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Abstract. Complex geometric features such as oriented points, lines or 3D frames are increasingly used in image
processing and computer vision. However, processing thesegeometric features is far more difficult than processing
points, and a number of paradoxes can arise. We establish in this article the basic mathematical framework required
to avoid them and analyze more specifically three basic problems: (1) what is a random distribution of features, (2)
how to define a distance between features, (3) and what is the “mean feature” of a number of feature measurements ?

We insist on the importance of an invariance hypothesis for these definitions relative to a group of transformations
that models the different possible data acquisitions. We develop general methods to solve these three problems and
illustrate them with 3D frame features under rigid transformations.

The first problem has a direct application in the computationof the prior probability of a false match in classical
model-based object recognition algorithms. We also present experimental results of the two other problems for
the statistical analysis of anatomical features automatically extracted from 24 three dimensional images of a single
patient’s head. These experiments successfully confirm theimportance of the rigorous requirements presented in
this article.

keywords: geometric features, transformation groups, uniform distribution, invariant measure, invariant dis-
tance, expected features, mean features.1. Introdution
Many algorithms in computer vision and object recog-
nition deal with simple geometric features like points,
for example the Iterative Closest Point [4, 31], the ge-
ometric hashing [18, 30, 26], and the alignment algo-
rithm [3, 13]. On the other hand, models of the real
world often lead to the consideration of more com-
plex features: lines [9], planes, oriented points [6],
frames [21, 22], etc. The handling of these features
raises some problems, the first one being their repre-
sentation, and can lead to paradoxes such as Bertrand’s
paradox concerning geometric probabilities. We have
previously shown [23] that additive noise is not suited
for describing the uncertainty of frames and should
be replaced by a “compositive” model of noise. Sev-
eral other examples are presented in this article and
demonstrate the need for particular attention when
dealing with geometric features.

We investigate in this article three basic problems
that often arise when processing geometric features
or in the statistical analysis of these algorithms. The
first one is the quantification of the probability of oc-

currence of an event when some geometric features
are randomly distributed. A direct application is the
quantification of the false positives rate in matching
algorithms. The second problem concerns the dis-
tance between features. This is one of the opera-
tions mostly used in image processing algorithms and
a change in its definition often leads to a different re-
sult. Last but not least, we analyze the notion of a
mean feature, which turns out to be a difficult problem.
For instance, if we want to obtain the mean 3D rota-
tion, we can compute either the mean rotation matrixR = 1nPi Ri, the mean quaternionq = 1nPi qi by
using the unit quaternion representation, or the mean
rotation vectorr = 1nPi ri.

These three methods give different and incorrect re-
sults: the two first are not even rotations and none of
them is stable with respect to a reference frame shift.

In order to give a meaningful solution to each of
these problems, we have to consider them in a geomet-
ric framework. Indeed, in order to compare geometric
objects in different locations (for instance, extracted
from images with different view-points), we implic-
itly consider a set a space transformations that allows
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Fig. 1. Comparison of geometric objects: we can say that all three
triangles are similar (relative to similarity transformations); or that
only A and B are congruent (relative to rigid transformations); or
that they are all different (relative to translations).

us to identify these objects. The choice of this set de-
termines the properties of our objects, as in figure (1).

F. Klein formalized this idea in its “Erlangen pro-
gram” [17]: letM be a manifold of elements that we
call points andG a set of operations on these points
forming a group. The geometry ofM for the groupG is the set of invariant properties of the manifold for
the group action. A first application of this geometric
framework is given with geometric probabilities (see
[27] and section 3), where we need to define an invari-
ant measure on random features (under the considered
transformation group) in order to obtain a meaningful
result. Similarly, for the distance and the mean fea-
ture, we have to design operators that are compatible
with the action of a given transformation group.

The article is organized as follows. Section 2 fo-
cuses on the nature of geometric features, namely
“points” on a manifold. We investigate transforma-
tion groups (rigid, affine. . . ) that operate on this man-
ifold. In Section 3, we investigate the standard geo-
metric probabilities and, in particular, how to define
an invariant measure on random features. This leads
to the computation of the prior probability of a false
match in recognition algorithms. Section 4 is devoted
to invariant distances and section 5 to their use in the
Fréchet expectation framework in order to provide a
stable definition of the expected and average features.
In the sixth and final section, we present an experimen-
tal application of the theory to the data fusion problem.2. Sets of geometri features and sets oftransforms2.1. Geometri features: Manifolds and repre-sentations
Geometric features are generally defined as sets of
points in the plane or 3D space, and the set of all
geometric features of a given type can be described
by a parameterp and a function�(p; x) which asso-
ciates the parameterp to the geometric feature (the set

fx 2 IRn = �(p; x) = 0g). The function� describes
a particular type of geometric feature (lines, planes,
curves, triangles. . . ) with a specificrepresentationp.
For instance, 3D oriented planes can be represented byp = (n; d) wheren is a unit vector (the normal to the
plane) andd the distance to the origin. The equation
of “planep” is then:�(p; x) = hn j x i � d = 0

