy at the population scale. The goal in not only to model the normal variations
among a population, but also to discover morphological differences between normal and pathological
populations, and possibly to detect, model and classify the pathologies from structural abnormal-
ities. Fxamples that we investigated are the shape of the scoliotic spine and the variability of the
brain normal.

The method is to identify anatomically representative geometric features, to describe their sta-
tistical variability across populations, and test for statistical differences. However, it appeared over
the last years that one should conceive a new way to perform the statistics because most of the
geometric features (curves, surfaces, deformations) do not belong to Euclidean spaces but rather
to curved manifolds. To that aim, we propose the Riemannian metric as the basic structure. The-
oretical developments demonstrate that this is a very powerful tool and example applications on
diffusion tensor images show the well-posedness and the efficiency of the method. A second funda-
mental tool of computational anatomy is registration in the broad sense, which consists in finding
the geometric transformation that best superimposes the data (features or images) in a common
reference frame. Several applications in image guided therapy led us to develop and enhance meth-
ods to rigidly and non-rigidly register medical images. One of the key problem is to evaluate the
performances of the algorithm: this is once again a statistical estimation problem on geometric
features (transformations). The second key problem is to introduce prior information about the
anatomy and the pathology in the algorithm to robustify them while drastically reducing the com-
putation times, in order to bring the algorithm closer to their use in real clinical applications. In this
setting, finding the optimal regularization prior for a particular medical image registration problem
is also a computational anatomy problem as it amounts to modeling the expected variability of the
transformation.
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Statistical computing on manifolds, image registration and computational models of the
anatomy, these are the three inter-related problems that we tackle in this habilitation.

Intrinsic Statistics on Riemannian Manifolds

Measurements of geometric primitives are often noisy in real applications and we need to use
statistics either to reduce the uncertainty (estimation), to compare measurements, or to test
hypotheses. Unfortunately, geometric primitives often belong to manifolds that are not vector
spaces, and we showed that using standard statistics sometimes leads to apparent paradoxes
|[Pennec and Ayache, 1998].

Based on a Riemannian manifold structure, we present in [Pennec, 2006a| a consistent devel-
opment of statistical notions like the mean value and the covariance matrix of a random element,
normal law, Mahalanobis distance and test. We provide a characterization theorem of the Fréchet
mean which is more general than the previous ones and an efficient gradient descent algorithm to
compute it. The notion of Normal law we propose is based on the the minimization of the in-
formation knowing the mean and covariance of the distribution. The resulting family of pdfs is
different from the heat kernel induces by a Brownian motion on the manifold but also spans the
whole range from uniform (on compact manifolds) to the point mass distribution. We were able to
provide tractable approximations (with their limits) for small variances which allows to use these
distributions very easily in practice.

One of my important contributions was to show that the Riemannian structure is not only good
from a theoretical point of view but that is also provides an efficient practical computing framework.
The key is to replace straight lines by the geodesics of the manifold, and vectors by bi-points, a 19th
century concept ancestor of the vectors. It is then possible to cleanly unfold the manifold along its
geodesics to obtain a locally flat representation that conserves radial distances (the Riemannian log
map), or conversely to walk along a geodesic starting with a given tangent vector (the Riemannian
exponential map). The implementation of these two maps at each point is the basis of programming
on Riemannian manifolds [Pennec et al., 2006].

We were among the very first to introduce these notions of geometrical statistics in medi-
cal image analysis [Pennec, 1999], in particular to estimate the error on the rigid registration
[Pennec et al., 2000]. Some tentative extensions of the theory to spatially extended features like
surfaces of functions irregularly sampled in space are not described in this habilitation because only
very partial solutions did emerge. The key ideas were the use of the EM algorithm for dealing jointly
with the sampling and matching problem on surfaces [Granger and Pennec, 2002a, Granger, 2003|
and for realizing a joint spatial and signal parcellation of fMRI sequences |[Flandin et al., 2002,
Flandin, 2004|. A similar idea, although non uniform, was also exploited with Generalized image
models [Gonzélez Ballester et al., 2004].

Manifold-Values Images: the Tensor Computing Example

We extended in [Pennec et al., 2006] the Riemannian computing framework to fields of features
with the example of positive define symmetric matrices (tensors). Tensors are nowadays common
geometric data. They are used for instance to encode the directional diffusion of water molecules
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in Diffusion Tensor Imaging, or as covariance matrices to describe the joint variability at different
places (Green function) in shape variability analysis. As tensors constitute a convex half-cone in the
vector space of matrices, many usual operations (like the mean) are stable in this space. However,
problems arise when estimating tensors from data (in standard DTI, the estimated symmetric matrix
could have negative eigenvalues), or when smoothing fields of tensors: the numerical schemes used
to solve the Partial Differential Equation (PDE) often lead to negative eigenvalues if the time step
is not small enough.

Our basic idea was to provide the tensor space with a Riemannian metric invariant under the
action of affine transformations of the underlying space [Pennec et al., 2006]. We show in Chapter
3 that it leads to a two parameters family of metrics that share the same geodesics with very strong
theoretical properties: the cone of positive definite symmetric matrices is replaced by a regular
manifold of “constant” (homogeneous) non-scalar curvature without boundaries (null eigenvalues
are at the infinity), the geodesic between two tensors and the mean of a set of tensors are uniquely
defined, etc. We also introduced in [Arsigny et al., 2006d, Arsigny et al., 2006¢| another family of
metrics that share very similar properties: Log-Euclidean metrics. These new metrics give results
very similar to the affine invariant ones, but lead to drastically simpler computations because they
give a vector space structure to tensors.

The choice of a convenient Riemannian metric allows to generalize to tensor fields many impor-
tant geometric data processing algorithms such as interpolation, filtering, diffusion and restoration of
missing data [Pennec et al., 2006]. For instance, most interpolation schemes and Gaussian filtering
can be tackled efficiently through a weighted mean computation. Linear and anisotropic diffusion
schemes can be adapted to the Riemannian framework through partial differential evolution equa-
tions, provided that the metric of the tensor space is taken into account. For that purpose, we provide
generic and intrinsic numerical schemes based on the logarithmic map to compute the gradient and
Laplacian operators. Finally, to enforce the fidelity to the data (either sparsely distributed tensors
or complete tensors fields) we propose least-squares criteria based on the Riemannian distance that
are particularly simple and efficient to solve.

The excellent properties of the Riemannian computing framework were exemplified on the esti-
mation and regularization of Diffusion Tensor MR Images (DTI), in view of the tracking of the white
matter fibers within the brain [Fillard et al., 2006a, Fillard et al., 2006b|. The careful modeling of
the noise on the data led us to propose new Rician ML and MAP estimation frameworks which can
cope with a much lower SNR compatible with clinical applications.

Medical Image Registration

Before being a fundamental tool of computational anatomy, image registration was central problem
in medical image analysis. This is still an open problem for large deformation between images
of different subjects. Historically, rigid registration was one of my important research themes.
The objective was not only to design neat theoretical methods, but also to reach clinically usable
algorithms, in particular for image guided therapy.

In each application, the method was to revisit the registration criteria to better take into ac-
count the noise assumptions on the data. For instance, we designed in the European project
ROBOSCOPE the prototype of an image-assisted robotic system for endoscopic brain surgery.
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We were among the very first to register MRI to per-operative 3D ultrasound images. A careful
modeling of the image intensity signals in both modalities led us to propose an innovative sim-
ilarity measure depending on both the MR intensity and its gradient: the bivariate correlation
ratio [Roche et al., 2001]. Then, brain deformations were followed in the 3D ultrasound sequence
[Pennec et al., 2003, Pennec et al., 2005a].

A transversal axis of my research was to develop performance evaluation methods for rigid reg-
istration algorithms in terms of robustness, precision and accuracy. In a probabilistic setting, this
amounts to doing statistics on rigid-body transformations, which was one of my original motivation
for deriving proper statistical methods on manifolds. To establish a reference (a Bronze Standard)
in the absence of a Gold Standard, we proposed a multiple registration protocol involving multiple
methods and a database of images representative of clinical conditions. That way, the (possible)
bias of each method becomes a random variable and is taken into account in the final mean reg-
istration (see [Glatard et al., 2006f] for a recent review). Using this type of technique, we were
able to certify the accuracy of the 2D /3D registration procedure in the augmented reality system
we developed with S. Nicolau at IRCAD for guiding percutaneous radio-frequency ablations of the
liver [Nicolau et al., 2004a|. This was an important security issue for its clinical use. Since then,
the system was tested on more than 10 patients in the operating room and we showed that it could
reach the accuracy of the practitioner with a much faster gesture and no intermediate CT scan
|Nicolau et al., 2006].

To recover more complex deformations, we analyzed with P. Cathier the very efficient Demon’s
algorithm. The goal was to guaranty the convergence and to better adapt the algorithm to specific
application constraints and assumptions. By introducing voxel matches as auxiliary variables in
addition to the geometric transformation, we proposed a very efficient and well posed two-steps
iterative minimization framework [Cachier et al., 2003]. Moreover, additional constrains such as
sulcal line correspondences could be considered with almost no addition computational complex-
ity [Cachier et al., 2001]. To further accelerate the algorithm, we proposed with R. Stefanescu a
generic “pipeline” method to parallelize recursive image filtering algorithms on a cluster of personal
computers [Stefanescu et al., 2004b]. This was also combined with a space-varying transformation
regularization based on the underlying tissue type, and a non-stationary tradeoff between the image
similarity and regularization to better match the reliable information (e.g. edges) while interpolat-
ing within homogeneous image areas. This allows to take into account very easily and efficiently
pathologies like tumors in the atlas-based segmentation of brain images for radiotherapy planning
[Stefanescu et al., 2004c].

In between rigid transformations and dense deformation fields, we designed with V. Arsigny a
new class of parametric transformations that exhibit a locally rigid or affine behavior while staying
diffeomorphic [Arsigny et al., 2005c|. This allows to better model the physical deformations that
occur in articulated systems or in histological slices for instance. Revisiting the link between these
transformations and general diffeomorphisms led us to propose in [Arsigny et al., 2006a] very effi-
cient algorithms to compute the group logarithm of general diffeomorphisms (and the reverse map
the exponential). Although there are still some theoretical concerns, this opens a new practical and
very efficient way to perform statistics on diffeomorphisms which could become soon a central too
for modeling the anatomical variability.
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Computational Models of the anatomy

There are nowadays a growing number of geometrical and physically-based registration methods that
can faithfully deal with intra-patient deformations. However, one need to rely on statistics to learn
the relationship between the anatomy of different subjects. The method is to identify anatomically
representative geometric features (points, tensors, curves, surfaces, volume transformations), and to
model their statistical distribution. This can be done for instance via a mean shape and covariance
structure after a group-wise matching. Therefore, computational anatomy is at the interface of
geometry, statistics and image analysis. This is currently a very active research field, as exemplified
by the quality of the submissions and the number of attendees (almost 70 people) to the first
workshop on the Mathematical Foundations of Computational Anatomy (MFCA’06) organized in
conjunction with MICCAI'06 [Pennec and Joshi, 2006].

In this context, our statistical computing framework on manifolds allows to decouple the anatom-
ical modeling problem (representing the observations with maximally informative parameters) from
the technical difficulties of computing with the model due to manifold nature of the parameter space.
This is illustrated in Chapter 5 with the construction of a statistical model of the scoliotic spine. By
using an articulated model based on the relative position and orientation of the vertebrae (i.e. rigid
body transformations), we were able with J. Boisvert to analyze the variability of the spine shape
over a database of more than 300 patients and to assess the evolution of the deformation during
orthopedic treatments [Boisvert et al., 2006c|. Moreover, the four first modes of variation are very
closely correlated to the clinical classification of scolioses [Boisvert et al., 2006e|, which demonstrate
the truthfulness of the approach.

In collaboration with P. Thompson at LONI, we proposed with P. Fillard to model the variability
of the brain from a dataset of precisely delineated anatomical structures (sulcal lines) on the cerebral
cortex. we model the first and second order moments of sulci by an average sulcal curve and a
sparse field of covariance tensors along these curves. This information is then extrapolated to the
whole brain using an harmonic diffusion PDEs on tensor fields. As a result, we obtain a dense
3D variability map which proves to be in accordance with previously published results on smaller
samples subjects. We also propose statistical tests which demonstrate that our model is globally
able to recover the missing information and innovative methods to analyze the asymmetry of brain
variability [Fillard et al., 2006¢|. Preliminary results on the correlation between local and distant
displacements indicate that the displacement of the symmetric point is correlated. Other long
distance correlations also appear, but their statistical significance still needs to be established.

Another way to gather statistics on inter-subject brain variability is to perform multiple de-
formable registration between a reference image and subject images. We proposed in [Pennec, 2006b|
a consistent mathematical framework to learn the shape deformation metric from a set of registra-
tion results and to use it as a regularization penalization in non-rigid registration. First experiments
indicate that the method is sound and effective. The next step will be to analyze the results with
different registration algorithms and to compare and combine them to the sulcal variability. The
ultimate goal is to include many additional sources of information: other cortical landmarks like
sulcal ribbons and gyri, the surface of internal structures like the ventricles, the hippocampus or the
corpus callosum, or fiber pathways mapped from DTI. These sources of information are individually
providing a partial and biased view of the whole variability. Thus, we expect to observe a good
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agreement in some areas, and complementary measures in other areas. This will most probably
lead in a near future to new neuroanatomical findings and more robust medical image analysis

applications.



Chapter 2

Intrinsic statistics on Riemannian
manifolds

2.1 Motivation

Measurements are often noisy in real image analysis applications and we need to use statistics either
to reduce the uncertainty (estimation), to compare measurements, or to test hypotheses. Exam-
ples of simple features that I historically considered in medical imaging applications are 3D rota-
tions, 3D rigid transformations, frames (a 3D point and an orthonormal trihedron), semi-oriented
frames (where some of the trihedron unit vectors are given up to their sign) [Pennec et al., 2000,
Pennec et al., 1998], oriented or directed points [Granger et al., 2001, Granger and Pennec, 2002b],
positive definite symmetric matrices (so-called tensors) coming from diffusion tensor imaging
[Fletcher and Joshi, 2004, Lenglet et al., 2006, Batchelor et al., 2005, Pennec et al., 2006] or from
variability measurements |Fillard et al., 2005c].

Unfortunately, these geometric primitives often belong to manifolds rather than to Euclidean
spaces, which prevents using the standard statistical tools. Throughout this chapter, I will illustrate
the construction of a statistical computing framework on manifolds with the above simple features.
Besides their practical value in some applications, their interest is to illustrate quite clearly most of
the problems that appear for computing on manifolds, and to guide the solutions towards generic
methods. This is particularly important in view of dealing in the future with more complex manifolds
like curves, surfaces, parametric or general diffeomorphic transformations [Commowick et al., 2005,
Pennec et al., 2005b], etc.

2.1.1 Invariance and consistency

Processing geometric features is far more difficult than processing points, and a number of para-
doxes can arise. For instance, we have shown in [Pennec and Thirion, 1997] that additive noise was
not well suited for describing the uncertainty of frames and could be advantageously replaced by
a “compositive” model of noise. We investigated in [Pennec and Ayache, 1998| three other basic
problems that often arise when processing geometric features or in a statistical setting. The first
one is the quantification of the probability of occurrence of an event when some geometric features

15
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Figure 2.1: Bertrand’s Paradox (1907): three methods for computing the probability that a
“random” chord of a circle has a length greater than the side of an inscribed equilateral triangle.
From left to right, the methods give a probability of 1/3, 1/2 and 1/4. The three solutions are correct
but they do not refer to the same notion of uniformity in the way we choose the chord. Method
1: A chord intersects the circle in two points that we assume to be equally and independently
distributed on the circle. If the first point is A, the second point has to lie between A’ and A” in
the circle for the chord to be greater than the triangle side. This is just 1/3 of the circumference
and the searched probability is then 1/3. Method 2: A chord is characterized by its distance p to
the center (between 0 and 1) and its orientation 6 w.r.t. a fixed line (between 0 and 27). Drawing
an inscribed equilateral triangle parallel to the chord, we can see that the distance d has to be less
than 1/2 in order to have a chord length greater than v/3. By assuming a uniform orientation and
distance to the origin, we find a normalized probability of 1/2. Method 3: A chord is uniquely
defined by the orthogonal projection I of the circle center onto it. It has to lie inside the disc of
radius 1/2 in order to have a sufficient length. Assuming that I is uniformly distributed over the
interior of the circle, the normalized probability is 1/4.

are randomly distributed. Bertrand’s paradox [Poincaré, 1912, Kendall and Moran, 1963] illustrate
the fact that different notions of uniformity lead to different statistical results. The solution is to
require the invariance of the uniform distribution under the action of a given group of transforma-
tion. For instance, in Fig. 2.1, the three solutions are invariant by rotation, but only the second one
is invariant by the full rigid body transformations group. A direct application is the quantification
of the false positives alarm in matching algorithms (Section 2.5).

The same type of paradox can be established for “distances” between features, which is one of the
mostly used operations in image processing algorithms. Measuring the Euclidean distance between
parameters in different charts (or representations) obviously leads to different results. Considering
a true distance on the manifold (a symmetric positive definite bivariate function with the triangular
inequality) allows to be independent of the chart, but is not sufficient to ensure the stability of the
results with respect to a change of the reference frame of the physical space (the action of a transfor-
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mation on our features). Once again, the solution we suggested in [Pennec and Ayache, 1998| was
to choose a distance which is invariant under the action of a given group of transformation. Under
some specific conditions detailed in [Pennec and Ayache, 1998|, such an invariant distance can be
induced on the manifold by a left invariant distance on the transformation group.

2.1.2 Barycenters are not intrinsic

Last but not least, let us investigate the notion of a mean feature. For 3D rotations, we can for
instance compute the mean rotation matrix R = %ZZ R;, the mean quaternion g = %ZZ q; by
using the unit quaternion representation, or the mean rotation vector r = %EZ r;. These three
methods give different results: the two first are not even rotations and none of them is stable with
respect to a change of reference frame. The definition of the mean should of course be independent
of the chart used to represent the manifold. The main problem here is that the addition and
multiplication by a scalar are operators that are only defined in a vector space (for instance in
each chart). As they are not intrinsic to our manifold, their result will inevitably change with
the chart used. Similarly, we cannot generalize the standard statistical expectation operator T =
[ 2 dP(x) to manifolds since an integral is a linear operator, and there is no such things as linearity
in manifolds. Thus, a new definition of mean is needed, which implies revisiting an important
part of the theory of statistics. We were among the very first in 1996 [Pennec and Ayache, 1996,
Pennec, 1996, Pennec and Ayache, 1998| to propose the use of the Fréchet expectation. This will
be detail from a theoretical view point in Section 2.3. The basic idea is to change a closed form
(the barycenter) into a minimization problem (the minimum of the variance, i.e. expected squared
distance). Since the distance is intrinsic to the manifold, the result of the minimization is also
intrinsic. This idea of redefining values through the minimization of intrinsic quantities turned out
to be one of the most powerful for developing a computational framework on manifolds Section 3.1.3
will focus on how to choose the metric for the important classes of Lie groups and homogeneous
manifolds, with a practical example on 3D rotations. Last but not least, Section 2.5 will present
application examples in computer vision with the generalization of several matching algorithms to
noisy geometric features.

2.2 A Riemannian computing framework

Based on group and invariance properties, we developed in [Pennec and Thirion, 1997 a statistical
estimation and optimization framework for rotations and rigid body motions where composition
and inversion replaced addition and subtraction. Using the idea of the Fréchet mean, we were
able to reshape that framework in an intrinsic way and to extend it to more general Lie groups in
|[Pennec, 1996]. To work on features that do not belong a Lie groups, we investigated homogeneous
manifolds (manifolds on which a transformation group act transitively, i.e. where there always
exists a transformation that transforms any given point to any other given point of the manifold)
[Pennec, 1996, Chapter 6].

In both cases, the geometric invariance properties were incidentally providing an (invariant)
Riemannian metric, that was in turn used to define geodesics and other notions. In 1997, it became
clear that both frameworks could be merged and reformulated only on the basis of a Riemannian
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metric, the invariance properties being only used to determine a consistent (Riemannian) metric.
Moreover, Riemannian manifolds include a much larger set of manifolds, and in particular quite
general curves and surfaces. This gives to the computing framework a much larger range of appli-
cations. However, if all the ideas were in place at that time [Pennec, 1999|, the conditions under
which the variance was differentiable were remaining obscure, and the gradient of the variance was
needed in order to justify the gradient descent algorithm that we proposed to compute the Fréchet
mean. The generalization (to the non compact case with arbitrary distributions) of a first proof
of the differentiability of the variance (for the uniform distribution on compact manifolds) pro-
posed by [Maillot, 1997| considerably delayed the proposal of the general Riemannian framework
[Pennec, 2006a].

We summarize below the basic elements of Riemannian geometry that are needed before turning
in Section 2.3 on the statistical computing framework itself. The interested reader may refer to
[do Carmo, 1992] for a more complete but still affordable presentation of Riemannian geometry and
to [Spivak, 1979, chap. 9| and [Klingenberg, 1982, Gallot et al., 1993] for more details.

2.2.1 Riemannian geometry

A Riemannian metric on a manifold M is a continuous collection of scalar products on the tangent
space at each point of the manifold. Thus, if we consider a curve on the manifold, we can compute
at each point the norm of the speed vector (the instantaneous speed). To compute the length of the
curve, we then proceed as usual by integrating this value along the curve. The distance between
two points of a connected Riemannian manifold is the minimum length among the curves joining
these points. The curves realizing this minimum for any two points of the manifold are called
geodesics. The calculus of variations shows that geodesics are the solutions of a system of second
order differential equations depending on the Riemannian metric. In our framework, we assumed
that the manifold is geodesically complete, i.e. that the definition domain of all geodesics can be
extended to R. This means that the manifold has no boundary nor any singular point that we can
reach in a finite time. As an important consequence, the Hopf-Rinow-De Rham theorem states that
there always exists at least one minimizing geodesic between any two points of the manifold (i.e.
whose length is the distance between the two points). In our statistical computing framework, we
will implicitly assume that the manifolds are geodesically complete. The impact of removing this
assumption is not completely clear yet.

2.2.2 Exponential chart

Let x be a point of the manifold that we consider as a local reference and z7 a vector of the tangent
space T, M at that point. From the theory of second order differential equations, we know that
there exists one and only one geodesic starting from that point with this tangent vector. This allows
to develop the manifold in the tangent space along the geodesics (think of rolling a sphere along its
tangent plane at a given point). The geodesics going through the reference point are transformed
into straight lines and the distance along these geodesics is conserved (at least in a neighborhood
of x).

The function that maps to each vector zy € T, M the point y of the manifold that is reached
after a unit time by the geodesic starting at « with this tangent vector is called the exponential
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Figure 2.2: Left: The tangent planes at points  and y of the sphere Sy are different: the vectors v and w
of T, M cannot be compared to the vectors ¢ and u of T)yM. Thus, it is natural to define the scalar product
on each tangent plane. Right: The geodesics starting at x are straight lines in the exponential map and the
distance along them is conserved.

map. This map is defined in the whole tangent space T, M (since the manifold is geodesically
complete) but it is generally one-to-one only locally around 0 in the tangent space (i.e. around z
in the manifold). In the sequel, we denote by Zy = log,(y) the inverse of the exponential map: this
is the smallest vector such that y = exp,(7y). If we look for the maximal definition domain, we
find out that it is a star-shaped domain delimited by a continuous curve C, called the tangential
cut-locus. The image of C by the exponential map is the cut locus C, of point x. This is the closure
of the set of points where several minimizing geodesics starting from x meet. On the sphere Sa(1)
for instance, the cut locus of a point x is its antipodal point and the tangential cut locus is the
circle of radius 7. It becomes much more complex on the ellipsoid.

The exponential map within this domain realizes a chart called the exponential chart. It covers
all the manifold except the cut locus of the reference point x, which has a null measure. In this chart,
geodesics starting from x are straight lines, and the distance from the reference point are conserved.
This chart is somehow the “most linear” chart of the manifold with respect to the reference point x.

2.2.3 A practical computing framework

In fact, most of the usual operations using additions and subtractions may be reinterpreted in a
Riemannian framework using the notion of bipoint, an antecedent of vector introduced during the
19th Century. Indeed, one defines vectors as equivalent classes of bipoints (oriented couples of
points) in a Euclidean space. This is possible because we have a canonical way (the translation)
to compare what happens at two different points. In a Riemannian manifold, we can still compare
things locally (by parallel transportation), but not any more globally. This means that each “vector”
has to remember at which point of the manifold it is attached, which comes back to a bipoint.
However, one can also see a vector zj (attached at point x) as an element of the tangent space
at that point. Such a vector may be identified to a point on the manifold using the geodesic
starting at x with tangent vector zy, i.e. using the exponential map: y = exp,(z7). Conversely,
the logarithmic map may be used to map almost any bipoint (z,y) into a vector zy = log,(y) of
Ty M. This reinterpretation of addition and subtraction using logarithmic and exponential maps
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is very powerful to generalize algorithms working on vector spaces to algorithms on Riemannian
manifolds, as illustrated by Table 2.1. It is also very powerful in terms of implementation since we
can practically express all the geometric operations in these terms: the implementation of log, and
exp, is the basis of any programming on Riemannian manifolds, as we will see in the following.

Vector space Riemannian manifold
Subtraction TY=y—1x zy = log,.(y)
Addition y=2xz+ 1y y = exp, (T7)
Distance dist(z,y) = ||y — z|| dist(z,y) = |27]|«
Mean value (implicit) > Tz, =0 > logg(z) =0
Gradient descent Tire = 24 — VO (24) | Tppe = exp,, (—eVCO(2y))
Linear (geodesic) interpolation || z(t) = z1 +t 7123 z(t) = exp,, (t T123)

Table 2.1: Re-interpretation of basic standard operations in a Riemannian manifold.

2.3 Simple statistics on Riemannian manifolds

Statistical analysis on manifolds is a relatively new domain at the confluent of several mathematical
and application domains. Its goal is to study statistically geometric object living in differential man-
ifolds. Directional statistics |Bingham, 1974, Jupp and Mardia, 1989, Kent, 1992, Mardia, 1999|
provide a first approach to statistics on manifold. As the manifolds considered here are spheres and
projective spaces, the tools developed were mostly extrinsic, i.e. relying on the embedding of the
manifold in the ambient Euclidean space. More complex objects are obtained when we consider
the “shape” of a set of k points, i.e. what remains invariant under the action of a given group
of transformation (usually rigid body ones or similarities). The statistics on these shape spaces
[Kendall, 1989, Dryden and Mardia, 1991, Le and Kendall, 1993, Small, 1996] raised the need for
intrinsic tools. In these works, the link between the tools developed, the metric used and the space
structure is not always very clear.

Another mathematical approach was provided by the study of stochastic processes on Lie groups.
For instance, |Grenander, 1963| derived central limit theorems on different families of groups and
semi-groups with specific algebraic properties. Since then, several authors in the area of stochastic
differential geometry and stochastic calculus on manifolds proposed results related to mean val-
ues [Karcher, 1977, Kendall, 1991, Emery and Mokobodzki, 1991, Arnaudon, 1995, Picard, 1994,
Darling, 1996]. On the applied mathematics and computer science side, people get interested
in computing and optimizing in specific manifolds, like rotations and rigid body transforma-
tions [Pennec et al., 1998, Grenander et al., 1998, Pennec, 1998a, Gramkow, 2001, Moakher, 2002],
Stiefel and Grassmann manifolds [Edelman et al., 1998], etc.

Over the last years, several groups attempted to federate some of the above approaches in a
general statistical framework, with different objectives in mind. For instance, the aim of the the-
ory of statistical manifolds [Amari, 1990, Oller and Corcuera, 1995] is to provide a Riemannian
structure to the space of parameters of statistical distribution. In this spirit, [Hendricks, 1991,
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Oller and Corcuera, 1995| characterized the performances of some statistical parametric estimators
in manifolds like the bias and the mean square error. [Hendricks, 1991] considered extrinsic statis-
tics, based on the Euclidean distance of the embedding space, while [Oller and Corcuera, 1995]
considered the intrinsic Riemannian distance, and refined the Cramer-Rao lower bound using
bounds on the sectional curvature of the manifold. In [Bhattacharya and Patrangenaru, 2002,
Bhattacharya and Patrangenaru, 2003], the authors focused on the asymptotic consistency prop-
erties of the extrinsic and intrinsic means and variances for large sample sizes, and were able to
propose a central limit theorem for flat manifolds.

In view of computer vision and medical image analysis applications, our concern was quite
different [Pennec, 1999, Pennec, 2006a|: we aimed at developing computational tools that can con-
sistently deal with geometric features, or that provide at least good approximations. As we often
have few measurements, we were interested in small sample sizes rather than large one, and we
preferred to obtain approximations rather than bounds on the quality of the estimation. Thus, one
of our special interest was to develop Taylor expansions with respect to the variance, in order to
evaluate the quality of the computations with respect to the curvature of the manifold.

In [Bhattacharya and Patrangenaru, 2002, Bhattacharya and Patrangenaru, 2003,
Oller and Corcuera, 1995| as well as in our work, the chosen framework is the one of geodesically
complete Riemannian manifolds, which appears to be powerful enough to support an interesting
theory. To ensure a maximal consistency of the theory, we chose to rely only on intrinsic properties
of the Riemannian manifold, thus excluding methods based on the embedding of the manifold in
an ambient FEuclidean space.

2.3.1 Measures and expectation of observables

As any metric in a Euclidean space the Riemannian metric G(x) induces an infinitesimal volume
element dM(z) = \/det(G(z)) dx in any chart (the volume of the parallelepiped spanned by the
vectors of an orthonormal ba51s of the tangent space). The difference is that the measure is now
different at each point since the local expression of the metric G is changing. The measure dM
on the manifold that can be used as a reference to measure random events on the manifold and to
define their probability density function (if it exists), i.e. the function p(x) on the manifold such that
dP(z) = p(x) dM(z). This pdf is intrinsic because is does not depend on the chart used, contrarily
to the expression in any chart with respect to the Lebesgue measure dP(x x) v/det(G(x)) dx
which depends on the local expression of the metric.

It is worth noticing that the induced measure d M represents the notion of uniformity according
to the chosen Riemannian metric. This automatic derivation of the uniform measure from the
metric gives a rather elegant solution to the Bertrand paradox for geometric probabilities that we
considered in introduction.

With the probability measure of a random element, we can integrate functions ¢(z) from the
manifold to any vector space, thus defining the expected value of this function:

/¢dP /<z> M(z)

This notion of expectation corresponds to the one we defined on real random variables and vectors.
However, we cannot directly extend it to define the mean value of the distribution since we have no



22 CHAPTER 2. INTRINSIC STATISTICS ON RIEMANNIAN MANIFOLDS
way to generalize this integral in R into an integral with value in the manifold.

2.3.2 Riemannian center of mass

As one cannot define the mean or expected “value” of a random manifold element using a weighted
sum or an integral as usual, several alternative definitions based on properties on the usual mean
were proposed (see [Picard, 1994| and [Pennec, 2006a, Sec. 4.3| for a review). The most interesting
ones for general geodesically complete Riemannian manifolds were proposed by Fréchet, Karcher

and Emery.
[Fréchet, 1944, Fréchet, 1948| proposed to define the mean as the set of points realizing the global
minimum of the variance o2 (y) = E [ dist(x,y)? | in metric spaces. Following the same principle,

one can define the deviation at order a as oz (y) = (E[ dist(y, ) ])l/a

order o its minimizers. For instance, the modes, i.e. the points where the intrinsic density is locally
maximum on the manifold, are obtained for a = 0. The median point is obtained for « = 1. For
a — 00, we obtain the “barycenter” of the distribution support (which has to be compact).

As the Fréchet mean is the result of a minimization, existence and uniqueness are not ensured.
This has to be compared with some central values in vector spaces, for instance the modes. However,
one only keeps the global modes here. To get rid of this constraint, [Karcher, 1977] proposed to
consider the local minima of the variance instead of the global ones. We call these new set of means
Riemannian centers of mass. Using this extended definition, [Karcher, 1977| and [Kendall, 1990]
were able to established existence and uniqueness theorems for distributions with a compact and
small enough support. These theorems were extended by [Darling, 1996] to distributions with
non-compact support in a very specific class of manifolds that includes the Hadamard manifolds’
whose curvature is bounded from below. This does not include rigid body transformations, but this
includes the manifold of tensors (Chap. 3).

[Emery and Mokobodzki, 1991] proposed to use the exponential barycenters, i.e. the points at
which the mean is null in the local exponential chart : [,, 7y dP(y) = 0. If the support of the
distribution is included in a strongly convex open set?, he showed that the exponential barycenters
were the critical points of the variance. They are thus a superset of the Riemannian centers of
mass that include themselves the Fréchet means. However, the notions are generally different for
distributions with a larger support.

[Picard, 1994] realized a good synthesis of most of these notions of mean value and show that
the definition of a “barycenter” (i.e. a mean value) is linked to a connector, which determines itself a
connection, and thus possibly a metric. An interesting property brought by this formulation is that
the distance between two barycenters (with different definitions) is of the order of O(og). Thus, for
sufficiently concentrated random points, all these values are close.

and call central points at

2.3.3 An algorithm to compute the mean

To compute the Riemannian center of mass, the idea is to use a gradient descent algorithm. Thus,
we have to compute the derivative of the variance. However, one cannot use the Lebesgue theorem

'Simply connected and complete manifolds with non-positive sectional curvature
2Here, strongly convex means that for every two points there is a unique minimizing geodesic joining them that
depend in a C* of the two points.



2.3. SIMPLE STATISTICS ON RIEMANNIAN MANIFOLDS 23

to differentiate under the sum because the integration domain depends on the derivation point
through its cut locus, unless there is no cut locus or the distribution has a sufficiently small compact
support that does not intersect it, which was one of the properties used for the previous existence,
uniqueness and equivalence theorems. It took me several years to generalize in [Pennec, 2006a| a
differentiability proof of Pr Maillot [Maillot, 1997] originally designed for the uniform distribution
on compact manifolds.

The theorem we obtain is that the variance is differentiable (if it is finite) at the points where
the cut locus has a null probability measure. At such a point, it has the following gradient:
(grad 0?)(y) = —2 [,,¥% dP(z). When we have a measurable mass on the cut-locus, the right
hand side of this equation is obviously not defined: the variance is continuous but can have a sharp
extremum (most probably a maximum).

Thus, the extrema of o2 are exponential barycenters or points with P(C(y)) > 0. Simi-
lar results have been derived independently in [Oller and Corcuera, 1995|, where it is assumed
that the probability is dominated by the Riemannian measure (which explicitly excludes point-
mass distributions and the case P(C(y)) > 0), and in [Bhattacharya and Patrangenaru, 2002,
Bhattacharya and Patrangenaru, 2003] for simply connected Riemannian manifolds with non-
positive curvature. Our proof extends this result to any kind of manifold. Basically, the char-
acterization of the Riemannian center of mass is the same as in Euclidean spaces if the curvature
of manifold is non-positive (and bounded from below), in which case there is no cut-locus. If the
sectional curvature becomes positive, a cut locus may appear, and a non-zero probability on this
cut-locus induces some discontinuities in the first derivative of the variance. This corresponds to
something like a Dirac measure on the second order derivative, which is an additional difficulty to
compute the Hessian matrix of the variance on these manifolds.

To effectively compute the mean, we proposed in [Pennec, 1996, Pennec, 1998a] a Gauss-Newton
gradient descent algorithm on rotations and rigid-body motions. This algorithm was readily ex-
tended to general Riemannian manifolds in [Pennec, 1999, Pennec, 2006a] by approximating the
variance using the following Taylor expansion in a normal coordinate system for a vector v € T, M:

02(expy(v)) = o*(y) + grad 02(v) + 2 Hess 0 (v, v) + O(Hv||§)

The Hessian is in fact the differential of the gradient (grad o?)(y) = —2 Iy yz dP(z). As we
explain above, there is a problem due to the cut locus. However, one can split the integral into one
part that does not take into account the cut locus, which gives us a perfect positive definite matrix
(2 times the identity), and one part that account for the cut locus, which can be expressed using
integrals of Jacobi fields [Karcher, 1977|. For a toy example on the circle, see also [Pennec, 2006a].
Deliberately neglecting this second term gives us a perfectly concave “second order approximation”
with the following Gauss-Newton scheme

yrr1 = exp,, (E[4:2])

This algorithm essentially alternates the computation of the barycenter in the exponential chart
centered at the current estimation of the mean value, and a re-centering step of the chart at the
point of the manifold that corresponds to the computed barycenter (geodesic marching step). We
found that this algorithm was very efficient and typically converging in 5 to 10 iterations. Notice
that it converges towards the real mean in a single step in a vector space.
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2.3.4 Covariance and Mahalanobis distance

Once we have determined the mean value, the random feature may be represented in the exponen-
tial chart at that point as a random vector with null mean in a star-shaped domain. With this
representation, there is no difficulty to define the covariance matrix and potentially higher order
moments as multilinear forms in the tangent space:

Covy = B[ 78 7" | = /M@) (52)" dP(z)

As in a Euclidean space, the trace of this matrix (expressed in an orthogonal coordinate system for
the local metric) is equal to the variance.

Based on this covariance matrix, we defined in [Pennec, 1996] the Mahalanobis distance between
a random manifold element & ~ (Z, Cov,) and a (deterministic) point y as the anisotropic weighting
of the distance between the deterministic feature to the mean using the inverse of the covariance
matrix: p2(y) = TyT CoviV Zy. This statistical distance is very useful to normalize different
measurements according to their expected uncertainty, especially in “anisotropic” cases, which often
occur with geometric features (e.g. translation in millimeters and rotations in radians or degrees
for rigid transformations).

Interestingly, the expected Mahalanobis distance of a random element with itself is indepen-
dent of the distribution and is equal to the dimension of the manifold, as in the vectorial case
[Pennec, 2006a]: E [ p2(x) | = n.

