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Abstract. Computational anatomy is an emerging discipline that aims
at analyzing and modeling the individual anatomy of organs and their bi-
ological variability across a population. The goal is not only to model the
normal variations among a population, but also discover morphological
differences between normal and pathological populations, and possibly
to detect, model and classify the pathologies from structural abnormali-
ties. Applications are very important both in neuroscience, to minimize
the influence of the anatomical variability in functional group analysis,
and in medical imaging, to better drive the adaptation of generic models
of the anatomy (atlas) into patient-specific data (personalization).
However, understanding and modeling the shape of organs is made diffi-
cult by the absence of physical models for comparing different subjects,
the complexity of shapes, and the high number of degrees of freedom im-
plied. Moreover, the geometric nature of the anatomical features usually
extracted raises the need for statistics and computational methods on
objects that do not belong to standard Euclidean spaces. We investigate
in this chapter the Riemannian metric as a basis for developing generic
algorithms to compute on manifolds. We show that few computational
tools derived from this structure can be used in practice as the atoms to
build more complex generic algorithms such as mean computation, Ma-
halanobis distance, interpolation, filtering and anisotropic diffusion on
fields of geometric features. This computational framework is illustrated
with the joint estimation and anisotropic smoothing of diffusion tensor
images and with the modeling of the brain variability from sulcal lines.

1 Introduction

1.1 Computational Anatomy

Anatomy is the science that studies the structure and the relationship in space
of different organs and tissues in living systems. Since the 1980ies, an ever grow-
ing number of imaging modalities allows observing both the anatomy and the
function in vivo and in situ at many spatial scales (from cells to the whole body)
and at multiple time scales: milliseconds (e.g. beating heart), years (growth or
aging), or even ages (evolution of species). Moreover, the non-invasive aspect
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allows repeating the observations on multiple subjects. This has a strong im-
pact on the goals of the anatomy which are changing from the description of a
representative individual to the description of the structure and organization of
organs at the population level. This led in the last 10 to 20 years to the gradual
evolution of descriptive atlases into interactive and generative models, allowing
the simulation of new observations. Typical examples are given for the brain by
the MNI 305 [45] and ICBM 152 [97] templates that are the basis of the Brain
Web MRI simulation engine [30]. In the orthopedic domain, one may cite the
"bone morphing" method [55, 125] that allows to simulate the shape of bones.

The combination of these new observation means and of the computerized
methods is at the heart of computational anatomy, an emerging discipline at
the interface of geometry, statistics and image analysis which aims at developing
algorithms to model and analyze the biological shape of tissues and organs. The
goal is to estimate representative organ anatomies across diseases, populations,
species or ages, to model the organ development across time (growth or aging),
to establish their variability, and to correlate this variability information with
other functional, genetic or structural information (e.g. fiber bundles extracted
from diffusion tensor images). From an applicative point of view, a first objective
is to understand and to model how life is functioning at the population level, for
instance by classifying pathologies from structural deviations (taxonomy) and by
integrating individual measures at the population level (spatial normalization)
to relate anatomy and function. A second application objective is to provide
better quantitative and objective measures to detect, understand and correct
dysfunctions at the individual level in order to help therapy planning (before),
control (during) and follow-up (after).

The method is generally to map some generic (atlas-based) knowledge to
patients-specific data through atlas-patient registration. In the case of observa-
tions of the same subject, many geometrical and physically based registration
methods were proposed to faithfully model and recover the deformations. How-
ever, in the case of different subjects, the absence of physical models relating the
anatomies leads to a reliance on statistics to learn the geometrical relationship
from many observations. This is usually done by identifying anatomically repre-
sentative geometric features (points, tensors, curves, surfaces, volume transfor-
mations), and then modeling their statistical distribution across the population,
for instance via a mean shape and covariance structure analysis after a group-
wise matching. In the case of the brain, one can rely on a hierarchy of structural
models:

– Anatomical or functional landmarks like the AC and PC points [133, 22];

– Curves like crest lines [132] or sulcal lines [93, 88, 50];

– Surfaces like the cortical surface or sulcal ribbons [135, 3, 141];

– images seen as 3D functions, which lead to voxel-based morphometry (VBM)
[11];

– Rigid, multi-affine or diffeomorphic transformations [137, 101, 5], leading to
Tensor-based morphometry (TBM).
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To exemplify the methodology of computational anatomy, we will detail in
Section 6.2 a method to estimate the variability of the cortex shape which relies
on sulcal lines manually delineated within MRI brain images of many subjects.
A first problem is to define what is the mean and the variance of a set of lines.
In this case, the mean line is computed by optimization, and we chose a very
simple variability model based on the covariance matrix of the corresponding
points in each subject at each point of the mean line. In order to use this model
in other applications (for instance to better guide the deformation of a brain
template to a specific patient image), a second problem is to extrapolate the
covariance information from the lines to the whole brain surface and volume.
Indeed, positive definite symmetric matrices only constitute a convex cone in
the vector space of symmetric matrices. Thus, convex operations like the mean
are stable, but more general algorithms involving partial differential equations
(PDEs) or gradient descent inevitably lead to negative eigenvalues which are not
physically acceptable. Designing well behaved algorithms to work on covariance
matrices also turns out to be crucial for the second application that will be
described in Section 6.1: the processing of diffusion tensor images (DTI), a new
type of MRI modality that reveals in vivo the anatomical architecture of the
brain connections.

Actually, these examples are typical of the difficulty of computing statistics
on geometric features. The underlying reason is that these features most often
belong to curved manifolds rather than to Euclidean spaces. Thus, one cannot
simply use the classical linear statistics and one needs to develop a more general
theory on which consistent algorithms could be designed.

1.2 Statistical analysis on manifolds

Statistical computing on simple manifolds like the 3D sphere or a flat torus (for
instance an image with opposite boundary points identified) might seems easy
as we can see the geometrical properties (e.g. invariance by rotation or trans-
lation) and imagine tricks to alleviate the different problems. For instance, the
average of points on a sphere is located inside the sphere and not on its sur-
face, but unless the distribution is perfectly symmetric, one can always project
the mean point on the sphere surface. However, when it comes to slightly more
complex manifolds like the space of positive definite matrices or the space of
rigid-body motions (rotations and translations), without even thinking to infi-
nite dimensional manifolds like spaces of curves, surfaces or diffeomorphisms,
computational tricks are much more difficult to find and have to be determined
on a case by case basis.

Statistical analysis on manifolds is a relatively new domain at the confluent
of several mathematical and application domains. Its goal is to statistically study
geometric object living in differential manifolds. Directional statistics [21, 74, 82,
95] provide a first approach to statistics on manifold. As the manifolds con-
sidered here are spheres and projective spaces, the tools developed were mostly
extrinsic, i.e. relying on the embedding of the manifold in the ambient Euclidean
space. More complex objects are obtained when we consider the “shape” of a set
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of k points, i.e. the part that remains invariant under the action of a given
group of transformations (usually rigid body ones or similarities). Statistics on
shape spaces [78, 36, 86, 130] raised the need for intrinsic tools. However, the link
between the tools developed, the metric used and the space structure was not
always very clear.

Another mathematical approach was provided by the study of stochastic
processes on Lie groups. For instance, [64] derived central limit theorems on
different families of groups and semi-groups with specific algebraic properties.
Since then, several authors in the area of stochastic differential geometry and
stochastic calculus on manifolds proposed results related to mean values [75, 81,
44, 4, 122, 31].

In the area of numerical methods for dynamic systems and partial differential
equations, quite a few interesting numerical methods were developed to preserve
the geometric properties of the flow of a differential equation such as symplectic
integrator for Hamiltonian systems, symmetric integrators for reversible sys-
tems and optimization methods on Lie groups and manifolds [67, 69]. In par-
ticular, several Newton iteration schemes relying on different structures were
proposed to optimize a function on a matrix Lie group or on Riemannian mani-
folds [110, 92, 33]. From the applied mathematics and computer science point of
view, people get interested in computing and optimizing on specific manifolds,
like rotations and rigid body transformations [118, 65, 112, 62, 104], Stiefel and
Grassmann manifolds [42].

Over the last years, several groups attempted to federate some of the above
approaches in a general statistical and computing framework, with different ob-
jectives in mind. For instance, the aim of the theory of statistical manifolds [2,
109] is to provide a Riemannian structure to the space of parameters of sta-
tistical distribution. This evolved into the more general theory of information
geometry [72, 76]. Seen from the point of view of statistics on manifolds rather
than manifolds of statistical parameters, a few authors characterized the perfor-
mances of some statistical parametric estimators in manifolds like the bias and
the mean square error. For instance, [70] considered extrinsic statistics, based on
the Euclidean distance of the embedding space, while [109] considered the intrin-
sic Riemannian distance, and refined the Cramer-Rao lower bound using bounds
on the sectional curvature of the manifold. In [17–19], the authors focused on
the asymptotic consistency properties of the extrinsic and intrinsic means and
variances for large sample sizes, and were able to propose a central limit theorem
for flat manifolds.

In view of computer vision and medical image analysis applications, our con-
cern in [113, 114] was quite different: we aimed at developing computational tools
that can consistently deal with geometric features, or that provide at least good
approximations. As we often have few measurements, we were interested in small
sample sizes rather than large one, and we preferred to obtain approximations
rather than bounds on the quality of the estimation. Thus, a special interest was
to develop Taylor expansions with respect to the variance, in order to evaluate
the quality of the computations with respect to the curvature of the manifold.



351

In [109, 17–19] as well as in our work, the chosen framework is the one
of geodesically complete Riemannian manifolds, which appears to be power-
ful enough to support an interesting theory. To ensure a maximal consistency,
we chose to rely only on intrinsic properties of the Riemannian manifold, thus
excluding methods based on the embedding of the manifold in an ambient Eu-
clidean space.