Usual sets of geometric features, such as lines,
curves, surfaces. . . are regular and constitute differen-
tial manifolds. This means that the set is locally dif-
feomorphic to a vector spaceIRm (i.e there exists,
at each point of the manifoldM, a locally differen-
tiable one-to-one mapping fromM to IRm); m being
the dimension of the manifold. In the above exam-
ple, we can see that the parameterp is four dimen-
sional with a quadratic constraint (which is differen-
tiable), and planes are then a 3D-manifold equivalent
to S2 � IR+ (S2 is the unit sphere in 3D). Despite the
rather complex mathematical formulation, this simply
means that manifolds are not traditional vector spaces,
but that locally they may be treated as if they were.
Spheres or smooth surfaces are such manifolds, as is
the set of rotation matrices which is equivalent toP3
(the projective space ofIR4) by means of unit quater-
nions [22, 2]. Points trivially constitute a manifold
since they already are a vector space. Another inter-
esting type of features is oriented points, which are
points associated with a vector. Such features can be
extracted from a smooth surface, for instance, where
the normal is attached at each point of the surface. A
simple representation is given byu = (x; n) wherex
is the position andn a unit vector. The manifold of
oriented points is thus equivalent toIR3 � S2 whereS2 is the unit sphere of the 3D space.

There are often numerous ways to represent a given
manifold, with different properties. For instance, we
can define a manifold as a subspace ofIRk with differ-
entiable constraints and a one-to-one correspondence
between features and parameters: this proves that the
set of features is a differential manifold. For other pur-
poses, in particular differentiation, it is necessary to
have a minimal representation (where the dimension
of the parameter is the dimension of the manifold), or
more generally a set of charts forming an atlas of the
manifold, exactly the same way we need several charts
to represent the earth surface in a continuous way ev-
erywhere. Each chart is defined by a one-to-one dif-
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ferentiable map'i(p) from the representation into the
manifold and an open definition domainDi. The set of
charts must cover the manifold and must overlap each
other so that it is possible to move from one chart to
another. A study of different representations for 2D
and 3D lines, planes and rotations is presented in [2].
We only assume for the moment that we have a one-to-
one differentiable representation of the manifold, and
we identify this representation with the manifold.2.2. Transformations: Lie groups
There are a number of familiar transformations:
translations, rotations, similarities, affine trans-
forms. . . More generally, a transformation of a setX
is a one-to-one map ofX ontoX . If g is a transfor-
mation, we denote byg ? x = g(x) the action of the
transformation on an elementx 2 X , and byg(-1) the
inverse map. Ifg1 andg2 are two transformations, the
mapg(x) = g2(g1(x)) is also a transformation: the
composition ofg1 andg2 (g = g2 Æ g1). The set of
all transformations with these operations is called the
general transformation group of setX , and any sub-
groupG is a transformation group ofX .

The important class of Lie groups is obtained ifG has a separate topological structure (a Hausdorff
space) and the composition and inversion maps are
differentiable (G is then a differentiable manifold). In
fact, most usual transformation groups are Lie groups
if they are continuous (in the non-discrete sense) and
have reasonable operations. In this article, we use the
3D rigid motion group as an application example. An
element of this group can be defined as the composi-
tion of a rotation with a translation. It can be repre-
sented byf = (R; t), where the translationt belongs
to IR3 andR is a rotation matrix (a 3x3 matrix satis-
fying R:R> = R>:R = Id anddet(R) = +1), and
hence belongs to the special orthogonal groupSO3.
The inverse and compose maps are easily written (“.”
is the matrix multiplication):f (-1) = (R> ; R>:t)f = f2 Æ f1 = (R2:R1 ; R2:t1 + t2)

2.3. From transformation of the Eulidean spaeto feature transformation
In the case of geometric objects, the transformation
usually applies to the 2D plane or the 3D space (or
more generallyIRn), but we wish to work directly
on features and thus must take particular care that
their nature is preserved during transformations. Con-
sider, for instance, that two orthonormal axes are no
longer orthonormal after a general affine transforma-
tion. The first constraint is then for the manifoldM to
be globally invariant under the considered transforma-
tion groupG. We can then define the image of the
featurep, satisfying�(p; x) = 0, by a transforma-
tion g 2 G as being the featurep0 2 M realizing�(p0; g ? x) = 0. We write:p0 = g ? p. With this def-
inition, the groupG is also a transformation group of
the manifoldM. It can be very tricky to make explicit
the action on some geometric features with some rep-
resentations and it can lead to highly non-linear trans-
formations. However, usual cases are generally sim-
ple: in the case of oriented planes presented above un-
der rigid motion, we have�(p; f ? x) = hn j R:x+ t i � d= 
R>:n j x�+ hn j t i � d
which means thatf ? p = (R>n; d � hn j t i). Simi-
larly, the action of a rigid transformf on an oriented
pointu = (x; n) is:u0 = f ? u = (R:x+ t ; R:n)