2.3.5 Gaussian and Y? law

Several generalizations of the Gaussian distribution to Riemannian manifolds have already be
proposed so far. In the stochastic calculus community, one usually consider the heat kernel
p(z,y,t), which is the transition density of the Brownian motion [Grenander, 1963, Emery, 1989,
Grigor’yan, 2006|. This is the smallest positive fundamental solution to the heat equation % —Af
=0, where A is the Laplace-Beltrami operator (i.e. the standard Laplacian with corrections for the
Riemannian metric). On compact manifolds, an explicit basis of the heat kernel is given by the
spectrum of the manifold-Laplacian (eigenvalues \; with associated eigenfunctions f; solutions of
Af = A\f). However, the explicit computation of this spectrum is impossible but in very few cases
[Gallot et al., 1993].

To obtain tractable formulas, several alternative distributions have been proposed
in directional statistics [Bingham, 1974, Jupp and Mardia, 1989, Kent, 1992, Mardia, 1999,
Mardia and Jupp, 2000], in particular the wrapped Gaussian distributions. The basic idea is to
take the image by the exponential of a Gaussian distribution on the tangent space centered at the
mean value (see e.g. [Mardia and Jupp, 2000] for the circular and spherical case). It is easy to see
that the wrapped Gaussian distribution tends towards the mass distribution if the variance goes to
zero. In the circular case, one can also show that is tends toward the uniform distribution for a large
variance. [Oller and Corcuera, 1995] extended this definition by considering non-centered Gaussian
distributions on the tangent spaces of the manifold in order to tackle the asymptotic properties of
estimators. In this case, the mean value is generally not any more simply linked to the Gaussian
parameters. In view of a computational theory, the main problem is that the pdf of the wrapped



2.3. SIMPLE STATISTICS ON RIEMANNIAN MANIFOLDS 25

distributions can only be expressed if there is a particularly simple geometrical shape of the cut-
locus. For instance, considering an anisotropic covariance on the n-dimensional sphere leads to very
complex calculations.

Instead of keeping a Gaussian pdf in some tangent space, we propose in |Pennec, 2006a,
Pennec, 1999, Pennec, 1996] a new variational approach which is consistent with the previous def-
initions of the mean and covariance. The property that we take for granted is that the Gaussian
distribution maximizes the entropy among all distributions when we know the mean and the covari-
ance matrix. In the Riemannian setting, we defined the intrinsic entropy as the expectation of the
logarithm of the intrinsic pdf:

Hle) = - [ 1og(p(a) pla) dM(x) = - [ tog(p()) dP(2)
M M
Our definition is consistent with the measure inherited from the Riemannian metric since the pdf
that maximizes the entropy when we only know that the result is in a compact set U is the uniform
density in this set:

nlo) =tute) | [ a)

We were able to show in [Pennec, 2006a, Pennec, 1999, Pennec, 1996| that the intrinsic pdf max-
imizing this entropy knowing the mean z and the covariance matrix ¥ was a Gaussian distribution
on the exponential chart centered at the mean point and truncated at the cut locus (if there is one)3

Nimy(y) = k exp (—% TyT F:E)/) However, the relation between the concentration matrix (the

“metric” I" used in the exponential of the probability density function) and the covariance matrix X
is slightly more complex than the simple inversion of the vectorial case, as it has to be corrected for
the curvature of the manifold. Using a Taylor expansion of the Riemannian measure, we were able to
provide computationally tractable approximations for any manifold in case of small variances: Let
r = i(M, Z) be the injectivity radius at the mean point, i.e. the shortest distance to the cut-locus
(by convention r = 400 if there is no cut-locus). Assuming a finite variance for any concentration
matrix ', we have the following Taylor expansions:

. 1+ 0(c®) +€(9)
B (2m)" det(X)

1
and [=Xt— gRic +O(0) +e€ (E)

r

Here, €(z) is a function that is a O(z*) for any positive k, with the convention that e <+%.O> =
€(0) = 0%,

This family of distributions ranges from the point-mass distribution (for I' = 00) to the uniform
measure (i.e. uniform density for compact manifolds) for a null concentration matrix. For some
theoretical reasons (including the non-differentiability at the cut locus), this is probably not be the
best generalization of the Gaussian. However, from a practical point of view, it provides effective
and computationally tractable approximations for any manifold in case of small variances that we
were not able to obtain from the other definitions.

3The definition domain of the exponential a the mean point has to be symmetric to obtain this result. This is the
case in particular for symmetric spaces, i.e. a Riemannian spaces which metric is invariant under some symmetry.
“More precisely, this is a function such that Vi € R, limoy 27" e(z) = 0
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Last but not least, we proposed a generalization of the x? law to manifolds by considering the
Mahalanobis distance of a normally distributed random feature. In the same conditions as for the
Gaussian, we were able to show that is has the same density as in the vectorial case up to an order
3 in 0. This opens the way to the generalization of many other statistical tests, as we may expect
similarly simple approximations for sufficiently centered distributions.

2.4 Example manifolds

In the Riemannian setting presented up to here, all definitions are derived from the Riemannian
metric of the manifold. A natural question arising at that point is how to chose this metric? As
suggested in Section 2.1, invariance properties provide a partial answer for connected Lie groups
and homogeneous manifolds [Pennec, 1996, Pennec, 2004].

2.4.1 Invariant metrics on connected Lie groups

A Lie group is a differentiable manifold which have smooth compatible group operations. Thanks
to this structure, there are two canonical ways to define a Riemannian metric in order to apply our
statistical framework: we can go from the identity Id to any point g of the group by left or right
composition: g = go Id = Id o g. The differentials of these translations transport vectors from the
tangent space at the identity to the tangent space at g, and can thus be used to transport any dot
product (. |.);; given on the tangent at the identity to any point of the group, giving rise to left
or right invariant metrics:

(v w)y={(Dr(g)Vw | Dr(g) P aw),, or  (v|w)¥=(Dgr(g)™"v|Dr(g)Vw),

When the group is compact (for instance rotations), there exists a metric which is left and right in-
variant [Spivak, 1979, do Carmo, 1992] and the geodesics for this metric (starting from the identity)
are also the one parameter sub-groups. This is not true any more for more general non compact
groups (such as rigid transformations for instance): left and right invariant metrics are generally
different, and lead to different geodesics. We will see later on that this is one of the main problem:
they are only partially consistent with the group operations.

The uniform measures associated to the these invariant metrics are the Haar measures of the
group [Pennec and Ayache, 1998|, well known in geometric probabilities [Kendall and Moran, 1963,
Matheron, 1975, Santalo, 1976]. Since the metric is left (resp. right) invariant, the geodesics are
globally conserved by left (resp. right) translation and one can determine only the geodesics starting
from the identity. Thus, the left (resp. right) translations and their differentials realize a mapping
of exponential charts and allows us to identify the exponential chart at any point to the one at the
identity.

From a computer science point of view, this means that we have only one chart to deal, instead
of one at each point. This provides us with a particularly simple computational framework (which
was in fact the first one I developed, see e.g. [Pennec, 1996, Chapter 6]) where we only need to
implement the exponential and logarithmic maps at the identity (called the principal chart), and
the differential of the left (resp. right) translation. Whenever we need to compute at one point,
the basic idea is to go back to the identity using left (resp. right) translation (or its differential for
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tangent vectors), compute in the principal chart, and come back to the original point, still using
left (resp. right) translation.

This scheme only need to be slightly modified to fit our general Riemannian computing frame-
work: rather than translating back and forth before and after each operation, we may integrate this
translation in the definition the exponential chart at each point. For instance, we obtain the left-
invariant geodesic starting at & with tangent vector 7 as the left translation by x of the geodesic
starting at the identity with the left translation by ¢V of the tangent vector Ty:

exp,(Ty) = wo expld(DL(x_l).ﬁ)/)
N 1 T 1
ry =log,(y) = Dp(v).log(z™" oy)=Dr(z).(z7 oy)

From a practical point of view, this means that we only need to determine the equations of
the left- (or right-) invariant geodesics starting from the identity and to implement the mappings
exprg and logr;. Then, we automatically have the exp, and log, mappings at any point, and
the power of our computational framework on manifolds. Of course, many algorithms can be
implemented much more efficiently by expanding the formulas and simplifying the differentials.
For instance, the Gauss-Newton algorithm for the left-invariant mean is simplified into 41 =
Ty oexprg( 2 log;4(Z; o 2;)). This brings back to the invariant computational framework that
we originally designed in [Pennec, 1996].

Actually, it has to be noticed that the equation of the geodesics are only needed for the sake
of computational efficiency: geodesics are curves minimizing the distance but also the Riemannian
energy (the integral of the squared speed) between two points. Thus computing 7y = log,(y)
may be posed as an optimal control problem [Kaya and Noakes, 1997, Allassonniére et al., 2005],
and computing exp,(v) as a numerical integration problem (see e.g. [Helmke and Moore, 1994,
Hairer et al., 2002]). This opens the way to statistics interpolation, extrapolation and PDEs in
more complex spaces than the one we considered up to now, like curves [Michor and Mumford, 2006,
Klassen et al., 2004, Younes, 1998], surfaces, and diffeomorphic transformations.

For instance, the large deformation diffeomorphic metric mapping (LDDMM) method proposed
for inter-subject image registration in computational anatomy [Beg et al., 2005, Miller et al., 2003,
Miller and Younes, 2001, Joshi and Miller, 2000] finds the geodesic in the joint intensity and defor-
mation space by minimizing the Riemannian length of the deformation for a given right-invariant
metric. Through the so called EPDiff equation (Euler-Poincarré equation for diffeomorphisms), this
optimization framework has been recently rephrased in an exponential /logarithm framework similar
to the one developed here [Miller et al., 2006]. One additional complexity is that the space has an
infinite number of dimensions, which forbids the use of some of the tools (for instance the general-
ized Gaussian distribution). However, simple statistics like the mean and the principal component
analysis of a (finite) set of samples may still be computed [Vaillant et al., 2004]. There are also
infinitely many left- or right-invariant metrics on diffeomorphisms, and I believe that choosing the
ones that are adapted to the problem that we are investigating is also one of the key problem from
the application point of view (see also 3.1.3).
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2.4.2 Practical averaging of 3D rotations

Let us come back to a much more simple group: 3D rotations. This is the submanifold of 3x3
matrices that are orthogonal with a positive determinant and constitute a compact and connected
Lie group with the matrix multiplication and inversion. Differentiating the orthogonality constraint
R.R! = Id, we can see that a tangent vector dR at R is characterized by R.dR' = —dR.R!, i.e. it is
the left (or right) translation by R of a skew symmetric matrix. The tangent space at the identity
is the space of skew-symmetric matrix. To define a metric on the rotation group, we can either
consider the metric induced by the embedding in the vector space of matrices or chose a metric on
the tangent space at the identity and propagate it to all other points by left or right translation.

In fact, as the 3D rotation group is compact, there exists a bi-invariant metric (which is moreover
unique up to a scalar), and one easily verifies that it also corresponds to the metric induced by the
standard Froebenius metric on matrices: Let dR; and dRs be tangent vectors at R. then R'.dR;
and R'.dRy are tangent vectors at the identity. Taking the (half) Froebenius dot product at the
identity (A | B);, = 3Tr (A.B'), one obtain a left-invariant dot product at R which is still the
(half) Froebenius one:

(dRy [dRy) = ( RdRy | R'dRy),, = JTr (dR:.dRY)

To determine the geodesics starting from the identity, one may rely on one-parameter subgroups
(since the group is compact). These are rotation subgroups such that R(s +t) = R(s).R(t) =
R(t).R(s). It is well known that a 3D rotation can be characterized by an angle 6 around a unit axis
n, and that two rotation in general conditions commute if they have the same axis. This means that
one parameter subgroups are the curves R(t) = R(t.0,n), parameterized by the time ¢. The initial
velocity is the skew-symmetric matrix dR such that for any vector v, dR.v = n xv. The projection
of this tangent vector at identity in a minimal orthonormal basis gives the rotation vector r = 6.n.
For bi-invariant metrics, the Riemannian exponential map also corresponds to the Lie-group (here
the matrix) exponential. In the case of 3D rotations, the power series defining the matrix exponential
can be drastically simplified, leading to a very efficient computation thanks to Rodrigues’ formula.
Details about the numerical aspects can be found in [Pennec and Thirion, 1997, Pennec, 1996]. For
higher dimensions, similar simplifications also exist but are harder to obtain [Gallier and Xu, 2002].
Finally, the length of the geodesics starting at identity is given by the angle of the rotation reached
in a unit time. By invariance, the distance between any two rotations is thus given by the angle of
the residual rotation dist(Ry, Ry) = 6(RL.Ry).

As we will see in Section 3.2.3, averaging is the key for generalizing many algorithms to mani-
folds (interpolation, filtering, etc). In [Pennec, 1998a|, we evaluated the computational and accuracy
performances of three criteria to average elements on a Riemannian manifold: Least-squares corre-
sponds to the Riemannian center of mass; weighted least-squares and least Mahalanobis distanced
are the immediate generalization for heteroscedastic and anisotropic errors. The optimization was
solved as before using a Gauss-Newton gradient descent and geodesic walking. We also proposed an
estimation of the uncertainty of the resulting average using first order error propagation techniques.
The method was exemplified on 3D rotations and other features like frames. Results showed that
the accuracy prediction was statistically correct if there are enough features to estimate the noise
level, and computations times where within 3 to 20 times the one for points. This showed the
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efficiency of the computational framework.

Although this research report was not published as a journal paper, it is referred to by several
authors as this was one of the first descriptions of a practical algorithm to obtain the Riemannian
mean of 3D rotations. For instance [Gramkow, 2001], performed a comparative study of the accuracy
and time performances of our intrinsic mean algorithm and the closed form solution obtained by
minimizing more standard extrinsic least-squares criteria (e.g. minimizing the Euclidean norm
between rotation matrices or unit quaternions). The intrinsic rotation averaging was rediscovered
recently in applied mathematics [Moakher, 2002].

2.4.3 Limitations of invariant metrics

In [Pennec, 2004], we investigated how the statistical properties of random transformations were
affected by the group operations. It turns out that if all operations are perfectly compatible with
the left translation when we choose the left-invariant metric, things are getting more complex with
respect to the right translation.

For instance, the (left-invariant) intrinsic pdf of the left translation of a random transformation
J is simply pirog)(9) = pg(htV o g) while we have to use the modulus® AG(g) of the group for
the right translation: p(gon)(9) = AG(go f5)/AG(g).ps(g o hV). As the inversion permutes
left and right®, the modulus also appear for the inversion of a random transformation pf(_l)(g) =
AG(g"").pg(g?). Interestingly, there is a simple expression for the pdf of the composition of two
random transformations (thanks to the integration with the left Haar measure) that generalizes
convolution product used for the addition of two random vectors: p(fog)(h) = [5py(k).pg(kt" o
h).drG (k).

As far as the moments of the distribution are concerned, one easily show that the Riemannian
mean for a left invariant metric is stable under left translation but not under the right translation
and the inversion, unless the metric is also right invariant. We give in Fig. 2.3 a counter-example on
2D rigid transformations which shows that the empirical mean value of the inverse is generally not
the inverse of the mean value. As we know that there is generally no left and right invariant metrics
on a Lie group as soon as it is not compact [Arsigny et al., 2006e], this means that we cannot reach a
fully consistent statistical computing framework on Lie groups with left- or right-invariant metrics.
Even worse, one can show on the example of rigid body transformations that there is no Riemannian
metric that could be completely compatible with all group operations [Zefran et al., 1999].

Thus, there is a need for new research to find the alternative to the Riemannian struc-
ture for Lie groups. Based on the results of [Swann and Olsen, 2003| for shapes; we be-
gan to investigate with V. Arsigny the idea on relying on one-parameter subgroups instead
of geodesics. Preliminary results indicate that this may provide an interesting structure (see
[Arsigny et al., 2006b, Arsigny et al., 2006a] and Section 4.3.6).

’The modulus quantifies the ratio between left and right Haar measures: d.G(g) = AG(9).drG(g).
5This remark is much more powerful that it appears at first sight. For instance, on may compute right invariant
geodesics simply by taking the inverse of left-invariant ones.
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A 2D rigid transformation f is characterized by an angle of rotation 0 € [—m;7[ and a
translation vector t € R2. The composition of two transformations is given by:

(91 + 92) [27T]

R(61).t2 + t1 —sinf cos6

f1 o fg = ‘ with R(Q) = |:

cosf  sin6 ]

With an isotropic metric at identity, we obtain o flat left-invariant metric since the

translation and rotation parts are not correlated in the differential of the left translation:

Di(f)= { (1) R(()G) } Thus, the Christoffel symbols vanish and the geodesics starting from 0

(the identity) are strait lines: our representation is the exponential chart at identity.

Now, let f1 = (7/4; —V2/2; v2/2), fa = (0; V2; 0) and fs = (—7/4; —V2/2; —v/2/2) be
three transformations. One easily verify that their barycenter is zero. Thus, f = (0;0;0) = Id is
a Riemannian center of mass. In this case, this is the only one: E[{f1, f2, f3}]=1{(0; 0; 0)}.

The inverse of these transformations is easy to compute: fl'l = (-m/4;0; —1), f2('1) =
(0; —v/2;0) and f$ = (+7/4; 0; 1). This time, the barycenter f(-1) = (0; —v/2/3; 0) is null
for the rotation part, but not for the translation: the mean value of the inverse transformations
is not the identity: B | {f{™, f§, {7} | # B[{f1, fo, f3}]7.

Figure 2.3: Inconsistency of the left-invariant Riemannian mean and inversion in the 2D rigid
transformation group.

2.4.4 Homogeneous manifolds

Another example of interesting spaces is given by manifolds on which acts a transformation group
in a fransitive way, i.e. such that there exists a transformation that can map any point to the any
other point. In that case, one can identify the elements of the manifolds with subsets of the group.
Let o be a particular point of the manifold that we call the origin. The set of transformations H
that leave the origin unchanged is called the isotropy subgroup or stabilizer of the origin. A left
translation of the isotropy group is a set of transformations (which is generally not a subgroup) that
map the origin to the same point, say x. These cosets and are in facts the elements of the quotient
space G/H. As the action of the group is assumed to be transitive, all the points of the manifolds
can be reached from the origin, which means that there is one (and only one) coset for each point:
the manifold can identified to the quotient space M = G/H.

This isomorphism is the basis of the properties of the homogeneous manifolds. For instance,
an invariant distance can be induced on the manifold by the group distance under some specific
conditions |Pennec and Ayache, 1998]. However, it is easier to define an invariant Riemannian
metric by choosing a metric on the tangent space of the identity, and propagating it to the tangent
space at the other points of the manifold using the group action. Obviously, the metric should be
the same whatever transformation of each coset we take: this boils down to the invariance of the
metric on the tangent space at the origin with respect to the isotropy group. This condition is
actually necessary and sufficient (see [Pennec, 2004] for more details).

Notice that there does not always exists an invariant metric if the group is too large: take for
instance points under the affine group. When the invariant metric exists, the induced measure is
our invariant measure of [Pennec and Ayache, 1998|. However, the converse is false: there can be
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an invariant measure with no invariant metric (e.g. the Lebesgue measure on points under the
unimodular group).

Examples of homogeneous manifolds used in real applications of our framework are oriented or
directed points [Granger et al., 2001, Granger and Pennec, 2002b] for representing surface elements
(see below), or for the analysis of fracture geometry in rock mechanics [Rasouli, 2002]; quotient
spaces of rigid body transformations (i.e. semi- or non-oriented frames where 2 (resp. 3) of the
trihedron unit vectors are given up to their sign) to obtain the manifold of extremal points on
smooth surfaces in 3D images [Pennec et al., 2000, Pennec et al., 1998]. More recently, the man-
ifold of positive definite symmetric matrices (so-called tensors) took a particular importance for
processing and analyzing diffusion tensor images [Batchelor et al., 2005, Fletcher and Joshi, 2004,
Lenglet et al., 2006, Pennec et al., 2006]|, or to model the brain variability [Fillard et al., 2005¢].
Tensor computing and its applications will be presented in more detail in the next chapter to
illustrate further developments of the theory of statistical computing on manifolds.

2.4.5 Robust statistics using ¢-connectors

In view of developing a statistical representation of surfaces based on unstructured sets of oriented
points that could potentially explain the efficiency of tensor-voting techniques [Medioni et al., 2000],
we investigated in [Granger and Pennec, 2002b| some robust statistics on directions and orienta-
tions. We considered more specifically M-estimators [Rousseeuw and Leroy, 1987] of the distance
dy(z,y) = ((dist(z,y)) with $(0) = 0 and ¢ decreasing from 1 at zero while remaining non nega-
tives. These conditions ensure that dy remains a distance which is equivalent to the Riemannian one
for small distances, while giving less weight to points that are far away by tempering their distance.

When the original Riemannian distance is invariant, the robust metric is also invariant, but
is not any more Riemannian. For instance, it can model extrinsic distances (like the Euclidean
distance on unit vectors), as we will exemplify below. This lead in some cases to very efficient
approximations of the Riemannian mean for sufficiently peaked distributions.

We showed in [Granger and Pennec, 2002b| that using such a ¢-function amounts to replace the
tangent vector zy by the vector:

— o, z)— di > — — —
w(a) = g = X g (@)

This mappings constitute a (convex) connector in the sense of [Picard, 1994]: it formalizes a re-
lationship between the manifold and its tangent space at point x, exactly in the way we used the
exponential map of the Riemannian metric. Thus, we could think of defining mean values, higher
order moments and other statistical operations by replacing everywhere the Riemannian logarithmic
and exponential map with their ¢-equivalent.

For instance, one can verify that ||¢)(29)||s = dg(x,y). This show that the ¢-variance of a

random point Ui( x)=E [dQ Y, T } = f/\/l |v(zy)||> dP(y) is properly defined. Likewise, one can
define the ¢-covariance X4(z) = E [¢(2g).4(zy)" |, which trace is still equal to the ¢-variance.
Like in the Riemannian case, one can dlffel entlate this ¢-variance at the points where the cut-locus

has a null probability measure (the same proof applies because the ¢-distance is dominated by the
Riemannian distance), and we obtain: grad 0'35(1‘) = =2 [, o(7Yl2) ¥(z7) dP(y).
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This formula is interesting as it shows the limits of the equivalence of the results between the
Riemannian and convex connectors: the ¢-center of mass is a weighted barycenter both in the
Riemannian and in the ¢ exponential charts, but it is generally different from the (unweighted)
¢-exponential barycenter. With convex connectors, the different notions of means are not any more
subsets of each others. However, there are interesting applications from a computational points of
view.

Let us consider first the unit vectors (orientations) of R™. The Euclidean metric induces on
the sphere S,—1 a rotationally invariant Riemannian metric for which geodesics are great circles,
and the distance between two unit vectors u and v is the angle § = d(u,v) = arccos(u’.v). The
Euclidean metric dg(u,v) = |Ju — v|| can be considered as a ¢ estimator with ¢(f) = 2sin(0/2).
With the help of a Lagrange multiplier, one easily compute that the extrinsic Euclidean mean is
the renormalized Euclidean mean u = [u dP(u)/|| [wdP(u)|, which is thus a robust estimator or

the Riemannian mean!

Another quite used encoding of the directions is the tensor u.u’, which may be seen as an
immersion of the projective space Pn—1 into the vector space of m X n matrices (R”Q). With
this embedding, the squared extrinsic Euclidean distance (renormalized to be consistent with the
previous ones) is d?(u,v) = §||u.u’ —v.?||?2 =1 — (u'v)? = sin?(#). This is also a robust distance
with ¢(0) = sin(f) (for # < 7). In the tensor space, the encoding of a random direction is the
random tensor T, = E [u.ut } One should notice that the tensor has unit trace (by linearity since
u has unit length), which gives in practice one degree of freedom that can be used for instance to
encode for the probability of the position in fields of directions (e.g. in tensor voting). The mean
direction is represented by the tensor @.u' which is closest to T, in the Euclidean sense: this is
the eigenvector(s) of T, corresponding to the largest eigenvalue. Even more, we were also able to
show that the ¢-covariance of the direction was given directly by the restriction of the tensor to
the hyperplane orthogonal to the first eigenvector. Thus, the random tensor encodes not ounly for
a robust estimation of the Riemannian mean but also for (an approximation) of the second order
moments.

Simulations were run on a large number of cases to measure the relative accuracy of the vector
and tensor estimations with respect to the Riemannian mean. Up to a variance of 20 degrees,
the three methods have a similar accuracy and results are almost not distinguishable. Between
20 and 40 degrees of variance, the tensor estimation becomes different from the two others while
keeping a comparable global accuracy. After 40 degrees, the accuracy of the tensor mean highly
degrades and becomes useless (maximal errors are too large); the vector mean becomes different
from the Riemannian means while keeping for a while a similar accuracy. These experiments showed
a first example of extrinsic approximations that prove to be computationally more efficient than the
Riemannian mean. However, the intrinsic theory is central to compare and to control the limits of
these approximations.

Interestingly, a very similar analysis can be done with 3D rotations: one can also model two well
known extrinsic methods to compute the mean as ¢-connectors. The first method is to represent
rotations using unit quaternions, and to compute the renormalized Euclidean mean on the sphere
of unit quaternions. As rotation quaternions are defined up to their signs, one theoretically need
to iterate this process and to re-orient the unit quaternions at each step in the hemisphere chosen
to represent the mean in order to converge. This method amounts to consider the ¢-distance
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dquat(0) = 4sin(6/4). The second method is to average the rotation matrices directly in the 3 x 3
matrix space. Then, the mean is “renormalized” by looking for the rotation matrix which is closest
to this result in the Euclidean matrix distance (Froebenius) sense. This can be easily realized
using a SVD decomposition on the mean matrix. This method amounts to consider the ¢-distance
dmat(0) = 2sin(6/2).

Simulation experiments were performed for the two extrinsic methods by [D.W. Eggert, 1997] in
a registration context, and later on for the mean with the three methods by [Gramkow, 2001|. Like
for unit directions/orientations, they showed that estimation results were similar up to 40 degrees
of variance in the input rotations. Once again, this shows that efficient approximations could be
designed and used in practice, provided that we have a way to estimate their limits, which is one of
the results of the theory of statistical computing on manifolds.

2.5 Applications in matching and registration

The first applications of the statistical framework that I considered were for recognition and regis-
tration. In computer vision, one often model the image information by a set of low level geometric
features (e.g. corners or edge elements in 2D, crest lines and points in 3D [Pennec et al., 2000]). Due
to occlusion and the appearance of multiple objects in a single image, one need to find the subset of
features of a prototype object that are present in the image (up to a given transformation) in order
to recognize it: one calls recognition the problem of finding subsets of corresponding features in two
(or more) images. In this framework, matching corresponds to finding the individual correspon-
dences between features while registration deals more with the computation of the transformation
from matched features.

In the mid-nineties, most generic recognition algorithms developed in computer vision (Inter-
pretation trees, Hough transform, Alignment, Geometric Hashing, ICP) were considering point
features, and were not always properly taking into account measurement errors. In [Pennec, 1998b],
we tackle the problem of generalizing these algorithms to more complex geometric features in a con-
sistent statistical framework. The basic idea was to use a Riemannian distance (or a Riemannian
Mahalanobis distance) and to find the matching between features and the transformation that min-
imizes the (squared) distance after transformation. Rewriting the algorithms based only on these
notions was easy except for Geometric hashing that had to be converted into a geometric invariant
indexing technique. In fact, it turned out that all these methods could be consistently described as
algorithmic variants (with different search and pruning strategies) of the interpretation trees, which
is basically an exhaustive search over the matches.

We also carefully investigated the effect of errors in measurements in the algorithms and the way
to modify them in order to guaranty their correctness (controlled probability of false negative). The
drawback is of course the presence of false positives. Thanks to our consistent statistical framework
on geometric features, we were able to developed a new method to analyze the probability of false
positives in two particular algorithms. More interestingly, we were able to generalize this analysis
to evaluate the intrinsic complexity of the matching problem (i.e. the expected number of false
positives, independently of the method used). Doing so, we showed that using more informative
features (such as frames instead of points) can drastically reduce this probability. For instance,
allowing a rotational error as large as 90 degrees on the trihedron allows to reject 80% of the false
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matches between individual features (under a uniform assumption). Using a more realistic bound of
18 degrees (which corresponds to the 3-o threshold for the crest points extracted in typical medical
images [Pennec et al., 2000]) increases the rejection rate to 99.85%. We would have to divide the
standard deviation of the point position by 10 to obtain an equivalent feature selectivity! Such
a reduction of the intrinsic complexity of the problem allows to use lower-complexity matching
methods. Typically, we reduced the complexity of the 3D rigid substructure matching problem
from O(n?) to O(n?) by using frames instead of points [Pennec et al., 2000, Guéziec et al., 1997].

For a computational point of view, we identified two main problems in implementing these
generic matching algorithms. The first one is theoretical and concerns the structure of the space
invariants of n features (under the considered transformation group action). It can be formalized
with the shape-space theory, but it would be interesting to go one step further and to characterize
not only the manifold of invariants but also a suitable and consistent metric structure on it. The
second problem is linked to the efficiency of the clustering of features on a manifold in the presence
of heteroscedastic noises. This can also be related to the efficiency of searching for the nearest
neighbor with respect to the Riemannian metric or the Mahalanobis distance. We have observed
that hashing techniques raise some important problems because of the non-Euclidean underlying
metric. These problems turn crucial with invariants of features with high dimension. There is
perhaps a trade-off to find between adaptive space sampling and hashing methods.

When the matches between features are found, the registration problem consist in computing the
geometric transformation that best superimpose them. In our Riemannian framework, considering
a random Gaussian noise naturally lead to optimize a least squares or a least Mahalanobis criterion.
We showed in [Pennec et al., 1998] that the first order error propagation tools could be easily gener-
alized to manifolds in order to estimate the uncertainty of the transformation estimation at the opti-
mum. The principle is simple: the transformation f realizing the optimum of the criterion is defined
through the implicit function of the data ®(7T', x) = 0C(T, x)0T = 0. This minimum is well defined
if the Hessian matrix H = 0®(T), x)/0T has full rank. At the first order, errors on the data 52 are
tangent vectors g the data manifold at the observed data point. Likewise, the induced error on the
transformation §7" is a tangent vector to the transforn_u}tion space. Thanks to the implicit f_u)nction
theorem we can relate both first order errors using: 67 = (99 (T, x)/0T) ™" .0®(T, x)/0x.0x. In a

— —

Euclidean space this amounts to perform a Taylor expansion of ®(7 4 07, x + dx). As we assumed
a Gaussian noise on the data, the expectation of the transformation error is null and its covariance
is

T
Covyr = E | 0T.0TT | = e 220X o <W> HE
Ix ox
In medical image analysis, selected applications cover the validation of the rigid regis-
tration accuracy for time series |Pennec et al., 1998] and multimodal MR-Ultrasound images
|[Roche et al., 2001]. We also applied this error propagation scheme to the certification of the
2D-3D rigid registration for the guidance of the therapeutic gesture using augmented reality

|Nicolau et al., 2003b]. This will be detailed in Section 4.2.3.



Chapter 3

Manifold-valued images and tensors
computing

The previous chapter showed that the Riemannian structure was powerful enough to support a
consistent generalization of basic statistical notions. In this chapter, we show with the example
of tensors that one can go one step further and generalize on the same Riemannian basis many
important image processing algorithms like interpolation, diffusion and restoration of missing data
(extrapolation). For instance, most interpolation and filtering methods can be reformulated using
weighted means. The linear and non-linear diffusion schemes can be adapted to Manifolds through
PDEs, provided that we take into account the variations of the metric.

Positive definite symmetric matrices (so-called tensors in the medical image analysis community )
are nowadays common geometric data. They are used for instance to encode the covariance matrix
of the Brownian motion (diffusion) [Basser et al., 1994, Le Bihan et al., 2001] (see also Sect. 3.3
below) or of the joint variability at different places (Green function) in shape variability analysis
to characterize statistics on deformations (see Chap. 5). More generally, they are widely used
in image analysis to guide the segmentation, grouping and motion analysis [Medioni et al., 2000,
Weickert and Brox, 2002, Brox et al., 2004, Weickert and Hagen, 2006]. They are also appearing in
many other application domains, for instance in numerical analysis where they are used to locally
drive the size of the adaptive meshes for solving PDEs in 3D [Mohammadi et al., 1997]. Another
example is found in the formation of echographic Doppler or radar images where Teoplitz Hermitian
positive definite matrices uniquely characterized circular complex random processes with a null mean
[Moran et al., 2005].

The measurements of these tensors is often noisy in real applications and we would like to perform
estimation, smoothing and interpolation of fields of this type of features. The main problem is that
the tensor space is a manifold that is not a vector space with the usual additive structure. As sym-
metric positive definite matrices constitute a convex half-cone in the vector space of matrices, convex
operations (like the mean) are stable in this space. However, problems arise when estimating tensors
from data (the standard linear estimation of DTI from diffusion weighted images leads to negative
eigenvalues), or when smoothing fields of tensors with gradient descents: there is inevitably one
point in the image where the time is not small enough and the results is out of the space (i.e. with a
negative eigenvalue). Even when a spectral decomposition is performed to smooth independently the

35
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rotation (eigenvectors basis trihedron) and eigenvalues [Tschumperlé, 2002, Chefd’hotel et al., 2002],
there is a continuity problem around equal eigenvalues. For instance one cannot find a locally con-
sistent orientation rule for the principal eigenvectors of three tensors similarly elongated along the
edges of an equilateral triangle.

To answer that problem, we proposed in [Pennec et al., 2006] to provide the space of tensors
with a geodesically complete Riemannian metric, and to further develop the intrinsic computational
framework on manifolds on that basis. The afline-invariant metric we proposed is detailed in Section
3.1.1. We demonstrate that it leads to a very regular manifold structure where tensors with null
and infinite eigenvalues are both at an infinite distance of any positive definite symmetric matrix:
the cone of positive definite symmetric matrices is replaced by a space of “constant” (homogeneous)
non-scalar curvature without boundaries (null eigenvalues are at the infinity). Moreover, there is
one and only one geodesic joining any two tensors, the mean of a set of tensors are uniquely defined,
and we can even define globally consistent orthonormal coordinate systems of tangent spaces. Thus,
the structure we obtain is very close to a vector space, except that the space is curved.

By trying to put a Lie group structure on the tensor manifold, Vincent Arsigny came
out one year later with Log-Euclidean metrics [Arsigny et al., 2006d, Arsigny et al., 2006c,
Arsigny et al., 2005a]. These metrics give a vector space space structure to this manifold while
keeping most of its interesting properties (Section 3.1.2), thus simplifying drastically the algorithms
and speeding computations. Other non Riemannian metrics or parameterizations were also pro-
posed. We briefly present them for completeness and we turn in Section 3.1.3 to an important
question raised by all these possible choices: how to chose the metric depending on the nature and
natural properties of the data that we need to process? A tentative application of our Riemannian
metrics to structure tensors [Fillard et al., 2005a] showed for instance that there is no universal
metric for a given manifold: there are different families of metrics different characteristics, and one
may rely on one or the other depending on the specificities of the application.

The affine-invariant Riemannian metric was independently proposed by at least three other
groups (see bibliography below) but was only used for computing means, covariance matrices and
geodesic interpolation. We extended in [Pennec et al., 2006] our previous statistical tools into a
complete computational framework on manifold-valued images by generalizing many important
geometric data processing algorithms such as interpolation, filtering, diffusion and restoration of
missing data. For instance, most interpolation schemes and Gaussian filtering can be tackled ef-
ficiently through a weighted mean computation. Linear and anisotropic diffusion schemes can be
adapted to our Riemannian framework, through partial differential evolution equations, provided
that the metric of the tensor space is taken into account. For that purpose, we provide intrinsic
numerical schemes to compute the gradient and Laplacian operators. We detail these contributions
in Section 3.2.

Section 3.3 finally presents an important application example of the Riemannian computing
framework: the estimation and regularization of Diffusion Tensor MR Images (DTI), in view of the
tracking of the white matter fibers within the brain [Fillard et al., 2006a, Fillard et al., 2005b]. Two
other important application of tensor computing will be developed in Chapter 5 with the statistical
modeling of the variability of the brain from a dataset of precisely delineated anatomical structures
(sulcal lines) in the cerebral cortex [Fillard et al., 2005¢|, and from the deformation fields resulting
from non-rigid registration algorithms (Riemannian Elasticity [Pennec et al., 2005b]).
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3.1 Metrics on tensors

3.1.1 Affine invariant Riemannian metrics

From the theory presented in the previous chapter, we know how to work on homogeneous manifolds:
the basic idea is to define a group action and to provide the space Sym, of positive definite
symmetric matrices (tensors) with a invariant Riemannian metric. In [Pennec et al., 2006]', we
considered the action A XA ™ of a matrix A of the linear group GL, on a tensor . This group
action corresponds to the standard action of the affine group on the covariance matrix of a random
variables in R™, hence the name of the metric.

Tangent vectors to tensors are simply symmetric matrices with no constrain on the eigen-
values. The group action naturally extends to them: if W is a tangent vector at 3, then
AW AT is a tangent vector at A ¥ AT. An affine-invariant dot product obviously verifies
(VIW)g=(AV AT |AW A") , s, 4r. In particular, this should be true for the isotropy group
of the identity (the linear transformations that leave the identity matrix unchanged: the rotation
matrices). All the rotationally invariant dot products on symmetric matrices are given (up to a
constant global multiplicative factor) by:

(VIW)ig=To(V W)+ Te(V) Te(W)  with 6> —

where n is the dimension of the space. These metrics are derived from rotationally invariant norms
|[W]|?, which are quadratic form on (symmetric) matrices. By isotropy, they can only depends on
the matrix invariants Tr(W), Tr(W?) and Tr(W?3). However, as the form is quadratic in W, we
are left only with Tr(W)? and Tr(W?) that can be weighted by a and 3. One easily verifies that
B > —a/n is a necessary and sufficient condition to ensure positive definiteness.