1.3 Chapter Organization

We summarize in Section 2 the mathematical bases that are needed to deal
with finite dimensional manifolds. Then, we show in Section 3 that a consistent
set of statistical tools, including mean and covariance matrix analysis, can be
developed based on the choice of a Riemannian metric. This algorithmic frame-
work to compute on manifolds is then extended in Section 4 to process fields
of geometric features (manifold-valued image). In particular, we show that one
can perform interpolation, filtering, isotropic and anisotropic regularization and
restoration of missing data (extrapolation or in-painting) on manifold valued
images by using generalized weighted means and partial differential equations
(PDEs). Finally, the methodology is exemplified in Section 6 with two example
applications: the joint estimation and smoothing of diffusion tensor fields from
diffusion weighted images, and the modeling of the variability of the brain from
a data-set of precisely delineated sulcal lines, where covariance matrices are used
to describe the anatomical variability of points in the brain.

2 A Riemannian computing framework

The goal of this section is to establish the mathematical bases that will allow to
build a simple but consistent statistical computing framework on manifolds. We
describe a few computational tools (namely the Riemannian Exp and Log maps)
derived from a chosen Riemannian metric on a given manifold. The implemen-
tation of these atomic tools will then constitute the basis to build more complex
generic algorithms in Section 3 4. The interested reader may refer to [34] for a
more complete but still affordable presentation of Riemannian geometry and to
[131, chap. 9] and [84, 59] for more details.

2.1 The Riemannian structure

In the geometric framework, one has to separate the topological and differential
properties of the manifold from the geometric and metric ones. The first ones
determine the local structure of a manifold M by specifying neighboring points
and tangent vectors, which allows us to differentiate smooth functions on the
manifold. This also allows us to define continuous paths on the manifold and to
classify them by the number of loops they are doing around "holes" in the man-
ifold. However, within each of these homotopy classes, there is no tool to choose
something like the "straightest path". To obtain such a notion, we need to add
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a geometric structure, called a connection, which allows to compare neighboring
tangent spaces. Indeed, differentiating a path on a manifold gives tangent vectors
belonging at each point to a different tangent vector space. In order to compute
the second order derivative (the acceleration of the path), we need a way to map
the tangent space at a point to the tangent space at any neighboring point. This
is the goal of a connection ∇XY , which specifies how the vector field Y (p) is
derived in the direction of the vector field X(p). Such a connection operator also
describes how a vector is transported from a tangent space to another along a
given curve and specifies the local parallel transport. However, there is usually
no global parallelism. As a matter of facts, transporting the same vector along
two different curves arriving at the same point might lead to different ending
vectors: this is easily seen on the sphere where traveling from north pole to the
equator, then along the equator for 90 degrees and back to North pole turns
any tangent vector by 90 degrees. This defect of global parallelism is the sign
of curvature. By looking for curves that remains locally parallel to themselves
(i.e. such that ∇γ̇ γ̇ = 0), one defines the equivalent of "straight lines" in the
manifold: geodesics. One should notice that there exists many different choices
of connections on a given manifold which lead to different geodesics.

Geodesics by themselves do not quantify how far away from each other two
points are. For that purpose, we need an additional structure: a distance. By
restricting to distances which are compatible with the differential structure, we
enter into the realm of Riemannian geometry. A Riemannian metric is defined
by a continuous collection of scalar products 〈 . | . 〉p (or equivalently norms ‖.‖p)
on each tangent space TpM at point p of the manifold. Thus, if we consider a
curve on the manifold, we can compute at each point its instantaneous speed
vector (this operation only involves the differential structure) and its norm to
obtain the instantaneous speed (the Riemannian metric is needed for this opera-
tion). To compute the length of the curve, this value is integrated as usual along
the curve. The distance between two points of a connected Riemannian mani-
fold is the minimum length among the curves joining these points. The curves
realizing this minimum are called metric geodesics. The fundamental theorem of
Riemannian geometry states that on any Riemannian manifold there is a unique
(torsion-free) connection which is compatible with the metric, called the Levi-
Civita (or metric) connection. For that choice of connection, shortest path are
geodesics ("straight lines"). In the following, we only consider the Levi-Civita
connection. Moreover, we assume that the manifold is geodesically complete, i.e.
that all geodesics can be indefinitely extended. This means that the manifold
has neither boundary nor any singular point that we can reach in a finite time.
As an important consequence, the Hopf-Rinow-De Rham theorem states that
there always exists at least one minimizing geodesic between any two points of
the manifold (i.e. whose length is the distance between the two points).

2.2 Exponential charts

The calculus of variations shows that geodesics are the solutions of a system
of second order differential equations depending on the connection (thus on the
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Fig. 1. Left: The tangent planes at points p and q of the sphere S2 are different: the
vectors v and w of TpM cannot be compared to the vectors t and u of TqM. Thus,
it is natural to define the scalar product on each tangent plane. Right: The geodesics
starting at p are straight lines in the exponential map and the distance along them is
conserved.

metric)1. Let p be a point of the manifold that we consider as a local reference
and v a vector of the tangent space TpM at that point. From the theory of
second order differential equations, we know that there exists one and only one
geodesic γ(p,v)(t) starting from that point with this tangent vector. This allows
to wrap the tangent space onto the manifold, or equivalently to develop the
manifold in the tangent space along the geodesics (think of rolling a sphere along
its tangent plane at a given point), by mapping to each vector v ∈ TpM the
point q of the manifold that is reached after a unit time by the geodesic γ(p,v)(t)
starting at p with tangent vector −→v . This mapping Expp(v) = γ(p,v)(1) is called
the exponential map at point p. Straight lines going through 0 in the tangent
space are transformed into geodesics going through point p on the manifold and
distances along these lines are conserved (Fig. 1).

The exponential map is defined in the whole tangent space TpM (since the
manifold is geodesically complete) but it is generally one-to-one only locally
around 0 in the tangent space (i.e. around p in the manifold). In the sequel, we
denote by −→pq = Logp(q) the inverse of the exponential map: this is the smallest
vector (in norm) such that q = Expp(

−→pq). If we look for the maximal definition
domain, we find out that it is an open and star-shaped domain which boundary
is called the tangential cut-locus Cp. The image of Cp by the exponential map is
the cut locus Cp of point p. This is (the closure of) the set of points where several
minimizing geodesics starting from p meet. On the sphere S2(1) for instance, the
cut locus of a point p is its antipodal point and the tangential cut locus is the
circle of radius π.

The exponential and log maps within this domain realizes a chart (a local
parameterization of the manifold) called the exponential chart at point p. It

1 The Christoffel symbols Γ c
ab determine the connection in a local coordinate system

through ∇∂a
∂b =

∑

c
Γ c

ab.∂c. The Levi-Civita connection is determined from the
metric tensor gab(p) = 〈 ∂a | ∂b 〉p and its inverse gcd by Γ c

ab = 1

2

∑

d
gcd(∂agdb +

∂bgda − ∂cgab).
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covers all the manifold except the cut locus of the reference point p, which has
a null measure. In this chart, geodesics starting from p are straight lines, and
the distance from the reference point are conserved. This chart is somehow the
“most linear” chart of the manifold with respect to the reference point p. The set
of all the exponential charts at each point of the manifold realize an atlas which
allows working very easily on the manifold, as we will see in the following.

2.3 Practical implementation

The exponential and logarithmic maps (from now on Exp and Log maps) are
obviously different for each manifold and for each metric. Thus they have to be
determined and implemented on a case by case basis. Examples of closed form
expressions for rotations and rigid body transformations can be found for the left
invariant metric in [120], and for covariance matrices (positive definite symmetric
matrices, so called tensors in medical image analysis) in [117, 8] and Section 5. It
has to be noticed that the equation of the geodesics are only needed for the sake
of computational efficiency: geodesics are curves minimizing the distance but also
the Riemannian energy (the integral of the squared speed) between two points.
Thus computing −→pq = logp(q) may be posed as an optimal control problem [77,
1], and computing Expp(v) as a numerical integration problem (see e.g. [69, 67]).
This opens the way to statistical computing in more complex spaces than the
one we considered up to now, like curves [100, 83, 147], surfaces, and diffeomor-
phic transformations. For instance, the large deformation diffeomorphic metric
mapping (LDDMM) method proposed for inter-subject image registration in
computational anatomy [15, 101, 102, 73] finds the geodesic in the joint intensity
and deformation space by minimizing the Riemannian length of the deformation
for a given right-invariant metric on a diffeomorphism group. Through the so
called EPDiff equation (Euler-Poincarré equation for diffeomorphisms), this op-
timization framework has been recently rephrased in an exponential/logarithm
framework similar to the one developed here [103]. Despite the infinite num-
ber of dimensions, simple statistics like the mean and the principal component
analysis of a (finite) set of samples may still be computed [140, 40]. Exponential
charts constitute very powerful atomic functions in terms of implementation on
which we will be able to express practically all the geometric operations: the
implementation of Logp and Expq is the basis of programming on Riemannian
manifolds, as we will see in the following.

In a Euclidean space, the exponential charts are nothing but one orthonor-
mal coordinates system translated at each point: we have in this case −→pq =
Logp(q) = q− p and Expp(v) = p+ v. This example is more than a simple coin-
cidence. In fact, most of the usual operations using additions and subtractions
may be reinterpreted in a Riemannian framework using the notion of bi-point,
an antecedent of vector introduced during the 19th Century. Indeed, vectors are
defined as equivalent classes of bi-points in a Euclidean space. This is possible
because we have a canonical way (the translation) to compare what happens
at two different points. In a Riemannian manifold, we can still compare things
locally (by parallel transportation), but not any more globally. This means that
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each “vector” has to remember at which point of the manifold it is attached,
which comes back to a bi-point.

A second way to see the vector −→pq is as a vector of the tangent space at
point p. Such a vector may be identified to a point on the manifold using the
geodesic starting at p with tangent vector −→pq, i.e. using the exponential map q =
Expp(

−→pq). Conversely, the logarithmic map may be used to map almost any bi-
point (p, q) into a vector −→pq = Logp(q) of TpM. This reinterpretation of addition
and subtraction using logarithmic and exponential maps is very powerful to
generalize algorithms working on vector spaces to algorithms on Riemannian
manifolds, as illustrated in Table 1 and the in following sections.