For the applications studied in this article, we are
also interested in a third type of feature: frames. A
frame is defined by a point with an orthonormal trihe-
dron. We have already noted that we cannot use the
affine group since orthonormal trihedra would not be
conserved, but rigid motions are appropriate. A par-
ticularity of frames is that they are equivalent to rigid
transformations. Indeed, any frame defines a basis for
3D space so that we can represent each frame by the
rigid transformation which map the canonical basis to
itself. It is easy then to verify that the composition and
the action are equivalent.2.4. Homogeneous features
A special kind of relation between the manifold and
the group turns out to be very important: letO 2 M
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Fig. 2. Chosen origins for frames, oriented points and points, and their transformation by a rigid motion.

be an element called the origin. The manifoldM is
transitiveor homogeneousfor the groupG if any other
element of the manifold can be obtained by a transfor-
mation ofG, i.e. if G?O = fq = g?O=g 2 Gg =M.
This means that the features we consider have no in-
variants. In fact, we assume that we can split the
features into an invariant part (which we do not con-
sider here) and a variable part under the transforma-
tion group (it is not clear whether it is always possible
but we did not have any problems with the features we
studied).

In the case of homogeneous features, we identify
the manifold with equivalence classes of group ele-
ments in the following way. LetH be the subset of
transforms that leaveO invariant:H = fh 2 G = h ?O = Og (1)H is a group and is called theisotropy or stability
group ofG atO. The left cosetsg Æ H can be iden-
tified with elements ofM. Indeed, ifg ?O = x, theng Æ H is the set of transformations which mapO to x.
We write: Fx = fg 2 G = g ?O = xg (2)

For instance, if we consider point features with ori-
gin O = 0 and rigid transformation, we haveH =f(R; 0) = R 2 SO3g andFx = f(R; x) = R 2 SO3g
whereR is any rotation. For frame, taking as the ori-
gin the canonical basis (O = ( Id; 0)), thenH and all
its cosets are reduced to a single point:Ff = ffg.
This special case where the manifold is equivalent to
the group leads to important simplifications in the the-
ory. As an intermediate example, we consider oriented
points: we set the origin toO = (0; e3). This origin is
invariant by all rotationsRz around third axise3. Thus
the isotropy group is:H = fRz 2 SO3 = R:e3 = e3g.

2.5. Bak to the representation problem: 3D ve-torial rotations, frames and points
It is well known that a 3D rotation matrix can be char-
acterized by an angle� around an axisn (unit vec-
tor), but since the coordinates ofn are constrained,
this couple is not minimal (the dimension of the rep-
resentation is 4 instead of 3); moreover, the axis is not
defined for the identity transformation. The rotation
vectorr = �:n is always defined (in a multiple way
since� is modulo2�) and differentiable (see [23] for
the equations). In order to define an atlas of rotations,
we need in fact four charts.
Chart 1: Non reflection rotations are represented by
rotations vectorsr from the open ballB3(0; �).
Chart 2,3 and 4: Non identity rotations with axis not
orthogonal to thex axis (respectivelyy, z) are repre-
sented by rotation vectorsr from the open half ballB3x+ = fr 2 B3(0; 2�) = rx > 0g (respectivelyB3y+ ,B3z+).

In theory we need to handle all four charts, but in
practice only the principal chart (the first) is needed
if we take care that, at the boundary of the domain,r = �:n andr0 = ��:n are identical. LetR(r) and
r(R) denote the mappings between rotation vectors
and matrices, we can now write directly the composi-
tion and inversion laws on the representation:r(-1) = r(R(r)>)r2 Æ r1 = r(R(r2):R(r1))
Frames and motions are represented by a rotation vec-
tor and a translation: for convenient notation, we writef = (r; t) and consider it as a column vector. In this
framework, the representation of a point of the Eu-
clidean space is denotedx (the standard coordinates).
The canonical geometric operations can then be writ-
ten:� Composition:f = f2 Æf1 = (r2 Ær1 ; r2 ?t1+t2)
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Fig. 3. Three methods for computing the probability that a “random”chord of a circle has a length greater than the side of an inscribed
equilateral triangle. From left to right, the methods give aprobability of 13 , 12 and 14 .� Inversion:f (-1) = (r(-1) ; r(-1) ? (�t))� Action on a point:x0 = f ? x = r ? x+ t� Cosets of points:Fx = ffx = (r ; x) = R(r) 2 SO3g� Action on a frame:f = f2 ? f1 = f2 Æ f1� Cosets of frames:Ff = ffg.3. Classial Geometri probabilities
The first class of problems in geometric probabil-
ity is to quantify the probability of occurrence of an
event when some geometric elements are randomly
distributed. Bertrand’s paradox illustrates the need to
consider invariance by a transformation group in or-
der to obtain a single and well defined result. In fact,
the problem lies in the notion of auniform distribu-
tion (or measure). Some recent results in Lie group
theory provide a mean for computing the left invariant
measure on the groupG, which induces the invariant
measure on homogeneous manifolds. An application
is presented with the generalization of the false posi-
tives analysis.3.1. Bertrand's paradox
The problem raised by J. Bertrand in 1907 consists of
finding the probability that a “random” chord of a cir-
cle has a length greater than the side of an inscribed
equilateral triangle. Without loss of generality, we can
fix the radius to 1 and the side length of the triangle is
then