The metric at the identity can be transported at any point by the group action using the fact
that the (symmetric) square root ¥~'/2 is a transformation that bring ¥ to the identity:

(V W)y = < SR ATe

STEWETE) =T (VETWET) 4 4T (V) Tr (W)

For B = 0, we retrieve the affine-invariant metric that was proposed in
[Skovgaard, 1984, Forstner and Moonen, 1999, Bhatia, 2003, Fletcher and Joshi, 2004,
Lenglet et al., 2006, Pennec et al., 2006]. For f = —1/(n + 1), we find the metric that

[Lovri¢ and Min-Oo, 2000| proposed by embedding the space of tensors of dimension n into the
space of m 4+ 1 square matrices using homogeneous coordinates (this allows them to seamlessly
take into account an additional point position for the mean of the Gaussian distribution), and by
quotienting out n + 1 dimensional rotations. The same trick could be used to embed tensors in
the higher dimensional spaces of square matrices of dimension n 4 p + 1, in which case one would
obtain the invariant metric with 8 = —1/(n + p + 1). Interestingly, —1/8 = n + 1 is the first
authorized integer to obtain a proper metric! In fact, one can show that all these metrics have the
same connection, which means that they share the same geodesics, but distances along them are
different: each exponential chart is globally the same but the orthonormal basis is different. From
the connection, one can compute the curvature tensor of the manifold [Skovgaard, 1984]. It is the

'We refer the reader to this paper for all the mathematical and technical details.
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same for all affine-invariant metrics and one can show that the manifold has a non positive and
bounded sectional curvature. Thus, it is Hadamard manifold, i.e. a kind of hyperbolic space in
which we have for instance the existence and uniqueness of the mean. There is also no cut-locus,
which simplifies the computations.

To find the geodesic without going though the computation of Christoffel symbols,
we may rely on a result from differential geometry [Gamkrelidze, 1991, Helgason, 1978,
Kobayashi and Nomizu, 1969] which says that the geodesics for the invariant metrics on affine
symmetric spaces are generated by the action of the one-parameter subgroups of the acting Lie
group. As the one parameter subgroups of the linear group are given by the matrix exponential,
the geodesics starting from the identity are I'(1qw)(t) = exp(t W). Other geodesics are obtain
by translation using group elements. From the equations of the geodesics, one finally obtain the
Riemannian exponential map at each point, which can be inverted to obtain the logarithmic map:

1 1

expy (W) = T2 exp (2—%W2—%) D2 and  logy(A) = X2 log (z—%Az—%) 3.

The Riemannian distance is obtained by integration, or more easily by the norm of the initial
tangent vector of the geodesic joining the two points:

2
dist*(2, A) = || logs (A)[[3; = Tr (log(E*%AE*%P) + BTr <log(2*%AE*%))

It is worth noticing that tensors with null eigenvalues are at an infinite distance of any regular tensor,
as are tensors with infinite eigenvalues: the original cone of positive definite symmetric matrices, a
linear manifold with a flat but incomplete metric (there is a boundary at a finite distance) has been
changed into a regular and complete (but curved) manifold with an infinite development in each of
its n(n + 1)/2 directions.

The idea of the invariant metric came to my mind during the IPMI conference in 2001 as an
application to diffusion tensor imaging (DTI) of the statistics on Riemannian manifolds. However,
this idea was not exploited until the end of 2003, when the visit of P. Thompson (UCLA, USA)
raised the need to interpolate tensors that represent the variability from specific locations on sulci
to the whole volume (see section 5.2). The expertise of Pierre Fillard on DTI [Fillard et al., 2003b]
provided an ideal alternative application field.

From an historical point of view, the affine-invariant Riemannian metrics may be traced back to
the work of [Nomizu, 1954] on affine invariant connections on homogeneous spaces. It is implicitly
hidden under very general theorems on symmetric spaces in many differential geometry textbooks
[Kobayashi and Nomizu, 1969, Helgason, 1978, Gamkrelidze, 1991].

The simplest affine-invariant metric (with 8 = 0) is considered as a well known result in mathe-
matics [Bhatia, 2003]. An implicit form was introduced in [Helmke and Moore, 1994 for developing
flows and dynamic systems on the space of symmetric matrices. The corresponding integrator (which
corresponds to a geodesic walking with this Riemannian metric) was used for the anisotropic reg-
ularization of diffusion tensor images in [Chefd’hotel et al., 2004] and [Bierkens, 2004]. In this last
work, the closed form expression of the metric was known but was only used to derive the flow as
in [Chefd’hotel et al., 2004] without consistency on the norm of the gradient of the tensor field. In
statistics, it has been introduced as the Fisher information metric to model the geometry of the
multivariate normal family [Burbea and Rao, 1982, Skovgaard, 1984, Calvo and Oller, 1991].
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Closer to our domain, the same invariant metric has been independently proposed by
|Forstner and Moonen, 1999] to deal with covariance matrices, by [Fletcher and Joshi, 2004| for
the analysis of principal modes of sets of diffusion tensors and by [Moakher, 2005] for its mathemat-
ical properties which were exploited in |Batchelor et al., 2005] for a new anisotropic DTI index. By
looking for a suitable metric on the space of Gaussian distributions for the segmentation of diffusion
tensor images, [Lenglet et al., 2004, Lenglet et al., 2006] also end-up with the same metric. It is in-
teresting to see that completely different approaches, relying on an affine-invariant requirement on
the one hand, and relying on an information measure to evaluate the distance between distributions
on the other hand, lead to the same metric on the tensor space.

3.1.2 Log-Euclidean metrics

By trying to put a Lie group structure on the space of Tensors, Vincent Arsigny observed that the
matrix exponential was a diffeomorphism from the space of symmetric matrices to the tensor space
[Arsigny et al., 2006¢c, Arsigny et al., 2005b|. Thus, one can seamlessly transport all the operations
defined in the vector space of symmetric matrices to the tensor space!

For instance, one defines a commutative product (the log-product) by ¥; ¢ X9 = exp(log(X1) +
log(X2)). This gives a commutative group structure to the tensors, for which any metric at the
tangent space at the identity is extended into a bi-invariant Riemannian metric on the manifold
(left and right translation are identical since the group is commutative):

(VW) = (Dlog(X)(V) | Dlog(%)(W)) 1q = (v log(X) | dw log(X)) 14 -

For such a metric, geodesics are translations of one-parameter subgroups (which are given by
the matrix exponential): I'(x yy)(t) = exp(log(X) +¢ W). One can see that geodesics going through
the identity are the same as for the affine-invariant metrics, but this is not true any more in general
at other points of the manifold. From the geodesics one can easily get the Riemannian exponential
and logarithmic maps at any point:

expy (W) = exp(log(E) + A log())  and  logg(A) = Dexp(log(D)) (log(4) — log(E))

These formula look complex. However, they are in fact nothing but the transport of the addition
and subtraction through the exponential of symmetric matrices. The only difficulty here is to
compute the differential of the matrix exponential and logarithm in order to transport tangent
vectors from one space to another. It turns out that these differentials can be computed in closed
form [Pennec et al., 2005b].

Log-Fuclidean metrics are intrinsically invariant by a change of scale and by inversion. Moreover,
by choosing the scalar product invariant by rotation at the identity (i.e. |W|%y = Tr(W?)+8Tr(W)>?
with @ > —1/n as above), we get all the similarity invariant log-Euclidean metrics:

dist? 5 (1, 52) = || log(£1) — log(E2)[[ 14 = Tr ((log(E1) — log(S2))?) + 5 Tr (log(£1) — log(E2))”

By adding the logarithmic scalar multiplication Ax ¥ = exp(\ log(X)) = ¥, we get a complete
structure of vector space on tensors. This means that most of the operations that were generalized
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using minimizations for the affine-invariant metric do have a closed-form with a log-FEuclidean metric.
For instance, the log-Euclidean mean is simply:

_ 1 &
Y = exp <n ZIOg(Ei)>

while the affine-invariant mean is obtain through the iterative algorithm:

Sii1 = 5 ex (1 3" log <z‘5z z:‘%)) 5}
t+1 i eXp n 4= t 2l t
This last expression can only be simplified if all the ¥;’s commute with the mean value %, in
which case the affine-invariant and log-Euclidean means are identical. When they are not equal,
one can show that (close enough to the identity) the log-Euclidean mean is slightly more anisotropic
[Arsigny et al., 2006¢].

Even if the gradient descent algorithm usually converges in about 10 iterations for the affine-
invariant mean, log-Euclidean computations are obviously more efficient. In practice, the log-
Euclidean framework consist in taking the logarithm of the tensor data, computing like usual in
the Euclidean space of symmetric matrices, and coming back at the end to the tensor space using
the exponential [Arsigny et al., 2006d, Arsigny et al., 2005a]. This simple framework only needs to
be complemented by the differential of the exponential and the logarithm for relating the tangent
vectors in gradient descent algorithms. This is in essence the mechanism that we patented for
dealing with tensor images [Arsigny et al., 2005d].

A careful comparison of the log-Euclidean and affine-invariant metrics on the algorithms de-
scribed in the following sections [Arsigny et al., 2005a, Arsigny et al., 2006d| showed that there
was very few differences on the results (of the order of 1%) on real DTT images, but that the
log-Euclidean computations where 4 to 10 times faster. Thus, for this type of application, the log-
Euclidean framework seems to be perfectly suited. For other types of applications, like adaptive
re-meshing [Mohammadi et al., 1997|, the anisotropy of the tensors can be much larger, which may
lead to larger differences. In any case, if one wants to work with the affine-invariant, one should
initialize the iterative optimizations close to the correct solution using the log-Euclidean result in
order to speed-up the convergence of iterative Riemannian algorithms.

3.1.3 Which metric for which problem?

Affine-invariant and Log-Euclidean metrics seem to be well adapted for DTIs and covariance matri-
ces: they provide a geometric interpolation for which the fractional anisotropy (FA) is quasi linear;
Null eigenvalues are at an infinite distance of any tensor, so that there is no risk to reach them in
a finite time and gradient descents are well posed; The affine-invariant metrics gives to the tensor
manifolds a Hadamard structure (a hyperbolic space with non-positive curvature which is diffeo-
morphic to R"™) while the Log-Euclidean ones give it a complete euclidean structure; With both
metrics, the mean always exists and is unique; etc.

Thus, it seems that these metrics could fit many problems. In [Fillard et al., 2005a], we tried
to apply them to the smoothing of structure tensors. These tensors are classically obtained by
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convolving the tensor product of the gradient of an image by a Gaussian: S, = G, x (VI.VI?).
They reveal structural information about the image and are used to detect edges and corner points
or to drive some anisotropic filtering methods. The noisier the image is, the higher 0 must be to
obtain a smooth field, but small structures may be wiped out. By contrast, smaller values of o can
help to extract low level features in images, but the resulting structure tensor field may be noisy.
Thus, the idea is to smooth anisotropically this tensor field to regularize homogeneous regions while
preserving edges. An anisotropic filtering of the coefficients (Euclidean structure) fails because we
end up with negative eigenvalues.

Thus, we proposed to minimize a ¢-function of the affine-invariant norm of the gradient of the
tensor field (see 3.2.4). However, the results clearly showed that this method also fails: Since the
Riemannian metric is scale invariant, small differences in small tensors have the same importance as
large differences in large ones. This is catastrophic here because the anisotropic diffusion enhance
these small details as much as the large scale ones. Moreover, the anisotropic smoothing does not
allows to reach tensors with only one non-null eigenvalue which would represent perfect infinite
edges! For this type of tensors, it seems that we need to find another metric for which the null
eigenvalues should be reachable, but not the negative ones.

The Cholesky decomposition proposed by [Wang et al., 2004] may provide the right structure
for that and it would be interesting to see if it corresponds to a Riemannian metric. As an example,
we illustrate in Fig. 3.1 the value of the tensors along a geodesic starting with the same tangent
vector for the Euclidean metric, the log-Euclidean metric (the affine-invariant is very close), and a
straight line in the Cholesky parameterization proposed by [Wang et al., 2004]. This last curve in
the tensor space is given by ¥(t) = L(t).L(t)! where L(t) = t.Lo and Lo is a lower triangular matrix
(with positive elements on the diagonal) solution of 20 = LO.LB +L6.L0. In the Euclidean case, one
quickly reach the boundary of the space (tensors with non-positive eigenvalues are not displayed).
In the log-Fuclidean case, the size of the tensors exponentially decreases but actually reach a null
eigenvalue only asymptotically. The Cholesky parameterization behaves like the square function: it
reaches a null eigenvalue in a finite time but then bounce back into the space of tensors.

I TR T

Figure 3.1: Geodesic shooting from the tensor ¥ = diag(4,1) with the tangent vector
> = diag(—8). Left: The Euclidean case. 2/3 of tensors are not positive definite and thus are not
displayed. Middle: The Cholesky case: the null matrix is reached (exact middle value) and values
beyond are the mirrored versions of the previous ones. Right: The Log-Euclidean case: all tensors
are positive definite, and the null tensor is never reached.

This experiment shows that there is not universal metric for one type of features: there are
different families of metrics with similar or different characteristics, and one may rely on one or the
other depending on the specificities of the application.
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3.2 Computing on Riemannian manifolds

3.2.1 Interpolation as a weighted mean

An important operations in geometric data processing is to interpolate values between known
measurements. In 3D image processing, (tri-) linear interpolation is often used thanks to its
very low computational load and comparatively much better results than nearest neighbor in-
terpolation. Other popular methods include the cubic and, more generally, spline interpolations
[Thévenaz et al., 2000, Meijering, 2002].

The standard way to define an interpolation on a regular lattice of dimension d is to consider
that the interpolated function f(z) is a linear combination of samples fi at integer (lattice) co-
ordinates k € Z%: f(z) = >, w(z — k) fr. A typical example where the convolution kernel has
an infinite support is the sinus cardinal interpolation. With the nearest-neighbor, linear (or tri-
linear in 3D), and higher order spline interpolations, the kernel is piecewise polynomial, and its
support is limited to a few neighboring points in the lattice. Assuming normalized weights, this
interpolation is a weighted mean, and can thus be generalized in our manifold framework as an op-
timization problem: the interpolated value X(x) on our tensor manifold is the tensor that minimizes
C(S(z)) = S0, wi(w) dist?*(2;, (z)). To reach this solution, it is easy to adapt the Gauss-Newton
scheme proposed for the Karcher mean.

The linear interpolation is interesting as it can be written explicitly as a simple geodesic walking
scheme: the generic interpolation equation between points z1 and zs is z(t) = exp,, (t 2173) =
exp,, ((1—1) Tox1). For our tensor example, this gives the following interpolation with the standard
Euclidean, Log-Fuclidean and Affine-invariant metrics give:

Spua(t) = (1—1) Sy +1t 5,
Yre(t) = exp((1—1t) log(X1) +t log(Xs))
Saps) = 2 Pexp (¢ log (272 2y 37 %) ) 1y

One can show that the volume of the tensors (the determinant) is geometrically interpolated
with the Log-Euclidean and Affine invariant metrics (their logarithm is linearly interpolated)
[Arsigny et al., 2006c| while the trace of the tensor is linearly interpolated for Euclidean metric.

3.2.2 Gaussian and kernel-based filtering

Many other operators can be rephrased as weighted means. For instance approximations and con-
volutions like Gaussian filtering can be viewed as the average of the neighboring values weighted
by a (Gaussian) function of their spatial distances. Assuming a normalized kernel K, a fil-
tered vector field F(z) = Jgn K(u) F(z 4+ u) du is the result of the minimization of C(F) =
Jon K (u) dist*(F(z + u), F(z)) du. In this formulation the kernel can be a discrete measure, for
instance if samples are defined on the points of a grid. In a Riemannian manifold, this minimization
problem is still valid, but instead of a closed-form solution, we have once again a Gauss-Newton
iterative gradient descent algorithm to reach the filtered value. With tensor notations, this gives:

- 0

Sip1(x) = . K(u) 2¢(z) B(z 4 u) du
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An example of a comparative Gaussian filtering of a diffusion tensor image with the flat Euclidean
metric and the affine-invariant one is provided in Fig. 3.2. The log-Euclidean result is very similar
to the affine-invariant result (the difference has to be multiplied by 100 to be visible). One can see
a more important blurring of the corpus callosum fiber tracts using the flat metric.

In this generalization, we can also use an anisotropic and non-stationary kernel K(z,u). For
instance, it can be modulated by the norm of the derivative of the field in the direction u (here
0,Y). This is one way to perform an anisotropic regularization that we used in [Pennec, 2002] to
perform a discontinuity preserving regularization of rigid-body transformation in a time sequence
of functional MR images (fMRI). Inspired by our Gaussian filtering of tensors, a similar technique
has been recently proposed for the anisotropic diffusion of DTI [Castano-Moraga et al., 2006].

3.2.3 Gradient and Laplacian

An alternative to kernel filtering is to consider a regularization criterion that aims at reducing the
amount of the spatial variations of the field. The simplest criterion is the squared norm of the
spatial gradient. By definition, the gradient encodes the directional spatial derivatives through
VE(z)"u = 0,%(z). It may be computed as the matrix that best approximates (in the least-square
sense) the directional derivatives in the neighborhood (e.g. 6, 18 or 26 connectivity in 3D). We
experimentally found in other applications (e.g. to compute the Jacobian of a deformation field in
non-rigid registration [Rey et al., 2002, p. 169]) that this approximation scheme was more stable
and much faster than computing all derivatives using convolutions, for instance by the deriva-
tive of the Gaussian. In a Riemannian manifold, the directional derivatives 9,%(z) are tangent
vectors of Tyx,)M that can be approximated using finite “differences” in our exponential chart
[Pennec et al., 2006]:

0uX() = logs ) (X(x + u)) = X(x) E(z + u)

For tensors, this tangent vector is a simple symmetric matrix which is expressed in the stan-
dard matrix coordinate system (coefficients), i.e. in a non orthonormal coordinate system for our
Riemannian metric. Thus, to quantify the local amount of variation, we have to take the metric at
the current point into account, and to measure the variations in all spatial directions. Once again,
this estimation can be robustified by averaging over more directions:

2

d
IVE(@) 3 = E [AEATEES caffw) > ‘ulHQ 2@y =G+

uey E(2)

After integration over a spatial domain 2, the Euler-Lagrange equations of the criterion
Reg(®) = [, ||VE($)||22(95) dz with Neumann boundary conditions for the affine-invariant metric
are finally [Pennec et al., 2006]:

d
VReg(X) = —2AY  where AX =) 925 - (9,,3) 3V (0,,%)
=1

is the Laplacian operator on our manifold for our metric. As we can see, the flat Euclidean second
order directional derivatives 9?3 are corrected by an additional term due to the curvature of our
manifold.
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From a practical point of view, the Laplacian operator may be computed from finite differences
approximations of the Euclidean derivatives, but we proposed in [Pennec et al., 2006] a more more
efficient and general scheme: as the Christoffel symbols and their derivatives along the geodesics
vanish at the origin of the exponential chart (the geodesics are parameterized by arc-length), the
correction for the curvature is in fact already included in the exponential chart: by computing the
standard Laplacian in that map, one gets the manifold-valued Laplacian operator for free. For
tensors with the affine-invariant metric, we detailed in [Pennec et al., 2006] the computations to

prove that the symmetric average X ()% (x + u) + X(2)S(z — u) = A,X + O(||ul|?) is a forth order
approximation of the directional manifold Laplacian. By averaging once again over all the directions
in a (symmetric) local neighborhood, the numerical scheme we proposed was:

AX(z) = C’ard Z HuH2 Ez+u)

3.2.4 Anisotropic diffusion

Harmonic diffusion is the minimization of the square norm of the gradient of the field. Its practical
implementation is very easy using a geodesic gradient descent technique. At each time t one compute
the current derivative of the regularization criterion using the above numerical scheme for the
manifold Laplacian, and one walk at each point along the geodesic with the opposite tangent vector:

Stye(z) = €XPxy(z) (—eAX(2))

This geodesic gradient descent technique will be used to optimize all the PDEs appearing in the
following of this section.

In order to filter in homogeneous regions but not across their boundaries, the basic idea is to
penalize the smoothing in the directions where the derivative is important [Perona and Malik, 1990,
Gerig et al., 1992]. This can be realized directly in the discrete implementation of the Laplacian
by weighting the contribution A,Y of the spatial direction u to the Laplacian by a decreasing
function of the norm |0,%||s of the gradient in that direction. In [Pennec et al., 2006|, we took,
c(x) = exp (—2?/k?), where the threshold x controls the amount of local regularization: for a
gradient magnitude greater than 2 to 3 k, there is virtually no regularization, while the field is
almost linearly smoothed for gradient magnitudes below a fraction (say 0.1) of &.

Figure 3.2 shows an example result with the affine invariant metric on the same data as for
the Gaussian filtering. The anisotropic filtering further improves the results by preserving the
discontinuities of the tensor scale (e.g. at the boundary of the ventricles), but also the discontinuities
of the tensor orientation, which is exactly what is need for fiber tracking in DTT.

As there is no convergence guarantee in this scheme (anisotropic regularization “forces” may
not derive from a well-posed energy), we reformulated in [Fillard et al., 2005a] the problem as the
optimization of a (decreasing) ¢-function of the Riemannian norm of the spatial gradient: Regy(3) =
5 fQ (|VZ ||E(m)) dx. By choosing an adequate ¢-function, one can give to the regularization
an isotropic or anisotropic behavior [Aubert and Kornprobst, 2001|. In our experiments, we use

s) =2y/1+ s?/k% — 2. Using ¥(z) = ®'(x)/x, we have:
1

OwRegs(%) = 5 [ WUV 0w (IF9IR) = [ WOV (grads | gradiV)y
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Using an integration by part with proper Neumann boundary conditions, we obtain:
OwRegs(S) = — [ (v (B(|VE]5).gradS) [ W)y
Q

Finally, by definition of the gradient and by distributing the divergence, we get the usual formula:
VRegy(%) = div (¥(|VE|[2).grad®) = W(|VE[ls). AL + ) (¥ (|VE[ls)).0:5

The main difference with a classical Euclidean calculation is that we have to use the manifold
Laplacian to take the curvature of the tensor manifold into account.

3.2.5 Diffusion-based interpolation and extrapolation

The pure diffusion is efficient to reduce the noise in the data, but it also reduces the amount of
information. Moreover, the diffusion time (time step € times the number of iterations) that controls
the amount of smoothing is difficult to estimate. At an infinite diffusion time, the field will be
completely homogeneous (possibly by part).

It is much more interesting to consider the data as noisy observations and the regularization as
a prior on the spatial regularity of the field. Usually, one assumes a Gaussian noise independent at
each position, which leads to a least-squares criterion through a maximum likelihood approach. The
only difference here is that it uses our Riemannian distance. For a dense data field (i.e. if the data
are already provided on the grid on which we are solving the PDE), the similarity criterion that
is added to the regularization criterion is simply Sim(X) = fQ dist? (3X(z), Xo(z)) dz. It simply
adds a linear (geodesic) spring Vy dist?(3, $g) = —2 E—E(; to the global gradient to prevent the
regularization from puling to far away from the original data.

For sparse measures, using directly the maximum likelihood on the observed data Sim(X) =
S, dist? (X(w;), %) leads to deal with Dirac (mass) distributions in the derivatives, which is
a problem for the numerical implementation. In [Pennec et al., 2006], we considered the Dirac
distribution as the limit of the Gaussian function G, when o goes to zero.

Simg(3) = /QZGU(:U — ;) dist? (B(z),%;) de and VSim,(z) = —2 ZGU(@“ —x;) X(z)X%;.
i=1 i=1

From a practical point of view, one needs to use a o of the order of the spatial resolution of the
grid so that all measures can at least influence the neighboring nodes. After convergence, the value
can be slowly decreased if one wants to be more accurate. Figure 3.3 presents an example of the
extrapolation that can be obtained from four tensors with the affine-invariant metric. Interestingly,
there is an identity tensor at the center of the grid around which there does not exist a consistent
orientation of the first eigenvector. This is not a problem for the Riemannian methods.

3.3 Application to diffusion tensor imaging (DTI)

Diffusion tensor Imaging (DTT) is a unique tool to assess in vivo oriented structures within tissues via
the directional measure of water diffusion. However, most of the current applications are in neuro-
science, with high signal-to-noise ratios (SNR) images on subjects rather than patients. Even if there
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Figure 3.3: Interpolation and extrapolation using diffusion. Left: The four initial tensor
measurements. Right: result of the extrapolation by diffusion (time-step ¢ = 1, A = 0.01, 0 =1
pixel of the reconstruction grid). The algorithm converged in about 100 iterations.

there begin to be a few clinical indications for DTI |Provenzale et al., 2006, Rovaris et al., 2005],
using such a modality in a clinical environment is difficult: data often have to be acquired quickly
because the patient cannot stay in a static position for too long due to pathologies. This results in
acquisitions with a limited number of encoding gradients and low SNR. Moreover, the estimation of
the diffusion tensor field from diffusion weighted images (DWI) being noise-sensitive, clinical DTIT
is often not suitable for fiber tracking, which prevent the development of new clinical indications.
In order to bridge this gap, we proposed in [Fillard et al., 2006a, Fillard et al., 2005b| a new
method for the joint estimation and regularization of diffusion tensors from DWIs. The first idea is
model the noise in the images very precisely in order to keep the maximum amount of information
from the original data. We designed for that a new maximum likelihood (ML) criterion for the
Rician noise. The second idea is to perform jointly the estimation and the regularization of the
tensor field (rather than sequentially as usually done), so that we keep once again all the relevant
information. This amounts to transform our ML into a maximum a posteriori (MAP) criterion by
considering the regularization criterion as a kind of spatial prior on the tensor field regularity.

3.3.1 Noise models for the estimation of the tensor field

The Stejskal-Tanner diffusion equation [Basser et al., 1994| relates the diffusion tensor D to each
noise-free DWI:

S; = Spexp(—b gZTDgi)

where S; is the original DWI corresponding to the encoding gradient g;, So the base image with a
null gradient, and b the diffusion factor. By taking the logarithm of this equation, one obtain a linear
system. Solving that system in a least square (LS) sense leads to the minimization of a quadratic
criterion, which is easily performed using algebraic methods (see e.g. [Westin et al., 2002]). Doing
this implicitly assumes a log-Gaussian noise on the images, which is justify for high SNRs. In that
case, the noise is also well approximated by a Gaussian noise within the brain, but very few works
were done on non log-Gaussian noise for the estimation of the tensor field because it was requiring
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optimization techniques on tensors, which turned out to be very difficult to control with the standard
Euclidean framework. One may cite however [Wang et al., 2004] (see Section 3.1.3), who proposed a
computationally grounded optimization framework based on the Cholesky decomposition. With the
log-FEuclidean framework, such an optimization is not difficult (one also can restate everything within
the affine-invariant framework but calculations are slightly more complex). For instance, in the case
of a Gaussian noise on the DWIs, the tensor D = exp(L) is parameterized by its logarithm L, an
unconstrained symmetric matrix. The criterion to optimize is Simag(L) = Y2(S; — Si(exp(L)))?,
and the gradient is

VSima(L) =2b) (S —S).0L8;  with 918 = ; 9, g exp(L)

For low SNRs, the real nature of the noise is Gaussian in the complex image. [Wang et al., 2004]
proposed an estimation criterion on the complex DWT signal that is adapted to that noise. However,
one usually only have access to the amplitude of the signal complex signal in clinical images: in that
case, the noise is thus Rician. One can show that such a noise induces a signal-dependent bias of
the order of 02/2S on the DWI signal [Sijbers et al., 1998]. The signal being systematically larger
than what it ought to be, the tensors will be under-estimated. To take explicitly the nature of this
noise into account, we proposed to optimizing the log-likelihood of the signal corrupted by a Rician
noise. This leads to a more complex criterion that above, but its gradient is very similar to the
Gaussian case above: VSimp(L) = —1/02 3(S; — a5;)d1,S, except that we have a correcting factor
o = I}/ I5(5;8;/0?) depending on the signal and the noise variance (Ip and I}, are computable Bessel
functions). The noise variance can easily be estimated on the background of the image (outside the
head) where there is no signal.

3.3.2 Joint estimation and smoothing

Fiber tracking is the ultimate application targeted by most of the researchers today in neuroscience,
in order to investigate non invasively the anatomical-functional architecture of the brain. This
might also prove to be an interesting quantification tool for medical diagnoses. However, the DTI
data are usually too noisy to be used directly. When possible, multiple acquisitions are averaged
to enhance the SNR. For medical applications, this is not a solution because patients tend to move
during these very lengthy acquisitions. Thus, one need to regularize the tensor field without blurring
the transitions between distinct fiber tracts, which delimit anatomical and functional brain regions.
Smoothing independently each DWI before estimating the tensor results in a smoother tensor field
but it also blurs the transitions between homogeneous regions, as this information is not accessible
by taking each DWI individually. For instance, in brain DTI, only the combination of all the images
reveals the complex neural structure of the white matter.

Consequently, one would like to perform an anisotropic regularization of the tensor field itself.
Most of the methods developed so far spatially regularize some of the geometric features of the
tensor field. For instance, [Coulon et al., 2004| anisotropically restores the principal direction of the
tensor, and uses this regularized directions map as an input for the anisotropic regularization of the
eigenvalues. A quite similar idea is adopted in [Tschumperlé, 2002|, where a spectral decomposition
of the tensor field is performed at each points to independently regularize the eigenvalues and
eigenvectors (orientations). This approach requires an additional reorientation step of the rotation
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matrices due to the non-uniqueness of the decomposition. An intrinsic integration scheme for PDEs
that uses the exponential map has been added in [Chefd’hotel et al., 2002], and allows to perform
PDEs evolution on the considered manifold without re-projections.

However, all these regularizations rely on the estimated tensor field and are not linked any more
to the original DWI data. We believe that a better idea is to add a prior on the spatial regularity
to a data attachment criterion which is statistically optimal with respect to the noise model. This
performs a MAP estimation instead of regularizing an ML estimation. [Wang et al., 2004] made
an important step in that direction by considering a Gaussian noise model on the (complex) DWIs
and a joint anisotropic smoothing of the Cholesky decomposition of the tensors (see Section 3.1.3).
Like the affine-invariant or the log-Euclidean metrics, this parameterization takes into account the
complete tensor information for smoothing, and to keep the results of the computations positive
(definite). However, they chose to rely on the Euclidean norm of the gradient of the tensor field (the
Cholesky being only a parameterization and not a full metric) to drive the anisotropic diffusion, and
the Fuclidean metric is much more sensitive to changes in scales than to changes of orientations.

In [Fillard et al., 2006a, Fillard et al., 2005b, Fillard et al., 2006b]|, we proposed to model the
prior of the spatial regularity in the log-Euclidean framework (i.e. the tensor field ¥ (z) is param-
eterized by its logarithm L(x)), and to account for discontinuities using through a ¢-functional:
Reg(L) = [ ¢ (IVL|). In our experiments, we use ¢(s) = 24/1+ s?/k? — 2. The ¢-function
preserves the edges of the tensor field while smoothing homogeneous regions. To include this regu-
larization as an a-priori into the ML optimization process of the previous section, we simply need
to compute its gradient, which is simply VReg(L) = —¢ (||VL||) AL — >, 0; (v (|VL|])) .0;L with
Y(s) = ¢!(s)/s. Directional derivatives, gradient and Laplacian were estimated with a finite differ-
ences scheme like with scalar images (see [Fillard et al., 2005b, Fillard et al., 2006b| for details).

Experiments on synthetic data with contours and a Rician noise showed that the gradient descent
techniques were removing the negative eigenvalues that did appear in the standard estimation
technique. However, ML and MAP (with regularization) methods with a Gaussian noise model
were underestimating the volume of tensors even more than the standard log-Gaussian method
(30% instead of 20%), while Rician ML and MAP methods were estimating it within 5%. The effect
of the regularization was also spectacular, but it is difficult to generalize to real data where “edges”
may be much more loosely defined.

More interestingly, the methods were tested on two clinical datasets of low and medium quality:
a brain image with a very low SNR, and an experimental acquisition of the spinal chord, both with 7
gradient directions. This last type of acquisition is currently actively investigated in clinical research
(e.g. [Facon et al., 2005]) and is difficult to perform: because the position is uncomfortable due to
the pathology, the patient often cannot stay too long in the scanner. Moreover, the coil cannot be
perfectly adapted to the body as it is for the head. The images are consequently much noisier than
for the brain MRI. We performed the estimation of the tensor field with the three noise models
on the data (Gaussian, log-Gaussian and Rician) and with or without an anisotropic log-Euclidean
prior on the spatial regularity. The Gaussian ML and Rician MAP are displayed on top rows of
Figs. 3.4 and 3.5. Then, we tracked the fibers using a simple method [Fillard et al., 2003a] (bottom
row of Figs 3.4 and 3.5).

Like for synthetic data, using gradient descent techniques removed the negative eigenvalues of
the standard method. To evaluate the impact of the noise model on the tensor reconstruction
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in the brain, we computed the mean apparent diffusion coefficient (ADC), fractional anisotropy
(FA) and volume of the diffusion tensors in the ventricles (high but anisotropic diffusion), and in
the corpus callosum (lower diffusion with high anisotropy) [Fillard et al., 2006b]. Using the Rician
noise model increase the tensor volume and the ADC by about 10% in isotropic regions and by 1
to 2% in anisotropic regions without modifying the FA. In the spinal chord, using the Rician noise
model also lead to an increase of the tensors of about 30% in volume. This corresponds to the
correction of the shrinking effect with Gaussian and Log-Gaussian noises that we demonstrated on
synthetic data. Adding some spatial regularization (MAP methods) systematically decreases the
FA. However, this effect is much lower for anisotropic regions and minimized with the Rician noise
model: 3% only in the corpus callosum (versus 11% with log-Gaussian), and 15% in the ventricles
(versus 30% with log-Gaussian). Thus, it seems that these measurements are more reproducible
with the MAP Rician reconstruction.

The tractography results in a much smoother and longer fibers with less dispersion for the MAP
Rician model. The overall number of reconstructed fibers is also much larger. The smoothness
of the tensor field indeed leads to more regular and longer fibers: tracts that were stopped due
to the noise are now fully reconstructed. A careful quantitative evaluation and validation of the
whole framework however remains to be done. In particular, it would be necessary to evaluate
the reproducibility across acquisitions and scanners, for instance using repeated scans of the same
subject, as well as evaluations of physical phantoms.

3.4 Conclusion

In this chapter, we presented on the example of positive definite symmetric matrices an extension
of the statistical computing framework developed in the previous chapter. Firstly, we showed that
interpolation and kernel-based filtering methods can be generalized to Riemannian manifolds using
weighted means. Secondly, many PDEs (including anisotropic diffusion) are easily implemented
by first taking into account the Riemannian metric in the gradient computation, and second by
using a geodesic marching scheme to integrate the path to the solution [Pennec et al., 2006]. We
exemplified this framework with the important example of Diffusion Tensor Images (DTI). The
careful modeling of the noise on the data led us to propose new Rician ML and MAP estima-
tion frameworks which can cope with a much lower SNR compatible with clinical applications
[Fillard et al., 2006a, Fillard et al., 2006b]. One of the interest of our methodology is that is pro-
vide a globally consistent computation framework for diffusion tensor estimation and interpretation.
Tensors constitute an interesting manifold as it can support several simple families of metrics with
very different properties. Some of them may perform very well for some problems (e.g. log-Euclidean
or affine-invariant metrics for DTT), but fail for others (e.g smoothing structure tensors). This shows
that there is not one Riemannian metric for all problems and raises the question of how to chose
the optimal metric for each application.

From the methodological point of view, this chapter confirmed that the Riemannian metric can
be considered as the basis of a complete computational framework on manifolds. The main method
is to replace Euclidean integrals or sums of points by minimizations of intrinsic functionals (real
functions on the manifold). We already had in the last chapter the examples of the Fréchet /
Karcher means, where the barycenter is replaced by the minimization of the intrinsic variance, and



3.4. CONCLUSION 51

2
Q
Q
Q
E
9
0
3
L]
®
@
©
L 4
®
°
°
°
0

COCO0000D 00DV TPOOOP

Figure 3.4: Tensor field estimation of a brain (top row) and improvement of the fiber
tracking (bottom row). Top Left: A slice of the by image. Top Middle: The classic log-
Gaussian estimation on the ROI. The color codes for the principal direction of blue: inferior-
superior. Missing tensors in the splenium region are non-positive. Top Right: The MAP estimation
of the same region. Middle row, Left: ROI where the tracking is initiated. Middle row, middle:
The cortico-spinal tract reconstructed after a classic estimation. Middle row, Right: Same tract
reconstructed after our MAP estimation. Bottom row: Other examples of fiber tracking after our
Rician MAP estimation, superimposed on a volume rendering of the T1 image. Images are obtained
using the MedINRIA software developed by P. Fillard and N. Toussaint.
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Figure 3.5: Tensor field estimation of the spinal chord (middle and bottom row) and
improvement of the fiber tracking (top row). Images are courtesy of D. Ducreux, MD. The
color codes for the principal direction of tensors: red: left-right, green: anterior-posterior,
blue: inferior-superior. Top row: A slice of the by image with the ROI squared in green (left),
spinal cord tract reconstruction with the classic log-Gaussian ML (middle) and Rician MAP
(right) tensor estimation. Middle row: There are many missing (i.e. non-positive) tensors
around and in the spinal cord with the classic log-Gaussian ML tensor estimation (left). Tensors
are all positives for the Rician ML noise model (middle), and the field is much more regular while
preserving discontinuities with the Rician M AP noise model (right). Bottom row: Fractional
anisotropy of the classic log-Gaussian ML (left), Rician ML (middle) and Rician MAP
(right) noise models.



3.4. CONCLUSION 53

the Gaussian distribution, defined through the maximization of the intrinsic conditional entropy
of the distribution knowing the mean and the covariance. Here we showed that important image
analysis tools such as filtering and convolutions can be also rephrased as weighted means, i.e. as
intrinsic minimization problems.