Euclidean space Riemannian manifold

Subtraction −→pq = q − p −→pq = Logp(q)
Addition p = q + v q = Expp(v)

Distance dist(p, q) = ‖q − p‖ dist(p, q) = ‖−→pq‖p

Mean value (implicit)
∑

i
(pi − p̄) = 0

∑

i

−→
p̄pi = 0

Gradient descent pt+ε = pt − ε
−−−−−→
∇C(pt) pt+ε = Exppt

(−ε
−−−−−→
∇C(pt))

Geodesic interpolation p(t) = p0 + t −−→p0p1 p(t) = Expp0
(t −−→p0p1)

Table 1. Re-interpretation of standard operations in a Riemannian manifold.

3 Simple statistics on Riemannian manifolds

The Riemannian metric induces an infinitesimal volume element on each tangent
space, and thus a reference measure dM(p) on the manifold that can be used
to measure random elements on the manifold (generalization of random vari-
ables). Without entering into the details of measure theory, such an element is
characterized by its probability measure dP (p). Its probability density function
(pdf) is the function ρ such that dP (p) = ρ(p)dM(p), if it exists. The induced
measure dM actually represents the notion of uniformity according to the cho-
sen Riemannian metric. This automatic derivation of the uniform measure from
the metric gives a rather elegant solution to the Bertrand paradox for geometric
probabilities [123, 79]. This paradox proposes three equally acceptable ways to
compute the probability that the length of a "random chord" on a circle is greater
than the side of an inscribed equilateral triangle, which lead to a probability of
1/2, 1/3 and 1/4. All methods are correct but actually rely on different uniform
measures. The canonical definition of the uniform measure by the Riemannian
metric prevents such a paradox to appear in our Riemannian setting.

With the probability measure dP of a random element, we can integrate any
function f(p) from the manifold to any vector space, thus defining the expected
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value of this function E [ f ] =
∫

M
f(p).dP (p). This notion of expectation corre-

sponds to the one we defined on real random variables and vectors. However, we
cannot directly extend it to define the mean value of the distribution since we
generally cannot integrate manifold-valued functions. Thus, one cannot define
the mean or expected “value” of a random manifold element that way.

3.1 First statistical moment: the mean

As one cannot define the mean or expected “value” of a random manifold element
using a weighted sum or an integral as usual, several alternative definitions based
on properties on the usual mean were proposed (see [122] and [114, Sec. 4.3] for a
review). The most interesting ones for general geodesically complete Riemannian
manifolds were proposed by Fréchet, Karcher and Emery.

One solution is to rely on a distance-based variational formulation: the Fréchet
[57, 58] (resp. Karcher [75]) expected features minimize globally (resp. locally)
the variance:

σ2(q) =

∫

M

dist(p, q)2 dP (p) =
1

n

n
∑

i=1

dist(pi, q)
2,

written respectively in the continuous and discrete forms. One can generalize
the variance to a dispersion at order α by changing the L2 with an α-norm:
σα(p) = (

∫

dist(p, q)αdP (p))1/α. The minimizers are called the central Karcher
values at order α. For instance, the median is obtained for α = 1 and the modes
for α = 0, exactly like in the vector case. It is worth noticing that the median and
the modes are not unique in general in a vector space, and that even the mean
may not exists (e.g. for heavy tailed distribution). In Riemannian manifolds, the
existence and uniqueness of all central Karcher values is generally not ensured as
they are obtained through a minimization procedure. However, [75] and [80] were
able to established existence and uniqueness theorems for distributions with a
compact and small enough support. These theorems were then extended in [31]
to distributions with non-compact support in a very specific class of manifolds
that includes the Hadamard manifolds2 whose curvature is bounded from below.
This does not include rigid body transformations, but this includes the manifold
of tensors. For a finite number of discrete samples at a finite distance of each
other (which is the practical case in statistics) a mean value always exists (the
variance is finite everywhere in a complete space so there exists a minimizer).
and it is unique as soon as the distribution is sufficiently peaked.

Emery [44] proposed to use the exponential barycenters, i.e. the points at
which the mean is null in the local exponential chart :

∫

M
−→xy dP (y) = 0. If the

support of the distribution is included in a strongly convex open set3, he showed
that the exponential barycenters were the critical points of the variance. They

2 Simply connected and complete manifolds with non-positive sectional curvature
3 Here, strongly convex means that for every two points there is a unique minimizing

geodesic joining them that depend in a C∞ of the two points.
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are thus a superset of the Riemannian centers of mass that include themselves the
Fréchet means. Showing that these two notions continue to be essentially equiv-
alent for distributions with a larger support is more difficult in the presence of a
cut locus. Indeed, the distance is continuous but not differentiable at cut locus
points where several minimizing geodesic meets. For instance, the distance from
a point of the sphere to its antipodal point is maximal although the directional
derivatives of the distance at this points are non zero in all directions. Thus,
although the variance is continuous, it might not be differentiable everywhere.
We showed in [113, 114] that it is actually differentiable at all points where the
variance is finite and where the cut locus has a null mass for the considered
probability measure4. In that case, its gradient is:

∇σ2(q) = −2

∫

−→qp dP (p) =
−2

n

n
∑

i=1

−→qpi

respectively in the continuous (probabilistic) and discrete (statistical) formula-
tions.

When we have a positive mass on the cut-locus, the right hand side of this
equation is obviously not defined: the variance is continuous but can have a sharp
extremum (most probably a maximum).

Thus, the extrema of the Riemannian variance are exponential barycenters
or points with P (C(y)) > 0: apart from the specific problems with masses on
the cut-locus, we have the implicit characterization of Karcher mean points as
exponential barycenters which was presented in Table 1. Similar results have
been derived independently in [109], where it is assumed that the probability
is dominated by the Riemannian measure (which explicitly excludes point-mass
distributions and the case P (C(y)) > 0), and in [17, 18] for simply connected
Riemannian manifolds with non-positive curvature. Our proof extends this result
to any kind of manifold. Basically, the characterization of the Riemannian center
of mass is the same as in Euclidean spaces if the curvature of manifold is non-
positive (and bounded from below), in which case there is no cut-locus. If the
sectional curvature becomes positive, a cut locus may appear, and a non-zero
probability on this cut-locus induces some discontinuities in the first derivative of
the variance. This corresponds to something like a Dirac measure on the second
order derivative, which is an additional difficulty to compute the exact Hessian
matrix of the variance on these manifolds. In practice, the gradient is well defined
for discrete samples as soon as there is no sample lying exactly on the cut-locus
of the current test point. Of course, perturbing the point position solves the
problem (locally), but this might turn out to be a problem for designing certain
certified computational algorithmic procedure if the same point is not perturbed
exactly the same at different times.

4 Notice that this is always the case when the random element has a density with
respect to the Riemannian measure, but this does unfortunately not include the
discrete (statistical) formulation where the probability measure is the sum of point
masses at sample locations.
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Picard [122] realized a good synthesis of most of these notions of mean value
and show that the definition of a “barycenter” (i.e. a mean value) is linked to a
connector, which determines itself a connection, and thus possibly a metric. An
interesting property brought by this formulation is that the distance between
two barycenters (with different definitions) is of the order of O(σx). Thus, for
sufficiently concentrated random points, all these values are close.

3.2 A Newton algorithm to compute the mean

To effectively compute the mean value, we proposed in [111, 112] a Gauss-Newton
gradient descent algorithm on rotations and rigid-body motions. This algorithm
was readily extended to general Riemannian manifolds in [113, 114] by approx-
imating the variance using a Taylor expansion in a normal coordinate system:
for a vector field v ∈ TqM, we have

σ2(Expq(v)) = σ2(q) +
〈−−−→
∇σ2(q) | v

〉

q
+ 1

2Hess σ2(v, v) +O(‖v‖2
q)

The gradient of the variance being a vector field, the second order derivative (the
Hessian) is obtained using the connection. However, we know that the gradient
is not continuous at the cut locus. To circumscribe this problem, one can split
the integral into one part that does not take into account the cut locus, which
gives us a perfect positive definite matrix (2 times the identity), and one part
that account for the cut locus, which can be expressed using integrals of Jacobi
fields [75]. For a toy example on the circle, see also [114]. Deliberately neglecting
this second term gives us a perfectly concave “second order approximation” with
the following Gauss-Newton iterative scheme:

p̄t+1 = Expp̄t

(

1

n

n
∑

i=1

−−→
p̄tpi

)

.

This algorithm essentially alternates the computation of the barycenter in the
exponential chart centered at the current estimation of the mean value, and a
re-centering step of the chart at the point of the manifold that corresponds to
the computed barycenter (geodesic marching step). In practice, we found that
this algorithm was very efficient and typically converges in 5 to 10 iterations to
the numerical accuracy of the machine for rotations, rigid body transformations
and positive definite symmetric matrices. Notice that it converges toward the
real mean in a single step in a vector space. One can actually show that the
convergence of this type of Newton iteration is locally quadratic around non
degenerated critical points [110, 92, 33].

3.3 Covariance matrix and Principal Geodesic Analysis

Once the mean point is determined, using the exponential chart at the mean
point is particularly interesting as the random feature is represented by a random
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vector with null mean in a star-shaped domain. However, one important differ-
ence with the Euclidean case is that the reference measure is not the Lebesgue
one but the pull-back of the Riemannian measure dM by the Exponential map
at the mean point. With this representation, there is no difficulty to define the
covariance matrix (respectively continuous and discrete forms):

Σ =

∫

−→
p̄q.

−→
p̄qT dP (q) =

1

n

n
∑

i=1

−→
p̄qi.

−→
p̄qi

T

and potentially higher order moments. This covariance matrix can then be used
to defined the Mahalanobis distance between a random and a deterministic fea-
ture that basically weights the distance between the deterministic feature and the
mean feature using the inverse of the covariance matrix: µ(p̄,Σ)(q) =

−→
p̄qTΣ(-1)−→p̄q.

Interestingly, the expected Mahalanobis distance of a random element with itself
is independent of the distribution and is equal to the dimension of the manifold,
as in the vector case. This statistical distance can be used as a basis to generalize
some statistical tests such as the Mahalanobis D2 test [114].