p3. This problem can be tackled by at least three
methods, which are illustrated in figure 3.Method 1: By definition, a chord intersects the cir-
cle in two points, and we may assume that these two

points are equally and independently distributed on the
circle. Assume that one of the points isA in figure 3.
Then the second point has to lie betweenA0 andA00
in the circle for the chord to be greater than the trian-
gle side. This is just13 of the circumference and the
searched probability is then13 .Method 2: A chord is characterized by its distancep to the center (between 0 and 1) and its orientation�
w.r.t. a fixed line (between 0 and2�). If we draw the
equilateral triangle with a side parallel to the chord, we
can see that the distanced has to be less than12 in order
to have a chord length greater than

p3. By assuming a
uniform orientation and distance to the origin, we find
a normalized probability of12 .Method 3: A chord is uniquely defined by the or-
thogonal projectionI of the circle center onto it. It
has to lie inside the disc of radius12 in order to have
a sufficient length. So, assumingI is uniformly dis-
tributed over the interior of the circle, the normalized
probability is 14 .

The above three solutions are correct but they do not
refer to the same notion of uniformity in the way we
choose the chord. Using the(p; �) representation (de-
scribed in the second method), we can compute with
[15] that the probability measures are respectivelyd�1 = dp:d�2�p1�p2 d�2 = dp:d�2� d�3 = p:dp:d��

The solution to this problem is to impose an invari-
ance constraint, or more precisely todefinethe notion
of uniformity: for instance, uniform onIR means that
the probability for a point to lie on an interval℄x; x+d[
is the same for allx. This is basically an invariance
by translation. In the same way, and since we can
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only compare geometric objects with a transformation
group, we define the uniform (or invariant) measure
(the infinitesimal volume element) as the measure be-
ing invariant by the action of any fixed elementf of the
group. LetdM(x) be such a measure (M stands for
manifold); this means thatdM(f ? x) = dM(x) for
anyx. The invariant measure can be sought directly on
a given representation [15], but a general formalism is
developed in [27] to extract it from the left-invariant
measuredLG of the groupG. In the case of Bertrand’s
paradox, Poincaré showed in 1912 [25] that only the
second measure is invariant under the action of rigid
transformations (rotation and translation), although all
three measures are invariant by rotations. Basically,
this means that the computed probabilities for the first
and third solutions would change if we translate the
reference frame, whereas the second solution would
stay 1/2, which is what was expected.3.2. Left and right invariant measures on a Liegroup (Haar measures)
We can require left invariance (dLG(gÆf) = dLG(f))
for any fixedg 2 G, or right invariance (dRG(f Æ g) =dRG(f)). Since the group acts on the left (the action
of the transformationf on the featurex is f ? x), we
are mainly interested in left-invariance and, from now
on, the left-invariant measure will be referred as the
invariant measure.

To be mathematically correct, we require that for
any continuous real function� onG with compact sup-
port, we have:8g 2 G Zf2G�(g Æ f):dLG(g Æ f) = Zf2G�(f):dLG(f)
If the group is locally compact, then [12] proves that
there exists only one left-invariant measure (up to a
scale factor) that verifies the above properties. This
measure is called the (left) Haar measure of the group.
In a symmetric way, there is also a unique right Haar
measure.

It is interesting to note that the left and right in-
variant measures are generally different; the group is
called unimodular if they are equal. A compact group
is always unimodular, but locally compact groups can
have different left and right Haar measures. For in-
stance, left and right Haar measures are identical onSO3, since the 3D rotation group is compact, and

the 3D rigid motion group is unimodular although the
group is only locally compact due to the introduction
of translations.

The left and right invariant measures can be gener-
ally computed from the Maurer-Cartan equations [27],
but a very interesting theorem allows easy computa-
tion in the case of aminimal representation: assume
that the definition domain of a chart almost covers the
group (since we integrate function and not distribu-
tions, we can “forget” a subset of the group that has
a null measure) and that the Jacobian of the left trans-
lation of the identityJL(f) exists and is continuous
almost everywhere. Then the invariant measure can be
written (see appendix A.1.1):dLG(f) = dfjJL(f)j (3)

withJL(f) = �(f Æ e)�e ����e= Id and jJ j = j det(J)j
The right-invariant measure can be derived in the

same way using the JacobianJR of the right transla-
tion of the identity. Using this scheme, we can show
[24] that the uniform measure for rotations using the
rotation vector representation isdLG(r) = dRG(r) = sin2(�=2)�2 dr (4)

where� = krk. Thus, with our representationf =(r; t), the invariant measure on rigid transformations
is: dG (f) = dRG (f) = sin2(�=2)�2 dr:dt (5)3.3. Invariant measure on homogeneous mani-folds
We saw in section 2.4 how to identify the homoge-
neous manifoldM with the quotient spaceG=H. We
can find, thanks to the above section, the (left) invari-
ant measuresdLG anddLH on G andH, and writedLG = dM:dLH wheredM is a measure on the
manifoldM (or the quotient spaceG=H). Santalo
gives in [27] several forms of a necessary and suffi-
cient condition fordM to be an invariant measure (i.e.dM(g ? x) = dM(x)). Let e be an element of the
manifoldM. One of them can be stated as follows
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(proof in appendix A.1.2):8h 2 H; ���� �(h ? e)�e ����e=O���� = 1 (6)