The second most important tools are the Riemannian exponential and logarithmic maps. Typical
examples were previously given by gradient descent algorithms through geodesic walking (a straight
line from the reference point in the exponential map in the direction of the gradient is transformed
into a geodesic path in the manifold), the definition of the covariance matrix and higher order
moments... In this chapter, we show that the exponential map also provides the manifold-Laplacian
for free. This particularly simplifies the implementation of many algorithms like diffusion and
anisotropic regularization by providing efficient generic programming methods for all manifolds. All
the complexity is deferred to the implementation of the Riemannian exponential and logarithmic
maps. In the simple cases that we considered in these two chapters (rigid motions and tensors with
invariant metrics), we were able to determine closed forms for these two maps. For more complex
Riemannian manifolds, one has to rely on the numerical optimization of the Riemannian energy (the
integral of the squared distance) to compute the geodesics. Of course, the efficiency is much lower,
but the genericity is very high. One should notice that by a complex Riemannian manifold, we mean
not only complex geometrical features (e.g. curves, surfaces, deformations), but also simple features
with general Riemannian metrics. Indeed, we believe that choosing the right metric is the most
important open problem from the application point of view: having a generic computing framework
allows to design models where the metric could be learned to optimally represent observations. This
idea will be exemplified in Chapter 5 with computational anatomy.
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Chapter 4

Medical image registration

In the last two chapters, the focus was mainly on the methodological aspect of statistical computing
on manifolds, with example applications in diffusion tensor image estimation and regularization.
In this chapter, we turn to more standard medical image analysis. My interest was mainly on
image registration, which consist in superimposing images acquires at different times, with different
modalities, or between different subjects, in a common reference frame such that image points
correspond to the same anatomical position. This is a central problem in medical image analysis for
pathology follow-up in longitudinal studies, to compare the anatomy of different subjects or guide a
therapeutic gesture with augmented reality. On can distinguish a hierarchy of problems going from
rigid monomodal mono-subject, now well solved, to the still open multi-subject multi-modal highly
deformable registration problem.

Section 4.1 provides an overview of the main projects in which I was involved in image guided
therapy. In most of them, rigid registration is used to enhance the information available during the
therapy using previously acquired images. In such a system, it is not only necessary to provide the
geometric transformation, which is used to guide the therapeutic gesture, but also to quantify the
accuracy and the robustness of the information provided in order to avoid potentially dangerous
errors. To this aim, I became involved in the evaluation of the performances of rigid registration
algorithms. My contributions on this topic are detailed in Section 4.2. Doing statistics properly
on geometric transformations was actually one of the main motivations to develop the statistical
computing framework on manifold presented in the first chapter. Last but not least, Section 4.3
presents our contributions on non-rigid registration. My research interest gradually moved from
intra-subject registration to inter-subject registration, with an ever increasing need for robust and
fast algorithms. The method was to include in an efficient way informative priors about the obser-
vation process (bias, confidence on the similarity criterion) and about the transformation. This last
topic will be much more developed in the next Chapter with computational models of the anatomy.

4.1 Rigid registration for image guided therapy

Rigid registration for image guided therapy is one of the major application theme of my past research.
Historically, I was involved in three main projects in image guided therapy that I detailed below.
An additional project on biomedical images (confocal microscopy) is ongoing. In each project, my
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goal was to bring registration algorithms closer to their clinical use. The method was to revisit the
criterion usually used in order to better model the acquisition process, and to design performance
evaluation methods to validate the algorithms (see Section 4.2). This allows to better take into
account the statistical nature of the information and of the noise on the data. An overview of
the methods we developed for registration was published in the general purpose magazine Pour la
Science [Pennec, 2005] in December 2005.

4.1.1 Endoscopic brain surgery

The goal of the European project ROBOSCOPE (1998-2000), a collaboration between The Fraun-
hofer Institute (Germany), Fokker Control System (Netherlands), Imperial College (UK), INRIA
(France), ISM-Salzburg and Kretz Technik (Austria), was to assist neurosurgical operations using
real-time 3D ultrasound images and a robotic manipulator arm. During an intervention, the brain
tissues shift and warp. In order to keep an accurate positioning of the surgical instruments, one
has to estimate this deformation from intra-operative images. 3D ultrasound (US) imaging is an
innovative and low-cost modality which appears to be suited for such computer-assisted surgery
tools. The idea is to track in real time the deformation of anatomical structures using 3D US im-
ages acquired during surgery. To calibrate the system (i.e. to relate the MR and the US coordinate
systems) a first US image is acquired with dura mater still closed. As there is not motion of the
brain yet, we just have to in perform a rigid registration with the preoperative MR. Then, per-
operative 3D US images are continuously acquired during surgery to track the brain deformations.
From these deformations, one can update the preoperative plan and synthesize a virtual MR image
that matches the current brain anatomy.

In [Roche et al., 2001, Roche et al., 2000], we proposed one of the very first image-based tech-
nique to register rigidly intra-operative 3D US with a pre-operative MRI. A model of the sig-
nals and their acquisition led us to propose an original similarity measure between the images,
the bivariate correlation ratio, that generalized the correlation ratio we previously proposed in
|Roche et al., 1998a, Roche et al., 1998b|. In our model, the US intensity is assumed to be a un-
known bivariate function of the intensity of the MRI and of it gradient. Optimizing alternatively for
the geometric transformation and for this intensity transfer function led to a very efficient algorithm
(see Figure 4.1. A careful evaluation of the algorithm performances using registration loops showed
that we were able to reach an accuracy of the order of the voxel size of the MRI.

Once the US coordinate system is related to the pre-operative MR one, brain defor-
mations are tracked tracked in the 3D US time-sequence using a “demon’s” like algorithm
[Pennec et al., 2003, Pennec et al., 2001b]. To take into account intensity changes along time, we
developed an original version of the local correlation coefficient [Cachier and Pennec, 2000]. Ex-
periments show that a registration accuracy of the MR voxel size is achieved for the rigid part,
and a qualitative accuracy of a few millimeters could be obtained for the complete tracking sys-
tem. An overview of the whole rigid registration and non-rigid tracking system was published in
[Pennec et al., 2001a, Pennec et al., 2005a].
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Images of a baby (US images are acquired through the fontanelle and are not per-operative). From
left to right: original MR T'1 image, closeup on the ventricle area, and registered US image with
MR contours superimposed.

Images of a patient with a brain tumor. The 3D US is a per-operative image. From left to right:
MR T1 image with a contrast agent, manual initialization of the US image registration, and result
of the automatic registration of the US image with the MR contours superimposed.

Figure 4.1: Example registration of MR and US images using the bivariate correlation ratio in the
ROBOSCOPE project. Images courtesy of M. Rudolph and Dr Auer, Max-Planck-Institute for
Psychiatry, Munich, Germany and ISM Austria, in the framework of the EC-funded ROBOSCOPE
project HC 4018, a collaboration between The Fraunhofer Institute (Germany), Fokker Control
System (Netherlands), Imperial College (UK), INRIA (France), ISM-Salzburg and Kretz Technik
(Austria).
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4.1.2 Dental implantology

The Cifre PhD of S. Granger took place in the framework of a research collaboration with the
company AREALL for the development of DentalNavigator, a computer-guided surgery system
dedicated to oral implantology surgery [Etienne et al., 2000b, Etienne et al., 2000a, Granger, 2003].
In this system, the operation was planned on a pre-operative CT-Scan and the purpose was to help
the dentist surgeon to drill the implant in the predefined position and orientation in the mouth
of the patient, with a minimally invagive apparatus. In the CT-Scan image, the teeth and jaw
bone surfaces were easily segmented, resulting in about 100000 triangulated points. About 10000
unstructured points were measured on the patient teeth and jaw in the operating room using a 1D
ultrasound probe whose position and orientation was tracked in 3D. The registration of the surfaces
underlying these two unstructured point sets was then allowing to visually guides the surgeon to
the planned position and orientation for drilling.

We investigated with Sebastien Granger the rigid registration of large sets of points, gener-
ally sampled from surfaces. We formulate this problem as a Maximum-Likelihood (ML) estima-
tion. Under the Gaussian assumption, and when the matches are sought, this corresponds to
the well known Tterative Closest Point algorithm (ICP) algorithm with the Mahalanobis distance
[Granger et al., 2001].

Then, considering matches between the points of the two sets as a hidden variable, we obtain
a slightly more complex non quadratic criterion that can be efficiently solved using Expectation-
Maximization (EM) principles. This leads to an alternate optimization of the probability of the
matches (E-step) knowing the transformation, and the optimization of the transformation knowing
the probability of the matches (M-step). Still with Gaussian noise, this new methods corresponds to
an ICP with multiple matches weighted by normalized Gaussian weights, giving birth to the EM-ICP
acronym of the method. The variance of the Gaussian noise is a new parameter that can be viewed
as a “scale or blurring factor” on the point clouds. From a theoretical point of view, we showed that
EM-ICP robustly aligns the barycenters and inertia moments with a high variance, while its limit is
the ICP for a variance smaller than the distance between neighboring points in each sets (i.e. points
may be distinguished and there is no ambiguity in the matches). Practically, we used a coarse-to-fine
approach which resolved robustness problems while improving the algorithm accuracy. Moreover,
we were able to drastically increased the algorithm speed to almost real-time while preserving its
very good performances using a simple down-sampling technique on the point-sets. Experiments
on real data demonstrate a spectacular improvement of the performances of EM-ICP w.r.t. the
standard ICP algorithm in terms of robustness (a factor of 3 to 4) and speed (a factor 10 to 20),
with similar performances in precision [Granger and Pennec, 2002a, Granger, 2003].

These good results led us to reuse part of this formalism in a statistical framework for modeling
noisy curves and surface using unstructured point sets for surface reconstruction, registration and
fusion |Granger, 2003]. In particular, we were able to relate some of our results to the tensor voting
techniques developed in [Medioni et al., 2000].

4.1.3 Liver puncture guidance

In collaboration with Luc Soler at IRCAD on computer aiding tools for digestive surgery
[Delingette et al., 2006, Soler et al., 2004a, Soler et al., 2004b, Soler et al., 2004c|, the goal of the
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Figure 4.2: Registration of surfaces viewed as point sets for dental implantology guidance. Left:
Registration of two sets of points measured on the surface of a dry (ex-vivo) jaw. The red surface is
is a regularly sampled surface of more than 130000 triangulated points segmented from a CT-Scan
of resolution 0.25%0.25%0.5 mm. 50 points (black dots) were measured on the surface of the teeth
using a passive robotic arm. Experiments showed that ICP has a very small attraction basin (a
few millimeters in translation) and an accuracy of 0.31 mm in the jaw area. The EM algorithm
exhibits a much wider attraction basin (around 1 cm) with an better accuracy of 0.22 mm. This
gain in robustness and accuracy is counterbalanced by a larger computation time (a factor 4), which
remained however under 30 seconds without the multi-scale speedup [Granger et al., 2001|. Right:
Registration of two sets of points measured on the surface of a dry (ex-vivo) jaw. The white surface
is extracted from a CT scan as above. The purple points are obtained via a 1D ultrasound sensor
mounted on a passive robotic arm with an accuracy of about 0.05 mm. This set of 25000 points is
very heterogeneous, and presents many packets of highly correlated points. Using the multi-scale
EM algorithm allows to reach a robustness of 90% in 1 minute while the ICP algorithm convergence
to the right solution only 25% to 50% of the time in 5 to 10 minutes.|Granger and Pennec, 2002a]

PhD thesis of Stéphane Nicolau was to build a clinical prototype of an augmented reality guiding
system that could be tested in the operating room. Hepatic tumor ablation by radio-frequencies
is frequently performed at Strasbourg Hospital under radiologic assistance. However, inserting the
needle within 5mim of the target point can require several C'T-scan acquisitions to verify and correct
the trajectory. This increases the radiation dose for the patient and lengthens the gesture. The
needle even have sometimes to be removed and reinserted several times. Thus this radiologic inter-
vention appeared to be a good candidate where augmented reality (AR) could provide an important
help to shortening the intervention time.

The general principle of the AR system is to acquire a CT-scan of the abdomen at the beginning
of the intervention. Then, a 3D reconstruction of the anatomical structures of interest (skin, liver,
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Figure 4.3: Augmented reality system for Liver puncture guidance. Top: experimental setup for
the validation on the abdomen phantom in the operation room. On the right image, one can see
the guidance interface (a close-up is displayed in the left image) and the endoscopic control image
on the right. Bottom: passive validation experiments on real patients.

tumor...) is performed, in which the radiologist specifies the entry and target points. Two jointly
calibrated cameras observe the patient’s skin when the table of the scanner is out of the gantry.
The hard clinical requirements about the robustness of the system led us to stick radio-opaque
markers on the to perform the 3D CT-scan to 2D video images registration [Nicolau et al., 2005].
As 70% of the patients are under general anesthesia at Strasbourg hospital, the CT and gesture
guidance is also performed only during the the expiratory phases of the patient in order to guaranty
the accuracy. The needle is tracked by the cameras during its insertion so that its orientation and
the position of its end point can be related to the entry and target points in order to guide the
radiologist. The CT and needle model registration to the camera coordinate system is performed is
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real-time so that the patient can be moved.

In this augmented reality system, our main contributions were three-folded. Firstly, we extended
the usual 3D /2D point registration algorithms by explicitly considering noise on the the 3D point
positions. This extended projective points criterion (EPPC) turns out to have a better robustness
and accuracy than te usual 3D /2D registration criteria [Nicolau et al., 2003b]. We also provided a
method to statistically estimate the accuracy of the resulting transformation, which was validated
on controlled experiments with a phantom of the abdomen [Nicolau et al., 2004a|. This accuracy
prediction scheme is an important security feature of the AR system as it allows to certify in real
time that the registration is not potentially misled for instance by the occlusion of some markers or
by a bad positioning of the cameras with respect to the field of view.

Secondly, the ergonomy of the augmented reality interface was carefully studied and optimized
with the practitioners [Nicolau et al., 2004c]| (see Fig. 4.3). Experiments on an abdominal phantom
(with endoscopic control) in the operating room showed that a mean accuracy of 2mm could be
reached with a targeting time of less than 30 seconds!

Last but not least, we set up a passive evaluation protocol on real patients in clinical conditions:
the augmented reality system is installed and initialized, but the radiologist performs his gesture
normally without any indication from the system. For the subset of patient chosen, the radiologist
performs a CT-scan with contrast agent after the insertion of the needle to check if it is really well
positioned. From this image, we can determine the actual point that was targeted using a 3D-3D
registration to the pre-operative scan. By comparing this position to the one planned by the system,
we can determine the accuracy of the guidance the system would have provided. The potential
impact of the AR system presence in the OR was considered negligible by the practitioner and the
anesthetist. A first evaluation on 5 patients showed that it was necessary to have a breath control not
only during the needle insertion, but also during the CT scan acquisition to avoid important image
distortions [Nicolau et al., 2004b, Soler et al., 2004d]. In a second round of evaluation on 5 other
patients with breath control, the system accuracy increased from 10mm to 5mm, thus validating
the system principle in pseudo-static conditions. We hope to show in future experiments that the
active use of the system drastically reduces the time of the needle insertion and allows to decrease
the number of intermediate scans during the gesture.

4.1.4 Confocal microscopic imaging

Fibered confocal microscopy (FCM) is a potential tool for in vivo and in situ optical biopsy. The
principle of confocal microscopy is to perform an optical sectioning of a biological sample by selecting
a clear in-focus image of a thin section within the sample and rejecting the light from out-of-focus
planes. To adapt confocal microscope for in vivo and in situ imaging, the company Mauna-Kea
Technology (MKT) proposed to replace the microscope objective by a probe of adequate length and
diameter, linked to the scanning device by a fiber bundle [Le Goualher et al., 2004]. This imaging
modality unveils the cellular structure of the observed tissue.

In close collaboration with MK, the goal of the Cifre PhD of Tom Vercauteren is to enhance the
possibilities offered by FCM by providing efficient image sequence mosaicing techniques to widen the
field of view (FOV). This is a way to fill the gap between scales and to allow multi-scale information
fusion for probe positioning and multi-modality fusion. Mosaicing also allows for quantitative and



62 CHAPTER 4. MEDICAL IMAGE REGISTRATION

statistical analysis on a wide field of view, especially when the element of interest of the order of
the size of a single image.

To explore a region of interest, the optical microprobe is glided along the soft tissues. This
displacement may be described by a smooth rigid motion over time (with some jumps when the
probe encounters some obstacles), with small non-rigid deformation of the tissues due to the probe
pressure. FCM outputs a video sequence irregularly sampled in the space domain, each sampling
point corresponding to a fiber center. An additional problem is that FCM is a laser scanning
device: each sample point in the image is acquired at a different instant. This induces motion
artifacts correlated with the probe motion. Thus, each image frame may be viewed as a partial,
deformed and irregular sample of the unknown ground truth 2D scene.

The mosaicing approach chosen in [Vercauteren et al., 2006, Vercauteren et al., 2005] is basi-
cally an iterated optimization of the “likelihood” of the above generative model over the different
unknowns (global 2D scene, probe motion, non-rigid deformations), embedded in a hierarchical
framework to efficiently determine good initial values. The global positioning of all frames is first
determined using multiple registration of input frames: a robust and maximally consistent motion

Figure 4.4: Left: Mosaic of 50 live mouse colon images (Fluorescence FCM). The mouse colon,
stained by acriflavine, show both normal and aberrant crypts. The image sequence is courtesy of
Danijela Vignjevic, Sylvie Robine, Daniel Louvard, Institut Curie, Paris, France. Right: Mosaic of
243 live human mouth images (Reflectance FCM).
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sequence is extracted using optimization techniques on Lie groups (the method is more formally
described in Section 4.2.3 as the Bronze Standard for a different application). The laser-scanning
induced motion artifacts are easily modeled are corrected from the estimated motion sequence. The
whole sequence (registration of pairs of corrected frames, globally consistent alignment estimation,
and correction of distortions) is iterated to improve the motion parameters. Then, we proposed an
original and efficient scattered data fitting method to reconstruct the global 2D scene from irreg-
ularly samples images (the registered and motion-corrected frames). The residual small non rigid
tissue deformations are finally taken into account by iteratively registering an input frame to the
mosaic, thanks to a demon’s like non-rigid registration algorithm, and updating the mosaic.

Controlled experiments on a phantom (a silicon wafer) with a computer numerical control milling
machine provided a gold standard motion. Results indicate that the accuracy of the mosaicing frame-
work (without deformation) was of the order of the fiber inter-core distance (1.3 pm). Moreover,
the mosaic clearly displays a super-resolution effect compared to the acquired image frames. Mul-
tiple experiments with in-vivo acquisitions in the mouse and human colon, mouth mucosa, kidney,
etc. (see e.g. Fig. 4.4 or [Vercauteren et al., 2006| for more images) demonstrated the interest of
mosaicing for in vivo soft tissue microscopy: not only the the field of view is enlarged, but we also
observe in most cases an important improvement of the signal to noise ratio.

Future work will concentrate on robustifying the method and make it real-time (the rigid part
took 3 minutes and the non-rigid deformation compensation 15min on a 2GHz PC for the mouse
colon mosaic displayed in Fig. 4.4). Indeed, even a simplified version would allow the operator
to interact with the mosaicing during the acquisition, for instance to ensure the covering of an
important final field of view and to reconnect the mosaic parts when there is a jump in the motion
sequence.

4.2 Evaluation of the registration performances

A transversal axis of my research was to develop performance evaluation methods for rigid registra-
tion algorithms in terms of robustness, precision and accuracy. For the sake of analysis, one may
consider registration algorithms as black boxes that take images as input and output a transfor-
mation. Considering the input data and the output transformation as random variables naturally
leads to quantify the variability of the transformation with its standard deviation, or more inter-
estingly with the covariance matrix as the transformation uncertainty is usually non isotropic (this
also solve the problem of radians and millimeters for rotations and translation parts). Then, the
variability of the transformation can be propagated to some target points to obtain the covariance
on the transformed test points, or its trace, the variance. Depending on the distance to the “true”
transformation, one usually distinguish gross errors (convergence to wrong local minima) and small
errors around the exact transformation. The robustness quantifies the size of the basin of attraction
of the right solution or the probability of false positives. The accuracy measures the error with
respect to the truth (which may be unknown) for small errors. The repeatability or precision only
measures the deviation from the average value, i.e. it does not take into account systematic biases,
which are often hidden.

One should be careful that registration algorithms perform differently for different types of input
data. For instance, one algorithm may perform very well for the registration of MR images of the
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head, but poorly for the same type of images of the abdomen. This means that the evaluation
data set has to be representative of the typical clinical application problem we are targeting: all
sources of perturbation in the data should be represented, such as acquisition noise and artifacts,
pathologies, etc. We cannot just conclude from one experiment that one algorithm is better than
the others for all applications.

One of the simplest evaluation schemes is to simulate noisy data and to measure how far is
the registration result from the true one (the ground truth is obviously known). The main draw-
back of synthetic data is that it is very difficult to identify and model faithfully all the sources
of variability, and especially unexpected events (pathologies, artifacts, etc). Forgetting one single
source of error (e.g. camera calibration errors in 2D-3D registration) automatically leads to un-
derestimate the final transformation variability. Moreover, the faithful simulation of images (e.g
SPECT [Grova et al., 2001] and MRI [Benoit-Cattin et al., 2005|) are computationally extremely
demanding due to the complexity of image acquisition physics.

The second evaluation level is to use real data in a controlled environment, for instance imag-
ing a physical phantom. In our research, we used such a phantom in [Nicolau et al., 2003b,
Nicolau et al., 2003a] to evaluate the 2D/3D registration of video and CT images described in
Section 4.1.3. To obtain a gold standard, one need to measure precisely the motion or deformation
of the phantom with an external apparatus. However, it is difficult to test all the clinical condi-
tions (e.g. different types or localizations of pathologies). Moreover, it is often argued that these
phantoms are not representative of real in vivo biological system. One level closer to the reality,
experiments on cadavers correctly take into account the anatomy, but fail to exhibit all the errors
due to the physiology. Moreover, images may be very different from the in-vivo ones, for instance
in MR.

The last level of evaluation methods, relies on a database of in-vivo real images representative
of the clinical application. Such a database should be large enough to span all sources of variabil-
ity. However, establishing a gold standard registration for realistic clinical images is very difficult.
This was done for instance in [Maurer et al., 1997] for the evaluation of the ACUSTAR Advanced
Neurosurgical Navigation System. As a side bonus, it allows the retrospective comparison of many
multimodal registration algorithm [West et al., 1997, West et al., 1996], but such a study is hardly
reproducible for all types of data. Thus, my research focused more on the more general setup: the
absence of gold-standard.

4.2.1 Error prediction

In generalized least-squares feature-based rigid registration algorithms, we can formulate the op-
timal registration as an implicit function of the features by equating the criterion derivative to
zero. The error is then propagated from the features to the resulting transformation using first or-
der linearizations of the criterion derivatives [Pennec and Thirion, 1995, Pennec and Thirion, 1997,
Nicolau et al., 2003b|. We proposed this type of error prediction method for the registration of
monomodal images based on extremal points [Pennec et al., 2000], and for the marker based 2D /3D
registration criteria of [Nicolau et al., 2004a]. A similar but highly simplified noise propagation anal-
ysis was performed in [Fitzpatrick et al., 1998| for the case of point features. However, the noise
assumptions in these error prediction methods are often too simplistic for more generic registration
methods. Firstly, they assume independent errors on the features, which forbids the use of such
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methods for surfaces and intensity-based criteria. Secondly, and probably more importantly, one
often forgets to include some sources of error in the model. For instance, we put into evidence a bias
of 0.2mm due to chemical shift between MR images acquired at the same time while the uncertainty
of the registration was of the order of 0.1lmm only [Pennec, 1997, Pennec et al., 1998|. In another
experiment, camera calibration errors consistently biased all the images of the sequence by about
Imm [Nicolau et al., 2004a]. All these bias lead to a drastic underestimation of the final error on
the transformation. Thus, even if we can predict the registration error, one needs a performance
evaluation setup to verify that all the sources of error are correctly taken into account.

4.2.2 Consistency loops

For general registration algorithms, it has been proposed to perform a cross comparison of the
criteria optimized by different algorithms [Hellier et al., 2003]. However, this does not give any
insights about the transformation itself. We believe that a more interesting method is the use of
consistency loops [Pennec and Thirion, 1997, Holden et al., 2000, Roche et al., 2001]. The principle
is to compose transformations that form a closed circuit and to measure the difference of the
composition from the identity. This criterion does not require any ground truth, but it only measures
the repeatability as any bias will get once again unnoticed.

Originally, we have proposed this type of loops to validate the error prediction on the generalized
Least-squares feature-based registration criteria that we proposed in [Pennec and Thirion, 1997]:
when the covariance matrix of the transformation loop is known, the Mahalanobis distance of the
loop to the identity should be x% distributed under a Gaussian assumption. We called this value
the validation index. By repeating experiments with many different configurations one can test
if the covariance is statistically correctly predicted by verifying the mean and the variance of the
validation index (resp. 6 and 12), or even by performing a Kolmogorov-Smirnov test to verify that
the empirical distribution matches the theoretical one. Results on the rigid registration of time series
of dual echo MR T2 images of the brain using crest lines showed that our accuracy prediction was
perfectly validated within the times series of each echo, but put into light a statistically significant
bias of 0.2mm in translation due to the chemical shift (voxel size was 1x1x3mm) [Pennec et al., 1998,
Pennec et al., 2000]. The same technique was also used to validate the accuracy prediction of the
3D /2D point-based registration criteria of section 4.1.3 [Nicolau et al., 2004a]. This time, we found
that the prediction was correct when it was above 1mm. The limited factor was in this case the
noise on the camera calibration that was not taken into account.

In |Roche et al., 2000, Roche et al., 2001|, we adapted the registration loop technique to es-
timate the accuracy performances of the MR/US registration detailed in Section 4.1.1. Similar
registration loop techniques were also proposed at the same time for other registration problems
[Holden et al., 2000, Penney et al., 2001]. Typical loops are sketched in Fig. 4.5 for a series of MR
and US images acquired on a deformable phantom. If we were given perfectly registered images
within MR and US modalities, applying the transformations of the loop in turn to a test point
would lead to a displacement that is only due to the errors of the two MR /US registrations. Since
variance are additives, the observed target registration error (TRE) should be 01200[) = 2012\/[ RJUS" In
most cases, the intramodality transformations are not perfectly known and need to be estimated.
Thus, we have to take into account their variability and the ezpected accuracy or consistency is
quantified by: 2012WR/US = a?oop — UJQMR/MR . U?JS/US. Using that framework, we were able to show
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Figure 4.5: Registration loops used to estimate the registration consistency.

that the accuracy of the MR/US registration was of the order of the MR voxel size (US images
were more finely sampled), i.e. below 2mm even in the case of per-operative images of the brain for
tumor resection.

In practice, the variability analysis is performed on the transformations rather than on test
points with a simplified model of noise to minimize the number of unknowns (e.g. diagonal or
two variances only for rotation and translations). In both cases (test points and transformations),
we need to estimate the variance of the intra-modality registrations. This led us to develop the
following bronze standard estimation procedure.

4.2.3 The bronze standard method

The principle of the bronze standard method is similar the STAPLE algorithm proposed for the
validation of segmentation [Warfield et al., 2004]: we consider the gold standard registration as a
hidden variable, as well as the distance of our results to this reference (EM like algorithms). From a
set of pairwise registrations between images, the goal is thus to estimate the exact transformations
and the variability of the registration results with respect to these references. The bronze standard
technique was first presented in [Roche et al., 2000, Roche et al., 2001] for the previous MR/US
registration problem, and then adapted and refined in [Granger, 2003| and [Nicolau et al., 2003b]
for other registration problems.

Let us assume that we have n images of the same organ of the patient and m methods to register
them, i.e. m.n? transformations le] (we denote here by k the index of the method and by i and
j the indexes of the reference and target images). Our goal here is to estimate the n — 1 free
transformations Ti,i+1 that relate successive images and that best explain the measurements TZ'“]



4.2. EVALUATION OF THE REGISTRATION PERFORMANCES 67

_ The bronze standard transformation between images ¢ and j is obtained by composition: TZJ =
Tiit10Tiq1,i420...0Tj_1; if © < j (or the inverse of both terms if j > i). The free transformation
parameters are computed by minimizing the prediction error on the observed registrations:

— _ _ _ 2
C(Ti2.Tos, o Tora) = > d(Th,Ty) (41)
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where d is a robust variant of the left-invariant Riemannian distance on rigid transformation pre-
sented in Chapter 2:

~ min (127 2 i 2 _ e
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In this process, we do not only estimate the optimal transformations, but also the rotational and
translational variance of the “transformation measurements”, which are propagated through the
criterion to give an estimation of the variance of the optimal transformations. Of course, these
variances should be considered as a fixed effect (i.e. these parameters are common to all patients for
a given image registration problem, contrarily to the transformations) so that they can be computed
more faithfully by multiplying the number of patients.

Considering a given registration method, the variability due to the noise in the data decreases
as the number of images n increases, and the registration computed converges toward the perfect
registration up to the intrinsic bias introduced by the method. Now, using different registration
procedures based on different methods, the intrinsic bias of each method also becomes a random
variable, which is hopefully centered around zero and averaged out in the minimization procedure.
The different bias of the methods are now integrated into the transformation variability, hence
the name bronze standard. To fully reach this goal, it is important to use as many independent
registration methods as possible.

The optimized criterion is in fact the log-likelihood of the observations Tf] assuming Gaussian
errors around the bronze standard registrations. An interesting variant is to relax the assumption of
the same variances for all algorithms, and to unbias the estimation of these variances. This can be
realized by using only m — 1 out of the m methods to determine the bronze standard registration,
and use the obtained reference to determine the accuracy of the last method (a kind of leave-one-
method-out test).

In the case of registration of the surface of the jaw extracted from CT images, we found for
instance that the multi-scale EM-ICP algorithm of [Granger and Pennec, 2002a| was twice times
more accurate than intensity-based registration algorithms such as Baladin [Ourselin et al., 2000] (a
block matching strategy optimizing the coefficient of correlation and a robust least-trimmed-squares
transformation estimation) and Yasmina (Powell optimization of the SSD or of a robust variant of
the correlation ratio (CR)) [Roche et al., 2001], or the registration using crest-line and extremal
points [Pennec et al., 2000]. This result contradicts the general assumption that intensity-based are
more accurate than feature-based registration methods and illustrate the fact that the accuracy of
a registration algorithm is application dependent.

For the CT images of the abdominal phantom [Nicolau et al., 2003b] used in Section 4.1.3, one
could observe that the registration based on fiducials (the markers stuck on the phantom skin) was
2 to 3 times less accurate than image-based registration algorithms (the same as above), even with
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20 markers. This could be explained by the soft nature of the skin, which undergone (realistic)
motions of the order of 1.5mm between the different CT acquisitions).

4.2.4 Grid-based registration evaluation

Even though registration computations are usually tractable on simple PCs, the large number of
input data and registration algorithms required to compute the bronze standard makes this method
computationally intensive. A grid infrastructure can handle the load of the computations involved
and help in managing the medical image database to process. Grid platforms offer computing power,
data storage capacities, algorithm and data sharing functionalities through standardized interfaces
and protocols. They are an opportunity to enlarge the impact of image processing tools and to
transfer this experimental research to clinical practice. The availability of algorithms and datasets
will ease the development, prototyping, and the validation of algorithms. Advanced users will be
able to experiment and compare existing techniques on common data sets. In fine, one could expect
that grid-enabled algorithms will be accessible for clinical use [Blanquer et al., 2004].

The evaluation of a new registration method with respect to existing reference algorithms is
an interesting first level scenario. Doing that on a local host or cluster requires to be able to get
the code, compile, parameterize and execute all the reference algorithms that may be developed
by different people, coming from various institutes. Such a procedure is very time-consuming and
hardly long-term manageable if new versions of the algorithms are released. But if the algorithms
are available as grid services, it becomes easy because the implementation and maintenance details
are delegated to the authors of the algorithms.

Another possible evaluation scenario is the assessment of a couple of algorithms on particular
registration problem. In this case, building a suitable evaluation image database is difficult because
it involves specific images that may not be widely available. The data sharing potential of the grid
may facilitate such a collection by enabling queries on suitable meta-data to shared image databases.
A secure interface between DICOM servers and the grid, allowing such a scenario is for example
presented in [Montagnat et al., 2006].

The goal of the PhD of Tristan Glatard is to investigate in more depth the potential of the GRID
for medical imaging applications by implementing some of these scenarios. This PhD is a central
element of the AGIR project (Grid Analysis of Radiological Images Data http://www.aci-agir.
org/ - in French: Analyse Globalisées des données d'Imagerie Radiologique), funded by the French
Research Ministry through the ACI (Action Concertée Incitative) Masses de Données. This project
gathers researchers in Computer Science, physics and medicine from CNRS, INRIA, University,
INSERM, and hospitals. It aims at defining and validating on the one hand new grid services
that address some of the requirements of complex medical image processing and data manipulation
application ; and on the other hand new medical image processing algorithms that take advantage
of the underlying grid infrastructure for compute and data intensive needs [Germain et al., 2005a,
Germain et al., 2005b].

In this context, the bronze standard is an interesting evaluation algorithm for medical im-
age analysis, and a good benchmark for the medical grid. Comparing and sharing registration
algorithms implies that each registration service is semantically described. A complete system
would include an ontology of registration problems (modalities, anatomical region, rigid or non-
rigid registration, etc), of registration algorithms (input/output data types, method used, etc)



4.2. EVALUATION OF THE REGISTRATION PERFORMANCES 69

and of image and transformation formats. Following a first experiment on the interoperabil-
ity of 3 rigid and non-rigid registration algorithms in [Hill et al., 2004], we simply wrapped in
[Glatard et al., 2006d, Glatard et al., 2005b, Glatard et al., 2005a] each registration algorithm into
a standard Web service. Those Web services are responsible for the grid execution of their algorithm
on the data sets specified at invocation. Algorithms are thus standard black boxes, ready to be
assembled into an application.

Then, the workflow of the bronze standard was described as a data pipeline. Control links may
also be specified in order to describe precedence constraints between algorithms. We chose the Scufl
language [Oinn et al., 2004| which is a good trade off between high expressiveness and simplicity.
To efficiently execute such a workflow on a grid, we developed a workflow manager called MO-
TEUR [Glatard et al., 2006e, Glatard et al., 2006¢c|. We focused in particularly on optimizing the
time-performances, which are critical in the case of data-intensive applications. MOTEUR enables
three different kinds of parallelism (workflow, data and service parallelism), in order to exploit the
massively parallel resources available on the grid infrastructure. Moreover, it groups sequential
jobs to lower the number of services invocations and minimize the grid overhead resulting from
jobs submission, scheduling and data transfers. Finally, MOTEUR can execute workflows on grid
systems with very different scales: We made experiments on the EGEE production grid! (including
18,000 CPUs all over the world and 5 PB storage capacity), as well as on the Grid5000 experimental
infrastructure? (1,400 CPUs and hundreds of GB storage capacity) |Glatard et al., 2006b).

The Bronze standard workflow was experimented on a database of longitudinal MRIs in the
context of the clinical follow-up of brain tumors during radiotherapy |Glatard et al., 2006f]. In the
evaluation database build by Dr. P.-Y. Bondiau (Centre Antoine Lacassagne, Nice, France), 29 pa-
tients had more than 2 time points and were suitable to inclusion in our rigid registration evaluation
study. Up to now, we only used gadolinium-injected T1 images. We are currently extending the
description of the workflow and the statistical averaging program to handle the other T1 and T2
modalities of images. The main novelty is that each pair of modality requires different algorithm pa-
rameters and should have a different accuracy. The same registration algorithm as above were used
(Baladin, Yasmina, Crest-Match), except the EM-ICP because extracting a meaningful surface on
these images is challenging. A first run of the bronze standard workflow (720 registrations) rejected
many transformations as outliers. A careful inspection revealed that there was two groups of images
tilted by either +1.19 or -1.22 degree. The rigidity assumption was violated while registering images
from one group to the other, and these transformations were detected as having an unacceptably
bad accuracy with respect to intra-group transformations. It is interesting to notice the bronze
standard procedure is powerful enough to enlighten this feature which remained unnoticed during
two years of usage of this database!

A second run with the group of images with a positive tilt only (25 patients, 504 registrations)
led to 20 outlier transformations only, among which 15 were concerning two patients with a very
high deformation in the tumor area, leading to some global deformations of the brain. In that
situation the rigidity assumption does not hold and several "optimal" rigid registration may be valid
depending on the area of the brain. The last 5 rejected transformations involve two acquisitions
with phase-encoded motion artifacts which impacted differently feature-based and intensity-based

'Enabling Grids for E-sciencE, http://www.eu-egee.org
2Grid5000 national grid, http://www.grid5000.org
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registration algorithms, leading to two non-compatible sets of transformations. Excluding these 20
transformations, we obtained mean errors of 0.130 degree on the rotations and 0.345 mm on the
translations. The propagation of this error on the estimated bronze standard leads to an accuracy of
0.05 degree and 0.148 mm. The unbiased accuracy of each of the algorithms, obtained by comparing
its results to the bronze standard computed from the 3 others methods show slightly higher but
equivalent values for all algorithms.

The execution times of the whole workflow was compared on the EGEE and Grid5000 platforms,
for different numbers of image pairs to register. Even though the EGEE production infrastructure
gathers many more processors than Grid5000, the workflow was always faster on Grid5000 (2h10
versus bh for 126 image pairs). It can be explained by the high overhead introduced by the EGEE
grid, coming from the large scale of this platform and its multi-users nature. However, the speed-up
obtained on Grid5000 is decreasing with the number of input images (5.6 for 66 image pairs, 2.3
only for 126). The Grid5000 platform progressively enters a saturation phase, where all the available
processors are used by the application, while the EGEE grid is more scalable and less impacted by
the growth of the input data set size. These results highlight the difference between an experimental
grid, GRID5000, which has low overheads but a limited amount of resources, and an ever-loaded
production platform like EGEE, which exhibit larger overheads but a very high scalability.

4.3 Non-linear registration

One usually classify non-linear registration algorithms by the dimension of the sought parameters.
A first class relies on a parametric model of transformation that have (much) less parameters
than voxels in the images. These algorithms are naturally called parametric. A second class of
algorithms recovers the displacement of each voxel of one of the image, i.e. a dense deformation
field. My research focused primarily on dense registration algorithms, first with the analysis and
extension of Demon’s like algorithms (Sections 4.3.1 and 4.3.3), then with the development of non
stationary regularization criteria that can take into account some a priori about the anatomy and the
pathologies (Section 4.3.5). To even better control the transformation while decreasing the number
of degrees of freedom, we design with V. Arsigny in Section 4.3.6 the Polyrigid and Polyaffine
transformation that locally behave as rigid or affine within specific regions.