To analyze the results of a set of measurements in a Euclidean space, one
often performs a principal component analysis (PCA). A generalization to Rie-
mannian manifolds called Principal Geodesic Analysis (PGA) was proposed in
[54] to analyze shapes based on the medial axis representations (M-reps). The
basic idea is to find a low dimensional sub-manifold generated by some geodesic
subspaces that best explain the measurements (i.e. such that the squared Rie-
mannian distance from the measurements to that sub-manifold is minimized).
Another point of view is to assume that the measurements are generated by
a low dimensional Gaussian model. Estimating the model parameters amounts
to a covariance analysis in order to find the k-dimensional subspace that best
explains the variance. In a Euclidean space, these two definitions correspond
thanks to Pythagoras’s theorem. However, in the Riemannian setting, geodesic
subspaces are generally not orthogonal due to the curvature. Thus, the two no-
tions differ: while the Riemannian covariance analysis can easily be performed in
the tangent space of the mean, finding Riemannian sub-manifolds turns out to
become an almost intractable problem. As a matter of fact, the solution retained
by [54] was finally to rely on the covariance analysis.

When the distribution is unimodal and sufficiently peaked, we believe that
covariance analysis is anyway much better suited. However, for many problems,
the goal is rather to find a sub-manifold on which measurements are more or
less uniformly distributed. This is the case for instance for features sampled
on a surface or points sampled along a trajectory (time sequences). While the
one dimensional case can be tackled by regression [32], the problem for higher
dimensional sub-manifolds remains quite open. Some solutions may come from
manifold embedding techniques as exemplified for instance in [24].

3.4 Gaussian and χ
2 law

Several generalizations of the Gaussian distribution to Riemannian manifolds
have already be proposed so far. In the stochastic calculus community, one usu-



360

ally consider the heat kernel ρ(p, q, t), which is the transition density of the
Brownian motion [64, 43, 66]. This is the smallest positive fundamental solution
to the heat equation ∂f

∂t − ∆f =0, where ∆ is the Laplace-Beltrami operator
(i.e. the standard Laplacian with corrections for the Riemannian metric). On
compact manifolds, an explicit basis of the heat kernel is given by the spec-
trum of the manifold-Laplacian (eigenvalues λi with associated eigenfunctions
fi solutions of ∆f = λf). However, the explicit computation of this spectrum is
impossible but in very few cases [59].

To obtain tractable formulas, several alternative distributions have been pro-
posed in directional statistics [21, 74, 82, 95, 96], in particular the wrapped Gaus-
sian distributions. The basic idea is to take the image by the exponential of
a Gaussian distribution on the tangent space centered at the mean value (see
e.g. [96] for the circular and spherical case). It is easy to see that the wrapped
Gaussian distribution tends toward the mass distribution if the variance goes to
zero. In the circular case, one can also show that is tends toward the uniform
distribution for a large variance. This definition was extended in [109] by consid-
ering non-centered Gaussian distributions on the tangent spaces of the manifold
in order to tackle the asymptotic properties of estimators. In this case, the mean
value is generally not any more simply linked to the Gaussian parameters. In
view of a computational theory, the main problem is that the pdf of the wrapped
distributions can only be expressed if there is a particularly simple geometrical
shape of the cut-locus. For instance, considering an anisotropic covariance on
the n-dimensional sphere leads to very complex calculations.

Instead of keeping a Gaussian pdf in some tangent space, we propose in [114,
113, 111] a new variational approach which is consistent with the previous defi-
nitions of the mean and covariance. The property that we took as axiom is that
the Gaussian distribution maximizes the entropy among all distributions when
we know the mean and the covariance matrix. In the Riemannian setting, we
defined the intrinsic entropy as the expectation of the logarithm of the intrinsic
pdf:

H[ρ] = −

∫

M

log(ρ(p)) ρ(p) dM(p) = −

∫

M

log(ρ(p)) dP (p)

Our definition of the entropy is consistent with the measure inherited from the
Riemannian metric since the pdf that maximizes the entropy when we only
know that the result is in a compact set U is the uniform density in this set:
pU (p) = IU (p)

/∫

U
dM(p) .

The intrinsic pdf maximizing this entropy knowing the mean x̄ and the co-
variance matrix Σ is a Gaussian distribution on the exponential chart centered
at the mean point and truncated at the cut locus (if there is one)5 [114]:

N(p̄,Γ )(q) = k exp

(

−
1

2

−→
p̄qT Γ

−→
p̄q

)

.

5 The definition domain of the exponential map at the mean point has to be sym-
metric to obtain this result. This is the case in particular for symmetric spaces, i.e.
Riemannian spaces which metric are invariant under some symmetry.
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However, the relation between the concentration matrix (the “metric” Γ used in
the exponential of the probability density function) and the covariance matrix
Σ is more complex than the simple inversion of the vectorial case, as it has to
be corrected for the curvature of the manifold. Using a Taylor expansion of the
Riemannian measure, one can obtain computationally tractable approximations
for any manifold in case of small variances: Let r = i(M, x̄) be the injectivity
radius at the mean point, i.e. the shortest distance to the cut-locus (by con-
vention r = +∞ if there is no cut-locus). Assuming a finite variance for any
concentration matrix Γ , we have the following Taylor expansions:

k =
1 +O(σ3) + ǫ (σ/r)
√

(2π)n det(Σ)
and Γ = Σ(-1) −

1

3
Ric +O(σ) + ǫ (σ/r)

Here, ǫ(x) is a function that is a O(xk) for any positive k (more precisely, this
is a function such that ∀k ∈ R

+, lim0+ x
−k ǫ(x) = 0).

This family of distributions ranges from the point-mass distribution (for
Γ = ∞) to the uniform measure (i.e. uniform density for compact manifolds)
for a null concentration matrix. For some theoretical reasons (including the non-
differentiability of the pdf at the cut locus), this is probably not be the best
generalization of the Gaussian. However, from a practical point of view, it pro-
vides effective and computationally tractable approximations for any manifold in
case of small variances that we were not able to obtain from the other definitions.

Based on this generalized Gaussian, we investigated in [114, 113, 111] a gen-
eralization of the χ2 law to manifolds by considering the Mahalanobis distance
of a Gaussian random feature. In the same conditions as for the Gaussian, one
can show that is has the same density as in the vectorial case up to an or-
der 3 in σ. This opens the way to the generalization of many other statistical
tests, as we may expect similarly simple approximations for sufficiently centered
distributions.

3.5 A Link between Extrinsic and Robust Statistics

From a practical point of view, many of the efficient methods proposed to work
on geometric data in real applications actually use tools which rely on an extrin-
sic distance in a carefully chosen embedding space rather than on the intrinsic
Riemannian distance. The goal of this section is to investigate some bridges
between extrinsic and intrinsic approaches.

The main tool that we use here is the the notion of statistical robustness, as
defined in [71, 126] i.e. the property of an estimator to be insensitive to small
departures from the statistical model assumptions. In particular, outliers (events
that are not modeled) most often lie in the tail of the distribution and robust
statistics aim at reducing their influence. What is interesting is that we can often
see an extrinsic distance on a manifold as a robust version of the Riemannian
distance, as we shall see below on specific examples.

Let us considered more specifically M-estimators [126] of the distance dφ(p, q) =
φ((dist(p, q)) with φ(0) = 0 and φ′ decreasing monotonically from φ′(0) = 1
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while remaining non negatives. These conditions ensure that dφ remains a dis-
tance which is equivalent to the Riemannian one for small distances, while giving
less weight to points that are far away by tempering their distance. Thus, out-
liers that lie in the tail of the distribution have much less influence on the results
of the estimation, hence the robustness. One can show [63] that using such a φ-
function amounts to replace in the computation of the mean the tangent vector
−→pq by the vector:

ψ(−→pq) =
φ(‖−→pq‖p)

‖−→pq‖p

−→pq =
φ(dist(p, q))

dist(p, q)
−→pq = −→pq +O(‖−→pq‖2)

This mapping constitute a connector in the sense of [122] (a smooth mapping
that replaces the Euclidean difference q − p)6, exactly in the way we used the
logarithmic map of the Riemannian metric. Thus, we could think of defining
mean values, higher order moments and other statistical operations by replac-
ing everywhere the Riemannian logarithmic and exponential map with their
φ-equivalent.

For instance, one can verify that ‖ψ(−→pq)‖p = dφ(p, q). This show that the φ-
variance of a random point σ2

φ(p) = E
[

d2
φ(q, p)

]

=
∫

M
‖ψ(−→pq)‖2

p dP (q) is prop-

erly defined. Likewise, one can define the φ-covarianceΣφ(p) = E
[

ψ(−→pq).ψ(−→pq)t
]

,
which trace is still equal to the φ-variance. This φ-variance can be differentiated
at the points where the cut-locus has a null probability measure (because the
φ-distance is dominated by the Riemannian distance), and we obtain:

∇σ2
φ(p) = −2

∫

M

φ′(‖−→pq‖p) ψ(−→pq) dP (q).

This formula is interesting as it shows the divergence of the different notions
of mean: the φ-center of mass is a weighted barycenter both in the Rieman-
nian and in the φ exponential charts, but it is generally different from the (un-
weighted) φ-exponential barycenter. The different notions of means are not any
more subsets of each other: although the extrinsic mean is a robust estimator
of the mean, the consistency of the distance minimization and the exponential-
based algorithms is broken. From a numerical point of view, using an efficient
and robust estimator might be an interesting feature, but we need to control the
quality of this estimation to establish the domain in which the estimations are
numerically consistent. Let us illustrate this with unit vectors and 3D rotations.

Euclidean metric induces on the sphere Sn−1 a rotationally invariant Rieman-
nian metric for which geodesics are great circles, and the distance between two
unit vectors u and v is the angle θ = d(u, v) = arccos(ut.v). The Euclidean met-
ric dE(u, v) = ‖u−v‖ can be considered as a φ estimator with φ(θ) = 2 sin(θ/2).
With the help of a Lagrange multiplier, one easily computes that the extrinsic

6 Formally, a connector is a smooth mapping from M × M to TM that maps a bi-
point (p, q) in the manifold to a vector in the tangent space TpM. The mapping
should zero at q = p and its differential at that point should be the identity. This
ensures that it is locally consistent with the Riemannian Log map.
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Euclidean mean is the renormalized Euclidean mean ū =
∫

udP (u)/‖
∫

udP (u)‖,
which is thus a robust estimator of the Riemannian mean.