This means that the measure of the infinitesimal vol-
ume element at the origin remains unchanged under
any transformation that keeps the origin unchanged. If
this condition is not satisfied, then there is no invariant
measure on the manifold, otherwise we can compute
it (with a minimal representation of the manifold) in a
similar way to what we did for the group. Assume that
the definition domain of a chart almost covers the man-
ifold and that the Jacobian of the translation of the ori-
gin J(f) exists and is continuous almost everywhere.
Then the invariant measure is (the proof is obtained by
replacing(f Æ e) with (f ? e) in appendix A.1.1):dM(x) = dxjJ(fx)j (7)

with J(fx) = �(fx ? e)�e ����e=O and fx 2 Fx3.4. Pratial use: probability of a false math
Assume thatx is a uniform random feature in the first
image (characterized by a set of possible featuresI1).
What is the probability that this feature is accepted as
a match with featurey in the second image, under a
given global transformationf ?

If we characterize the possible matches fory by an
“error volume”Z(y) aroundy, we can write this prob-
ability as the conditional probabilityP (f ? x$ y) = P ((f ? x) 2 Z(y)jx 2 I1)P (f ? x$ y) = R(f?I1)\Z(y) dM(x)RI1 dM(x)= V ((f ? I1) \ Z(y))V(I1)
whereV(X) is the “volume” of the setX . With the as-
sumption that the volumeV(Z(y)) is sufficiently small
with respect to the volume of the image, we can con-
sider that the transformed imageI1 either contains the
whole setZ(y) or does not intersect it at all. This al-
lows us to approximate the above probability by

P (f ? x$ y) = "V (Z(y))V(I1)
with " = � 1 if f (-1) ? y 2 I10 otherwise

A desirable property for our “error volume”Z(y) is
that it should be comparable at every point (as we usu-
ally fix the same bound for error on all the points):
this means that, for any pair of pointsy and y0 on
the manifold, there exists a transformationf such thatf ? y = y0 andZ(y0) = f ? Z(y) (the error volume
is said to be homogeneous). A stronger hypothesis is
that for every transformationf , the error volume on
the transformed point is the transformation of the er-
ror volume:Z(f?y) = f?Z(y). The volume is said to
be isotropic in this case, and is completely determined
by its shape around the origin (see [24] for an analy-
sis of noise models). In both cases (homogeneity and
isotropy), the volume of the error volume is invariant:V (Z(y)) = V (Z(O)) = V0. The basic probability of
a false matchP (f ? x $ y) = ":V0=V(I1) can now
be applied as usual in an analysis of the frequency of
false positives [10, 19, 11, 20].

As a practical example, we considered in [21] that
two frames are matched if the distance between their
origin is less than a thresholdd0 and if the rotation
needed to adjust their trihedra has an angle less than
a threshold�0 (this angle is� = kr(-1)x Æ ryk), which,
in fact, is a bound on an invariant distance (see section
4.6). Thus the volume is invariant and can be com-
puted at the origin: a framef = (r; t) is in the error
volumeZ( Id) if � = krk < �0 andktk < d0. Using
the invariant measure of equation (5), we can compute
the volume of the error zone:V0 = Z�<�0 Zktk<d0 dM(r; t)= �Z�<�0 sin2(�=2)�2 dr� : Zktk<d0 dt!V0 = [2�(�0 � sin(�0)℄ : �4�3 d30�
If we assume a cubic image of sidel (256 for instance)
this gives a Euclidean volumeVI = l3 for points in

This draft paper is provided to ensure timely disseminationof scholarly and technical work. Copyright and all rights therein are retained by authors or by other
copyright holders. All person copying this information areexpected to adhere to the terms and constraints invoked by each author’s copyright. This work may not
be reposted without the explicit permission of the copyright holder.



56 Penne and Ayahe
theta

0 32.521.510.500

1

0.8

0.6

0.4

0.2

0

Fig. 4. Basic probability of a false match for trihedrons with a
bound on the angle for the adjustment rotation of theta. Since the
formula of the selectivity is multiplicative for frames, this curve is
also the gain in selectivity when using frames instead of just points.

which trihedrons are not constrained: the rotation vol-
ume is2�2. Finally, we obtain the basic probability of
a false match:P (f ? x$ y) = ��0 � sin(�0)� � :"4�3 �d0l �3# "
We have isolated in the first term the probability of
a false match due to trihedra only, which reflects the
gain in selectivity when using frames instead of points.
This function is plotted in figure 4 and shows very in-
teresting results: even for a bound of�0 = �=2 =90 deg, more than 80% of the random matches are re-
jected. For a bound of�0 = �=10 = 18 deg, the prob-
ability of a false match drops to 0.0016: we would
have to divide the bound on the position by 10 to ob-
tain an equivalent selectivity using points only.4. Invariant Distanes
The distance between two points is often used in ge-
ometric algorithms: the Iterative Closest Point algo-
rithm, developed in [4, 31] is the best example. An-
other classical example is the least-squares solution
for registration between two sets of matched points
(see section 4.2). All these algorithms can be extended
to homogeneous features in a straightforward way us-
ing a distance between features. However, it is highly
desirable that the results of these algorithms do not
rely on the chosen representation nor on the reference
frame of the physical space, as illustrated by the para-
dox of section (4.1).