4.3.1 Demon’s like algorithms

In the nineties, several non-rigid registration algorithms were proposed. The original contribution
might be traced to [Bajcsy and Kovacic, 1989], who differentiated the linear correlation criterion and
used a fixed fraction of its gradient as an external force to interact with a linear elasticity model.
[Christensen et al., 1997] argued that the linear elasticity was only valid for small displacements and
could not guarantee the conservation of the topology of the objects as the displacements become
larger. Thus, they proposed a viscous fluid model of transformations that effectively handles larger
displacement. However, the computational price was very high and this type of algorithm had to be
run on massively parallel machines. [Bro-Nielsen, 1996, Bro-Nielsen and Gramkow, 1996| used the
linearity of partial differential equations to establish a regularization filter corresponding to this fluid
model, several order of magnitude faster than the previous finite element method. In that context,
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[Thirion, 1998| proposed to consider non rigid registration as a diffusion process. He introduced in
the images entities (demons) that push according to local characteristics of the images in a similar
way Maxwell did for solving the Gibbs paradox in thermodynamics. The forces he proposed were
inspired from the optical flow equations:
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and the method alternates the computation of the forces and their regularization by a simple Gaus-
sian smoothing to obtain the displacement field. This resulted into a computationally very efficient
algorithm which was much faster than the previous ones. This algorithm was used in several teams
as reported by [Dawant et al., 1999, Bricault et al., 1998, Webb et al., 1999, Prima et al., 1998].

Our goal in [Pennec et al., 1999, Cachier et al., 1999] was to provide a theoretical derivation
of the Demon’s in order to understand the underlying assumptions and potentially modify them.
The key idea was to consider non-rigid registration as a gradient descent technique. Let I be the
reference, J the image to register, T the current transformation and Vo T (resp. HyoT) be the
transformed gradient (resp. Hessian) of image J. The gradient and Hessian® of the Sum of Square
Differences (SSD) criterion SSD(T) = [ (I —J o T)* are:

Vesp(T) = 2(JoT —1)(VyoT)
Hssp(T) = 2(VyjoT)(VyjoT)' +2(JoT —1).(HjoT)

Approximating the criterion at the second order for a small perturbation by a displacement field
u(x), we have: Vgsp(T + u) ~ Vgsp(T) + Hssp(T').u. If the Hessian matrix of the criterion is
positive definite, the minimum is obtained for a null gradient, i.e. for u = —HSZ,(T).Vssp(T).
This formula require to invert the Hessian matrix Hssp(T") at each point x of the image. To speed
up the process, we approximate this matrix by the closest scalar matrix (in the Froebenius sense).
In practice, we have modified this Newton optimization scheme into a Levenberg-Marquardt method
where the adjustment vector field is given at each step by u = —(A+tr(Hssp))™".Vssp. Dropping
the (possibly negative) second order terms in the Hessian, we are left with:

—3.(JoT —=1)-(VjoT)
HVJOTHQ-F)\

u = (4.2)
The parameter A performs a tradeoff between a first order gradient descent and a second order
gradient descent. Taking A = «|J o T — I||? lead to a formula which is close to the demon’s
forces but involves the gradient of the moving image J. We showed in [Pennec et al., 1999| that
minimizing the reverse SSD criterion [ (I o T¢Y — J )? with the Eulerian (compositive) adjustment
rule: Tj11 =T o (Id + f) was actually leading to the “force” proposed by Thirion.

In [Cachier and Pennec, 2000], we developed a more complex similarity measure that can handle
local intensity changes: the sum of Gaussian-windowed local correlation coefficients (LCC). One of
the main contributions was to provide an efficient computation scheme using convolutions. Let G* f

#Notice that the Hessian of the criterion is generally a convolution kernel (Hssp(T).u)(y) = [ K(z,y)(T).u(x).dz.
However, as the regularization is not taken into account, there is no correlation between two different point so that
this kernel is purely diagonal and can be represented by a matrix.
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be the convolution of f by the Gaussian, I = (G %) the local mean, Var(I) = G x (I —I)? the local
variance, COV(I,J o T) = G x [(I = I)(JoT — JoT)] the local covariance between image I and

image J o T'. The local correlation coefficient is p(I,J o T) = COV(I,.J o T)/+/Var(I).Var(J o T)
and integrating it at each image point lead to the the LCC:

COV(I,JoT)
\/Var(I).Var(J o T)

LCC(T) = /p(I, JoT)(z).de =

As this criterion is not a least-square, we investigated in [Cachier and Pennec, 2000] several meth-
ods to compute efficiently its gradient using convolutions. Our conclusion was that the following
approximation of the gradient was performing an ideal tradeoff:

N R (TeT T (I.JoT —1.JoT) VjoTl
VLCC_<(I I)—(JoT —JoT). Var(J o T) >\/Var(f)'\/val"(JOT)

The LCC similarity measure tends to be one of the more powerful in terms of applications. Indeed,
highly multimodal problems require a highly constrained transformation, otherwise the effective
number of degrees of freedom becomes larger than the number of measure equations and the algo-
rithm get stuck in numerous local minima. Thus, the main application of non-rigid registration are
for slightly multimodal problems for which the relationship between intensities can be considered
as locally affine.

4.3.2 The Pasha algorithm

At that point, only half of our initial goal was fulfilled: we justified the Demon’s forces as a second
order gradient descent, but not the regularization scheme. In [Pennec et al., 1999|, we derived a
Gaussian smoothing step by modifying the harmonic energy Reg(T) = [ |[VT|*>. However, we were
not able to show that this modified regularization energy was well posed. It is interesting to see
that [Modersitzki, 2004] justifies the Demon’s by keeping the harmonic energy but modifying the
SSD criterion. In that case, it became difficult to analyze the underlying noise assumptions on the
image intensities.

In order to end-up with the global minimization of a well posed criterion, Pascal Cathier proposed
to introduce a hidden variable in the registration process: correspondences [Cachier et al., 2003].
The idea is to consider the regularization criterion as a prior on the smoothness of the transformation
T, but instead of requiring that point correspondences between image voxels (a vector field C) be
exact realizations of the transformation, one allows some error independently at each image point.
Considering a Gaussian noise on displacements, we end-up in the simple monomodal case with the
global energy:

E(T,C) = 12/(I—JOC)2—|—12/||C—T||2+ 12/||VT|2
o7 Oz %
This amounts to consider that there is a spatial uncertainty of o, on the voxel positions. This new
variable is easy to set: it should be of the order or less of the voxel size.
The interest of this auxiliary variable is that an alternated optimization over C' and T now
perfectly decouples the complex global minimization into two simple and very efficient estimation
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steps. Starting from an initial transformation Ty = Id at iteration zero (after possibly a rigid or
affine transformation), we iteratively:

e Find the best matches at fixed transformation by minimizing [(I —J o C)?+ 0%/02||C —T||?
using a gradient descent as we previously described. In fact, the gradient computed at C =T
is the same as before, and an additional term 0?/02 Id appears in the Hessian (taken once
again at C = T). Thus, the scalar second order Gauss-Newton gradient descent gives the
optimal correction 6C = (JoT —I).(V;0T)/(|[VsoT|?+n.c?/c2) (n is the dimension of
the space).

e Find the transformation that best approximate the correspondences by minimizing f |C —
T||*/c%+|VT||?/o%. This minimization has a closed-form solution using a single convolution
when the regularization is quadratic and uniform. For instance, the optimal transformation is
the convolution of the correspondence field by a Gaussian with the above harmonic criteria,
but more complex vectorial filters can be designed [Cachier and Ayache, 2004].

The regularization can also be modified to handle elastic and fluid-like models. The basic idea was
to use a transformation regularization criterion of the form:

Reg(T,dT) = wR(T') + (1 — w)R(dT)

When the regularization kernel is quadratic and uniform, e.g. for R(T) = [ |[|[VT||?, we still end-up
with a closed-form formula for the update of the transformation:

TZ‘_HZw(TZ‘—i-K*(CZ'—TZ’))—i-(l—w)K*CZ'

where K is a convolution kernel that depend on R and on the variances |Cachier et al., 2003].

It is interesting to remark that O'% can be replaced by the purely local estimation (J o T —
I)? (or a smoothed version) in the Gauss-Newton matches estimation step, which gives another
justification of the demons’ forces. Moreover, the penalization term allows to implement very
efficiently any other optimization scheme: the search for the correspondence is constrained to be
local: the correspondence field is the closest local minimum to the current transformation.

We were able to drew in [Cachier et al., 2003] interesting limit behavior corresponding to other
registration algorithms. For instance, when the uncertainty on the voxel position o, tends towards
zero, then the regular transformation T is gradually enforced to be closer and closer to the corre-
spondences (and vice-versa). In fine, the optimal solution is obtained for C' = T', which corresponds
to the optimization of the usual sum of a similarity and a regularization criterion, as investigated
for instance in [Hermosillo et al., 2002]. Thus, o, can be seen as a kind of scale variable and used
as such in the optimization strategy.

When both ¢, and or jointly tend towards zero in a fixed ratio, then the regularization step
remains unchanged, but the penalizing term for the distance to the current transformation becomes
weaker and weaker in the matches estimation step. In that case, the algorithm converges towards
our previous explanation of the demons (without having to tweak the regularization term as we did
in [Pennec et al., 1999]).

Last but not least, one can interpret the PASHA algorithm as a generalized ICP in the sense
of [Feldmar and Ayache, 1996]. The idea is to consider images as intensity isosurfaces represented
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by two sets of points (x;, ;) in a (n + 1) dimensional space. A locally affine spatial transformation
can then be retrieved using an ICP algorithm: in a first step, the closest point in the second image
is matched to each point in the first one after deformation with the current transformation; in
a second step, a new locally affine transformation is computed from the matches. The distance
used in the first step is the standard (re-weighted) Euclidean distance in the augmented space:
dist?((x, 1(z)), (y, J(y))) = (I(x) — J(y))?/o? + ||z — y||*/o2. Optimizing the sum over all voxel
positions for y = C(z) lead to a formula close to the first two terms of the Pasha criterion. Using
the regularization kernel corresponding to the locally affine transformation, one can see that the
criterion optimized by Feldmar’s ICP algorithm is a particular case of the PASHA one.

Thus, the PASHA algorithm generalizes the usual similarity plus regularization formulation,
the Demons, and the image ICP algorithms. However, it provides much more flexibility than all
these algorithms because it allows to change the similarity measure and the regularization criterion
to better fit the image and transformation assumptions. It also allows very efficient optimization
techniques: the typical registration time for 256x256x128 MR, images ranges from 5 to 40 minutes
depending on the complexity of the transformation.

We have demonstrated in [Cachier et al., 2003] the performance of this approach for the study
of the preoperative pneumocephalus during deep brain stimulation of Parkinsonian patients. In
[Pennec et al., 2003, Pennec et al., 2001a, Pennec et al., 2001b|, we have also used this algorithm
for the per-operative tracking of brain deformations in sequences of 3D ultrasound images (see
also Section 4.1.1). We showed that it could recover an important part of the deformations and
issue smooth deformations despite the noisy nature of the US images. Experiments on animal and
phantom data indicate that an accuracy of 1-2 mm is achievable in the areas where there is an
elastic deformation. This is encouraging since the accuracy of the clinicians without per-operative
imaging is estimated to be around 3-5 mm. In our experiments, we observed that the SSD criterion
was well adapted to the registration of successive US images of the time sequence. However, the
appearance of some tissues in US images is known to change along time, and the LCC criterion
might be more adapted to long times sequences in a clinical setup.

4.3.3 Hybrid iconic and geometric registration

While intra-subject registration is usually a well-posed problem because there is an underlying
physical deformation, inter-subject registration from images intensities only is basically an ill-posed
problem because the topology of the brain, and especially the cortex, varies strongly from one
individual to another. However, it is believed that these geometrical ambiguities could be partially
resolved when using higher level anatomical knowledge like information about sulci.

Following |Le Goualher et al., 1999, Hellier and Barillot, 2003, Thompson and Toga, 1996,
Vaillant and davatzikos, 1999] and others, we proposed in [Cachier et al., 2001] to extend the
PASHA framework to this type of geometric correspondences. The sulci were extracted from the
MR images and automatically labeled using the tools developed by J.F. Mangin and his team at
CEA-SHFJ [Mangin et al., 1995, Riviére et al., 2002]. As the labeling error rate is 24% (this is also
the inter-rater variability), we chose to enforce label matching only for the most well known sulci.
From the surface of each sulci, we extracted the top and bottom sulcal lines, which were used as
geometrical features for the registration. From a computational point of view, using one dimensional
features drastically reduces the number of points to be processed and thus does not hampers the
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Figure 4.6: Result of the hybrid feature and iconic PASHA registration on 5 images on the brain.
Superimposition of a few sulci after affine registration (left column), after the PASHA non-linear
registration without (middle column) and with (right column) sulcal matching. The sulcus matching
helps to pair homologous sulci when they are initially far apart, and also improve the accuracy of
the matching especially when the topology of the sulci is complex.

speed of the algorithm. From an anatomical point of view, the sulcal top line corresponds to the
junction of the sulcal surface with the hull of the brain (similarly to the sulcal lines we will use in
Section 5.2), and the sulcal bottom line should be close to the shallow creases that appear on the fe-
tal brain at the beginning of the cortical folding process. According to this theory, these sulcal roots
should be very stable topologically and geometrically across individuals because they delimit the
main structural and functional areas of the human brain [Régis et al., 1995, Welker, 1989]. Hence,
we enforced a looser geometric matching constraint on the sulcal top lines than on the bottom ones.

To integrate the matching of sulcal line in the PASHA algorithm, the idea is to introduce a
new auxiliary variable: the set of correspondences Cs between the points of the sulcal lines St from
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image I and the points of sulcal lines S of image J. This amounts to add two terms in the global
criterion: a normalized distance Es(S7, Sy, Cs) = d?(Sy, Sy o Cs)/o? quantifying the closeness of
sulcal lines after matching (we used in fact a robust distance to account for topological changes and
different variances for bottom and top lines), and a distance from these new correspondences to the
transformation. We end-up with the global hybrid iconic and feature based energy:

2 2 2
E(T@’CS):/(I J o ;) /IC T~ (Sz,sjoc /yc 7| /|VT||

The optimization is done alternatively on the intensity correspondences C; (there is no change
with respect to the normal PASHA algorithm), on the sulcal correspondences Cs using a nearest
neighbor search (this is an ICP algorithm), and on the transformation 7". There is still a closed-form
for this last step: the resulting transformation is a linear combination of the Gaussian smoothing
of the dense correspondences C; and of a splines interpolation of the sparse point correspondences
Cs. Thus, the efficiency of all the optimization steps is conserved.

We have experimented this algorithm on 5 labeled brain from the CEA-SHFJ. The visual result
is presented in Fig. 4.6. The original PASHA method relying only on intensities was able to
match the sulci when their topology was simple (i.e. mostly linear) and where the affine initial
registration was good enough. For instance, the central sulci (in red) are generally well matched.
However, it was relatively backward for one brain and has been partly matched to the precentral
sulcus of the reference brain because it was the closest sulcus at that location after the initial affine
alignment. Adding the sulcal constraint allows to match it correctly all along. Sulcus matching
also helps to register more efficiently sulci with a more complex topology such as the precentral
sulcus, and generally improves the accuracy of the matching of all sulci. Interestingly the optimal
transformation was still very smooth and one-to-one. In fact, seen from the intensity point of view,
it seems that the geometric constraints simply help to bridge some unwanted local minima and to
reach more proper ones. This strongly indicate that more prior information than just intensities is
needed for inter-subject registration.

4.3.4 High performance computing for "human-time" registration

With the PhD of Radu Stefanescu, we focused on bringing non-rigid registration algorithms closer
to a clinical use. A careful analysis of the needs of a clinical environment led us to conclude
that usability and speed were major constraints: either the algorithm is robust and completely
automatic, in which case it can be run offline for applications such as atlas-based segmentation in
pre-operative planning, or there is a need for interaction (for instance tuning the parameters), and
the computation time has to be reduced from about one hour to just a few minutes. We summarized
in this section our investigation on the parallelization of registration algorithms to obtain “human
time” computations, while Section 4.3.5 will focus on the improvements brought to the registration
method to better adapt it to the problem at hand and to improve its robustness.

In contrast with dedicated expensive high-performance computing solutions, cluster computing
now offers a large processing power at a low cost with a great flexibility. One can use a dedicated
cluster with very high-speed connections or even the available PCs of the lab connected by Ethernet.
Such a hardware configuration is already available in many hospitals. Thus the distributed mem-
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ory architectures appear to provide a higher degree of scalability and reusability for the software
components that need to be parallelized than shared memory ones.

We first showed in [Ourselin et al., 2002] that a generic rigid/affine multi-modal registration
algorithm (namely Aladin) could be easily parallelized on a cheap and standard cluster to become
real-time, without loss of generality or performance. Then, we tackled in [Stefanescu et al., 2004b]
the parallelization of demons’ like algorithms (e.g. PASHA). Such an algorithm has a regular struc-
ture with three main algorithmic components: the subsampling of the images and the oversampling
of the displacement field for the multi-resolution approach; the computation of the correspondence
field; its “regularization” to obtain the displacement field. Since each point of the image is pro-
cessed in a similar manner, the algorithm is a good candidate for a parallelization using a data
decomposition, rather then a task decomposition. We chose to decompose the correspondence and
displacement fields into parallel slices perpendicular to one axis only, each slice being assigned to
one node of the cluster (i.e. one processor). The reason for this specific decomposition is that
each algorithmic bloc(especially filtering) can be parallelized very efficient without time-costly data
redistributions.

In fact, the oversampling of the displacement field is done by tri-linear interpolation, which only
requires that each processor sends the boundary values of its block to the neighboring processor.
Gradients are pre-computed and distributed along with the images to all processors at the begin-
ning, so that the computation of the forces is done purely locally. The only difficult part is the
parallelization of the regularization step. As the isotropic Gaussian filter is separable, convolving a
3D image is equivalent to successively convolving the image with a 1D Gaussian along each axis.
By adopting a block decomposition along one azis only, the filtering along two directions can be
done within each block without any communication.

For filtering along the decomposition axis, we proposed two implementations. The send-borders
algorithm is a parallel Gaussian filter for small variances based on the exponential decay of the
Gaussian. The idea is to consider it as negligible outside 3 standard deviations. If each processor
send a border of this width to the neighboring processor, then all processors can compute the filtered
value on their original domain. The drawback of this algorithm is that the results are not rigorously
correct and using larger borders makes the parallel algorithm less efficient. Secondly, each process
has to apply the filter to a larger domain that its own, and the amount of data sent through the
network is proportional to the filter’s standard deviation.

The second solution we proposed was to parallelize the recursive implementation of the Gaussian
[Deriche, 1992]. This filter basically consist in a forward step followed by a reverse step. At each
step, the result of the filtering on the 4 preceding values is need to process a new point (this is a
4th order filter). Thus, processing one single line cannot be done in parallel. However, different
processors can deal with their part of different lines simultaneously. Thus, the idea is mimic an
industrial pipeline process, where the first processor deals with the beginning of line 1, then sends
the 4 last values to the second processor, which can process the second part of line 1. Meanwhile,
processor 1 processes the beginning of line 2. They both send the last values to their neighboring
processors and so on. The pipeline process takes a number of steps equal to the number of processors
before working at its full capacity. The full acceleration is achieved if the number of lines is much
larger then the number of processes, which is usually true in a cluster of workstations. To decrease
the network usage, each processor can process several lines before sending a grouped message, at
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the cost of a longer pipeline filling time.

An analysis of the theoretical performances in terms of computation time, maximum acceleration
and network usage (amount of data and number of messages sent) showed that the send-borders
algorithm can take advantage of very high latency networks. The pipeline recursive implementation
has a greater accuracy and can efficiently tackle the case of very wide Gaussians, sparing processor
time and network bandwidth. It can also be adapted to high latency networks by tuning the
message grouping parameter. The practical performances were measured for the registration of
256x256x120 MR T1 images of the brain. We obtained an acceleration of 11 by using 15 2GHz
PC’s connected through a 1GB/s Ethernet network and reduced the computation time from 40min
to 3min30 [Stefanescu et al., 2004b]|. For the parallel filtering section of the algorithm, the pipeline
recursive filtering algorithm was almost twice faster than the send-border algorithm when a large
number of processors was used. Interestingly, the measured time was almost always above the
theoretical one for both algorithms. For instance, an acceleration of 20 has been measured with 15
processors, whereas our model predicted 13.4. This is most probably due to the better performances
in accessing the memory for smaller domains (cache misses effect): relatively more data fit in the
memory caches whose access is much faster than standard memory. This enlighten the fact that
mermory access times can be more important than the computation time!

In order to further optimize the ease of use of the parallel registration tool, we investigate
in [Stefanescu et al., 2005] the transparent use of a cluster through a distant graphic client. The
graphical user interface runs on a workstation within the clinical environment and locally loads and
visualize the images to register. A user interface button enables the user to connects to a registra-
tion service running on a cluster within our laboratory by using an SSL-based secure connection.
Only the image data that are necessary (image size and raw data) are sent, so that the patient
anonymity is preserved. During the registration, the user receives real-time information about the
status of the algorithm (small size messages), as well as some intermediate resampled image (several
megabytes of data) that are displayed on the GUIL The user is thus able to control the registration
and, if needed, stop and restart it with modified parameters. Upon termination, the registration
result (transformation and resampled image) is sent back to the GUI. Since the user and the com-
putation cluster are at distant locations and linked through a low-performance network, the data is
compressed before being sent through the network, and decompressed upon receipt.

Our tests show that the software has reasonable response times even if we use a network as slow
as a 16kB/s ADSL modem. The GUI was running on a standard 600MHz Pentium III laptop with
a wireless network interface. The registration service was running on a cluster of 15 2GIz Pentium
IV PC’s running linux linked through a 1GB/s Ethernet network. The image upload (3.3MB
after compression) took 40 seconds on a high speed network to 3min30 on a home Asymmetric
DSL connection. The update time for intermediate results was 18 seconds (resp. 1min30), and
the registration was completed in 7 to 10 minutes in the worst case (home ADSL), including image
transfer time. This proves that our non-rigid registration service can be used from almost everywhere
with a very modest equipment.

4.3.5 Non stationary regularization with anatomical a priori

The type of transformation regularization is a very sensitive choice. In the previous works, we made
the assumption of a “uniform elastic” like material. This might seem adapted for the deformations
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of the brain tissues (white and gray matter) for an intra-subject registration, but some improve-
ments are needed to cope with the fluid deformations that occur within the CSF (particularly in
the ventricles), especially for inter-subject registrations: there is a need for a space-varying reg-
ularization, depending on the underlying brain tissue type. Also, the information present in the
images at different places is not equally important: we would like to register precisely homologous
points in the regions where the image information is reliable (e.g. edges), while interpolating the
deformation field where it is not (e.g. uniform areas). Last but not least, enforcing the invertibility
of the transformation is important to avoid space folds and in practice to resample the segmentation
from the atlas to the patient geometry in atlas-based segmentation.

Following [Trouvé, 1998, Hermosillo et al., 2002| we first restated in [Stefanescu et al., 2004c|
the implementation of Demons and Pasha algorithms in a Eulerian framework, i.e. with the “com-
positive” update equation: T;11 = T; o v; instead of the Lagrangian additive one T;11 = T; + u;.
The two incremental displacements are related by u = VT'Tv+ O(||v]|?). When propagated into the
derivatives, the major difference with the additive scheme lies that we now take the gradient of the
resampled image V(JoU) instead of the resampled gradient of the original image (V.J)oU. From a
computational point of view, filtering to compute gradient is as efficient as resampling (we basically
have to sweep the memory for the image values), so that the computation time is only 25% larger
(1 scalar resampling and 3 scalar filterings versus 3 scalar resamplings). It is worth noticing that
limiting the maximal displacement in v to less than half the voxel size actually ensures that the
displacement field is diffeomorphic using tri-linear interpolation. By composing only diffeomorphic
updates, we enforce in practice the same property on the final transformation. We observed that
the accuracy was similar to the regriding method of [Christensen et al., 1996] with a computation
time of one third only.

The second contribution was to propose a non-stationary “elastic” regularization tailored to the
anatomy. Real deformations are often highly inhomogeneous and contain highly localized fine details
close to large smooth areas. When regularizing with a stationary Gaussian filtering, the standard
deviation of the filter is either too large, preventing the retrieval of fine details, or too small, which
yields a noisy deformation field in smooth areas. Our solution is to use a priori information about the
variability of the different structures in the images (e.g. a variance or a covariance matrix field) to
locally adapt the level of regularity. However, non-stationary Gaussian smoothing is computational
expensive as we cannot rely on recursive filters. Instead, as the stationary Gaussian smoothing
corresponds to the heat flow in an homogeneous material, we chose the use the following anisotropic
smoothing of the displacement components : OU, /0t = div(D.VU,), where D is the “diffusion” (or
stiffness) tensor.

In uniform areas, the gradient of the image similarity metric is close to zero, whereas it may
be high at edges where we have an information. The usual regularization of the speed vector field
consider that all the points carry the same information so that the speed is weaken at edges and
slightly diffused around it. This means that uniform areas in the image tend to stick at their
positions whiles edges are constrained to move slowly, even in the case of a pure translation. Our
idea was to interpolate the speed in unreliable regions from neighboring information rather than
lowering it. This was realize in [Stefanescu et al., 2004c| using the anisotropic diffusion equation
Ov/0t = (1 — k)(Av), where the field k measures the local confidence that we have in the similarity
criterion. If k(z) = 1, the local speed is locally unaffected. For smaller values, the gradient of the
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speed is locally smoothed, so that we end-up with a pure interpolation for k(z) = 0. Points that
are reliable landmarks in the source image are those where the neighborhood has a characteristic
pattern that cannot be produced by noise. We used an expression derived from |[Weickert, 2000] for
the non stationary diffusion of images: k = exp(—c/(||VJ||/A)*).

From a numerical point of view, both the confidence-based filtering and the non-stationary
regularization can be described as non-stationary diffusion PDEs on scalar fields. The differential
operator can be written as a big (time-dependent) matrix A; acting the vector of all values v; at
time ¢, so that the discrete equation to solve is: 9y = A;.vy. The explicit scheme approximates ¥; by
(verdr — v¢)/dt, so that the resolution is simply vsi g = vy — dt. Ay.ve. However, the time step has to
be very small in order to avoid divergence [Weickert et al., 1998], which makes the approach very
slow. This drawback can be avoided by solving the implicit scheme, obtained by taking the value
right hand side of the equation at ¢ + dt, which gives: vipqr = (Id — dt. Ay g) " .ve. This scheme
is guaranteed to be stable for all values of dt. However, it is complicated to solve (since we do not
know A¢yqt), and therefore the semi-implicit scheme viyq = (Id — dt.A;)V vy is often preferred.

In one dimension, the matrix A; is tridiagonal. The inversion of such a matrix can be achieved
efficiently using Thomas algorithm, which basically consist in a LR decomposition followed by
forward and backward substitution steps. This first order recursive algorithm operates in linear time.
In the 3D case, the matrix is not longer tri-diagonal. To address this problem, [Weickert et al., 1998]
introduced the Additive Operator Scheme (AOS). For separable operators, the differential operator
can be decomposed as a sum of tri-diagonal operators along each space axes A; = > A?. A Taylor
expansion of the semi-implicit scheme then provides:

1
Vepar = (Id = dt. >~ AF) D vy = 3 D (1d — dt. A7) vy + O(dt?)

This amounts to replacing the inversion of a non-tridiagonal matrix with three inversions of tridi-
agonal ones. In practice, we obtained an equivalent computational load for one AOS regularization
step and for the computation of the gradient of the similarity criterion. The second interest of the
AOQOS is that matrix inversions are solved using first order recursive filters. Thus, they can be easily
parallelized using our previous pipelining algorithm. To our knowledge, this was the first efficient
parallel implementation of the AOS scheme on distributed memory computers.

We first tested our algorithm by registering several 3D T1-weighted MRI images of Parkinsonian
subjects. These images were acquired pre-operatively under stereotactic conditions, in order to select
optimal targets for deep brain stimulation. After a global affine registration, all images have the
same sizes 256 x 256 x 124. The stiffness field was taken to be the probability of not being in the
white matter, gray matter or fat thanks to a simple fuzzy k-means classification of the image. The
algorithm was run on a cluster of 15 2GHz Pentium IV PCs, linked through a 1GB/s Ethernet
network. The computation time was 5 minutes instead of 1 hour on a single sequential computer.
These experiments confirmed that our confidence-based filtering of the speed was leading to a faster
(10% less iterations) and more accurate convergence of the algorithm, that the non-stationary
smoothing of the deformation was providing much larger deformation than the purely “Gaussian-
elastic” method, and much more regular ones that the purely “fluid” approach while matching the
images as well. In other experiments [Stefanescu, 2005], we used the structure tensor of a binary
image as an anisotropic stiffness tensor fields, and we were able to simulate quite accurately the
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Figure 4.7: Atlas-based segmentation of a patient image containing a tumor (top line) or a resection
(bottom line). (a) Patient image. (b) Tumor and resection segmentations. (c¢) Result produced by
a registration un-aware of the pathology. (d) Result produced by our algorithm, exhibiting a better
segmentation (see white and black arrows).

deformation behavior of a 2D thin membrane in 3D (a balloon).

We also experimented in [Stefanescu et al., 2004a| this algorithm for atlas to patient registra-
tion in the context of radiotherapy planning. In that case, a very important issue is the presence
of pathologies such as tumors or surgical resections in the patient image. These structures have no
equivalent in the atlas, which usually lead the non-rigid registration to important errors, especially
around the pathology which is exactly the area of interest for radiotherapy. We tested the atlas reg-
istration on 22 T1-weighted MR images of different patients. After a preliminary rigid registration,
the images sizes are 256 x 256 X 60. The surgical resections an tumors were automatically segmented
in the images using a dedicated image analysis workflow, and the confidence in the image similarity
measure at these points was set to zero. The pathology segmentation takes between 1 and 3 minute,
and the non-rigid registration takes about 4 minutes on a cluster of 15 personal computers (2GHz
Pentium IV processors, 1GB/s network), which amounts to a total computation time of 5 to 10
minutes. Results have been visually inspected by a radiotherapist, and appear satisfactory. Fig. 4.7
present examples where the patient brains have a large tumor and a surgical resection. A simple
non-rigid registration is not able to follow the contour of the cerebellum in the last case (see white
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arrow on the bottom line of Fig. 4.7c). With the use of the confidence-based filtering algorithm,
the segmentation is largely improved.

4.3.6 Polyrigid and Polyaffine Transformations

In between rigid/affine transformations and deformation fields or diffeomorphisms, a few parametric
transformations such as B-Splines |Rueckert et al., 1999|, Thin-Plate-Splines |Bookstein, 1999, or
finite elements mechanical models [Ferrant et al., 1999] are used in medical image registration be-
cause they provide an intermediate number of degrees of freedom. However, in the case of anatomical
structures incorporating rigid elements (such as bone articulations), or structures which are subject
to simple local deformations, like histological slices, we believe that none of them is fully appro-
priate, especially when rotations are substantial. In [Arsigny et al., 2003, Arsigny et al., 2005¢],
we introduced a novel kind of geometrical transformations, named Polyrigid and Polyaffine, that
efficiently encode locally rigid or affine deformations with a very small number of intuitive parame-
ters. The key advantage of this approach with respect to other parameterizations of deformations is
the guarantee of invertibility of the global transformation and the simple form taken by its inverse.

Our idea is to use simple fuzzy regions defined by a membership function w; and the associated
rigid or affine transformation 7;. In [Arsigny et al., 2003, Arsigny et al., 2005¢|, we use renormalized
Gaussians w;(z) = p;.Gi(z)/ (32, pj-Gj(x)) with Gi(z) = G(q,,0,) (), where the standard deviations
o; control the rate of decay and the p;’s rank the global influence of the each component. The usual
way of interpolation the transformation is to do a simple Euclidean averaging of the displacements
induced by each region T'(xz) = ), w;(x).T;(x). However, this approach leads to space folds and
invertibility problems. The solution we proposed was to average the infinitesimal displacements
(instantaneous speed) instead of the displacements, and to recover the global transformation by
integrating the resulting flow. The resulting transformation is parameterized by very few parameters
(the center, the variance, the influence and the rigid transformation of each component) and is
guarantied to be diffeomorphic. Moreover, we were able to provide several numerical schemes to
compute the differential of the transformation at each point so that any image similarity metric could
be easily optimized using gradient descent in I'TK. The method was demonstrated on histological
slices [Arsigny et al., 2003].

The general framework was reformulated in [Arsigny et al., 2006b] as follows: first, determine an
admissible vector field v;(x,t) for each region such that the integration of the ODE &(t) = v;(z, )
between time 0 and 1 gives back T;(x). This corresponds in essence to taking a “logarithm” of
the transformation. Then average the vector fields between regions: v(z,t) = Y . wi(x)vi(x,1).
Finally integrate the flow of the resulting vector field v(x,t) to obtain the transformation T'(z).
This last part can be seen as a “geodesic” walking step. For rigid and affine transformations, several
admissible logarithms are possible. We previously used one simple formula involving the logarithm
of rotations to define Polyrigid transformations but its extension to affine and larger transformation
groups was not really clear. By taking the principal matrix logarithm of the affine transformations

in homogeneous coordinates:
1 At | Li v
o 1])7[0 o

V. Arsigny ended up in [Arsigny et al., 2006b| with stationary vector fields v;(z,t) = v;+ L;.xz. This
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means that we are left after averaging with the integration of the stationary or autonomous ODE:
& =), wi(x)(v; + L;.x). What is remarkable is that the family of transformations 7%(z) obtained
by integrating such stationary vector fields from time 0 to time s do constitute a one-parameter
subgroup of diffeomorphisms. In the case of a single affine component, these are the one param-
eter subgroups of the affine transformations. Conversely, all one parameter subgroups of affine
transformations are of this form. With several components, the transformations are more general
one-parameter subgroups of diffeomorphisms that were called Log-Euclidean Polyaffine Transfor-
mations (LEPTSs). The remarkable properties of these transformations is that they are invariant by
an affine changes of coordinate system and stable by inversion. Moreover, V. Arsigny generalized
the scaling and squaring method, originally used to compute matrix exponential, to compute very
efficiently the “exponential” of a vector field, i.e. to integrate stationary ODEs. This led to a very
efficient algorithm to compute LEPTs [Arsigny et al., 2006b].

This framework can also handle more general transformations than local rigid and affine one:
one can also compute general diffeomorphisms arising from the integration of general stationary vec-
tor fields |Arsigny et al., 2006a]. Conversely, a practical iterative square-root and scaling method
was developed to compute the logarithm of a diffeomorphisms. Computing the exponential of
vector fields and the logarithm of diffeomorphisms can be viewed as a generalization of the the
Log-Euclidean framework developed on tensors in [Arsigny et al., 2006¢| to general diffeomorphic
transformations. Such a framework could prove very useful to make statistics on the deformations
since it allows usual statistics to be performed on diffeomorphisms in a simple vectorial way on the
logarithms of transformations. Moreover, it has interesting properties such as inverse-invariance.
From a theoretical point of view, there are still some problems due to the infinite-dimensional na-
ture of diffeomorphisms that are yet to be completely solved. In particular, it would be desirable to
have a simple characterization of the conditions under which the principal logarithm of diffeomor-
phism exists. However, the algorithms presented to compute the exponential of vector fields and
logarithm of diffeomorphisms are very efficient and seem to be quite reliable, as has been shown
in [Arsigny et al., 2006a] with statistics on the deformation from an atlas to 9 subjects. In fact,
exploring physically or statistically constrained transformations in registration is one of the compu-
tational method used to model the anatomical and biological variability of the anatomy, which will
be the subject of next chapter.
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Chapter 5

Computational models of the anatomy

Computational anatomy is an emerging discipline that aim at analyzing and modeling the biolog-
ical variability of the human anatomy through computational tools [Grenander and Miller, 1998,
Thompson et al., 2004]. The goal in not only to model the mean (or a representative) anatomy
and its normal variations among a population, but also discover morphological differences between
normal and pathological populations. These steps are necessary to detect, model and classify the
pathologies from structural abnormalities, but also to faithfully guide the adaptation of generic
models (atlases) towards patient-specific models. To reach this goal, the method is to identify
anatomically representative geometric features (points, tensors, curves, surfaces, volume transfor-
mations), and to describe their statistical distribution. This can be done for instance via a mean
shape and covariance structure after a group-wise matching. Then, in order to compare popula-
tions, there is a need to compare feature distributions and to test for statistical differences. There
is a whole hierarchy of anatomical features ranging from point-wise features (landmarks), to curves
(e.g. crest or sulcal lines on the cortex), surfaces, images (3D functions) and finite- or even infinite-
dimensional transformations (rigid, locally affine, diffeomorphisms). These geometric features most
often belong to manifolds rather than to Euclidean spaces, which raises the need for geometrical
methods.

There are nowadays a growing number of geometrical and physically-based biomechanical meth-
ods that can deal with intra-patient deformations. However, it is more difficult to model the
relationship between the anatomy of different subjects: one need to introduce statistics and to learn
this relationship from observations, most often images. Therefore, computational anatomy is at the
interface of geometry, statistics and image analysis. This is currently a very active research field, as
exemplified by the quality of the submissions and the number of attendees (more than 50 people)
to the first workshop on the Mathematical Foundations of Computational Anatomy (MFCA’06)
organized in conjunction with MICCAI'06 [Pennec and Joshi, 2006].

In the context of computational anatomy, the statistical computing framework on manifolds
that we developed in Chapters 2 and 3 has an immediate application as it allows to decouple the
anatomical modeling problem (representing the observations with the minimal amount of maximally
informative parameters) from the technical difficulties of computing with the model due to manifold
nature of the space of parameters. This is illustrated in this chapter with the construction of
statistical models of the anatomy of the spine and the brain.
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In Section 5.1, we develop a statistical articulated model of the spine in view of an augmented
reality system. The goal of such systems is to guide therapeutic gestures with an optimal accuracy
while minimizing the amount of per-operative information needed, hence allowing a minimal inva-
siveness. However, recovering complex anatomical deformations from very few information requires
the availability of a very strong prior knowledge.