For directions, a quite used encoding is the tensor u.ut, which may be seen
as an immersion of the projective space Pn−1 into the vector space of n × n

matrices (Rn2

). With this embedding, the squared extrinsic Euclidean distance
(renormalized to be consistent with the previous ones) is d2(u, v) = 1

2‖u.u
t −

v.vt‖2 = 1 − (utv)2 = sin2(θ). This is also a robust distance with φ(θ) = sin(θ)
(for θ ≤ π). In the tensor space, the encoding of a random direction is the
random tensor Tu = E [ u.ut ]. One should notice that the mean direction is
represented by the tensor ū.ūt which is closest to Tu in the Euclidean sense: this
is the eigenvector(s) of Tu corresponding to the largest eigenvalue. One can also
show that the φ-covariance of the direction is given directly by the restriction
of the tensor to the hyperplane orthogonal to the first eigenvector [63]. Thus,
the random tensor encodes not only for a robust estimation of the Riemannian
mean but also for (an approximation) of the second order moments.

Simulations were run on a large number of cases to measure the relative
accuracy of the vector and tensor estimations with respect to the Riemannian
mean. Up to a variance of 20 degrees, the three methods have a similar accuracy
and results are almost not distinguishable. Between 20 and 40 degrees of variance,
the tensor estimation becomes different from the two others while keeping a
comparable global accuracy. After 40 degrees, the accuracy of the tensor mean
highly degrades; the vector mean becomes different from the Riemannian means
while keeping for a while a similar accuracy.

A very similar analysis can be done with 3D rotations: one can also model
two well known extrinsic methods to compute the mean as φ-connectors. The
first method is to represent rotations using unit quaternions, and to compute
the renormalized Euclidean mean on the sphere of unit quaternions. As rotation
quaternions are defined up to their signs, one theoretically needs to iterate this
process and to re-orient the unit quaternions at each step in the hemisphere
chosen to represent the mean in order to converge. This method amounts to
consider the φ-distance dquat(θ) = 4 sin(θ/4). The second method is to average
the rotation matrices directly in the 3×3 matrix space. Then, the mean is “renor-
malized” by looking for the rotation matrix which is closest to this result in the
Euclidean matrix distance (Froebenius) sense. This can be easily realized using a
SVD decomposition on the mean matrix. This method amounts to consider the
φ-distance dmat(θ) = 2 sin(θ/2). Simulation experiments were performed for the
two extrinsic methods by [41] in a registration context, and later on for the mean
with the three methods by [62]. Like for unit directions/orientations, estimation
results were similar up to 40 degrees of variance in the input rotations.

These experiments showed that efficient extrinsic approximations can be de-
signed and used in practice, at the cost of potential inconsistencies between
several notions of the mean that might be used in different algorithms (next
Section will develop many algorithms based on the mean). However, the in-
trinsic Riemannian theory may be used as a central tool to compare different
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extrinsic metrics, to establish the quality of the resulting approximations and to
control the limits of their validity.

4 Computing with Manifold-valued images

The previous section showed how to derive from the atomic Exp and Log maps
many important statistical notions, like the mean, covariance and Principal Com-
ponent Analysis (PCA). We now turn to the generalization of some image pro-
cessing algorithms like interpolation, diffusion and restoration of missing data
(extrapolation) to manifold-valued images. We show that most interpolation and
filtering methods can be reformulated using weighted means. The linear and non-
linear diffusion schemes can be adapted to Manifolds through PDEs, provided
that we take into account the variations of the metric. For details, we refer the
reader to [117].

4.1 Interpolation and filtering as weighted means

One of the important operations in geometric data processing is to interpo-
late values between known measurements. In 3D image processing, (tri-) linear
interpolation is often used thanks to its very low computational load and com-
paratively much better results than nearest neighbor interpolation. Other popu-
lar methods include the cubic and, more generally, spline interpolations [134, 99].
The standard way to interpolate on a regular lattice is to make a linear combina-
tion of samples fk at integer (lattice) coordinates k ∈ Z

d: f(x) =
∑

k w(x−k)fk.
A typical example is the sinus cardinal interpolation where the convolution kernel
has an infinite support. With the nearest-neighbor, linear (or tri-linear in 3D),
and higher order spline interpolations, the kernel is piecewise polynomial, and has
a compact support [134, 99]. With normalized weights, this interpolation can be
seen as a weighted mean. Thus, it can be generalized in the manifold framework
as an optimization problem: the interpolated value p(x) on our feature manifold
is the point that minimizes C(p(x)) =

∑n
i=1 wi(x)dist2(pi, p(x)). This can easily

be solved using the iterative Gauss-Newton scheme proposed for the Karcher
mean. The linear interpolation is interesting and can be written explicitly since
it is a simple geodesic walking scheme: p(t) = Expp0

(t−−→p0p1) = Expp1
((1−t)−−→p1p0).

Many other operators can be rephrased as weighted means. For instance
approximations and convolutions like Gaussian filtering can be viewed as the
average of the neighboring values weighted by a (Gaussian) function of their
spatial distance. For instance, F̂ (x) =

∫

Rn K(u) F (x+ u) du is the minimizer of

C(F̂ ) =
∫

Rn K(u) dist2(F (x + u), F̂ (x)) du. In this formulation the kernel can
be a discrete measure, for instance if samples are defined on the points of a grid.
In a Riemannian manifold, this minimization problem is still valid, but instead
of a closed-form solution, we have once again a Gauss-Newton iterative gradient
descent algorithm to reach the filtered value:

p̂t+1(x) =

∫

Rn

K(u) Logp̂t(x)(p(x+ u)) du.
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We can also use anisotropic and non-stationary kernels K(x, u). For in-
stance, it can be modulated by the norm of the derivative of the field in the
direction u. We should notice that for a manifold-value field p(x), the direc-
tional derivatives ∂up(x) is a tangent vector of Tp(x)M which can be practi-
cally approximated using finite “differences” in the exponential chart: ∂up(x) ≃
Logp(x)(p(x + u)) + O(‖u‖2). However, to measure the norm of this vector, we
have to use the Riemannian metric at that point: ‖∂up‖p.

4.2 Harmonic diffusion

An alternative to kernel filtering is to consider a regularization criterion that
penalizes the spatial variations of the field. A measure of variation is the spatial
gradient (the linear form that maps to any spatial direction u the directional
derivative ∂up(x)), which can be robustly computed as the matrix that best
approximates the directional derivatives in the neighborhood (e.g. 6, 18 or 26
connectivity in 3D). The simplest criterion based on the gradient is the Harmonic
energy

Reg(p) =
1

2

∫

Ω

‖∇p(x)‖
2
p(x) dx =

1

2

d
∑

i=1

∫

Ω

‖∂xi
p(x)‖

2
p(x) dx.

The Euler-Lagrange equation of this Harmonic regularization criterion with
Neumann boundary conditions is as usual ∇Reg(p)(x) = −∆p(x). However,
the Laplace-Beltrami operator on the manifold ∆p(x) is the sum of the usual
flat Euclidean second order directional derivatives ∂2

xi
p(x) in a locally orthogonal

system and an additional term due to the curvature of the manifold that distorts
the ortho-normality of this coordinate system in the neighborhood. To practi-
cally compute this operator, we proposed in [117] an efficient and general scheme
based on the observation that the Christoffel symbols and their derivatives along
the geodesics vanish at the origin of the exponential chart. This means that the
correction for the curvature is in fact already included: by computing the stan-
dard Laplacian in that specific map, one gets the directional Laplace-Beltrami
operator for free: ∆up = Logp(x)(p(x + u)) + Logp(x)(p(x − u)) + O(‖u‖4). Av-
eraging over all the directions in a spatial neighborhood V finally gives a robust
and efficient estimation scheme:

∆p(x) ∝
∑

u∈V

1

‖u‖2
Logp(x)(p(x+ u))

A very simple scheme to perform Harmonic diffusion is to use a first order
geodesic gradient descent. At each iteration and at each point x, one walks a
little bit along the geodesic which start at the current point with the opposite
of the gradient of the regularization criterion pt+1(x) = Exppt(x) (−ε∆pt(x)).

4.3 Anisotropic diffusion

In order to filter within homogeneous regions but not across their boundaries,
an idea is to penalize the smoothing in the directions where the derivatives are



366

important [121, 61]. This can be realized directly in the discrete implementation
of the Laplacian by weighting the directional Laplacian with a decreasing func-
tion of the norm ‖∂up‖p of the gradient in that direction. For instance, we used
∆up =

∑

u c(‖∂up‖p) ∆up with c(x) = exp
(

−x2/κ2
)

in [117]. As the conver-
gence of this scheme is not guaranteed (anisotropic regularization “forces” may
not derive from a well-posed energy), the problem may be reformulated as the
optimization of a φ-function of the Riemannian norm of the spatial gradient (a
kind of robust M-estimator): Regφ(p) = 1

2

∫

Ω
φ
(

‖∇p(x)‖p(x)

)

dx. By choosing an
adequate φ-function, one can give to the regularization an isotropic or anisotropic
behavior [12]. The main difference with a classical Euclidean calculation is that
we have to take the curvature into account by using the Laplace-Beltrami opera-
tor, and by measuring the length of directional derivatives using the Riemannian
metric at the right point [47]. Using Ψ(x) = φ′(x)/x, we get:

∇Regφ(p) = −Ψ(‖∇p‖p)∆p−
∑d

i=1 ∂xi
Ψ(‖∇p‖p)∂xi

p.

4.4 Diffusion-based interpolation and extrapolation

The pure diffusion reduces the noise in the data but also the amount of informa-
tion. Moreover, the total diffusion time that controls the amount of smoothing
is difficult to estimate. At an infinite diffusion time, the field will be completely
homogeneous. Thus, it is more interesting to consider the data as noisy obser-
vations and the regularization as a prior on the spatial regularity of the field.
Usually, one assumes a Gaussian noise independent at each position, which leads
to a least-squares criterion through a maximum likelihood approach. For a dense
data field q(x), the similarity criterion that is added to the regularization cri-
terion is simply Sim(p) =

∫

Ω
dist2 (p(x) , q(x)) dx. The only difference here is

that it uses the Riemannian distance. It simply adds a linear (geodesic) spring
∇p dist2(p, q) = −2 −→pq to the global gradient to prevent the regularization from
pulling to far away from the original data.