Defining a distance directly on the manifold solves
for the representation problem, but only the use of an
invariant distance guarantees the stability of the results
with respect to the action of the transformation group.
We characterize in this section the properties of such
invariant distances for the transformation group and
the manifold. We give a general method to generate

X

Y d1d2

d3

0 1-1-2-4

1

Fig. 5. Three lines in the plane.

an invariant distance on the manifold from a metric on
the transformation space.4.1. The paradox of the losest line

With the paradox of Bertrand, we saw different rep-
resentations of 2D lines. In this section, we use an-
other minimal representation based on the line equa-
tion [2]: the equation of a 2D line isa:x+b:y+ = 0.
In order to obtain a minimal representation, we need
to eliminate one parameter:� Chart 1: lines that are not parallel to theX axis

are represented byd = (a; p) 2 IR2 and have
equation:a:x+ y + p = 0.� Chart 2: lines that are not parallel to theY axis
are represented byd0 = (a0; p0) 2 IR2 and have
equation:x+ a0:y + p0 = 0.

In the first chart, the lined = (a; p) cuts theY axes
at the point(0;�p) and has a director vector(1;�a).
This is symmetric in the second chart: the lined0 =(a0; p0) cuts theX axes at the point(�p0; 0) and has a
director vector(�a0; 1).

We draw in figure 5 three lines. The problem is
to choose which lined2 or d3 is the closest one tod1. A definition of the distance that seems to be rea-
sonable is dist(d1; d2) =p(a1 � a2)2 + (p1 � p2)2.
The coordinates of the three lines in the first chart ared1 = (�1=2;�1), d2 = (�1;�1), d3 = (�1=4;�1),
and the distance between the linesd1 andd2 turns out
to be greater than the distance between the linesd1 andd3:

dist(d1; d2) = 1=2 and dist(d1; d3) = 1=4
Now if we consider the lines in the second chart, their
coordinates ared1 = (�2 ; 2), d2 = (�1 ; 1), d3 =(�4 ; 4) and the distances are
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dist(d1; d2) = p2 and dist(d1; d3) = 2p2
We have then the following paradox:d3 is the clos-

est line tod1 in one chart, andd2 is the closest one in
the second chart. Which chart gives the most reason-
able result ? In fact, visually, the lined3 is the closest
one: there is an angle of12:5o betweend1 andd3 ver-
sus an angle of18:5o betweend1 andd2.4.2. Using an invariant distane
Part of the above paradox can be raised by using a true
distance on the feature manifoldM, and not a set of
distances in different charts. This means that the dis-
tance verifies the following axioms:� symmetry:8(x; y) 2 M2 dist(x; y) = dist(y; x)� positivity:8(x; y) 2 M2 dist(x; y) � 0� definite character:8(x; y) 2 M2 ( dist(x; y) = 0), (x = y)� triangular inequality: 8(x; y; z) 2M3

dist(x; y) + dist(y; z) � dist(x; z)
However, if such a distanceon the manifoldis in-

dependent of the considered chart, this is not suffi-
cient to ensure the stability of most results with re-
spect to a change of the reference frame of the physical
space (the action of a transformation on our features).
The solution to this problem is to choose a distance
which is invariant under the action of any transforma-
tion g 2 G: dist(x; y) = dist(g ? x; g ? y).

Consider for instance the classical method of com-
puting the transformation that maps a set of featuresxi
in one image to a set of featuresyi in another image:
this is the transformation that minimizes the sum of
squared distancesC(f) =Pi dist2(f ?xi; yi). LetF
be the transformation minimizing this least square cri-
terion (we can assume for simplicity that it is unique,
but the same results hold for a setF of minima).

Assuming that the featuresxi are transformed by a
transformationg (x0i = g ? xi), the criterion becomesC 0(f) =Pi dist2(f ? x0i; yi)=Pi dist2((f Æ g) ? xi; yi)= C(f Æ g)
With or without the invariance constraint, the new re-
sult isF 0 = F Æ g. Now if we assume that the fea-

tures of the second image are globally transformed:y0i = g ? yi, then the criterion isC 00(f) =Pi dist2(f ? xi; y0i)=Pi dist2(f ? xi; g ? yi)
Here, we need the invariance property of the distance
to concludeC 00(f) =Pi dist2 ((g(-1) Æ f) ? xi; yi)= C(g(-1) Æ f)
This means that the new minimum isF 00 = g(-1) Æ F ,
which gives the expected resultF = gÆF 00. The same
experiment can be done if both images are transformed
by thesametransformationg (which means a global
change of the reference frame), and the invariance of
the distance is required to prove that the transforma-
tion found isF 000 = g(-1) Æ F Æ g, i.e. only the change
of the reference frame.4.3. Invariant distane on a manifold
Let x; y 2 M andg 2 G. The distance is invariant
if dist(x; y) = dist(g ? x; g ? y). This means in par-
ticular that this distance is completely defined by the
distanceN(x) of a featurex with the origin: if we use
transformationf (-1)y or f (-1)x , we have

dist(x; y) = dist(f (-1)y ? x;O)= N(f (-1)y ? x) = N(f (-1)x ? y) (8)