In Section 5.2, we propose to model the variability of the brain from a dataset of precisely delin-
eated anatomical structures (sulcal lines) on the cerebral cortex. We obtain a dense 3D variability
map which proves to be in accordance with previously published results on smaller samples subjects.
We also propose statistical tests which demonstrate that our model is globally able to recover the
missing information and innovative methods to analyze the asymmetry of brain variability.

Registration as described in Chapter 4 is also closely linked to computational anatomy: firstly,
it is needed to find the correspondences between the anatomical manifolds. Conversely, the anatom-
ical statistics should better constrain the personalization of the representative anatomy to specific
subject images. Following this idea, we tackle in Section 5.3 the variability problem from the defor-
mation point of view. We propose a consistent mathematical framework to learn the deformation
metric from a population of deformations and to use it as a regularization penalization in non-rigid
registration. Preliminary results indicate that the method is sound and effective.

The next step will be to analyze the results on a database of brains with different registration
algorithms and to compare and combine them to the ones we obtained using sulcal lines. Indeed,
using only one kind of features provides a partial and very limited view of the anatomical variabil-
ity. We believe that acquiring and combining information coming from different types of features
(intensity-based, segmented structures likes points, curves and surfaces, etc.) is needed to correctly
characterize the probability of the anatomy. Using different types of methods will also be necessary
to remove the potential biases introduced by each method. Then, the next challenge will be to
compare our variability models with some structural anatomical information like the one obtained
through diffusion tensor imaging.

5.1 A statistical model of the scoliotic spine

There are nowadays quite a few augmented reality systems (see e.g. [Nicolau et al., 2005,
Nicolau et al., 2004b| and Section 4.1). However, most of them were developed for orthopedic
or neurosurgery because bones bones constitute reliable landmarks that do not deform: we only
have to find the rigid-body transformation that brings the pre-operative plan into the reference of
the patient on the operative room. We believe that the next generation augmented reality systems
will need to tackle deformations. One could think for instance to soft-tissues in the abdomen, but
such a system should take into account the very complex deformations due to digestion, breathing
and the heart beating. In between rigid motions and soft-tissues, there is an intermediate step that
can probably be tackle more easily: articulated motions.

5.1.1 Towards an augmented reality system for laparoscopic spine surgery

Laparoscopic spine surgery is a relatively new surgical intervention that allows small incisions,
less blood loss, reduced post-operative pain, earlier discharge from the hospital and a faster post-
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operative rehabilitation. However, the limited visualization offered to the surgeon is a source of
difficulties. One of the solutions to this problem is to develop an augmented reality system which will
overlay 3D models of anatomical structures (such as vertebrae or the spinal cord) on the laparoscopic
images. To be useful, such a system should rely on the pre-operative data that are currently used in
clinic, in this case bi-planar radiographies. The goal is thus to recover the deformation of the spine
between the pre-operative X-Ray images and the per-operative laparoscopic images [Boisvert, 2005].

In partnership with Farida Cheriet at Montreal’s Sainte-Justine hospital and at the Polytechnic
School of Montreal, we investigated with Jonathan Boisvert a 3D articulated model of the spine
based on the the relative configurations of the vertebrae along the spinal chord: the parameters are
the rigid transforms that superpose neighboring vertebrae rather than the position and orientation of
each vertebra in some kind of general reference frame [Boisvert et al., 2006d, Boisvert et al., 2006¢].
The local representation is indeed much better capturing some small local motions that may have
a large global repercussion. To properly constrain the fit of this articulated model to 2D X-Ray
images, it is necessary to capture its statistical behavior. We can differentiate two very different
types of variability: the first one is the inter-subject variability of the spinal chord in the reference
posture of the pre-operative images (standing up), while the second is the variability of the physical
articulated motion of the spine between this pre-operative posture and the per-operative position
(patient lying prone or supine, depending on the surgical approach).

5.1.2 Mean spine shape and local variability

We focused in [Boisvert et al., 2006d, Boisvert et al., 2006c| on the inter-subject 3D anatomical
variability of the spine shape. We relied for that on a database of bi-planar radiographies of 307
untreated scoliotic patients. The position and orientation of each vertebra was computed from
anatomical landmarks reconstructed in 3D using two radiographies. Then, the rigid transformations
between successive vertebrae were computed. To capture the statistics on the population, our
statistical computing framework on manifolds was used to compute the Fréchet mean and the
generalized covariance. The selection of subjects did not take into account individual factors such
as the age, sex or type of scoliotic curve. Therefore, our variability statistics capture the anatomical
variability inherent to the pathology but also growth stage, posture, landmarks reconstruction error,
etc. However, posture during data acquisition was normalized to limit its influence on the results,
and additional experiments suggested that landmarks reconstruction error could only account for a
very small proportion of the observed inter-subject variability (about 0.8 mm of the 2 to 5mm in
translation and 2.5 of 7 to 12 degrees in rotation)

The mean spine shape and the variability are illustrated in figure 5.1. One can observe a
curvatures of the mean shape in the lateral plane, that correspond to healthy kyphosis and lordisis.
However, the light curve in the frontal plane is not part of the normal anatomy of the spine and is
caused by scoliosis. It is also interesting to note that the curve is on the right side because of the
prevalence of right thoracic curves among scoliotic patients. The variability is also inhomogeneous
(lumbar vertebrae were more variable than for the thoracic ones) and anisotropic: the strongest
translational variability is found along the axial direction and the maximal rotational variability in
the coronal plane around the antero-posterior axis, as can be seen by the extension of the covariance
ellipsoid of the rotation vector along that axis. These findings are clinically relevant, and could lead
to the optimization of treatment strategies or diagnostic methods (by taking advantage of the strong
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Figure 5.1: Statistical spine model. From left to right: Example of a Bi-planar radiographies of the
human trunk, mean spine model, rotation and translation covariance. Top: Postero-anterior view.
Bottom: lateral view.

variability in the coronal plane, for example).

5.1.3 Principal modes of variation

The analysis of the variability of each inter-vertebral joint individually is rather limited as one
expect to have some correlation between the different joints. Moreover, as there are 102 degrees of
freedom (5 lumbar and 12 thoracic vertebrae, excluding cervical vertebrae), the analysis of such a
large covariance matrix can hardly be performed by a clinician (nor by a computer scientist). It is
therefore necessary to extract only the most meaningful modes of variability. For that purpose, we
relied in [Boisvert et al., 2006e, Boisvert et al., 2006b] on the Principal Geodesic Analysis (PGA).
This extension of PCA to Riemannian manifolds was originally proposed by [Fletcher et al., 2003]
for the statistical analysis of shapes based on medial axis representations (M-reps). Here, by using a
proper articulated model of the spine including positions and orientations of each vertebra, we expect
to find a better separation of different physiological phenomena such as pathological deformations
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and normal growth than with classical PCA on 3D coordinates.

The basic idea of PGA is to find a low dimensional submanifold generated by some geodesic
subspaces that best explain the measurements (i.e. such that the squared Riemannian distance
from the measurements to that submanifold is minimized). However, geodesic subspaces are not
orthogonal in general manifolds, so that they do not generate Riemannian submanifolds. To get out
of this intractable problem, the solution retained by [Fletcher et al., 2003| was finally to rely on an
approximation using a standard PCA of the Riemannian covariance matrix in the tangent space at
the mean. In our case, we believe that this approach is much better suited anyway as we want to
find a few Gaussian modes that best explain the variance, and not a submanifold of unconstrained
deformations from which the observations can deviate with a residual error.

The first four principal deformation modes are illustrated in Fig. 5.2. A visual inspection
reveals that these modes have clinical meanings and explain curve patterns that are routinely used
in different clinical classifications of scoliosis (see [Boisvert et al., 2006e, Boisvert et al., 2006b]| for
details). For instance, the first mode appears to be associated with the patient growth with a
mild thoracic curve (King’s type II or III depending on the amplitude of the mode), the second
could be described as a double thoraco-lumbar curve (King’s type I), the third one as a simple
thoracic curve (King’s type IV) and the fourth one is a lumbar lordosis. A more quantitative
analysis showed that there is a statistically significant link between our 4 principal modes and
King’s classes, although each class is generally linked to a combination of modes rather than only
one mode [Boisvert et al., 2006b].

Those classification patterns were previously derived from surgeons’ intuition using 2D mea-
sures on radiographies and clinical indices. It is now possible to automatically compute them,
and to compare to compare principal deformation modes of different subgroups of scoliotic pa-
tients. A wvariability model like one also offers many ways to improve image analysis algorithms
because a prior: insights could be easily introduced in the form of a variability model. Fu-
ture directions might include the development of temporal variability models to assess the evo-
lution of the pathology or the effect of orthopedic treatments (such as braces and surgeries)
[Boisvert et al., 2006c, Boisvert et al., 2006a] and of course the integration of this model into a
registration algorithms to be used in the augmented reality system for laparoscopic spine surgery.

5.2 Modeling the anatomical variability of the brain

Brain structures differ greatly in shape and size even among normal subjects, and these varia-
tions make it difficult to identify abnormal differences due to disease. Understanding the degree
and quality of brain variation is vital for distinguishing signs of disease from normal variations.
Neuroscientists are also interested in identifying the causes of brain variability at a genetic or envi-
ronmental level. An efficient, parsimonious model of the complex patterns of brain variation would
help in identifying factors that contribute to it.

A major class of anatomical variations can be thought of as arising from the smooth deformation
of a reference anatomy, where the deformation is represented as a 3D displacement field, after affine
differences are factored out. Ideally, one would model the joint variability of all pairs of points to see
how the displacement of one any point in a specific subject with respect to the reference anatomy
co-varies with the displacement of neighboring or distant points in the brain (e.g. symmetric ones
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Figure 5.2: Statistical spine model. From top to bottom: the 4 first principal modes of variation.
Frontal (postero-anterior) view on the left, and lateral view on the right. Each mode is depicted by
the variation at -3, -1 ,1 and 3 times its standard deviation.
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in the opposite hemisphere). In such a program, the first step is to model the variability of each
anatomical point independently. Assuming that the mean deformation of the reference anatomy is
null (this can be somehow ensured by applying the mean deformation to the reference anatomy),
the first interesting moment of the 3D displacement distribution of a point is its covariance matrix,
which will be called a wvariability tensor. Thus, the goal is to compute the field of variability
tensors within the brain from information that may be sparsely distributed. The reason that tensor
representations are used, rather than simple scalar fields, is that variation may not be the same in
all directions: there is some evidence that structural variation is greatest along certain preferred
directions [Thompson et al., 2001b|. Once this first simplified variability model will be established,
the second step will be to investigate the correlation between the motion at neighboring points, i.e.
the local regularization kernel that has to be used for nonlinear registration. Then, the third step
will be detect potential long distance correlations, for instance at symmetric points in the brain.

To measure inter-subject brain variability, we need to gather statistics on 3D displacements
computed between a reference anatomy and many individuals. A first idea would be to use inter-
subject registration algorithm between an atlas (the reference) and many subject images, which
would provide dense displacement fields. This is in essence the approach that we will explore in
Sec. 5.3. However, it is necessary to estimate the influence of the chosen registration method. For
instance, it is likely that the displacement along the isosurfaces of the images is mainly driven by
the regularization criterion since the image provides only a matching constraints in the direction of
the gradient (the aperture problem).

For that purpose, we need to provide information that is completely independent of volumet-
ric image registration algorithms. We chose in [Fillard et al., 2005¢, Fillard et al., 2006¢| to rely
on lower dimensional structures, such as cortical landmarks identified by expert Neuroscientists
following a formalized protocol, with known inter- and intra-rater reliability. Since extracting
and matching surfaces (e.g. the hippocampus, corpus callosum, or even the whole cortex as in
[Thompson et al., 2000]) is still a very active research area, we chose to focus on anatomically well
defined 3D curves that could be considered as ground truth data. This choice naturally led us to
the primary anatomical landmarks on the cortex: the sulci. A large number of sulcal landmarks
consistently appear in all normal individuals and allow a consistent subdivision of the cortex into
major lobes and gyri [Mangin et al., 2004b].

5.2.1 Measuring the variability of sulcal lines

In the framework of the associated team program between Epidaure/Asclepios at INRIA and LONI
at UCLA!, we use a dataset of sulcal lines manually delineated in 98 subjects by expert Neu-
roanatomists according to a precise protocol with formal rules governing the handling of branching
patterns, breaks in sulci, and doubling of specific sulci?2. The inter- and intra-rater error (relia-
bility) is better than 2mm (in r.m.s.) everywhere, and in most regions less than 1mm, far less
than the inter-subject anatomical variance. Delineations were made in 3D on cortical surfaces
extracted from MR images linearly aligned to the ICBM stereotactic space [Collins et al., 1995],
thus providing a common coordinate system for all traced curves (examples are provided on Fig

"http://www-sop.inria.fr/epidaure/Collaborations/UCLA/atlas.html
*http://www.loni.ucla.edu/ khayashi/Public/medial_surface/
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5.3. We used the 72 sulcal curves that consistently appear in all normal subjects. In the follow-
ing, we abusively call these sulcal lines sulci to simplify the description. An interesting future
development will be to compare the variability results obtained from other sulcal data such as
|Le Goualher et al., 1999, Mangin et al., 2004b, Kao et al., 2006].

Figure 5.3: Example of sulcal lines drawn on the cortical surface.

Many criteria have been proposed in the literature to evaluate the mean of a set of curves and to
assess the appropriateness of one-to-one correspondences between geometric objects. They usually
invoke local differential characteristics such as the tangent space, curvature, the local Frénet frame
for a curve on a surface [Guéziec and Ayache, 1994|, regional shape information [Pitiot et al., 2003],
etc. In our case, the variability is so large that using such refined measures is difficult. In general,
sulcal curves do not have consistent geometric features from subject to subject. Therefore, we simply
use the variance of observed curved w.r.t. the mean as a global criterion to optimize. Minimizing
this variance greatly reduces the variability due to inadequate correspondences.

Practically, we alternately improve the correspondences between the mean curve and each sample
by dynamic programming and optimize the average curve position by a first-order gradient descent
with an adaptive step. This optimization strategy converges toward the mean curve in a few
iterations. We then compute the variability tensor at each point of the mean sulcal line as the
empirical covariance of the correspondences. Initially, images were affinely registered onto a common
reference image (in our case the ICBM305 space). In [Fillard et al., 2006¢|, we added the global
affine transformation of each subject to the mean as a new set of hidden variables in our alternated
optimization scheme. This is simply realized by a re-estimated the affine transformation from the
correspondences of all sulci in a third step.

Results of covariance tensors estimated along the 72 sulci are shown in Fig. 5.4. The optimization
of mean curves and correspondences reduces the amount of variability to 70% of the initial value.
Reestimating the affine transform further reduces the amount of variability to 60% of its initial value
with very few changes to the global variability pattern. Variability is greater at the extremities of
the curves, which are landmarks identified by neuroanatomists. At these points, we do not have the
ambiguity of line matching: the uncertainty along the tangent is the same as orthogonally, whereas
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it is much larger everywhere else on the curve. However, we suspect a bias in the estimation of
the end points of our mean curve that could explain a large part of their variability. To remain
consistent, we chose to remove these points from further analysis in a first step.

3D r.m.s.
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Figure 5.4: Sulcal variability. Covariance matrices (ellipsoids at one o) are overlapped at regularly
sampled spatial positions along the mean sulci. The color codes for the trace: Note that tensors
close to the sulci extremities are larger.

5.2.2 A model of the full brain variability by extrapolation

The measure variability is highly regular in size and shape along each sulcal curve. Therefore, some
of this information is therefore redundant and could be simplified by selecting only a few tensors at
specific points along the mean sulcus, and interpolating (using the geodesic tensor interpolation) in
between them. For each sulci, we picked the minimal number of tensors to reconstruct the variability
tensors with a given mean error. Results of this operation are presented in Fig. 5.5 (middle panel):
by choosing tensors at adequate positions, one can qualitatively reconstruct the full variability of
each sulcus using 4 to 10 covariance matrices, depending on its length and shape. The variability
of all the major sulci can be adequately represented by 366 variability tensors out of 2000 initially.

The next step consists of extrapolating these selected tensors to the full brain, using the frame-
work developed in Sec. 3.2.5. Fig. 5.5 presents the extrapolation results on a discrete grid (voxel
size of 22 mm3) in the ICBM 305 space. Of course, this only account for the variability of the sulci
we chose. We believe that a fairly comprehensive set of sulci was selected on the cortex (at least for
the scale at which we are modeling the variability at this point). Obviously, using the information
given by the sulci is not enough to infer the variability of the full brain, particularly within the
brain (e.g. in the white matter and deep gray matter nuclei). Including a number of subcortical
structures such as as the ventricles would be necessary to faithfully measure the variability in the
full brain volume. Thus, even if the extrapolation is performed on the full volume of the brain, we
restrict the interpretation and evaluation of our model to the cortex.
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Figure 5.5: The cortical variability step by step. Top: Covariance matrices calculated along mean
sulci. Middle: Matrices selected by the tensor picking operation. Bottom: Result of the extrap-
olation.
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5.2.3 Model evaluation

To verify the predictive power of our extrapolation method and the influence of the number of
tensor picked before the extrapolation, we compared the results of the extrapolation using 2000,
1000, 366 and 144 tensors, respectively. The first value corresponds to retaining all tensors. The
second value is obtained by taking one tensor every two. The third value is the number of tensors
retained by the tensor picking operation. The last value is the minimum number of tensors that
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Figure 5.6: Sparsity of the model parameters versus the reconstruction error. Left: The tensors (pa-
rameters) picked for the model. Middle: Results of the extrapolation. Right: Error (Riemannian
distance) between the extrapolated and the measured covariance matrices field.
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can be used (2 measures for each of the 72 sulci). The means reconstruction error (measured with
the affine-invariant metric on the variability tensors) very slowly grows from 0.07 for 2000 tensors
to 0.2 for 366 tensors. Then, the error increases quite rapidly (0.3 for 248 tensors, 0.5 for 191) to
overpass 1 for 144 tensors. Figure 5.6 summarizes the results with maps of the errors: local errors
arise when the correlation of variability between neighboring sulci is too low (see regions with hot
colors in Fig. 5.6, right column).

We also run a series of leave one sulcus out tests where the principle is to remove from our
model parameters all the information coming from one sulcus, and to compare the result of the
extrapolation with the original measured variability. This test was performed on 3 sulci: the Sylvian
Fissure, the Superior Temporal Sulcus and the Inferior Temporal Sulcus. The prediction error with
missing sulci is globally 2 to 3 times larger than the one incurred by interpolating or extrapolating
the full model, but the difference is globally not significant. However, one can see some locally
significant errors (primarily in the tangential direction to the mean sulcus) at points where two sulci
meet orthogonally (e.g. the Sylvian fissure). These are not really errors but rather model limitations
as our model does not explicitly take int account the minimization of the tangential variability (the
aperture problem for curves). We have proposed in [Fillard et al., 2005¢, Fillard et al., 2006¢| a
partial error which basically projects the reconstruction error onto the normal component of the
variability. This modified “distance” correctly account for the aperture problem in the reconstruction
errors.

The leave one sulcus out test is obviously not applicable everywhere: the variability of some sulci
is not correlated with that of their neighbors (e.g. the Central Sulcus which is much less variable
than the pre- and pos-central ones). These sulci carry some independent variability information,
and should definitely be part of any brain variability model. Our experiment shows that the model is
able to recover a correct estimation of the variability in almost all areas with only 1/6 of the original
tensor data. Reducing more the number of tensors leads to miss some important local variability
information. By the sparsity principle, it seems that 366 tensors is close to the optimal number
of parameters necessary to model the sulcal variability, and that our Riemannian computing and
extrapolation framework is perfectly capturing the non-linear relationship between these parameters
and the variability observations.

5.2.4 Neuroanatomical interpretations

To better visualize and interpret the results, we present in Fig. 5.7 two scalar measures from the
extrapolated variability tensor field. We are deeply indebted to Paul Thompson (LONI, UCLA)
for all the following neuroanatomical interpretations of these maps, as well as for the interpretation
of the asymmetry measurements of the next section. The left column is the usual RMS variability
map given by the square root of the trace of each covariance matrix. One can see highly variable
regions (such as the parietal cortex and Broca’s area) with hot colors, and more stable areas (such
as the primary sensorimotor cortex) with cold colors. The second map on the right column of
Fig. 5.7 shows the principal direction of each tensor (i.e., the eigenvector associated to the largest
eigenvalue), whose coordinates are mapped on the RGB sphere (right column). This map confirms
the anatomical intuition that there are sets of sulci in certain cortical sectors that tend to vary in a
consistent way. For instance in the top view, the principal direction of variation is lateral-to-medial
for the superior frontal and parietal sulci, but the central and precentral sulci tend to vary more
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Figure 5.7: Scalar maps of the sulcal variability predicted by the extrapolation model on the cortex.
Left column: The color codes for the 3D rms variability (mm). Hot colors mean high variations
among subjects. Right column: Maps showing the main direction of variability. The color codes
for the main direction of the variability tensor at each point. Red: left-right oriented tensor, Green:
posterior-anterior oriented, Blue: inferior-superior oriented.
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along an anterior-posterior direction. The temporal lobe sulci also tend to be consistent in varying
with the same principal direction.
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Figure 5.8: Comparison of two independent models of brain variability. The scalar value mapped
on the mean cortex is the trace of the tensors (the variance). Left: Cortical variability map from
[Thompson et al., 2000]. Right: Extrapolation of our simplified sulci variability model to the full
brain. Note the similarity in the temporo-parietal cortex [shown in red colors (A)| and the superior
frontal gyrus (B).

The spatial pattern of variability agrees with established neuroanatomical data. For instance,
[Thompson et al., 2000] computed the variability of the cortex surface in an independent normal
sample (15 controls) using a non-linear surface registration algorithm. Fig. 5.8 compares his vari-
ability map with ours: one can observe the same high values in the temporo-parietal cortex (red and
purple area, marked “A” in Fig. 5.8) and low values in the superior frontal gyrus (marked “B” in
Fig. 5.8), Broca’s area, and the lower limits of the primary sensorimotor cortices in the central and
precentral gyri. Phylogenetically older areas (e.g. orbitofrontal cortex), and primary cortices that
myelinate earliest during development (e.g., primary somatosensory and auditory cortex) exhibit
least variability. The planum parietale (marked “A” in Fig. 5.8) consistently shows the highest
variance of any cortical area, consistent with the complex pattern of secondary fissures surrounding
the supramarginal and angular gyri (the perisylvian language cortex). It is also reasonable that
the temporo-parietal areas around the Sylvian fissures are the most variable: they specialize and
develop in different ways in each hemisphere, and are also the most asymmetric in terms of gyral
patterning and volumes [Toga and Thompson, 2003].

5.2.5 Measuring the asymmetry

Measuring brain asymmetry (i.e. differences between hemispheres) is of special interest as it sheds
light on how the functions of the two hemispheres become specialized |Toga and Thompson, 2003].
Structural and functional lateralization are of interest in mapping brain development and in disorders
such as dyslexia, epilepsy, and schizophrenia. The two brain hemispheres develop according to
slightly different genetic programs: the right hemisphere is torqued forward relative to the left, with
greatest volume asymmetries in the planum temporale and language cortex surrounding the Sylvian
fissures (typically larger in the left hemisphere). If the types of variation in the two hemispheres
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could be differentiated, it would be easier to isolate specific effects of genetic polymorphisms on
these normal variations and asymmetries [Thompson et al., 2001a], and their genetic basis would
be easier to investigate. For example, many neurodevelopmental disorders are associated with
subtle variations in the patterning of the cortex, and new computational anatomy techniques are
making these features easier to identify (e.g., increased cortical complexity in Williams syndrome
[Thompson et al., 2005]).

We measured the symmetry/asymmetry of brain variability by computing the distance between
the variability tensor at one point and the (symmetrized) tensor at the symmetric point in the brain.
Several definitions of the symmetric point in the brain can be imagined. A first geometric method
is to use the symmetry with respect to the mid-sagittal plane in the stereotactic space (mid-sagittal
symmetry). With our brain variability model, we can directly compute a dense asymmetry map
from the extrapolated tensor values at each 3D point of a hemisphere (Fig. 5.9, left). Another
possibility is to measure the brain asymmetry on sulcal lines, and extrapolate those measures to
the whole brain (sulcal symmetry). We end up with another dense asymmetry map, whose color is
proportional to the distance between left-right tensors (Fig. 5.9 right). One important remark is
that the measure of asymmetry in our framework is a relative measure as we used the affine-invariant
distance between (symmetrized) variability tensors.

Asymmetry
0.500

Figure 5.9: Maps of brain variability asymmetry. Left: The mid-sagittal asymmetry. Right: The
sulcal asymmetry.

A very interesting result is that the regions with greatest asymmetries in variability include (with
both definitions) the main language areas, Broca’s speech area (labeled A in Fig. 5.9) as well as the
parietal cortex, which exhibits the greatest gross anatomical variation of any cortical area (labeled
Bin Fig. 5.9). As expected, these areas are more structurally variable in the left hemisphere which
is typically dominant for language in normal right-handers. The greater left hemisphere variation
may be attributable to the greater volumes of structures such as the planum temporale in the left
hemisphere. One surprise is that the tips of the Sylvian fissures do not show the greatest difference
in variability between the hemispheres, as these are regions with highly variably branching patterns
that have been studied extensively in the language and dyslexia literature. Also as expected, the
primary sensorimotor areas (central and pre-central gyri) are relatively symmetric in their variance,
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as the absolute variability is lower, as is their degree of hemispheric specialization (i.e. they perform
analogous functions in each hemisphere, but innervate opposite sides of the body).

The amplitude and asymmetry of variability are greatest in the most phyogenetically recent
developments in the cortex (e.g. frontal lobe, dorsolateral prefrontal cortex, and in the more dorsal
areas of the parietal association cortices). The language areas, in particular, have fundamentally
different developmental programs in each brain hemisphere, leading to volumetric and functional
asymmetries (e.g. left hemisphere language dominance). This variance asymmetry is seen in Broca's
area, which is specialized in the left hemisphere for producing speech, but is less commonly associated
with structural asymmetries. Lower variance was seen in cortical regions subserving primary brain
functions (e.g., touch, motor function, hearing) and these areas are the earliest to mature in utero.
It would be interesting to hypothesize that the areas of the brain that emerged most recently in
human evolution are the same ones that have greatest differences in variation patterns between the
hemispheres, reflecting the drive towards hemispheric specialization of function in higher primates
and man. It could also help understand whether there is an asymmetry in the power to detect
consistent task-related or group-specific activation patterns in functional brain imaging studies, due
to structural variance asymmetries.

5.2.6 Conclusion

Based on the Riemannian computing and extrapolation framework of Chapters 2 and 3, we pro-
posed in this section a first order brain variability model that is able to recover the estimation of
the sulcal variability with only 366 tensor parameters. Results are globally consistent with previ-
ously known results in neuroanatomy and show that the proposed geometrical framework perfectly
captures the non-linear relationship between these parameters and the variability observations. The
main weakness is the unknown variability along the direction tangent to the mean sulci (aperture
problem). We are currently tackling this problem by relaxing the data attachment term to the
original variability measurements in this direction. Other approaches could include the use of data
from functional imaging modalities such as fMRI and MEG.

The next step will be to investigate the local and distant correlations between displacements:
preliminary results indicate that the displacement of the symmetric point is correlated, which was
more or less expected. However, other long distance correlations also appear. Their statistical
significance still needs to be established before presenting any result.

The ultimate goal of our variability model will be to include many other sources of information,
like sulcal ribbons [Mangin et al., 1996|, variability obtained from the matching of surfaces, (e.g.,
ventricles or basal ganglia), fiber pathways mapped from DTI, or of full 3D images. As these sources
of information are also subject to an aperture problem (we mainly retrieve the deformation in the
direction of the gradient of the image), we expect to observe a good agreement in some areas, and
complementary measures in other areas.

5.3 Learning the metric of anatomical deformations

From an image analysis point of view, the geometric variability of the anatomy makes the automated
segmentation and labeling of brain structures difficult. Statistical information on brain variability
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would make this task easier and could be used as a very informative prior for nonlinear registration
in order to adjust for anatomical variations across subjects prior to group analysis of brain function
or metabolism. Conversely, a way to gather statistics on inter-subject brain variability is to perform
multiple deformable registration between a reference image and subject images. The main difficulty
is to formulate these two problems in a common consistent framework.

Most non-linear image registration algorithms optimize a criterion comprised of an image in-
tensity similarity and a regularization term (see e.g. Section 4.3). Many image similarity criteria
are now available, ranging from the simple sum of squared intensity differences to robust infor-
mation theory based measures. In inter-subject registration, the main problem is not really the
intensity similarity measure but rather the regularization criterion. Some authors used physical
models like elasticity or fluid models [Bajesy and Kovaci¢, 1989, Christensen et al.; 1997]. For ef-
ficiency reasons, other authors proposed to use non-physical but efficient regularization methods
like Gaussian filtering [Thirion, 1998, Pennec et al., 1999, Modersitzki, 2004]. This type of regular-
ization was then extended to more general (e.g. non separated) but still isotropic vectorial filters
|Cachier and Ayache, 2004], and to non-stationary diffusion in order to take into account some
anatomical information about the tissue types |Lester et al., 1999, Stefanescu et al., 2004c]. Very
few extensions deal with anisotropic and non-stationary and regularization criteria.

However, since we do not have in general a model of the deformation of organs across subjects,
no regularization criterion is obviously more justified than the others. We could think of relating the
anatomy of two different subjects by building a model of the developing organ: inverting the model
from the first subject to a sufficiently early stage and growing toward the second subject image
would allow to relate the two anatomies. However, such a computational model is out of reach now,
and most of the existing work in the literature rather try to capture the organ variability from a
statistical point of view on a representative population of subjects (see e.g. [Thompson et al., 2000,
Rueckert et al., 2003, Fillard et al., 2005¢|). Although the image databases are now large enough
to be representative of the organ variability, the problem remains of how to use this information to
better guide inter-subject registration.

5.3.1 Deformation statistics to improve inter-subject registration

In [Commowick et al., 2005], we adapted the registration algorithm of [Stefanescu, 2005] (see Section
4.3.5) to better suit the needs of brain atlas registration in the context of conformal radiotherapy.
The planning requires the accurate localization of the tumor and of the critical structures. To
segment them in a patient image, the idea is to register a previously labeled atlas to the patient
image. The atlas segmentation can then be used directly, or as an initialization for a more complex
segmentation algorithm. The main difficulty is to obtain an inter-subject registration algorithm
which is accurate enough and, more importantly, robust to the pathologies (tumors may be quite
important) and to the anatomical variability.

The algorithm RUNA developed during the PhD of R. Stefanescu [Stefanescu et al., 2004c,
Stefanescu, 2005] was a first attempt to obtain a computationally efficient but highly steerable
nonlinear registration algorithm. It uses a non-stationary transformation regularization which is
strong where the local deformability is expected to be low, and conversely. Moreover, the reg-
ularization can be locally tuned along spatial directions through the use of a tensor field. In
[Commowick et al., 2005], we introduced a method to compute scalar and tensor based deformabil-



102 CHAPTER 5. COMPUTATIONAL MODELS OF THE ANATOMY

Figure 5.10: Comparative results of the atlas-based segmentation using RUNA guided by the heuris-
tic scalar stiffness map (left), the scalar statistical stiffness map (middle) and the statistical tensor
stiffness map (right). Top: Top: Sagittal slice of the 3D patient image with the segmentation su-
perimposed. Bottom: close-up on the brain-stem area. The inclusion of the statistical information
clearly allows to better deform the brain stem area in an anatomically more meaningful way, result-
ing in a better and smoother segmentation. Brain images are courtesy of Dr. P.-Y. Bondiau, CAL,
Nice.

ity statistics over a database of patient MRI. However, we had to modify these statistics through a
complex nonlinear transfer function in order to obtain the range of tensor values that were expected
by the algorithm. Despite this lack of physical consistency between the statistics and the regulariza-
tion parameters, we obtain qualitatively and quantitatively better results with this method (figure
5.10).

5.3.2 Riemannian elasticity: an integrated framework

In parallel to the previous work, we proposed in [Pennec et al., 2005b] an integrated framework to
compute the statistics on deformations and reintroduce them in the registration procedure. The
basic idea is to interpret the elastic energy as a distance in the space of positive definite symmetric
matrices (tensors). By changing the classical Euclidean metric for a more suitable one, we define
a natural framework for computing statistics on the strain tensor. Taking them into account in a
statistical distance lead to the Riemannian elasticity energy.

Let ®(z) be a diffeomorphic space transformation. The general registration method is to opti-
mize an energy of the type: C(®) = Sim(Images, ®) + Reg(®P). Starting from an initial transfor-
mation, a first order gradient descent methods computes the gradient of the energy VC(®), and
update the transformation using: ®441 = &, —n VC(P;). From a computational points of view,
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this Lagrangian framework can be advantageously changed into a Eulerian framework to better
conserve the diffeomorphic nature of the mappings [Stefanescu et al., 2004c|. The regularization
can also be applied to the temporal derivative of the deformation field to obtain fluid-like methods
[Thirion, 1998, Cachier et al., 2003, Modersitzki, 2004].

In continuum mechanics [Ciarlet, 1988], one characterizes the deformation of an infinitesimal
volume element in the Lagrangian framework using the right Cauchy-Green deformation tensor
Y = V®T VO. This positive definite symmetric matrix measures the local amount of non-rigidity.
In the standard St Venant-Kirchoff Elastic energy, the deviation of the positive definite symmetric
matrix ¥ (the strain tensor) from the identity (the rigidity) is measured using the Euclidean matrix
distance dist;, (2, Id) = 4Tr (£ — 1d)?) + 2Tr(E — Id)? (A, p are the Lamé coefficients).

However, we have seen in Chapter 3 that the Kuclidean metric is not a good metric for posi-
tive definite symmetric matrices because null or negative eigenvalues are at a finite distance. For
instance, an isotropic expansion of a factor v/2 (¥ = 21d) is at the same Euclidean distance from
the identity than the “black hole” transformation ®(z) =0 (3 = 0). In non-linear registration, this
asymmetry of the regularization leads to different results if we look for the forward or the backward
transformation: this is the inverse-consistency problem [Christensen and Johnson, 2001].

The idea we propose is to use affine-invariant or the log-Euclidean metrics, for which null eigen-
values are at an infinite distance from any tensor. With such metrics, we automatically have the
local inverse-consistency since the means are geometric. In [Pennec et al., 2005b], we used the log-
Euclidean metric for its simplicity: the local deviation of ® from the rigidity is measured by the vec-
tor log(X). Interestingly, this tensor is known in continuum mechanics as the logarithmic or Hencky
strain tensor |[Hencky, 1928|, and is used for modeling very large deformations [Rougée, 1997]. It
is considered as the natural strain tensor for many materials, but its use was hampered for a long
time because of its computational complexity [Freed, 1995].

For registration, we thus replace the elastic energy with a regularization that measures the
amount of logarithmic strain by taking the Riemannian distance between ¥ and Id. In the isotropic
case, we obtain:

Regrrp(®) = [ LTr ((log(E))Q) + %Tr(log(E))2

To incorporate statistics in this framework, we consider the strain tensor as a random variable in
the Riemannian space of tensors. In the context of inter-subject or atlas-to-image registration, this
statistical point of view is particularly well adapted since we do not know a priori the deformability
of the material. Starting from a population of transformations ®;(z), we define the a priori deforma-
bility ¥(z) as the Riemannian mean of deformation tensors ¥;(x). A related idea was suggested
directly on the Jacobian matrix of the transformation V& in [Woods, 2003|, but using a general
matrix instead of a symmetric one raises important computational and theoretical problems. With
the Log-Fuclidean metric on strain tensors, the statistics are quite simple since we have explicitly
the mean value X(x) = exp(W (z)) with W(z) = 1/N 3", log(X;(x)). Going one step further, we can
compute the covariance matrix of the random process: Cov = 4 > Vect(W; — W) Vect(W; — W)7,
where Vect is a projection of the elements of the symmetric tensor W = log(X) onto an orthonormal
basis.

Finally, we take into account these first and second order moments of the random deformation
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process using the Mahalanobis distance to define the statistical Riemannian elasticity (SRE) energy:
Regsrp(®) = %IM%W,COU) (log(X(x))) = 3 | Vect(W — W) Cov™ Vect(W — W)T

This least-squares criterion may be interpreted as the log-likelihood of a Gaussian process
on strain tensor fields®: we are implicitly modeling the a-priori probability of the deforma-
tion but the link with a "Gaussian distribution" on deformations through Brownian warps
[Nielsen et al., 2002, Markussen, 2004] remains to be established. In a registration framework, this
point of view is particularly interesting as it would open the way to use Bayesian estimation methods
for non-linear registration.

5.3.3 Optimizing the Riemannian elasticity

To use the Riemannian energy as a regularization criterion in our registration framework, we need
to compute its gradient. Using homogeneous Neumann boundary conditions, we showed that (0,
is the directional derivative along the space axis «):

ZElast = M(Z - Id) + %TI‘(E - Id) Id
VReg(®) = — >, 0a(Z0,P) where Zirg = powlog(X) + 5Tr(W) £V B
Zsrp = Ox log(X) with Vect(X) = Cov™ Vect(W — W)

Here, Z is the derivative of the density of energy at each point with respect to the strain tensor X
and is known as the 2nd Piola-Kirchoff tensor. The 3rd order tensor Z0,® is the first Piola-Kirchoff
tensor and corresponds to the derivative of the density of energy with respect to the Jacobian of
the transformation. Notice the similarity with the gradient of the standard elasticity.