For sparse measures, using directly the maximum likelihood on the observed
data leads to deal with Dirac (mass) distributions in the derivatives, which is a
problem for the numerical implementation. One solution is to consider the Dirac
distribution as the limit of the Gaussian function Gσ when σ goes to zero, which
leads to the regularized derivative [117]:

∇Sim(x) = −2
n
∑

i=1

Gσ(x− xi)
−−−−→
p(x)pi.

5 The Example of Covariance matrices

Positive definite symmetric matrices, called tensors in medical image analysis,
are used for instance to encode the covariance matrix of the Brownian motion
(diffusion) of water in Diffusion Tensor Imaging (DTI) [13, 87], to encode the joint
variability at different places (Green function) in shape analysis (see [51, 50, 52]),
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and in image analysis to guide the segmentation, grouping and motion analysis
[98, 144, 23, 145]. They are also appearing in many other application domains. For
instance, they are a common tool in numerical analysis to locally drive the size
of the adaptive meshes in order to optimize the cost of solving PDEs in 3D [106].
In the formation of echo-Doppler or radar images, Teoplitz Hermitian positive
definite matrices uniquely characterized circular complex random processes with
a null mean [107].

The main computational problem is that the tensor space is a manifold that is
not a vector space with the usual additive structure. As the positive definiteness
constraint delimits a convex half-cone in the vector space of symmetric matrices,
convex operations (like the mean) are stable in this space but problems arise
with more complex operations. For instance, there is inevitably a point in the
image where the time step is not small enough when smoothing fields of tensors
with gradient descents, and this results into negative eigenvalues. Even when
a spectral decomposition is performed to smooth independently the rotation
(eigenvectors basis trihedron) and eigenvalues [138, 27], there is a continuity
problem around equal eigenvalues.

To answer that problem, it was proposed concurrently by several authors in
the context of Diffusion Tensor Images (DTI) to endow the space of tensors with a
Riemannian metric invariant by any change of the underlying space coordinates,
i.e. invariant under the action of affine transformations of covariance matrices.
This led to the distance dist2(Σ,Λ) = Tr

(

log(Σ−1/2ΛΣ−1/2)2
)

where exp and
log stand for the matrix logarithm.

This metric leads to a very regular Hadamard manifold structure (a hyperbolic-
like space without cut-locus) which simplifies the computations. Tensors with
null and infinite eigenvalues are both at an infinite distance of any positive
definite symmetric matrix: the cone of positive definite symmetric matrices is
changed into a space of “constant” (homogeneous) non-scalar curvature without
boundaries. Moreover, there is one and only one geodesic joining any two tensors,
the mean of a set of tensors is uniquely defined, and we can even define globally
consistent orthonormal coordinate systems of tangent spaces. Thus, the struc-
ture we obtain is very close to a vector space, except that the space is curved.
The invariant metric has been independently proposed in [53] for the analysis of
principal modes of sets of diffusion tensors; in [105] for its mathematical prop-
erties which were exploited in [14] for a new anisotropic DTI index; and in [117]
where we were not interested by the metric per-se, but rather as the basis for
building the complete computational framework on manifold-valued images that
we presented in last section. By looking for a suitable metric on the space of
Gaussian distributions for the segmentation of diffusion tensor images, [89] also
end-up with the same metric. It is interesting to see that completely different
approaches, relying on invariance requirements on the one hand, and relying on
an information measure to evaluate the distance between distributions on the
other hand, lead to the same metric on the tensor space. The metric has been
also previously introduced in statistics as the Fisher information metric to model
the geometry of the multivariate normal family [25, 129, 26] and is considered as
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a well known result in other branches of mathematics [16]. In computer vision,
it was rediscovered to deal with covariance matrices [56]. An implicit form was
introduced in [69] for developing flows and dynamic systems on the space of sym-
metric matrices. The corresponding integrator (which corresponds to a geodesic
walking with this Riemannian metric) was used for the anisotropic regularization
of diffusion tensor images in [28] and [20].

5.1 The one-parameter family of affine-invariant metrics

One can question about the uniqueness of this type of Riemannian metric. We
have shown in [116] that there is actually a one-parameter family of such affine-
invariant Riemannian metrics on tensors that all share the same connection. This
is the affine invariant connection on homogeneous spaces of [108] which is used
in many theorems on symmetric spaces in many differential geometry textbooks
[85, 68, 60].

The basic idea is to define a group action, here the linear group GLn, and
to provide the space Sym+

n of positive definite symmetric matrices (tensors)
with a invariant Riemannian metric with respect to it. Here, the group action
A ⋆ Σ = AΣAT corresponds to the standard action of the affine group on the
covariance matrix of random variables in R

n, hence the name of the metric.
When the group is sufficiently large to transport one point onto any other, the
manifold is said homogeneous and we can also use the group to transport the
metric from one point (called the origin) to any other point. The constraint is
that the metric at the origin should be invariant by transformations that leave
the origin unchanged (the isotropy group of that point).

In the case of tensors, the identity is left unchanged by rotations, so that the
metric at that point should be rotationally invariant. All such dot products on
symmetric matrices are given (up to a constant global multiplicative factor) by:

〈 V |W 〉 Id = Tr(V W ) + β Tr(V ) Tr(W ) with β > −1/n

where n is the dimension of the space (the inequality ensures the positiveness).
This metric at the identity can then be transported at any point by the group
action using the (symmetric or any other) square root Σ1/2 considered as a group
element:

〈 V |W 〉Σ =
〈

Σ−1/2V Σ−1/2
∣

∣

∣
Σ−1/2WΣ−1/2

〉

Id

= Tr
(

V Σ−1WΣ−1
)

+ β Tr
(

V Σ−1
)

Tr
(

WΣ−1
)

The Riemannian distance is obtained by integration, or more easily by the norm
of the initial tangent vector of the geodesic joining the two points:

dist2(Σ,Λ) = ‖ logΣ(Λ)‖2
Σ = ‖Σ−1/2 logΣ(Λ)Σ−1/2‖2

Id

= Tr
(

log(Σ−1/2ΛΣ−1/2)2
)

+ βTr
(

log(Σ−1/2ΛΣ−1/2)
)2

It is worth noticing that tensors with null eigenvalues are at an infinite distance
of any regular tensor, as are tensors with infinite eigenvalues: the original cone of
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positive definite symmetric matrices, a linear manifold with a flat but incomplete
metric (there is a boundary at a finite distance) has been changed into a regular
and complete (but curved) manifold with an infinite development in each of its
n(n+ 1)/2 directions.

For β = −1/(n + 1), we have the metric that [91] proposed by embedding
the space of tensors of dimension n into the space of n+1 square matrices using
homogeneous coordinates (this allows them to seamlessly take into account an
additional position that represent the mean of the Gaussian distribution), and
by quotienting out n + 1 dimensional rotations. The same trick could be used
to embed the space in higher dimensional spaces (square matrices of dimension
n+p+1, in which case one would obtain the invariant metric with β = −1/(n+
p + 1). Interestingly, −1/β = n + 1 is the first authorized integer to obtain a
proper metric!

In fact, one can show that all the metrics of this affine-invariant family have
the same Levy-Civita connection ∇V W = ∇WV = −1/2(V Σ−1W +WΣ−1V )
[129]. This means that they share the same geodesics and the Riemannian Exp
and Log maps at each point:

ExpΣ(W ) = Σ1/2 exp
(

Σ−1/2WΣ−1/2
)

Σ1/2

LogΣ(Λ) = Σ1/2 log
(

Σ−1/2ΛΣ−1/2
)

Σ1/2

However, one should be careful that the orthonormal bases are different for each
metric which means that distances along the geodesics are different.

From the connection, one can compute the curvature tensor of the mani-
fold [129] R(X,Y, V,W ) = 1/4Tr(Y Σ−1XΣ−1V Σ−1W−XΣ−1Y Σ−1V Σ−1W ).
From this tensor, one gets the sectional curvature and see that it is non positive
and bounded from below (by -1/2). Thus, it is Hadamard manifold, i.e. a kind
of hyperbolic space in which we have for instance the existence and uniqueness
of the mean. There is also no cut-locus, which simplifies the computations.

5.2 Log-Euclidean metrics

By trying to put a Lie group structure on the space of tensors, Vincent Arsigny
observed that the matrix exponential was a diffeomorphism from the space of
symmetric matrices to the tensor space. This well-known fact in mathematics
was apparently never used to transport all the operations defined in the vec-
tor space of symmetric matrices to the tensor space, thus providing the tensor
space with a commutative Lie group structure and even with a vector space
structure [9, 8]. For instance, the composition (the log-product) is defined by
Σ1 ⋄ Σ2 = exp(log(Σ1) + log(Σ2)). The Euclidean metric on symmetric matri-
ces is transformed into a bi-invariant Riemannian metric on the tensor manifold
(i.e. a metric which is invariant by both left and right compositions in the Lie
group). As geodesics are straight lines in the space of symmetric matrices, the
expression of the Exp, Log and distance maps for the Log-Euclidean metric is
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easily determined:

ExpΣ(W ) = exp(log(Σ) + ∂W log(Σ))

LogΣ(Λ) = D exp(log(Σ)) (log(Λ) − log(Σ))

dist2LE(Σ1, Σ2) = Tr
(

(log(Σ1) − log(Σ2))
2
)

These formulas look more complex than for the affine invariant metric be-
cause they involve the differential of the matrix exponential and logarithm in
order to transport tangent vectors from one space to another [119]. However, they
are in fact nothing but the transport of the addition and subtraction through
the exponential of symmetric matrices. In practice, the log-Euclidean framework
consist in taking the logarithm of the tensor data, computing like usual in the
Euclidean space of symmetric matrices, and coming back at the end to the tensor
space using the exponential [9, 7].

From a theoretical point of view, geodesics through the identity are the same
as for affine-invariant metrics, but this is not true any more in general at other
points of the tensor manifold [8]. The affine-invariant and log-Euclidean means
are also identical if the mean commutes with all the data. When they are not
equal, one can show that the log-Euclidean mean is slightly more anisotropic
[8]. A careful comparison of both metrics in practical applications [7, 9] showed
that there was very few differences on the results (of the order of 1%) on real
DTI images, but that the log-Euclidean computations where 4 to 10 times faster.
Thus, for this specific type of application, the log-Euclidean framework seems to
be best suited. For other types of applications, like adaptive re-meshing [106],
the anisotropy of the tensors can be much larger, which may lead to larger
differences. In any case, initializing the iterative optimizations of affine-invariant
algorithms with the log-Euclidean result drastically speeds-up the convergence.