The axioms of the distance are translated, under the
invariance assumption, into the three following prop-
erties:� 8fx 2 Fx : N(f (-1)x ?O) = N(x)

and thus 8h 2 H : N(h ? x) = N(x)� N(x) � 0 and (N(x) = 0), (x = O).� 8fx 2 Fx; fy 2 Fy :N(x) +N(y) � N(f (-1)y ? x) = N(f (-1)x ? y)
These properties are very close to those required in or-
der to define a norm on a vector space (without the
positive linearity). Thus we callN the “norm” of the
manifold. Note that we have so far defined the “norm”
on the manifold and not in a particular chart. In prac-
tice, we use a “principal chart”, centered around the
origin and covering almost the manifold. The “norm”N is defined in this chart, and when we have to use the
distance dist(x; y), we computeN(f (-1)y ? x).
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58 Penne and Ayahe4.4. Invariant distanes on a Lie group
Assume that we work now on the transformation groupG. We can require the distance to be either left or
right invariant. As above, an invariant distance is de-
termined by a “norm”Ng on the group, satisfying the
following properties:� Ng(f (-1)) = Ng(f).� Ng(f) � 0 and (Ng(f) = 0), (f = Id).� Ng(f) +Ng(g) � Ng(g(-1) Æ f) = Ng(f (-1) Æ g).
The triangular inequality becomesNg(f) +Ng(g) � Ng(g Æ f (-1)) = Ng(f Æ g(-1))
for a right invariant distance. The corresponding left
and right invariant distances are

distL(f; g) = Ng(g(-1) Æ f) = Ng(f (-1) Æ g)
distR(f; g) = Ng(g Æ f (-1)) = Ng(f Æ g(-1))

We are interested here only in the left-invariant dis-
tance since it induces an invariant distance on an ho-
mogeneous manifold.4.5. Distane indued on the manifold by thegroup distane
Let Ng be a norm on the groupG. We define the in-
duced “semi-norm” on the homogeneous manifoldM
as N(x) = inf(h2H; fx2Fx) (Ng(h Æ fx))= inf(h1;h2)2H2 (Ng(h1 Æ fx Æ h2)) (9)

If the infimum of Ng(h1 Æ f Æ h2)) is reached for
every transformationf by (h1; h2) 2 H2, then the
semi-norm is separable and is thus a norm (see proofs
in appendix A.2). This property is always true if the
isotropy groupH is compact but is not automatically
verified otherwise (for instance, there is no norm in-
duced on points by the similarities or affine transfor-
mations).

Assuming that we have a norm, the distance associ-
ated with this norm is automatically invariant and sat-
isfies

d(x; y) = infffx2Fx ; fy2Fyg ( distL(fx; fy))= inff(h1;h2)2H2g (Ng(h1 Æ f (-1)x Æ fy Æ h2))

When a norm is chosen on the transformation space,
we automatically have an invariant distance on the
manifold. Since features are usually objects abstracted
from an Euclidean space, a reasonable requirement to
make is that the distance induced on points of the orig-
inal space is the canonical distance of the space (pos-
sibly up to a scale factor). We have then the guarantee
of reasonable invariant distances on all the features we
consider.4.6. Pratial use on rigid transformations
The Euclidean distance onIR3 is induced by theL2
norm: dt(x; y) = kx � yk. On the other hand, it can
be shown [1] that the angle� of a rotation is a “norm”
that induces a left and right invariant distance onSO3,
the rotation group. With the rotation vector represen-
tation, we have thend�( Id; r) = krk = � and thusd�(r1; r2) = kr(-1)2 Æ r1k = kr1 Æ r(-1)2 k (the last term of
the equality comes from the right invariance).

We define the “norm” on the rigid motion group as
(see appendix A.3):N�(f) = N�((r; t)) = kfk =p�2 krk2 + ktk2
where� is a fixed parameter that allows to tune the im-
portance of the trihedron (rotation part) with respect
to the position (or translation part). Indeed, the an-
gle of rotation� is in radian (or degrees,. . . ) and the
translation in millimeters, kilometers or inches. . . We
usually scale each of the two terms by the inverse of
their variation domain (� for � and the diameterl0
of the image or the interest object for the translation:� = l0=�). When we have information about the noise
level (i.e. standard deviations�� and�t), we can also
use� = �t=��.