In practice, a simple and easily parallelizable implementation is the following. First, one com-
putes the image of the gradient of the transformation, for instance using finite differences. This
operation is not computationally expensive, but requires to access the value of the transformation
field at neighboring points, which can be time consuming due to systematic memory page faults
in large images. Then, we process these 3 vectors completely locally to compute 3 new vectors
Vo = Z(04®P). This operation is computationally more expensive but is memory efficient as the
resulting vectors can replace the old directional derivatives. Finally, the gradient of the criterion
VE =), 04V may be computed using finite differences on the resulting image. Once again, this
is not computationally expensive, but it requires intensive memory accesses.

This implementation of the standard and isotropic Riemannian elasticity was tested in conjunc-
tion with the local correlation ratio in an experimental version of the RUNA algorithm. Riemannian
Elasticity was only 3 times slower than the standard Euclidean elasticity, which was itself about 4
times longer than the standard RUNA algorithm (partially because of more inefficiency due to the
weaker parallelism)?. In terms of deformation, the results were globally similar for both methods
(in the absence of any a priori statistical information, we took the same values p = A = 0.2 for both
elasticity). One could however notice a slightly larger and better deformation of the brain ventricles
with the Riemannian elasticity.

3Defining properly likelihoods on deformations is actually much more difficult due to the infinite number of
dimensions.

4The assumptions used in RUNA for the parallelization are not completely satisfied by the standard and Rieman-
nian elasticity. A correct parallel implementation would require a new version of the overall registration algorithm.
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5.3.4 Left-Invariant Riemannian Elasticity

In [Pennec, 2006b], we investigated the invariance properties in view of relating the Riemannian
Elasticity to metrics on diffeomorphisms. We previously noticed that the isotropic logarithmic
distance of a strain tensor to the identity was locally inverse-consistent. However, this property
does not hold globally due to the change of the volume element during the change of variable
y = ®(x). Following an idea suggested in [Nielsen et al., 2002], we can integrate with a volume
element which is the geometric mean between the one in the original space and the one in the
arrival space, i.e.: /|[V®(z)|.dx = |S(x)|/4.dx.

Using the resampled tensor fields X3 = Y 0 &V, we obtained the following formula for the
globally Inverse Consistent (isotropic) Riemannian Elasticity:

‘2.‘2“”—1/4

Regrcre(®) :/Hlog(i)

where the norm ||.|| refers to an isotropic norm on symmetric matrices. This inverse invari-
ant energy on diffeomorphisms allows us to optimize directly their regularity in registration pro-
cesses without having to integrate numerically along the transformation trajectory for computing
the length of geodesics, as is needed for the invariant metrics on diffeomorphisms proposed in
[Joshi and Miller, 2000, Beg et al., 2005].

This energy can be turned into a left-invariant “distance” by left-translation: dist? (®, ¥) =
Regrorp(®Y o ).  The corresponding right-invariant distance is automatically given by
distg(®, V) = disty (P, UY)). The expression of the left-invariant distance can be simpli-
fied, and it turns out that it make use of the affine-invariant distance on symmetric matrices
distiff(fb, ) = ||log(T~1/2.®.W~1/2)||? instead of the log-Euclidean one as we originally proposed
for the statistical Riemannian elasticity.

dist%(cb,\lf):/ dist? (m, i]g,).det(f]g,)_l/4.det(f]q>)_l/4

This “distance” is positive, symmetric (thanks to the inverse-consistence), and is null if and only if
the two diffeomorphisms differ by a local rotation everywhere. However, to show that this is really
a left-invariant distance on diffeomorphisms of rigid shapes, the triangular inequality remains to be
established. Moreover, we suspect that we obtain an extrinsic distance and not a Riemannian one.

Following the statistical framework of Chapter 2, computing the derivatives will allow determin-
ing the barycentric equation of the Fréchet “mean diffeomorphisms” according to these “metrics”,
and a gradient descent algorithm to obtain them. Then, we hope to be able to compute second
order moment and to define a kind of Mahalanobis distance (including local anisotropy and non-
stationarity) on shape diffeomorphisms.

5.3.5 Conclusion

Riemannian elasticity is an integrated framework to compute the statistics on deformations and
re-introduce them as constraints in non-linear registration algorithms. This framework is based on
the interpretation of the elastic energy as a Euclidean distance between the Cauchy-Green strain
tensor and the identity (i.e. the local rigidity). By providing the space of tensors with a more
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suitable Riemannian metric, for instance a Log-Fuclidean one, we can define proper statistics on
deformations, like the mean and the covariance matrix. Taking these measurements into account
in a statistical (i.e. a Mahalanobis) distance, we end-up with the statistical Riemannian elasticity
regularization criterion. This criterion can also be viewed as the log-likelihood of the deformation
probability, which opens the way to Bayesian deformable image registration.

We showed that it was possible to obtain an inverse-consistent criterion by modifying the spatial
integration measure. It is remarkable that this allows to define a left or right invariant energy
between two diffeomorphisms without having to optimize for the geodesic path between them.
However, many questions are left open. For instance, it remains to be established that our energy
is a distance, i.e. that the triangular inequality is valid. Moreover, we conjecture that this is not a
Riemannian distance on diffeomorphisms, but an extrinsic distance. Determining the geodesics (if
they exist) would also be very interesting to better understand the properties of these energies. This
would probably help also in generalizing the statistical Riemannian elasticity in a consistent way, in
order to measure and take into account anisotropic and non-stationary behavior of the deformations.
On a more theoretical point of view, it would be interesting to make the link between our approach
and the Brownian warps of [Nielsen et al., 2002, Markussen, 2004].

On a practical point of view, we demonstrated with the isotropic version that it is also an effective
regularization criterion for non-linear registration algorithms. However, a much smarter implemen-
tation that can cope efficiently with very large deformations is needed to fully exploit the deformation
statistics. First experiments were already performed to analyze statistically the deformation tensor
issued from a fluid registration algorithm in normal versus AIDS patients [Lepore et al., 2006]. Re-
sults tend to show that the deformation tensor has a better discriminative power than its Jacobian
usually used in the so called tensor based morphometric analyzes. However, we believe that it will
be necessary to recompute these statistics with with several different algorithms to reduce the biases
induced by the particular regularization of each algorithm. The next step will be develop methods
to compare the variability results obtained by this deformation analysis and by the sulcal variability
model presented in Section 5.2. More generally, a central research topic for computational anatomy
will be to build models from different sources of anatomical manifolds like curves, surfaces (cortex,
sulcal ribbons), volumes and images (voxel-based and tensor-based morphometry), but also from
other important anatomical modalities like diffusion tensor images as well as functional modalities
like fMRI. We will need to design methods to compare the statistics on this hierarchy of anatomical
manifolds at locations where they are comparable (validation by consensus), and to combine them
at locations where they are complementary.



Chapter 6

Perspectives

We have shown in this work that statistical computing on manifolds, image registration and com-
putational anatomy were three inter-related problems. Many advances in each domain over the
last years have allowed the other fields to progress a lot. However, there are still a lot of question
marks and open research avenues. A fundamental problem of computational anatomy is that the
number of degrees of freedom is so large than the mathematical construction of an optimal atlas is
an ill-posed problem, raising the need for a precise program in order to reach any goal (Section 6.1).
Most of the geometrical models of the anatomy rely on sets of landmark features, curves, surfaces or
deformations, which belong to infinite dimensional manifolds. Investigating their statistical prop-
erties over a population requires new methods for statistical computing on manifolds (Section 6.2).
The statistical estimation of computational models of the variability implies the set-up of rigorous
generative models of the observations (most often images). Conversely, the estimated statistical
model may be used as a very efficient prior to adapt generic models of the anatomy (atlases) to
patient-specific data, opening the way to more robust and more powerful image analysis applications
(Section 6.3).

6.1 Computational anatomy

The study of biological shapes is an old problem [D’Arcy Thompson, 1917]. Several theoretical
advances have been made, for instance with Kendall who considered the shape space as the invariants
of a number of landmarks under the action of a transformation group [Dryden and Mardia, 1998,
Small, 1996] (quotient space). However, we need to use much more complex features like curves
(e.g. sulcal lines), surfaces or even volumetric deformations to represent the full variability of
anatomical shapes, and it would be necessary to consider all these anatomical manifolds in a unified
framework. Grenander [Grenander, 1996] proposed for instance to encode the mean anatomy as a
template, which could be comprised of curves, surfaces, images, and its variability as a probability
of deformation in the transformation space. It is not clear that one template is sufficient to describe
the full variability, especially for the brain where there are some topological differences across
a population. Moreover, the number of degrees of freedom is so large than the mathematical
construction of an optimal atlas is ill-posed. Thus, we believe that we should focus in a first step
on capturing statistics on the anatomically most meaningful features rather than on the general
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integrative framework. In a second step, it will be necessary to compare the statistics obtained with
several different methods on the same data in order identify the biases induced by the assumption
of each method. One step further, we will have to compare the statistics on the different anatomical
manifolds at locations where they are comparable (validation by consensus), and to combine them
at locations where they are complementary. Last but not least, extending the modeling to growth
(or more generally evolving processes) and using other anatomical or functional modalities like DTI
of fMRI are central research topics for the future.

Statistics on anatomical manifolds

The strategy will be to identify the main representative anatomical manifolds and to analyze their
variability across subjects. The brain is particularly appealing because of its complexity and of
the numerous applications in medicine and in neuroscience. Moreover, many anatomical manifolds
were already identified as having interesting shape: cortical landmarks like sulcal ribbons and gyri,
or the surface of internal structures like the ventricles, the hippocampus or the corpus callosum.
We have already started in to study the variability of the trace of sulci at the surface of the
cortex [Fillard et al., 2006¢]. This type of analysis should be extended in a first step to similar but
independent features, such as the sulcal ribbons [Mangin et al., 2004a, Le Goualher et al., 1999|.

We focused so far on a second order description of the process individually at each point. With
such a simple variability model, we could already investigate the asymmetry of the variability,
which is an important variable in neuroscience. However, an immediate objective is to extend our
statistical analysis to several points of the brain together, in order to test for the correlation of the
deformation (Green’s function). It is obvious that there is a correlation between neighboring spatial
displacements. It will be necessary to distinguish the part of this correlation which is imposed by
the matching method (or by other assumptions of the extraction method) from the intrinsic local
regularity kernel. Once this local kernel is modeled, one expects to be able to put into evidence
some long-range correlation, for instance with the symmetric points.

Fusion of information from different anatomical models

The classical approach to compute statistics on anatomical manifolds is to extract curves or surfaces
from images, build a mean model while matching the points of the model to each observation, and
then extract some kind of summary statistics from the point correspondences. With this extrinsic
analysis, we have to deal with the aperture problem on curves, surfaces and volumes. Indeed,
each type of feature provides geometrically meaningful information in some specific directions only:
along the normal for a surface, orthogonally to the tangent for a curve, or to the gradient for a
dense image registration. The goal will be to verify that variability measures coming from different
methods are consistent in the directions where they are compatible, and to fuse the information in
the directions where they are complementary. Another theoretical research track to get rid of the
aperture problem will be to investigate new methods for intrinsic statistical analysis.

In both extrinsic and intrinsic cases, the metric used and the underlying assumptions of the
matching method will inevitably bias the results. For instance, the prior on the regularization
drastically changes the transformation result in a multi-subject registration even if this is hardly
visible on the resampled images. Thus, we believe that we should not focus on one single method,
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but on multiple ones. For instance, we are currently trying to compare the space variability on
the sulcal line determined as in Section 5.2 with the variability of the space diffeomorphic line
matching of [Vaillant and Glaunes, 2005]. It will also be interesting to compare these methods
to other approaches like [Christensen et al., 1997, Miller and Younes, 2001, Avants and Gee, 2004,
Faugeras and et al., 2004].

Each anatomical manifold carry only a limited part of the global anatomical information of the
organ. Moreover, it is inevitably biased by the underlying assumptions of the image extraction
method. Thus, exactly like for the matching methods, we believe that we should not rely one single
source of data. This implies comparing and fusing the variability results coming from different
anatomical manifolds. For the brain, we already saw several methods to extract sulcal lines and
ribbons. Comparing surface and line variability at the same location is the first step and will allow
to understand the reliable part of each method. The second step will be to compare variability at
points farther away on the “same” anatomical manifold, such as on top and bottom sulcal lines (sulcal
roots). One more step to understand the cortical variability could be to compare the results with
the gyral variability as studied by [Lohmann et al., 2006|. By increasing gradually the hierarchy of
anatomical structures taken into account, one could end-up with anatomical atlas that have a more
reliable estimation of the structural variability.

Anatomical data being generally sparse and localized at different places in space, they are not
easy to compare. The extrapolation method we proposed in Section 5.2 is one solution. However,
it is obviously biased by the regularization kernel used. It will be necessary to investigate other
methods to validate this kernel, and to generalize the extrapolation PDE to the joint variability of
several points. An alternative method is to use statistics on deformations as an integrative model.
For instance, we are currently investigating with LONI the use of the the Riemannian elasticity
framework (Section 5.3.2) to compute the variability on the deformations of the brain from im-
ages. Other solution include statistics on diffeomorphisms as proposed in [Vaillant et al., 2004] or
in [Arsigny et al., 2006a] (see also Section 4.3.6). Preliminary results indicate that this type of
statistics do carry some interesting information [Lepore et al., 2006] but a more in-depth analysis
remains to be done. For instance, we need to compare the statistics obtained using different image
registration algorithms. The advantage of encoding the variability with statistics on the transforma-
tion is that we can extend the registration algorithm to take into account other anatomical manifolds
in addition to the image intensities in the spirit of the hybrid PASHA method (|Cachier et al., 2001]
and Section 4.3.3).

Towards multimodal and evolving models

Other sources of data could provide some deep insight about the anatomical and the functional
variability. For instance, white fiber tracts connecting the different cortical areas may act as the
main source of structural rigidity during the brain growth. The main tracts would constrain the
folding of the cortex surface during its expansion, giving birth to be sulci and gyri. Building atlases
of fiber tracts and of their variability such as in [Corouge et al., 2005] would be an important step
to confirm this hypothesis. Moreover, this would provide a dense variability information within
the brain while previous gyral and sulcal informations were only located around the surface of the
cortex. A similar problem is currently under investigation for another organ: the heart. The electro-
physiological simulation of [Sermesant et al., 2006] depends on the orientation of the heart muscle
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fibers. Because this information cannot be measured in vivo for each subject, one need to use a
geometric model: its variability should be assessed. Preliminary statistics on the diffusion tensor of
canine hearts tend to show that the measurements are highly reproducible, but there might be two
different means fiber shape patterns [Peyrat et al., 2006].

The next big challenge will be to investigate joint models of growth (or more generally evolution)
and normal population variability. Currently, several cross sectional atlases are build at different
ages. However, this only provides a mean view of the population at given age, and does not provide
any information about the evolution of a single subject (nor even on the mean!). We believe that
new mathematical methods taking explicitly into account the longitudinal axis need to be designed.
From a statistical point of view, this type of problem can only be addressed using large pediatric
image databases, such as the MRI Normal Brain Development Study funded by NIH!. Joint growth
and variability models would allow to predict the evolution of personalized models. An insight
about the variability of the evolution would also allow to detect pathological evolutions. Moreover,
the evolution of pathologies and the growth process occurred concurrently in children and interact
together. This is one of the subject that we intend to tackle in the framework of the European
project Health-e-Child?.

In some cases, it will be interesting to correlate the inter and intra subject variability (during
motion or time evolution for instance) to see if an ergodic assumption is valid. One could imagine
for instance that the shape of the scoliotic spine is the exaggeration of a particular motion of a
normal spine. The ergodic assumption would allow to greatly increase the power of many statistical
tests as acquiring longitudinal studies is more difficult that cross-sectional ones.

GRID Computing Strategy

The large amount of data and methods needed to study the variability requires a collaboration
with many different groups and databases, which are not centralized. Moreover, the amount of
computations needed to compare and fuse all the methods on all the available data requires to
design statistical algorithms and workflows that can be distributed. We believe that the grid may
prove to be an integrative tool for that: wrapping algorithms in standardized web services accessible
from the grid would ease the sharing of methods; providing restricted but on the fly accesses to the
image database for the members of the virtual computational anatomy community could allow to
keep the control of the data while promoting their use; last but not least, efficient grid workflow
managers (e.g. MOTEUR |Glatard et al., 2006a|) would allow to share the computing resources
very efficiently for the whole community.

6.2 Statistical computing on manifolds
In Chapter 2, we were able to show that the Riemannian metric was a sufficient structure to provide

the bases for a consistent theory of statistics on manifolds (mean, covariance matrix, Mahalanobis
distance, Gaussian...). This was extended in Chapter 3 to a complete computing framework on

"http://www.bic.mi.mcgill.ca/nihpd_info/
*http://www.Health-e-Child.org
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manifolds to perform interpolation, filtering, anisotropic regularization through weighted means
and PDEs.

Extensions of the Riemannian approach

In this framework, the choice of the metric is crucial as it determines the fundamental properties
of the manifold. For instance, the Log-Fuclidean and affine-invariant metrics on positive definite
symmetric matrices put matrices with null eigenvalues at an infinite distance from any regular tensor.
They are well suited to diffusion tensors or to covariance matrices (Section 3.1.3), where this type of
matrix is unphysical and poses some computational problems, but not for structure tensors where a
perfect edge is represented exactly by that type of matrix [Fillard et al., 2005a|. Likewise, one can
interpret the regularization prior in non-rigid registration as the metric on the transformation space
(Section 5.3.2, [Trouvé, 1998]), and it is well known that changing the regularization drastically
changes the transformation result. Thus, the question is how to determine the “optimal” metric for
each problem, optimal meaning here that all the “structure” is included in the metric and that we
are left with a small Gaussian noise.

To partially answer this question, one track is to study families of metrics with some invari-
ance property on simple manifolds like we partially did for tensors. This provide a kind of maxi-
mally non-informative metric. However, the closed form examples are probably very limited. An-
other interesting solution is to determine the metric from a statistical model of the measurements,
for instance the Fisher information metric [Lenglet et al., 2006] or the entropy differential metric
[Burbea and Rao, 1982]. A last interesting track is to learn the global metric from local distance
measurements [Brun, 2006, Brun et al., 2005]. This method could be particularly well suited for
surfaces represented by point sets or graphs for which there is a known (or guessed) local Euclidean
embedding.

From a theoretical point of view, the Gaussian we define by minimizing the intrinsic entropy
does not correspond to the Brownian motion on manifolds. The alternative would be to rely on
the heat kernel, smallest positive fundamental solution of the heat equation Af = f . This kernel
is compatible with the intrinsic operations on a probabilistic manifold [Grigor’yan, 2006]. However,
it is intrinsically isotropic with respect to the Riemannian metric used, so it cannot represent
anisotropic Gaussians. A solution is to encode the anisotropy (i.e. the shape of the covariance
matrix) in the Riemannian metric itself. Similar problems appear when one wants to do a PCA
on a distribution strongly elongated along a direction where the manifold folds onto itself (e.g. a
uniform distribution along a great circle on the sphere). The link between the Riemannian metric,
the covariance matrix and the heat kernel should thus be clarified.

From a practical point of view, it would be necessary to develop distributions with several
modes (e.g. mixture models) for shape distributions arising from discrete or even continuous hidden
variables, and to generalize the related inference algorithms (e.g. EM). Such mixture models would
be particularly well suited for manually segmented surfaces where some experts may decide that
a small substructure is include in the segmentation while other experts will exclude it. Likewise,
depending on the intensity level that they chose to follow, the boundary of the object is consistently
biased toward the interior or the exterior of the object. Taking properly into account these kind
of hidden variables in intrinsic surface statistics would allow to generalize algorithms like STAPLE
[Warfield et al., 2004] from voxel-based to surface-based segmentations and to design better priors
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for deformable models. This could also allow to take into account topological changes and not only
geometrical changes in sulcal ribbons for instance.

Statistics on deformations and surfaces

The Riemannian approach that we presented here is not perfectly consistent with the structure of
Lie groups as soon as they are not compact nor Abelian (Section 2.4.3), which is already the case
for rigid body transformations. In that case, there is no left and right invariant metric, and most
of the operations that we defined (e.g. the mean) with either the left or the right invariant metric
are not consistent with inversion.

To find an alternative to the Riemannian structure for Lie groups, we investigate with V. Arsigny
the idea on relying on one-parameter subgroups instead of geodesics. Preliminary results indicate
that this may provide an interesting structure (see [Arsigny et al., 2006b, Arsigny et al., 2006a] and
Section 4.3.6). For instance, one can design bi-invariant means that are fully compatible with the
group structure [Arsigny et al., 2006e|. They are define though fixed point equations which are very
similar to the Riemannian ones. However, these equations do not derive from a well posed metric.
It would be interesting to see what part of the statistical computing framework still holds if we
replace the distance by a simple positive or negative energy. This probably amounts to considering
the connection as the basic structure of the manifold instead of the Riemannian metric.

A key problem is to extend our statistical computing framework to infinite dimensional man-
ifolds such as surfaces and diffeomorphism groups. From a theoretical point of view, we known
how to provide the diffeomorphism group with left or right invariant Riemannian metrics that are
sufficiently smooth to compute the geodesics by optimization [Beg et al., 2005, Miller et al., 2003,
Miller and Younes, 2001, Joshi and Miller, 2000]. Through the so called EPDiff equation (Euler-
Poincarré equation for diffeomorphisms), this optimization framework has been recently rephrased
in an exponential /logarithm framework similar to the one developed here [Miller et al., 2006]. Thus,
the basic algorithmic tools are the same, except that optimizing each time to compute the expo-
nential and the logarithm has a deep impact on the computational times. However, one difficulty
is that the infinite number of dimensions forbids the use of many tools like the probability density
functions! Thus, even if simple statistics like the mean and the principal component analysis of a
finite set of samples may still be computed [Vaillant et al., 2004], one should be very careful about
ML-like statistical estimation in these spaces: there is always a finite number of data for an infinite
number of parameters. In particular, there are infinitely many left- or right-invariant metrics on
diffeomorphisms, and learning the optimal metric is an ill-posed problem. Estimations need to be
regularized with priori models or performed within finite dimensional families of metrics whose as-
sumptions are suited for the problem at hand. An interesting track for that is to establish specific
models of the Green’s function based on the mixture of smoothly varying local and long-distance
interaction convolution kernels. If we only consider the local kernel, the Riemannian elasticity (Sec-
tion 5.3.2) could be an interesting family of metrics allowing to measure statistically the properties
of the virtual underlying material.

Last but not least, surfaces are an important source of anatomical manifolds in computa-
tional anatomy, and one need to design efficient methods and metrics to capture their statisti-
cal properties. It would also be useful to fuse the information coming from image deformations
and from surfaces in a single framework. We know from a few years that courants (generaliza-
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tion of distributions) provide consistent mathematical tools for discrete and continuous surfaces
[Cohen-Steiner and Morvan, 2003]. More recently, [Vaillant and Glaunes, 2005] proposed a diffeo-
morphic registration algorithm of surfaces based on that notion. Investigating this tool in more
depth would probably allow to find in which cases approximations leading to efficient algorithms
could be justified. In particular, I believe that the links between courants and the numerous efficient
point-sets methods developed so far need to be established. A few insights on the convergence of
the two kind of methods were presented as the first Mathematical Foundations of Computational
Anatomy workshop [Pennec and Joshi, 2006].

6.3 Applications in medical image analysis

Computational models of the anatomy have many applications. In neuroscience, for instance, the
anatomical variability need to be removed in population studies to understand the localization of
functions and its variability. In more classical medical image analysis, statistics on shapes is needed
to provide informative priors in deformable models. Likewise, informative priors on the deforma-
bility are needed in many registration problems. Relying on highly constrained deformations is
critical in augmented reality system in order to ensure the robustness of the therapeutic gesture
guidance. This is why most of the systems are currently limited to rigid motions. With precise
variability models, one could relax this constrain. For instance one could take into account breath-
ing in the liver puncture guidance system of Section 4.1.3. The statistical articulated model of
the spine of Section 5.1 could also be used to guide endoscopic surgical operations with very few
per-operative information. Inter-subject brain variability models will also be very important for
obtaining more robust personalized atlases, for instance in radiotherapy planning. However, even
with good anatomical priors, a generic registration algorithm will most probably not be perfectly
robust and accurate in several clinical contexts without many improvements. One idea is to add
some interaction so that the user can correct the result, for instance to get out of a local minimum.
The interesting thing would be to integrate these corrections in the priors in order to iteratively
learn how to solve each problem. Many other clinical applications of computational anatomy are
foreseeable. We hope to demonstrate a few of them in the coming years.
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Curriculum Vitae

PENNEC Xavier http://www.inria.fr /epidaure /personnel /Xavier.Pennec/

Nationality: French
Date of birth: Mai the 2nd, 1970

INRIA Sophia - Asclepios team, Tel: +33 4 92 38 76 64
2004 Route des Lucioles BP 93, Fax: +33 4 92 38 76 69
06902 Sophia Antipolis Cedex, France Email: Xavier.Pennec@sophia.inria.fr
Education
1996 Ph.D., Ecole Polytechnique, Paris, France, in Computer Science, with high-
est honors.
1993 Master degree (DEA), Ecole Polytechnique - Ecole Normale Supérieure,

Paris, France, in Mathematical Computer Science and Applications, specializa-
tion in Geometric Computing, with highest honors.

1992 Graduate of the Ecole Polytechnique, Paris, France. Specialization in
Computer Science and Physics.
1987 Baccalauréat in Mathematics and Techniques, with highest honors.
Positions

Since 2000  Senior Research Scientist (CR1) at INRIA, Epidaure / Asclepios team.
1998-2000  Junior Research Scientist (CR2) at INRIA, Epidaure team.

1998 Postdoctoral /Expert Engineer in charge of the European project ROBOSCOPE.
INRIA, Epidaure team.
1997 Postdoctoral Associate at MIT, Artificial Intelligence Lab, Vision Group. Advisor:

Pr. W.E.L. Grimson. Theory of Uncertainty on Geometric Features: Extensions
and Applications.
1993-1996  Ph.D. student at INRIA, Epidaure team. Supervisor: Pr. N. Ayache. Uncertainty

in Recognition and Registration Problems - Application in Medical Imaging and
Molecular Biology.

1993 Master degree research training period (6 months) at INRIA, Epidaure team.
Supervisor: Pr. N. Ayache. Frror Handling in Geometric Hashing and Alignment
Methods: o Theoretical Study.

1992 Graduate degree research training period (4 months) at ONERA Chatillon, DMI-
GIA (FRANCE). Supervisor: J.-J. Bourrely. Improvement of Some Neuro-
Mimetic Techniques with Application in Hand- Written Capital Letter Recognition.

1990 Military service: company commanding officer in the French Air Force.
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European projects

HEALTH-e-CHILD (2006-2009): An Integrated healthcare platform for European paedi-
atrics. A Grid-enabled Furopean network of leading clinical centers. Individuolized disease
prevention, screening, early diagnosis, therapy and follow-up of pediatric heart diseases, in-
flammatory diseases, and brain tumors. (IST 027749, INRIA amount: 900 000 euros). Indus-
trial partners: Siemens, Maat G-knowledge, CERN. Universities: West-England (Bristol, UK),
Athens (GR), Genoa (IT); Hospitals: Gaslini (Genoa, IT), Necker (Paris, FR), GOSH/UCL
(London, UK). http://www.health-e-child.org/. Proposal writing and project inception
from 2003 to 2005. Leader of WP11 (integrated disease modeling), member of the Ezecutive
board and of the Project management team, deputy of N. Ayache to the Governing board.

ROBOSCOPE (1998-2000): Ultrasound-image-quided manipulator-assisted system for
manimally invasive endo-neuro-surgery, HC-4018 (INRTA amount: 506 800 ECU). IBMT-
Fraunhofer, ISM, Fokker Control, Imperial College. Scientific responsible of the project for
INRIA; Leader of the Multi Modal Image Fusion Tools workpackage (including KU Leuven as
sub-contractor); WP and INRIA deputy at the annual EC evaluation.

Industrial contracts

Siemens Corporate Research (2004-2008) : Learning for error correction and validation
of non-rigid registration algorithms. Joint elaboration and follow-up of the contract (DEA of
A. Azar, PhD of J.-M. Peyrat).

Medtronics (2004-2005) : Localization and segmentation of deep gray nuclei for electrode
stimulation implantation in Alzheimer’s disease. Technical follow-up of the post-doctoral
fellow (R. Stefanescu).

AREALL (1998-2002): A surgical navigation system for dental implantology. Consultant
from 1998 to 2002. Preparation and follow-up of the the research contract and Cifre fellowship
for the PhD of S. Granger (2000-2002).

CNES (2002): Comparison of the performances of non-linear registration algorithms on
aerial and satellite images.

QuantifiCare (2001-): Medical image analysis for pharmaceutical applications. Software
and patents transfer. Founder and Scientific Council member

Research grants

ACI Masses de données AGIR (2004-2007): Grid Analysis of Radiological Images Data.
CRAN, LORIA, INRIA, LIMSI, LRI, LPC. French multi-disciplinary project aiming at lever-
aging medical imaging algorithms trough grid systems. http://www.aci-agir.org/. Pro-
posal writing, principal investigator at INRIA-Sophia, joint advisor of the PhD of T. Glatard.
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e Associated team Brain Atlas with LONI at UCLA (2001-2006): Development
of new methods to build atlases and to quantify the wvariability of the brain. http:
//www-sop.inria.fr/epidaure/Collaborations/UCLA/ and http://www.loni.ucla.edu/
Research/INRIA.html. General coordination of the collaboration with P. Thompson.

e Development Action IRMf (2000-2002): Non-linear registration of anatomical and
functional MR images. Robotvis, Vista (INRIA), INSERM (U494), CEA-SHFJ (DRM).
http://www-sop.inria.fr/epidaure/Collaborations/IRMf/. Joint writing of the pro-
posal, general coordinator of the action.

e ARC MC2 (2000-2001): New methods to fuse MRI and MEEG. Robotvis, Vista (INRIA),
CNRS UPR 640, CEA-SHFJ.

e GRID 5000 (2003-): A highly reconfigurable, controllable and monitorable experimental Grid
platform. http://www-sop.inria.fr/grid5000/.

e Specific Action on Non-Rigid Registration (2003-2004): CNRS, ENS, GET/TNT,
LSIIT. http://www-artemis.int-evry.fr/ rougon/AS-RNR/

Scientific responsibilities

Participation to PhD committees

e Niels Holm Olsen, IT University of Copenhagen, Denmark, March 2003. Opponent.

e R-C. Stefanescu, 2005, S. Nicolau, 2004, G. Flandin, 2004, S. Granger, 2003, P. Cachier, 2002.
Co-supervisor.

Conference Organization:

e General Chair of the First International Workshop on Mathematical foundations of Com-
putational Anatomy, associated to MICCAI’06, Copenhagen, October 1st, 2006. http:
//www-sop.inria.fr/epidaure/Workshops/Workshop_MFCA_MICCAIO6.html.

e Session chair at MICCAI'04 and MICCATI’06.

Reviewing work

e Conference Program Committees: Distrib. Databases and processing in Medical ITm-
age Comp. (DIDAMIC) 2004, Int. W. on Augmented environments for Med. Imag. and
Comp.-aided Surgery (AMI-ARCS) 2004, IEEE W. on Math. Methods in Biomed. Image
Analysis (MMBIA) 2006, W. on Biomed. Image Registration (WBIR) 2003, 2006, From Sta-
tistical Atlases to Personalized Models (SA2PM’06), W. on Image Registration in Deformable
Environments (DEFORM’06).

e Conferences Review Committees: IJCAT'99, MICCAT (2002 to 2005), ISBI 2002, 2004
and 2006, HealthGrid’03, FIMH 2003, GRETSI'03, EUROGRAPHICS’05, CVPR 2006.



144

VITAE

e Journal Review Committees: Int. Journal of Computer Vision (IJCV), IEEE Trans. in

Medical Imaging (TMI), Medical Image Analysis (MedIA), Journal of Mathematical Imaging
and Vision (JMIV), IEEE Trans. on Robotics and Automation, Neurolmage, IEEE Trans.
on Image Processing (TIP), Traitement du Signal (TS), Image and Vision Computing (IVC),
IEE Proceedings - Vision, Image and Signal Processing, IEEE Trans. Pattern Analysis and
Machine Intelligence (PAMI), Computer Vision and Image Understanding (CVIU), Computer
Aided Surgery (CAS), Methods of Information in Medicine (MIM).

Expertise

Member of the Jury of the SPECIF PhD award (2006-2009).

Evaluator the French ANR-CIS program (Intensive Computations and Simulations) in 2005, the

INRIA post-doctoral fellowships in mai 2003, for the “new interfaces in mathematics ACI” in April
2003, for the Council of Physical Science of the Netherlands Organization for Scientific Research
(NWO), 2002.

Participation as expert to the Imaging, Medical Analysis and Grid Environments workshop,

(National e-Science Center, Edinburgh, sept. 2003), and to the American working group Issues in
Multimodal Medical Image Registration (Rochester, ML, June 1997 and Greenbelt, MA, Nov. 1997).

Software

Pasha: (25 %) Non-rigid registration of 3D images (C++, 21 000 lines). Transfered to 4
universities and about to be distributed on the web.

Baladin: (5 %) Multimodal registration of images using block-matching (C, 15 000 lines).
Transfered to 2 universities and one industrial partner; exploitation licenses.

MIPS: (5 %) Effort to gather and capitalize all the software developments of the Epi-
daure/Asclepios team on visualization and analysis of medical images. The library comprises
le visualization tool Yav++ (C++, OpenGL and Tcl/Tk) and the other softwares of this
section.

Yasmina: (5%) Multimodal registration of medical images (C, 15000 lines). Transfered to 3
universities and 3 industrial partners; exploitation licenses; patent.

Roboscope MMIT package: integration and distribution in the consortium of 115000 line
of C, 122000 of C++ code and 5000 of Tcl code.

PFRegister, PFMatchICP, PFMatchIT, PFMatchGH: (100 %) softwares for the reg-
istration and matching of geometric features (C, 27000 lines); registered at the APP in June
1997; Transfered to 3 universities and one industrial partner; Exploitation license.

Prospect: (100 %) software for detecting common substructures in protein structures (C,
5000 lines); Registered at the APP in December 1997; Transfered to 3 universities.
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Patents

1. Vincent Arsigny, Xavier Pennec, Pierre Fillard, and Nicholas Ayache. Dispositif perfectionné
de traitement ou de production d’images de tenseurs. French patent filing number 0503483,
April 2005.

2. Alexis Roche, Grégoire Malandain, Nicholas Ayache, and Xavier Pennec. Electronic device
for automatic registration of images. US patent No US 6,539,127 B1, Mars 25, 2003, March
2003.

3. Alexis Roche, Grégoire Malandain, Nicholas Ayache, and Xavier Pennec. Dispositif élec-
tronique de recalage automatique d’images. French patent No FR 98 09649, Bulletin officiel
de la propriété intellectuelle no 00/39 du Sept. 09 2000. European extension No 99401881,
September 2000.

Prizes and Awards

e Annual Medical Image Analysis best paper award 2006 for Mosaicing of Confocal Microscopic
In Vivo Soft Tissue Video Sequences, coauthored by T. Vercauteren, A. Perchant, X. Pennec
G. Malandain and N. Ayache.

e AMDO best paper award 2006 for Principal Spine Shape Deformation Modes Using Rieman-
nian Geometry and Articulated Models by J. Boisvert, X. Pennec, H. Labelle, F. Cheriet and
N. Ayache.

e Co-author of a paper awarded the Best Student Presentation in Image Processing and Visu-
alization of MICCAT03 (Polyrigid transformations, MICCAT 2003, LNCS 2879).

e Giovanni DiChiro Award for Outstanding Scientific Research (Journal of Computer Assisted
Tomography, 21(4):554-566, 1997).

e INRIA Post-doctoral Fellowship, 1998.

e Highest honors (mention trés honnorable avec les félicitations du jury) for the PhD, Ecole
Polytechnique (Palaiseau), 1996.

e DRET/CNRS PhD Fellowship, 1993-1996.
e DEA fellowship from the Ecole Polytechnique, 1992-1993.

e Highest honors (mention trés bien) at the Baccalauréat, Limoges, 1987.
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Invited plenary talks in conferences

1.

10.

15th ERNSI (European Network on System Identification) Workshop on System Identification.
Link6ping, Sweden. September 20-21, 2006.

. Mathematics and Image Analysis (MIA’06), Paris, 18-21 September, 2006.

. Shape Spaces. IMA, Minneapolis, April 3-7, 2006. http://www.ima.umn.edu/imaging/

spring/W4.3-7.06.html.

. Conference-winter school on singularities and applications, CIRM, Luminy, February 7-11,

2005.

. Workshop on Computational Topology (ECG’02), Sophia-Antipolis, October 21-25, 2002.

. CARS 2002, “Validation of medical image processing in image-guided therapy session”, Paris,

June 2002.

. Journées “Mathématiques et sciences du vivant”, Nice-Sophia Antipolis University, March

2002.

. First Astronomical and Medical Imaging Meeting (AMI’01), Royal Statistical Society, London,

UK, April 2001.

. Journées Statistiques, INRIA Rennes IRISA, November 15-16, 2001.

Image Analysis and High Level Vision, IMA workshop, Minneapolis, MN, USA, December
13-17, 2000.

Invited talks at seminars

John Hopkins University, Baltimore, April 2006. Statistical Computing on Manifolds: From
Riemannian Geometry to Computational Anatomy.

Univ. Utah, Salt Lake City, July 2005. Statistical Computing on Riemannian Manifolds:
From Riemannian Geometry to Computational Anatomy.

Univ. North-Carolina (UNC) at Chapel Hill, July 2005. Statistical Computing on Riemannian
Manifolds: From Riemannian Geometry to Computational Anatomy.

Univ. Southern California (USC) Los-Angeles, July 2004. From statistical models of curves
and surfaces to intrinsic tensor computing.

DTU, Copenhagen, Denmark, mars 2003. Statistics on Riemannian manifolds with application
to the evaluation of the rigid registration accuracy.

Univ. of Grenada, Spain, December 1999. Probabilities and Statistics on Riemannian Mani-
folds: Basic Tools for Geometric Measurements.
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Université Claude Bernard Lyon 1, March 1998. Un cadre statistique pour le traitement de
données géométriques.

Artificial Intelligence Lab. Seminar Series, MIT, March 1997. Uncertainty in registration and
recognition problems.