5.3 Other families of metrics

Other families of metrics were also proposed to work with positive definite sym-
metric matrices, especially in view of processing diffusion tensor images. For in-
stance, [143] proposed to parameterize tensors by their Cholesky decomposition
Σ = LLT where L is upper triangular with positive diagonal entries. Taking the
standard flat Euclidean metric on the (positive) upper diagonal matrices leads
to straight line geodesics in that space which are then transported to the tensor
space as for the log-Euclidean framework. This lead to tensor space structure
which is obviously flat, but where the null eigenvalues are at a finite distance,
like in the Euclidean case.

Other square roots might be used to define other metrics on tensors as
Σ = (LR)(LR)T is also a valid decomposition for any rotation R. For instance,
the symmetric square root UΛ1/2UT lead to a well defined metric on tensors
which has similar properties as the Cholesky metric above, yet having different
geodesics. The fact that the rotation R can be freely chosen to compute the
square root recently led Dryden to propose a new metric in [35] which basically
measure the shortest distance between all the square roots L1R1 of Σ1 and L2R2
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of Σ2. The minimal distance is realized by the Procrustes match of the square
roots:

dist(Σ1, Σ2) = min
R∈O(n)

‖L2 − L1R‖

and the optimal rotation R̂ = UV T is obtained thanks to the singular value
decomposition of LT

2L1 = USV T. This metric is in fact the standard Kendall
metric on the reflection size-and-shape space of n + 1 points in dimension n
[35, 37, 130], which geometry is well known. For instance, the minimal geodesic
joining Σ1 to Σ2 is given by

Σ(t) =
(

(1 − t)L1 + tL2R̂
)(

(1 − t)L1 + tL2R̂
)T

From the equation of the geodesics, one can derive the Riemannian exp and log
map and proceed with the general computing framework. However, one must be
careful that this space is not complete and has singularities when the matrix Σ
has rank n− 2, i.e. when 2 eigenvalues are going to zero [86].

In [142], Wang and Vemuri proposed to use the square root of the J-divergence
(the symmetrized Kullback Leibler divergence) as a "distance"7 on the tensor
space:

dist2J(Σ1, Σ2) = Tr
(

Σ1Σ
(-1)

2 +Σ2Σ
(-1)

1

)

− 2n

This J-distance has interesting properties: it is affine invariant, and the Fréchet
mean value of a set of tensors Σi has a closed form solution:

Σ̄ = B−1/2
(

B1/2AB1/2
)1/2

A−1/2

with A =
∑

iΣi and B =
∑

iΣ
(-1)

i . However, this is not a Riemannian distance
as a Taylor expansion

dist2J(Σ,Σ + ǫV ) =
ǫ2

2
Tr(Σ(-1)V Σ(-1)V ) +O(ǫ3)

indicates that the underlying infinitesimal dot product is the usual affine invari-
ant metric 〈 V |W 〉 = 1/2TrΣ(-1)V Σ(-1)W . In fact, this metric might well be an
extrinsic metric, like the one we investigated in Section 3.5 for unit vectors and
rotations, and it would be interesting to determine what is the embedding space.

6 Applications in Computational Anatomy

Now that we have seen the generic statistical computing framework on Rieman-
nian manifolds and families of Riemannian metrics that can be designed on the
tensor manifold, let us turn to two important applications in medical image
analysis and computational anatomy: diffusion tensor imaging, which provides
unique in vivo information about the structure of the white matter fibers in the
brain, and the estimation of the variability of the cortex among subjects.

7 Quotation marks indicate here that the triangular inequality might not be verified.
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6.1 Diffusion tensor imaging

Diffusion tensor Imaging (DTI) is a unique tool to assess in vivo oriented struc-
tures within tissues via the directional measure of water diffusion. Fiber track-
ing is the application targeted by most researchers in order to investigate non
invasively the anatomical-functional architecture of the brain. Most of the cur-
rent applications are currently in neuroscience, with high signal-to-noise ratios
(SNR) images on healthy subjects rather. DTI might also prove to be an inter-
esting quantification tool for medical diagnosis [124, 127]. However, using such
a modality in a clinical environment is difficult: data often have to be acquired
quickly because the patient cannot stay in a static position for too long due
to pathologies. As this prevents the acquisition of multiple images for averag-
ing, this results in a limited number of encoding gradients and low SNR im-
ages. The estimation of the diffusion tensor field from diffusion weighted images
(DWI) being noise-sensitive, clinical DTI is often not suitable for fiber tracking.
Thus, one need to regularize the tensor field without blurring the transitions
between distinct fiber tracts, which delimit anatomical and functional brain re-
gions. Smoothing independently each DWI before estimating the tensor results
in a smoother tensor field but it also blurs the transitions between homogeneous
regions, as this information is not accessible by taking each DWI individually.
Consequently, one would like to perform an anisotropic regularization of the
tensor field itself.

Most of the methods developed so far actually estimate the tensor field in
a first phase with a simple algebraic method (see below) and then spatially
regularize some of the geometric features of the tensor field. We believe that
a better idea is to consider a prior on the spatial regularity when estimating
the tensor field itself so that the estimation could remain statistically optimal
with respect to the DWI noise model and could keep the maximum amount of
information from the original data. We designed in [48, 49] a maximum likelihood
(ML) criterion for the estimation of tensors fields from DWI with the MRI
specific Rician noise (the amplitude of a complex Gaussian signal), and extended
it to a maximum a posteriori (MAP) criterion by considering a spatial prior on
the tensor field regularity. This results into an algorithm that jointly (rather
than sequentially) performs the estimation and the regularization of the tensor
field.

The Stejskal-Tanner diffusion equation [13] relates the diffusion tensor D to
each noise-free DWI:

Si = S0 exp(−b gT
i Dgi)

where Si is the original DWI corresponding to the encoding gradient gi, S0

the base image with a null gradient, and b the diffusion factor. By taking the
logarithm of this equation, one obtain a linear system. Solving that system in
a least square (LS) sense leads to the minimization of a quadratic criterion,
which is easily performed using algebraic methods (see e.g. [146]). Doing this
implicitly assumes a log-Gaussian noise on the images, which is justify only
for high SNRs. Very few works did consider non log-Gaussian noise because it
requires optimization techniques on tensors which are very difficult to control
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with the standard Euclidean framework. With the log-Euclidean framework,
such an optimization is not difficult (one could also restate everything within
the affine-invariant framework but calculations are slightly more complex). For
instance, in the case of a Gaussian noise on the DWIs, the tensor D = exp(L)
is parameterized by its logarithm L, an unconstrained symmetric matrix. The
criterion to optimize is SimG(L) =

∑

(Ŝi − Si(exp(L)))2, and the gradient is

∇SimG(L) = 2b
∑

(Ŝi − Si).∂LSi with ∂LSi = Si ∂gi.gt

i

exp(L)

For low SNRs, we have to take into account the real nature of the noise in
MRI, which is Gaussian in the complex domain (the k-space). [143] proposed an
estimation criterion on the complex DWI signal that is adapted to that noise,
with a computationally grounded optimization framework based on the Cholesky
decomposition. However, one usually only have access to the amplitude of the
signal complex signal in clinical images: in that case, the noise is thus Rician.
One can show that such a noise induces a signal-dependent bias of the order
of σ2/2S on the DWI signal [128]. The signal being systematically larger than
what it ought to be, the tensors will be under-estimated. To take explicitly
the nature of this noise into account, we should optimize the log-likelihood of
the signal corrupted by a Rician noise. This leads to a more complex crite-
rion that above, but its gradient is very similar to the Gaussian case above:
∇SimR(L) = −1/σ2

∑

(Si − αŜi)∂LS, except that we have a correcting factor
α = I ′0/I0(ŜiSi/σ

2) depending on the signal and the noise variance (I0 and I ′0
are computable Bessel functions). The noise variance can easily be estimated on
the background of the image (outside the head) where there is no signal.

For the spatial regularity, we proposed in [48, 49] to use a Markovian prior
p(Σ(x + dx)|Σ(x)) ∝ exp(−‖∇Σ(x)T.dx‖Σ(x)/λ), and to account for disconti-
nuities using a redescending M-estimator (a so-called φ-functional). In the log-
Euclidean framework, the tensor field Σ(x) is parameterized by its logarithm
L(x), and the log of the prior is simply: Reg(L) =

∫

Ω
φ (‖∇L‖). In our exper-

iments, we use φ(s) = 2
√

1 + s2/κ2 − 2. The φ-function preserves the edges
of the tensor field while smoothing homogeneous regions. To include this reg-
ularization as an a-priori into the ML optimization process, we simply need to
compute its gradient ∇Reg(L) = −ψ (‖∇L‖)∆L−

∑

i ∂i (ψ (‖∇L‖)) .∂iL where
ψ(s) = φ′(s)/s. Directional derivatives, gradient and Laplacian were estimated
with a finite differences scheme like with scalar images (see [48, 49] for details).

Experiments on synthetic data with contours and a Rician noise showed that
the gradient descent technique was correctly removing the negative eigenvalues
that did appear in the standard (Euclidean log-Gaussian) estimation technique.
ML and MAP (with regularization) methods with a Gaussian noise model were
underestimating the volume of tensors even more than the standard log-Gaussian
method (30% instead of 20%), while Rician ML and MAP methods were esti-
mating it within 5%. More interestingly, the methods were tested on two clinical
datasets of low and medium quality: a brain image with a very low SNR (Fig.
2), and an experimental acquisition of a tumor in the spinal chord, both with
7 gradient directions (Fig. 3). This last type of acquisition is currently actively
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investigated in clinical research (e.g. [46]). It is difficult to perform because the
position is uncomfortable due to the tumor and the coil cannot be perfectly
adapted to the body as it is for the head. The images are consequently much
noisier than for the brain.