Université Claude Bernard Lyon 1, April 1996. Probabilités et statistiques sur les primitives
géométriques.

Lab. Biologie Moléculaire des Relations Plantes-Microorganismes (LBMRPM), Toulouse,
April 1995. Reconnaissance et recalage efficace d’objets 3D en biologie moléculaire et en im-
agerie médicale.

Tutorials

Teaching

Statistical Computing on Riemannian Manifolds: From Riemannian Geometry to Computa-

tional Anatomy. MICCAT05, Palm Spring, (CA, USA), October 2005.

Grids services for medical image analysis and registration. MICCAI’'04, Saint-Malo, Septem-
ber 2004.

Performance evaluation of registration algorithms in the absence of gold standard. MICCAT’03,
Montreal, November 2003.

IT Univ. Copenhagen. Non-linear shape modeling. PhD Course, December 5-10, 2005. 30 h.
module, with S. Joshi.

Univ. Nice-Sophia Antipolis (UNSA). Introduction to medical imaging. DUT informatique,
numerical images option, March 2003 (4h).

ENSTA. Introduction to medical image analysis. 3rd year of engineer school, 1999 (3h).

IMAC. Recognition and registration techniques. 3rd year of engineer school, 1998 (3h).
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Supervision of research activities

Former PhD Students

1. Radu-Constantin Stefanescu: Parallel nonlinear registration of medical images with a
priori information on anatomy and pathology. University of Nice-Sophia-Antipolis, March
2005. Co-supervision (90%) with N. Ayache (supervisor).

FEmail: Radu.Stefanescu@wanadoo.fr

e R. Stefanescu, X. Pennec, and N. Ayache. A grid service for the interactive use of a
parallel non-rigid registration algorithm of medical images. Methods of Information in
Medicine, 44(2), 2005.

e R. Stefanescu, X. Pennec, and N. Ayache. Grid powered nonlinear image registration
with locally adaptive regularization. Medical Image Analysis, 8(3):325-342, 2004.

e R. Stefanescu, X. Pennec, and N. Ayache. Grid-enabled non-rigid registration of medical
images. Parallel Processing Letters, 14(2):197-216, 2004.

e R. Stefanescu, O. Commowick, G. Malandain, P.-Y. Bondiau, N. Ayache, and X. Pennec.
Non-rigid atlas to subject registration with pathologies for conformal brain radiotherapy.
In Proc. of MICCAI 2004, volume 3216 of LNCS, pages 704-711, Saint-Malo, France,
September 2004.

e R. Stefanescu, X. Pennec, and N. Ayache. A grid service for the interactive use of
a parallel non-rigid registration algorithm. In Proc. of HealthGrid 2004, Clermont-
Ferrand, January 2004. European Commission, DG Information Society.

e R. Stefanescu, X. Pennec, and N. Ayache. Parallel non-rigid registration on a cluster
of workstations. In Sofie Norager, editor, Proc. of HealthGrid’03, Lyon, January 2003.
European Commission, DG Information Society.

e R. Stefanescu, X. Pennec, and N. Ayache. Grid enabled non-rigid registration with a
dense transformation and a priori information. In Proc. of MICCAI’03, Part II, volume
2879 of LNCS, pages 804-811, Montreal, November 2003.

2. Stéphane Nicolau: An augmented reality system for hepatic surgery. University of Nice-
Sophia-Antipolis, November 2004. Co-supervision (50%) with L. Soler (IRCAD, Strasbourg)
and N. Ayache (supervisor).

Email: stephane.nicolau@ircad.u-strasbg.fr
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SUPERVISION OF RESEARCH ACTIVITIES

S. Nicolau, A. Garcia, X. Pennec, L. Soler, and N. Ayache. An augmented reality

system to guide radio-frequency tumor ablation. Computer Animation and Virtual World
(previously the Journal of Visualization €& Computer Animation), 16(1):1-10, 2005.

S. Nicolau, X. Pennec, L. Soler, and N. Ayache. An augmented reality system for liver

punctures: Design and evaluation on clinical cases. Submitted to Medical Image Analysis,
2006.

S. Nicolau, X. Pennec, L. Soler, and N. Ayache. A complete augmented reality guidance

system for liver punctures: First clinical evaluation. In Proc. of MICCAI 2005, Part
I, volume 3749 of LNCS, pages 539-547, Palm Springs, CA, USA, October 26-29, 2005.
Springer Verlag.

S. Nicolau, X. Pennec, L. Soler, and N. Ayache. An augmented reality system to guide

liver punctures. In Proc. of AMI-ARCS 2004 workshop, pages 77-86. IRISA Rennes,
September 2004.

S. Nicolau, J. Schmid, X. Pennec, L. Soler, and N. Ayache. An augmented reality

& wvirtuality interface for a puncture guidance system: Design and validation on an
abdominal phantom. In Proc of MIAR 2004, volume 3150 of LNCS, pages 302-310,
Beijing, China, August 2004. Springer Verlag.

S. Nicolau, X. Pennec, L. Soler, and N. Ayache. An accuracy certified augmented reality
system for therapy guidance. In Proc. of ECCV’04, Part I, volume 3023 of LNCS,
pages 79-91, Prague, May 2004.

S. Nicolau, X. Pennec, L. Soler, and N. Ayache. Evaluation of a new 3D /2D registration
criterion for liver radio-frequencies guided by augmented reality. In Proc. of IS4TM’03,
volume 2673 of LNCS, pages 270-283, Juan-les-Pins, France, 2003.

S. Nicolau, A. Garcia, X. Pennec, L. Soler, and N. Ayache. Augmented reality guided
radio-frequency tumor ablation. In Proceedings of Augmented and Virtual Reality Work-
shop (AVIR03), pages 34-35, Genéve, 2003.

S. Nicolau, X. Pennec, L. Soler, and N. Ayache.  Vision augmentée de structures
anatomiques abdominales recalées par stéréoscopie. In Actes du quatriéme colloque fran-
cophone. Méthodes et Techniques Optiques pour U’Industrie, volume 1, pages 413-418,
Belfort, 2003.

S. Nicolau, A. Garcia, X. Pennec, L. Soler, and N. Ayache. Guidage de ponctions percu-
tanées a I’aide d’un systéme de vision basé sur une méthode de recalage 3D/2D. In Actes
du collogue Imagerie pour les sciences du vivant et de l'ingénieur (IMVIE03), Strasbourg,
2003.

3. Guillaume Flandin: Using geometric information for the statistical analysis of fMRI data.

University of Nice-Sophia-Antipolis, March 2004. Co-supervision (50%) with J.-B. Poline
(CEA-SHFJ, Orsay) and N. Ayache (supervisor).
Email: guillaumeQartefact.tk

G. Flandin, X. Pennec, A. Roche, W. Penny, N. Ayache, and J.-B. Poline. Multi-subject
anatomo-functional classification for activation studies. In Neurolmage (HBM’04), Bu-
dapest, Hungary, 2004.
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e G. Flandin, W. Penny, X. Pennec, N. Ayache, and J-B. Poline. A multisubject anatomo-
functional parcellation of the brain. In Neurolmage (HBM’03), New York, USA, 2003.

e G. Flandin, F. Kherif, X. Pennec, G. Malandain, N. Ayache, and J.-B. Poline. Improved
detection sensitivity in functional MRI data using a brain parceling technique. In Proc
of MICCAI'02, volume 2488 of LNCS, pages 467-474, Tokyo, Sept. 2002.

e G. Flandin, F. Kherif, X. Pennec, D. Riviére, N. Ayache, and J.-B. Poline. Parcellation
of brain images with anatomical and functional constraints for fMRI data analysis. In
Proc of ISBI'02, pages 907-910, Washington, USA, 2002.

e G. Flandin, F. Kherif, X. Pennec, D. Riviére, N. Ayache, and J.-B. Poline. A new repre-
sentation of fMRI data using anatomo-functional constraints. In NeuroImage (HBM’02),
Sendai, Japan, 2002.

4. Sébastien Granger: Registration and reconstruction of surfaces: a multi-scale statistical ap-
proach. Application to computer-assisted dental implantology. Ecole des Mines de Paris, April
2003, with highest honors. Co-supervision (95%) with N. Ayache (supervisor).

Email: seb.grangerQfree.fr

e S. Granger and X. Pennec. Multi-scale EM-ICP: A fast and robust approach for surface
registration. In Proc. of ECCV 2002, volume 2353 of LNCS, pages 418-432, Copenhagen,
Denmark, 2002.

e S. Granger, X. Pennec, and A. Roche. Rigid point-surface registration using an EM
variant of ICP for computer guided oral implantology. In Proc of MICCAI’01, volume
2208 of LNCS, pages 752-761, Utrecht, The Netherlands, October 2001.

e S. Granger and X. Pennec. Statistiques exactes et approchées sur les normales aléatoires.
Research report RR-4533, INRIA, 2002.

5. Pascal Cathier (previously Cachier): Non-rigid registration of tri-dimensional medical images.
Contributions to iconic and geometric approaches. Ecole Centrale Paris, January 2002, with
highest honors. Co-supervision (40%) with N. Ayache (supervisor).

Email: cathier@shfj.cea.fr

e X. Pennec, A. Roche, P. Cathier, and N. Ayache. Non-rigid MR/US registration for
tracking brain deformations. In R.S. Blum and Zh. Liu, editors, Multi-Sensor Im-

age Fusion and Its Applications, volume 26 of Signal Processing and Communications,
chapter 4, pages 107-143. CRC Press - Taylor and Francis, July 2005.

e P. Cachier, E. Bardinet, D. Dormont, X. Pennec, and N. Ayache. Iconic feature based

nonrigid registration: The pasha algorithm. Computer Vision and Image Understanding,
89(2-3):272-298, Feb.-march 2003.

e X. Pennec, P. Cachier, and N. Ayache. Tracking brain deformations in time-sequences
of 3D US images. Pattern Recognition Letters, 24(4-5):801-813, February 2003.

e P. Cachier, J.-F. Mangin, X. Pennec, D. Riviére, D. Papadopoulos-Orfanos, J. Régis,
and N. Ayache. Multisubject non-rigid registration of brain MRI using intensity and
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geometric features. In Proc of MICCAI'01, volume 2208 of LNCS, pages 734-742,
Utrecht, The Netherlands, October 2001.

X. Pennec, N. Ayache, A. Roche, and P. Cachier. Non-rigid MR/US registration for
tracking brain deformations. In Proc of MIAR 2001, 10-12 June 2001, Shatin, Hong
Kong, pages 79-86, June 2001.

X. Pennec, P. Cachier, and N. Ayache. Tracking brain deformations in time sequences
of 3D US images. In M.IL. Insana and R.M. Leahy, editors, Proc. of IPMI’01, number
2082 in LNCS, pages 169-175, Davis, CA, USA, June 2001.

P. Cachier and X. Pennec. 3D non-rigid registration by gradient descent on a Gaussian-
windowed similarity measure using convolutions. In Proc. of MMBIA’00, pages 182-189,
Hilton Head Island, South Carolina, USA, June 2000. IEEE Computer society.

X. Pennec, P. Cachier, and N. Ayache. Understanding the “demon’s algorithm”: 3D

non-rigid registration by gradient descent. In C. Taylor and A. Colchester, editors, Proc.
of MICCAI’99, volume 1679 of LNCS, pages 597-605, Cambridge, UK, September 1999.

1. Vincent Arsigny: Statistical analysis of shapes, application to anatomical atlases. Ecole Poly-

technique. Co-supervision (60%) with N. Ayache (supervisor).
Email: Vincent.Arsigny@sophia.inria.fr

e V. Arsigny, X. Pennec, P. Fillard, and N. Ayache. Dispositif perfectionné de traitement

ou de production d’images de tenseurs. French patent filing number 0503483, April 2005.

V. Arsigny, P. Fillard, X. Pennec, and N. Ayache. Log-Euclidean metrics for fast and
simple calculus on diffusion tensors. Magnetic Resonance in Medicine, 56(2):411-421,
August 2006.

V. Arsigny, P. Fillard, X. Pennec, and N Ayache. Geometric means in a novel vec-
tor space structure on symmetric positive-definite matrices. SIAM Journal on Matrix
Analysis and Applications, 2006. In Press.

V. Arsigny, X. Pennec, and N. Ayache. Polyrigid and polyaffine transformations: a novel
geometrical tool to deal with non-rigid deformations - application to the registration of
histological slices. Medical Image Analysis, 9(6):507-523, December 2005.

V. Arsigny, O. Commowick, X. Pennec, and N. Ayache. A log-Fuclidean framework for
statistics on diffeomorphisms. In Proc. of MICCAI’06, LNCS, 2-4 October 2006. To
appear.

V. Arsigny, O. Commowick, X. Pennec, and N. Ayache. A log-Euclidean polyaffine
framework for locally rigid or affine registration. In Proc. of WBIR’06, LNCS, Utrecht,
The Netherlands, 9 - 11 July 2006. Springer. To appear.

V. Arsigny, P. Fillard, X. Pennec, and N. Ayache. Fast and simple calculus on tensors in
the log-FEuclidean framework. In Proc. of MICCAI 2005, Part I, volume 3749 of LNCS,
pages 115-122, Palm Springs, CA, USA, October 26-29, 2005.
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e V. Arsigny, X. Pennec, and N. Ayache. Polyrigid and polyaffine transformations: A new
class of diffeomorphisms for locally rigid or affine registration. In Proc. of MICCAI’03,
Part II, volume 2879 of LNCS, pages 829-837, Montreal, November 2003. Springer
Verlag. MICCALI 2003 Best Student Award in Image Processing and Visualization.

e V. Arsigny, X. Pennec, and N. Ayache. Bi-invariant means in Lie groups. application
to left-invariant polyaffine transformations. Research report, INRIA Sophia-Antipolis,
April 2006.

2. Jonathan Boisvert: Articulated models for augmented reality - Application to minimally inva-
sive spine surgery. University of Nice-Sophia- Antipolis and Polytechnique School of Montreal,
Canada. Co-supervision (30%) with N. Ayache (supervisor in France) and Farida Cheriet
(supervisor in Canada, Montreal’s Sainte-Justine Hospital and the Polytechnique School of
Montreal).

Email: Jonathan.Boisvert@sophia.inria.fr

e J. Boisvert, F. Cheriet, X. Pennec, H. Labelle and N. Ayache. Geometric Variability of
the Scoliotic Spine using Statistics on Articulated Shape Models. Submitted to IEEE
Trans. on Medical Imaging.

e J. Boisvert, X. Pennec, H. Labelle, F. Cheriet, and N. Ayache. Principal spine shape
deformation modes using Riemannian geometry and articulated models. In Proc of the
1V Conference on Articulated Motion and Deformable Objects, Andratx, Mallorca, Spain,
11-14 July. AMDO best paper award 2006

e J. Boisvert, X. Pennec, N. Ayache, H. Labelle, and F. Cheriet. 3D anatomic variability
assessment of the scoliotic spine using statistics on lie groups. In Proc. of ISBI 2006,
Crystal Gateway Marriott, Arlington, Virginia, USA, 2006.

e J. Boisvert, F. Cheriet, X. Pennec, N. Ayache, and H. Labelle. A novel framework for
the 3D analysis of spine deformation modes. In Research into Spinal Deformities, volume
123 of Studies in Health Technology and Informatics, pages 176-182, 2006.

e J. Boisvert, F. Cheriet, X. Pennec, N. Ayache, and H. Labelle. Assessment of brace local
action on vertebrae relative poses". In Research into Spinal Deformities, volume 123 of
Studies in Health Technology and Informatics, pages 372-378, 2006.’

3. Pierre Fillard: Statistical modeling of the anatomical variability of the cortex. University of
Nice-Sophia Antipolis. Co-supervision (60%) with N. Ayache.
Email: Pierre.Fillard@sophia.inria.fr

e X. Pennec, P. Fillard, and N. Ayache. A Riemannian framework for tensor computing.
International Journal of Computer Vision, 66(1):41-66, January 2006. A preliminary
version appeared as INRITA Research Report 5255, July 2004.

e P. Fillard, V. Arsigny, X. Pennec, and N. Ayache. Clinical DT-MRI estimation, smooth-
ing and fiber tracking with log-Euclidean metrics. Submitted to IEEE Trans. Medical
Imaging, 2006.
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P. Fillard, V. Arsigny, X. Pennec, P. M. Thompson, and N. Ayache. Measuring brain
variability by extrapolating sparse tensor fields measured on sulcal lines. Neurolmage,
2006. In press.

P. Fillard, V. Arsigny, X. Pennec, and N. Ayache. Clinical DT-MRI estimation, smooth-
ing and fiber tracking with log-Euclidean metrics. In Proc. of ISBI 2006, pages 786-789,
Crystal Gateway Marriott, Arlington, Virginia, USA, April 2006.

P. Fillard, V. Arsigny, N. Ayache, and X. Pennec. A Riemannian framework for the
processing of tensor-valued images. In Deep Structure, Singularities, and Computer
Vision (DSSCYV), volume 3753 of LNCS, pages 112-123. Springer Verlag, June 2005.

P. Fillard, V. Arsigny, X. Pennec, P. Thompson, and N. Ayache. Extrapolation of
sparse tensor fields: Application to the modeling of brain variability. In Proc. of
IPMTI’05, volume 3565 of LNCS, pages 27-38, Glenwood springs, Colorado, USA, July
2005. Springer.

4. Tristan Glatard: Computing with Massive Medical Image Databases on the GRID for the evalu-

ation of clinical image analysis protocols. University of Nice-Sophia Antipolis. Co-supervision
(40%) with J. Montagnat (50%, Rainbow team, I3S, UNSA), N. Ayache and M. Riveill (Rain-
bow team, 13S, UNSA).

Email: Tristan.Glatard@sophia.inria.fr

T. Glatard, J. Montagnat, and X. Pennec. Performance analysis of workflow-based
applications on production grids. Submitted to Journal of Grid Computing, 2006.

T. Glatard, J. Montagnat, D. Lingrand, and X. Pennec. Flexible and efficient workflow
deployment of data-intensive applications on grids with MOTEUR. International Journal
of High Performance Computing Applications, 2006. To appear in the special issue on
Workflow Systems in Grid Environments.

T. Glatard, X. Pennec, and J. Montagnat. Performance evaluation of grid-enabled regis-
tration algorithms using bronze-standards. In Proc. of MICCAI’06, LNCS, 2-4 October
2006.

T. Glatard, J. Montagnat, and X. Pennec. Efficient services composition for grid-enabled
data-intensive applications. In Proc. of HPDC 06, Paris, France, June 19, 2006.

T. Glatard, J. Montagnat, and X. Pennec. Probabilistic and dynamic optimization of
job partitioning on a grid infrastructure. In Proc. of PDP06, Monthéliard-Sochaux,
February 2006.

T. Glatard, J. Montagnat, and X. Pennec. An experimental comparison of grid5000
clusters and the EGEE grid. In Proc of the EXPGRID’06 workshop, Paris, France,
June 19-23, 2006.

T. Glatard, J. Montagnat, and X. Pennec. Medical image registration algorithms assess-
ment: Bronze standard application enactment on grids using the MOTEUR workflow
engine. In Proc. of HealthGrid’06, Valencia, Spain, June 7-9, 2006.

T. Glatard, J. Montagnat, and X. Pennec. Grid-enabled workflows for data intensive
applications. In Proc. of CBMS’05, Dublin, Ireland, June 23-24. IEEE, 2005.
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5.

DEA and Master Students

1.

Heike Hufnagel: Statistical shape analysis of normal and pathological organs within the ab-
domen. University of Hamburg. Co-supervision (50%) with Pr.-Dr. H. Handels (univ. Ham-
burg) and N. Ayache.

Email: Heike.Hufnagel@sophia.inria.fr

e H. Hufnagel, X. Pennec, G. Malandain, H. Handels, and N. Ayache. Non-linear 2D and
3D registration using block-matching and B-splines. In Bildverarbeitung fuer die Medizin
2005, Heidelberg, Germany, March 2005. Deutsches Krebsforschungszentrum.

. Tom Vercauteren: Mosaicing and analysis of temporal sequences of in vivo confocal microscopic

images. Ecole des Mines de Paris. Cifre with Mauna-Kea-Technologies. Co-supervision (30%)
with N. Ayache.
Email: Tom.Vercauteren@sophia.inria.fr

e T. Vercauteren, A. Perchant, G. Malandain, X. Pennec, and N. Ayache. Robust mo-
saicing with correction of motion distortions and tissue deformation for in vivo fibered
microscopy. Medical Image Analysis, 10(5):673-692, October 2006. Annual Medical
Image Analysis (MedIA) Best Paper Award 2006

e T. Vercauteren, A. Perchant, X. Pennec, and N. Ayache. Mosaicing of confocal micro-
scopic in vivo soft tissue video sequences. In Proc. of MICCAI 2005, Part I, volume
3749 of LNCS, pages 753-760, Palm Springs, CA, USA, October 26-29, 2005.

Antoine Azar: An Interactive Intensity- and Feature-Based Non-Rigid Registration Framework
for 8D Medical Images. Master IGMMYV, University of Nice-Sophia Antipolis, 2005.

. Pierre Fillard: A Riemannian Framework for Tensor Imaging. Master Optique-Image-Vision,

Jean Monnet University, Saint-Etienne, 2004.

. Heike Hufnagel: Robust deformable registration of medical images using block matching.

Diploma Thesis, University of Luebeck, Germany, 2004.

. Radu-Constantin Stefanescu: Parallelization of registration algorithms. DEA, Ecole Polytech-

nique, 2001.

. Niels Raynaud: A statistical approach for liver segmentation from tri-dimensional images.

DEA Mathématiques, Vision, Apprentissage, ENS Cachan, 2000.

. Alejandro Ribes: 2D-3D registration for augmented reality. DEA ARAVIS, University of

Nice-Sophia-Antipolis, 1999.

. Pascal Cachier: Registration of tri-dimensional ultrasonic images. DEA Math. and Artificial

Intelligence, ENS Cachan, 1998.

. Frédéric Nahon: I'mage registration by maximization of mutual information. Graduate degree,

Ecole Polytechnique, 1996.
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Publications

This bibliography is available online at (http://www-sop.inria.fr/epidaure/BIBLIO/Author/
PENNEC-X.html) with links on most of the publications. The main publications on which this
habilitation is based are highlighted and an URL is provided to retrieve the documents.

Books and Proceedings

1. Xavier Pennec and Sarang Joshi, editors. Proceedings of the First International Workshop on
Mathematical Foundations of Computational Anatomy - Geometrical and Statistical Methods
for Modeling Biological Shape Variability, October 1st, 2006 Copenhagen, Denmark, 2006.

Ph.D. Thesis

1. Xavier Pennec. L’incertitude dans les probléemes de reconnaissance et de recalage — Appli-
cations en imagerie médicale et biologie moléculaire. Thése de sciences (phd thesis), Ecole
Polytechnique, Palaiseau (France), December 1996.

Articles in international peer-reviewed journals

1. Pierre Fillard, Vincent Arsigny, Xavier Pennec, Kiralee M. Hayashi, Paul M.
Thompson, and Nicholas Ayache. Measuring brain variability by extrapolating
sparse tensor fields measured on sulcal lines. NeurolImage, 2006. In press.
ftp://ftp-sop.inria.fr/asclepios/Publications/Pierre.Fillard/Fillard.
Neuroimage.2006.pdf

2. Tristan Glatard, Johan Montagnat, Diane Lingrand, and Xavier Pennec. Flexible and efficient
workflow deployment of data-intensive applications on grids with MOTEUR. [International
Journal of High Performance Computing Applications, 2006. To appear in the special issue
on Workflow Systems in Grid Environments.

3. Tom Vercauteren, Aymeric Perchant, Grégoire Malandain, Xavier Pennec, and
Nicholas Ayache. Robust mosaicing with correction of motion distortions
and tissue deformation for in vivo fibered microscopy. Medical Image Anal-
ysis, 10(5):673—692, October 2006. Medical Image Analysis Best MICCAI
Paper Award 2006. ftp://ftp-sop.inria.fr/epidaure/Publications/Vercauteren/
RobustMosaicingMotionDistoTissueDefInVivoFCM-MedIAO6-Vercauteren.pdf
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10.

11.

12.

13.

PUBLICATIONS

. Vincent Arsigny, Pierre Fillard, Xavier Pennec, and Nicholas Ayache. Log-

Euclidean metrics for fast and simple calculus on diffusion tensors. Magnetic
Resonance in Medicine, 56(2):411-421, August 2006.
ftp://ftp-sop.inria.fr/epidaure/Publications/Arsigny/arsigny_mrm_2006.pdf

. Vincent Arsigny, Pierre Fillard, Xavier Pennec, and Nicholas Ayache. Geometric means in

a novel vector space structure on symmetric positive-definite matrices. SIAM Journal on
Matriz Analysis and Applications, 2006. In press.

. Hervé Delingette, Xavier Pennec, Luc Soler, Jacques Marescaux, and Nicholas Ayache. Com-

putational models for image guided, robot-assisted and simulated medical interventions. Pro-
ceedings of the IEEE, 2006. In press.

Xavier Pennec. Intrinsic statistics on Riemannian manifolds: Basic tools
for geometric measurements. Journal of Mathematical Imaging and Vision,
25(1):127-154, July 2006. Preliminary version: INRIA RR-5093, January 2004.
ftp://ftp-sop.inria.fr/epidaure/Publications/Pennec/Pennec.JMIVO6.pdf

. Xavier Pennec, Pierre Fillard, and Nicholas Ayache. A Riemannian framework

for tensor computing. International Journal of Computer Vision, 66(1):41-66,
January 2006. Preliminary version: INRIA Research Report 5255, July 2004.
ftp://ftp-sop.inria.fr/epidaure/Publications/Pennec/Pennec.JMIVO6.pdf

. Vincent Arsigny, Xavier Pennec, and Nicholas Ayache. Polyrigid and polyaffine transfor-

mations: a novel geometrical tool to deal with non-rigid deformations - application to the
registration of histological slices. Medical Image Analysis, 9(6):507-523, December 2005.

C. Germain, V. Breton, P. Clarysse, Y. Gaudeau, T. Glatard, E. Jeannot, Y. Legré, C. Loomis,
I. Magnin, J. Montagnat, J.-M. Moureau, A. Osorio, X. Pennec, and R. Texier. Grid-enabling
medical image analysis. Journal of Clinical Monitoring and Computing, 19(4-5):339-349,
October 2005.

Stéphane Nicolau, Alain Garcia, Xavier Pennec, Luc Soler, and Nicholas Ayache. An aug-
mented reality system to guide radio-frequency tumour ablation. Computer Animation and
Virtual World (previously the Journal of Visualization & Computer Animation), 16(1):1-10,
2005.

Radu Stefanescu, Xavier Pennec, and Nicholas Ayache. A grid service for the
interactive use of a parallel non-rigid registration algorithm of medical images.
Methods of Information in Medicine, 44(2), 2005.
ftp://ftp-sop.inria.fr/epidaure/Publications/Pennec/Pennec.HMIP.pdf

Miguel Angel Gonzalez Ballester, Xavier Pennec, Marius George Linguraru, and Nicholas
Ayache. Generalized image models and their application as statistical models of images.
Medical Image Analysis, 8(3):361-369, September 2004.
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14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Radu Stefanescu, Xavier Pennec, and Nicholas Ayache. Grid powered nonlinear image regis-
tration with locally adaptive regularization. Medical Image Analysis, 8(3):325-342, September
2004. MICCATI 2003 Special Issue.

Radu Stefanescu, Xavier Pennec, and Nicholas Ayache. Grid-enabled non-rigid registration
of medical images. Parallel Processing Letters, 14(2):197-216, 2004.

Pascal Cachier, Eric Bardinet, Didier Dormont, Xavier Pennec, and Nicholas Ayache. Iconic
feature based nonrigid registration: The pasha algorithm. Comp. Vision and Image Under-
standing, 89(2-3):272-298, Feb.-march 2003. Special Issue on Nonrigid Registration.

Xavier Pennec, Pascal Cachier, and Nicholas Ayache. Tracking brain deformations in time-
sequences of 3D US images. Pattern Recognition Letters, 24(4-5):801-813, February 2003.
Special Issue on Ultrasonic Image Processing and Analysis.

Maxime Sermesant, Clément Forest, Xavier Pennec, Hervé Delingette, and Nicholas Ayache.
Deformable biomechanical models: Application to 4D cardiac image analysis. Medical Image
Analysis, 7(4):475-488, December 2003.

Sébastien Ourselin, Alexis Roche, Gérard Subsol, Xavier Pennec, and Nicholas Ayache. Re-
constructing a 3D structure from serial histological sections. Image and Vision Computing,
19(1-2):25-31, January 2001.

Alexis Roche, Xavier Pennec, Grégoire Malandain, and Nicholas Ayache. Rigid registration of
3D ultrasound with MR images: a new approach combining intensity and gradient information.
IEEFE Transactions on Medical Imaging, 20(10):1038-1049, October 2001.

Xavier Pennec. Toward a generic framework for recognition based on uncertain geometric
features. Videre: Journal of Computer Vision Research, 1(2):58-87, 1998.

Xavier Pennec and Nicholas Ayache. Uniform distribution, distance and expectation problems
for geometric features processing. Journal of Mathematical Imaging and Vision, 9(1):49-67,
July 1998. A preliminary version appeared as INRIA Research Report 2820, March 1996.

Xavier Pennec and Nicholas Ayache. A geometric algorithm to find small but highly similar
3D substructures in proteins. Bioinformatics, 14(6):516-522, 1998.

André Guéziec, Xavier Pennec, and Nicholas Ayache. Medical image registration using ge-
ometric hashing. IEEE Computational Science & Engineering, special issue on Geometric
Hashing, 4(4):29-41, 1997. Oct-Dec.

Xavier Pennec and Jean-Philippe Thirion. A framework for uncertainty and validation of
3D registration methods based on points and frames. Int. Journal of Computer Vision,
25(3):203—-229, December 1997.

J. West, J. M. Fitzpatrick, M. Y. Wang, B. M. Dawant, C. R. Maurer, Jr., R. M. Kessler,
R. J. Maciunas, C. Barillot, D. Lemoine, A. Collignon, F. Maes, P. Suetens, D. Vandermeulen,
P. A. van den Elsen, S. Napel, T. S. Sumanaweera, B. Harkness, P. F. Hemler, D. L. G. Hill,
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D. J. Hawkes, C. Studholme, J. B. A. Maintz, M. A. Viergever, G. Malandain, X. Pennec,
M. E. Noz, G. Q. Maguire, Jr., M. Pollack, C. A. Pelizzari, R. A. Robb, D. Hanson, and R. P.
Woods. Comparison and evaluation of retrospective intermodality brain image registration
techniques. Journal of Computer Assisted Tomography, 21(4):554-566, 1997.

Submitted Journal Papers

1. Jonathan Boisvert, Farida Cheriet, Xavier Pennec, Hubert Labelle, and Nicholas Ayache. Geo-
metric variability of the scoliotic spine using statistics on articulated shape models. Submitted
to IEEE Trans. Medical Imaging, 2006.

2. Pierre Fillard, Vincent Arsigny, Xavier Pennec, and Nicholas Ayache. Clinical DT-MRI
estimation, smoothing and fiber tracking with log-Euclidean metrics. Submitted to IEEE
Trans. Medical Imaging, 2006.

3. Tristan Glatard, Johan Montagnat, and Xavier Pennec. Performance analysis of workflow-
based applications on production grids. Submitted to Journal of Grid Computing, 2006.

4. Soler Nicolau, Xavier Pennec, Luc Soler, and Nicholas Ayache. An augmented reality system
for liver punctures: Design and evaluation on clinical cases. Submitted to Medical Image
Analysis, 2006.

Book chapters, editorials and general purpose magazine articles

1. Xavier Pennec. Recaler pour mieux soigner. Pour la science, (338):126-131, December 2005.

2. Xavier Pennec, Alexis Roche, Pascal Cathier, and Nicholas Ayache. Non-rigid
MR /US registration for tracking brain deformations. In R.S. Blum and Zh. Liu,
editors, Multi-Sensor Image Fusion and Its Applications, volume 26 of Signal
Processing and Communications, chapter 4, pages 107-143. CRC Press - Taylor
and Francis, July 2005.
ftp://ftp-sop.inria.fr/epidaure/Publications/Pennec/Pennec.MRUS_Fusion.pdf

3. Ignacio Blanquer, Vincent Hernandez, Guy Lonsdale, Kevin Dean, Sharon Lloyd, Richard
McClatchey, Johan Montagnat, Mike Brady, Xavier Pennec, Howard Bolofsky, Chris Jones,
Martin Hofmann, Tony Solmonides, Ilidio C. Oliveira, Juan Pedro Sanchez, Victoria Lopez,
George De Moor, Brecht Claerhout, and Jean A.M. Harveg.  Healthgrid white paper:
http://whitepaper.healthgrid.org/. Edited by Cisco System, September 2004.

4. Luc Soler, Nicholas Ayache, Stéphane Nicolau, Xavier Pennec, Clément Forest, Hervé
Delingette, Didier Mutter, and Jacques Marescaux. Traitements d’images médicales pour
la planification, la simulation et ’aide intra-opératoire des actes chirurgicaux. In M. Faupel,
P. Smigielski, and R. Grzymala, editors, Imagerie et Photonique pour les sciences du vivant
et la médecine, pages 19-31. Edition Fontis Media, 2004. ISBN 2-88476-005-9.
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5. Luc Soler, Nicholas Ayache, Stéphane Nicolau, Xavier Pennec, Clément Forest, Hervé
Delingette, and Jacques Marescaux. Traitement d’images médicales pour la planification,
la simulation et 'aide intra-opératoire des actes chirurgicaux. La Revue de [’Electricité et de
UElectronique, pages 64-71, janvier 2004.

6. P. Jannin, J.M. Fitzpatrick, D.J. Hawkes, X. Pennec, R. Shahidi, and M.W. Vannier. Valida-
tion of medical image processing in image-guided therapy. IEEE Trans. on Medical Imaging,
21(12):1445-1449, December 2002.

7. Xavier Pennec, Nicholas Ayache, and Jean-Philippe Thirion. Landmark-
based registration using features identified through differential geometry. In
1. Bankman, editor, Handbook of Medical I'maging, chapter 31, pages 499-513.
Academic Press, September 2000.
ftp://ftp-sop.inria.fr/epidaure/Publications/Pennec/Pennec.HMIP.pdf

Full-length articles in selective international peer-reviewed confer-
ences

1. Vincent Arsigny, Olivier Commowick, Xavier Pennec, and Nicholas Ayache. A
Log-Euclidean framework for statistics on diffeomorphisms. In Proc. of the 9th
International Conference on Medical Image Computing and Computer Assisted
Intervention (MICCAI’06), Part I, number 4190 in LNCS, pages 924-931, 2-4
October 2006.
ftp://ftp-sop.inria.fr/epidaure/Publications/Arsigny/arsigny_miccaiO6.pdf

2. Vincent Arsigny, Olivier Commowick, Xavier Pennec, and Nicholas Ayache. A Log-Euclidean
polyaffine framework for locally rigid or affine registration. In J.P.W. Pluim, B. Likar, and
F.A. Gerritsen, editors, Proceedings of the Third International Workshop on Biomedical Image
Registration (WBIR’06), volume 4057 of LNCS, pages 120-127, Utrecht, The Netherlands, 9
- 11 July 2006. Springer Verlag.

3. Antoine Azar, Chenyang Xu, Xavier Pennec, and Nicholas Ayache. An interactive intensity-
and feature-based non-rigid registration framework for 3D medical images. In Proceedings of
the Third IEEE International Symposium on Biomedical Imaging (ISBI 2006), pages 824-827,
Crystal Gateway Marriott, Arlington, Virginia, USA, April 2006.

4. Jonathan Boisvert, Xavier Pennec, Hubert Labelle, Farida Cheriet, and Nicholas
Ayache. Principal spine shape deformation modes using Riemannian geometry
and articulated models. In Proc of the I'V Conference on Articulated Motion and
Deformable Objects, Andratz, Mallorca, Spain, 11-1} July, LNCS. Springer, 2006.
AMDO best paper award 2006. ftp://ftp-sop.inria.fr/epidaure/Publications/
Pennec/Boisvert.AMDO0O6_SpinePCA.pdf



162

10.

11.

12.

PUBLICATIONS

. Jonathan Boisvert, Xavier Pennec, Nicholas Ayache, Hubert Labelle, and Farida Cheriet.

3D anatomic variability assessment of the scoliotic spine using statistics on Lie groups. In
Proceedings of the Third IEEE International Symposium on Biomedical Imaging (ISBI 2006),
pages 750-753, Crystal Gateway Marriott, Arlington, Virginia, USA, April 2006. IEEE.

. Pierre Fillard, Vincent Arsigny, Xavier Pennec, and Nicholas Ayache. Clinical

DT-MRI estimation, smoothing and fiber tracking with log-Euclidean metrics. In
Proceedings of the Third IEEE International Symposium on Biomedical Imaging
(ISBI 2006 ), pages 786—789, Crystal Gateway Marriott, Arlington, Virginia, USA,
April 2006.
ftp://ftp-sop.inria.fr/epidaure/Publications/Fillard/Fillard.ISBI.06.pdf

. Tristan Glatard, Xavier Pennec, and Johan Montagnat. Performance evalua-

tion of grid-enabled registration algorithms using bronze-standards. In Proc. of
the 9th International Conference on Medical Image Computing and Computer
Assisted Intervention (MICCAI’06), Part II, number 4191 in LNCS, pages 152—
160. Springer, 2-4 October 2006.
ftp://ftp-sop.inria.fr/epidaure/Publications/Pennec/Glatard.MICCAIO6.pdf

. Tristan Glatard, Johan Montagnat, and Xavier Pennec. Efficient services composition for grid-

enabled data-intensive applications. In Proceedings of the IEEE International Symposium on
High Performance Distributed Computing (HPDC’06), Paris, France, June 19, 2006.

. Tristan Glatard, Johan Montagnat, and Xavier Pennec. Probabilistic and dynamic optimiza-

tion of job partitioning on a grid infrastructure. In 14th Euromicro conference on Paral-
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