Like for synthetic data, using gradient descent techniques removed all the
negative eigenvalues of the standard method. To evaluate the impact of the
noise model on the tensor reconstruction in the brain, we computed the mean
apparent diffusion coefficient (ADC), fractional anisotropy (FA) and volume of
the diffusion tensors in the ventricles (high but anisotropic diffusion), and in
the corpus callosum (lower diffusion with high anisotropy) [49]. Using the Ri-
cian noise model increase the tensor volume and the ADC by about 10% in
isotropic regions and by 1 to 2% in anisotropic regions without modifying the
FA. In the spinal chord, using the Rician noise model also lead to an increase of
the tensors of about 30% in volume. This corresponds to the correction of the
shrinking effect with Gaussian and Log-Gaussian noises. Adding some spatial
regularization (MAP methods) systematically decreases the FA. However, this
effect is much lower for anisotropic regions and minimized with the Rician noise
model: 3% only in the corpus callosum (versus 11% with log-Gaussian), and
15% in the ventricles (versus 30% with log-Gaussian). Thus, it seems that these
measurements are more reproducible with the MAP Rician reconstruction.

The tractography results in a much smoother and longer fibers with less
dispersion for the MAP Rician model. The overall number of reconstructed fibers
is also much larger. The smoothness of the tensor field indeed leads to more
regular and longer fibers: tracts that were stopped due to the noise are now
fully reconstructed. A careful quantitative evaluation and validation of the whole
framework however remains to be done. In particular, it would be necessary to
evaluate the reproducibility across acquisitions and scanners, for instance using
repeated scans of the same subject, as well as evaluations of physical phantoms.

6.2 Learning Brain Variability from Sulcal Lines

A second interesting application is the statistical modeling of the brain variability
in a given population of 3D images [51, 50]. In such a process, the identification
of corresponding points among each individual anatomy (structural homologies)
allows us to encode the brain variability by covariance matrices. The reason
why we should not simplify these tensors into simpler scalar values is that there
are evidences that structural variations are larger along certain preferred direc-
tions [136]. Thus the metrics on covariance matrices presented in Section 5 and
the statical computing framework developed in earlier Sections are once again
needed.

In the brain, a certain number of sulcal landmarks consistently appear in all
normal individuals and allow a consistent subdivision of the cortex into major
lobes and gyri [94]. Moreover, sulcal lines are low dimensional structures easily
identified by neuroscientists. In the framework of the associated team program
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Fig. 2. Tensor field estimation of a brain (top row) and improvement of the
fiber tracking (bottom row). Top Left: A slice of the b0 image. Top Middle: The
classic log-Gaussian estimation on the ROI. The color codes for the principal direction
of tensors: red: left-right, green: anterior-posterior, blue: inferior-superior. Missing
tensors in the splenium region are non-positive. Top Right: The MAP estimation of
the same region. Bottom row, Left: ROI where the tracking is initiated. Bottom
row, middle: The cortico-spinal tract reconstructed after a classic estimation. Bot-
tom row, Right: Same tract reconstructed after our MAP estimation. Rendering is
obtained using the MedINRIA software developed by P. Fillard and N. Toussaint.

Fig. 3. Tensor field estimation of the spinal chord. Left: A slice of the b0

image with the ROI squared in green. Middle: Classic log-Gaussian ML ten-
sor estimation. There are many missing (non-positive) tensors around and in the
spinal cord. Right: Rician MAP tensor estimation: tensors are all positive and
the field is much more regular while preserving discontinuities. Original DWI are
courtesy of D. Ducreux, MD. Rendering is obtained using the MedINRIA software
(http://www.inria.fr/sophia/asclepios/software/MedINRIA/).
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between Epidaure/Asclepios at INRIA and LONI at UCLA8, we use a data-set
of sulcal lines manually delineated in 98 subjects by expert neuroanatomists
according to a precise protocol9. We used the 72 sulcal curves that consistently
appear in all normal subjects (abusively called sulci in the sequel).

To find the corresponding points between the 98 instances of each of the
72 sulci, we alternatively computed the matches that minimize the distance be-
tween the mean curve and the instances, and re-estimated the mean curve from
the updated matches. As a result, we obtain for each point of each mean sulcal
curve the set of corresponding anatomical positions in each subject. The number
of tensor needed to represent the variability information along each sulcus was
then adjusted by picking only a few tensors alors the mean line and linearly
interpolating in-between them. The optimal subset of tensors is determined by
optimizing the distance between interpolated and measured tensors along the
line so that the error does not exceed a prescribed value. In this process, the
distance and interpolation between covariance matrices was performed using the
affine-invariant metric. Interestingly, selecting only 366 variability tensors was
sufficient to encode the variability of the 72 sulci without a significant loss of
accuracy. The result is a sparse field of tensors, that can naturally be extrap-
olated to the whole space using the framework described in Section 4.4 (Fig.
4). This dense map of tensors was shown to be in good agreement with previ-
ous published results: the highly specialized and lateralized areas such as the
planum parietale and the temporo-parietal areas consistently shows the high-
est amount of variability. The lowest amount of variability is consistently found
in phylogenetically older areas (e.g. orbitofrontal cortex) and primary cortices
that myelinate earliest during development (e.g., primary somatosensory and
auditory cortex). However, our variability map give more than the amount of
variability since we can extract from the tensors the spatial directions where the
variability is the greatest at every single anatomical position. We refer the reader
to [51, 50] for a more detailed explanation of the method and for the neuroscience
interpretation of these results.

7 Challenges

We have shown in this chapter that the choice of a Riemannian metric and the
implementation of a few tools derived from it, namely the Exp and Log maps,
provides the bases for building a consistent algorithmic framework to compute
on manifolds. In particular, we can compute consistent statistics, perform in-
terpolation, filtering, isotropic and anisotropic regularization and restoration of
missing data. Last but not least, powerful computational models of the anatomy
could be built thanks to this Riemannian computing framework.

There are however many challenges opened both from the theoretical and
application point of views. For instance, the Riemannian approach that we pre-
sented here is not perfectly consistent with the structure of Lie groups as soon

8 http://www-sop.inria.fr/epidaure/Collaborations/UCLA/atlas.html
9 http://www.loni.ucla.edu/~khayashi/Public/medial_surface/
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Fig. 4. Variability tensor extrapolation. Left: The 366 tensors retained for our model.
Right: Result of the extrapolation. Each point of this average brain shape contains a
variability tensor.

as they are not compact nor Abelian, which is already the case for rigid body
transformations. In that case, there is generally no left and right invariant met-
ric, and most of the operations that we defined (e.g. the mean) with either the
left or the right invariant metric are not consistent with inversion. To find an
alternative to the Riemannian structure for Lie groups, we investigate with V.
Arsigny the idea on relying on one-parameter subgroups instead of geodesics.
Preliminary results indicate that this may provide an interesting structure [6, 5].
For instance, one can design bi-invariant means that are fully compatible with
the group structure [10]. They are define though fixed point equations which are
very similar to the Riemannian ones. However, these equations do not derive
from a well posed metric. It would be interesting to see what part of the sta-
tistical computing framework still holds if we replace the distance by a simple
positive or negative energy. This probably amounts to considering the connection
as the basic structure of the manifold instead of the Riemannian metric.

Another key problem is to extend our statistical computing framework to in-
finite dimensional manifolds such as surfaces and diffeomorphism groups. From
a theoretical point of view, we known how to provide the diffeomorphism group
with left or right invariant Riemannian metrics that are sufficiently smooth to
compute the geodesics by optimization [15, 101, 102, 73]. Through the so called
EPDiff equation (Euler-Poincarré equation for diffeomorphisms), this optimiza-
tion framework has been recently rephrased in an exponential/logarithm frame-
work similar to the one developed here [103]. Thus, the basic algorithmic tools
are the same, except that optimizing each time to compute the exponential and
the logarithm has a deep impact on the computational times. However, one diffi-
culty is that the infinite number of dimensions forbids the use of many tools like
the probability density functions! Thus, even if simple statistics like the mean
and the principal component analysis of a finite set of samples may still be com-
puted [140, 40], one should be very careful about ML-like statistical estimation
in these spaces: there is always a finite number of data for an infinite number of
parameters. In particular, there are infinitely many left- or right-invariant met-
rics on diffeomorphisms, and learning the optimal metric is an ill-posed problem.
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Estimations need to be regularized with prior models or performed within finite
dimensional families of metrics whose assumptions are suited for the problem at
hand. An interesting track for that is to establish specific models of the Green’s
function based on the mixture of smoothly varying local and long-distance inter-
action convolution kernels. If we only consider the local kernel, the Riemannian
elasticity [119, 115] could be an interesting family of metrics allowing to measure
statistically the properties of the virtual underlying material. Moreover, it was
recently shown that such a criterion was consistently separating monozygotic
twins from others, which suggest that such deformation-based measures could
be anatomically meaningful [90].

Last but not least, surfaces are an important source of anatomical structires
in computational anatomy, and one need to design efficient methods and metrics
to capture their statistical properties. It would also be useful to fuse the informa-
tion coming from image deformations and from surfaces in a single framework.
Courants (generalization of distributions) provide consistent mathematical tools
for discrete and continuous surfaces [29]. A diffeomorphic registration algorithm
of surfaces based on that notion was proposed for instance in [139]. The tools
were then drastically improved in [40, 39, 38] to provide the basis of a compu-
tationally efficient statistical computing framework on curves and surfaces. We
expect very interesting advances in this direction in the coming years.

From a computational anatomy standpoint, the huge number of degrees of
freedom involved in the estimation of the anatomical variability will require to
aggregate information coming from many different sources in order to improve
the statistical power. As there is no gold standard, we should also be careful
that many biases may be hidden in the results. Thus, methods to compare and
fuse statistical information coming from many different anatomical features will
need to be developed in order to confirm anatomical findings. For the brain
variability, one could for instance add to the sulci other cortical landmarks like
sulcal ribbons and gyri, the surface of internal structures like the ventricles, the
hippocampus or the corpus callosum, or fiber pathways mapped from DTI. These
sources of information are individually providing a partial and biased view of the
whole variability. Thus, we expect to observe a good agreement in some areas,
and complementary measures in other areas. This will most probably lead in a
near future to new anatomical findings and more robust medical image analysis
applications.
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