We can check that the distance induced by this norm
on the original space is the Euclidean distance (see ap-
pendix A.3.1). Thus the left-invariant distance is

distL(f1; f2)2 = kf (-1)2 Æ f1k2= �2kr(-1)2 Æ r1k2 + kt1 � t2k2
whereas the right invariant distance is

distR(f1; f2)2 = kf1 Æ f (-1)2 k2= �2kr1 Æ r(-1)2 k2 + kt1 � (r1 Æ r(-1)2 ) ? t2k2
Although the rigid motion group is unimodular (and
thus left and right invariant measures are identical), the
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left and right invariant distances are obviously differ-
ent.4.7. Disussion
From a (left) invariant distance on the transformation
group, we can determine an induced invariant distance
on the feature manifold. However, if we have a suf-
ficient condition for its existence, this condition does
not seem to be necessary and is moreover difficult to
handle. The second problem in this approach is that
we need to know a left invariant distance on the trans-
formation group, and nothing helps us to construct it.
We reserve a forthcoming article to a Riemannian ap-
proach of this problem that gives necessary and suf-
ficient conditions for the existence of such distances
and a way to construct them via geodesics (see how-
ever [24]).5. Expetation and mean of random fea-tures

Uncertainty on geometric features (and more gen-
erally on measurements) is usually characterized by
a probability density function for which the expected
value corresponds to the exact value. From a compu-
tational point of view, however, we need to keep only
a few number of parameters characterizing this pdf.
The usual way ([5, 2, 32]) is to consider the represen-
tation of the random feature as a random vector and,
assuming that the pdf is quasi-Gaussian, approximate
it up to the second order by its expectation and covari-
ance matrix. We focus in the sequel on the expectation�x and its statistical measurement: the empirical mean
(in the following, the term expectation refers to the
expectation of a random feature of pdfpx, whereas a
mean feature denotes the empirical mean of a set of
measured features). The classical definition is, for a
pdf px (in the parameter space) and a set of measured
featuresfxig:�x = E(x) = ZD y:px(y):dyM(fxig) = 1nXi xi

We claim that these operators are not properly de-
fined. In particular, the result of the integral or the sum
is not ensured to be in the definition domain and de-
fines not necessarily a feature: for instance, the arith-
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Fig. 6. Left: Original pdf �0(�) = 2 os(�=2)2 . Expectation is��(0) = 0. Middle: pdf after a rotation of angle� = �. The
expectation��(�) is also0, whereas the rotated expectation is�� =�.

metic mean of several rotation matrices is generally
not an orthogonal matrix and is therefore not a rotation
itself (particularly for large deviations). The second
reason, is that the expectation does not commute in
general with the action of a fixed transformation (see
example below). This means that the mean value of a
pdf depends on the chosen reference frame, which is
unacceptable.5.1. Standard expetation of a 2D random line
We consider for this example 2D oriented vector lines,
which can be represented by a point on the unit circle,
and therefore an angle� with a given axis. We fix the
domain of� to beD =℄ � �; �℄. The action of a ro-
tation of angle� is simply the addition (modulo2�).
We can define an uncertain line by its probability den-
sity function�(�), and the classical way to obtain the
expected value is to integrate in the parameter space:�� = E(�) = ZD �:�(�) d�2�
where the term2� is a normalization factor. We note
that d� is the uniform measure for lines under rota-
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Fig. 7. Comparison of the expectation of the rotated line and the
rotation of the expected line.
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tion. Let �0(�) = 2 os(�=2)2 be such a pdf (drawn
in figure 6). It is normalized and its expectation is��0 = 0. If we now change the reference frame, i.e.
apply a rotation of angle�, we obtain the new pdf��(�) = �0(� � �), and the expected value is now��(�) = ZD �:�0(� � �) d�2� = 2 sin(�=2) os(�=2)
which is different from the rotated expectation�(�) =�. In particular, for a rotation of� = �, we find that�� = � and��� = 0.

To avoid this kind of problem, the first idea is to
“center” the definition domain of the chart around the
expected feature. If this can be easy in the case of
a circle, as above, it may be more problematical for
some other features such as 3D lines or frames, where
the manifold is more complex. The question is simi-
lar for the mean value, especially with scattered mea-
surements. Last, but not least, if the chart is centered
around the expected (or the mean) feature, then the
problem is already solved. The Fréchet expectation
is a well-posed formalism to implement this idea: the
“centrality” of a feature is based on its distance with
other measurements, and the mean or expected values
are the features that optimize the “centrality”.5.2. Fr�ehet expetation of a random feature
Let v be a random vector inIRn. Fréchet [8] observed
that the variance�2v(x) = E(dist(v; x)2) is minimized
at the expected value�v. The second point is that if the
expectation of the representation of a feature (a vecto-
rial integral) is not well defined (because features are
not vectors), the expectation of a real mapping (a pos-
itive function of the random feature, for instance) is
properly defined. In particular, the expectation of the
squared distance between features is properly defined.

Let distbe an invariant distance on the manifoldM
under the groupG, andx a random feature of pdfpx
(in the parameter space). The expected square distance
of a deterministic featurey with the random featurex
is defined by�2x(y) = E( dist(y; x)2)= ZD dist(y; x0)2:px(x0):dx (10)

If �2x(y) is finite for all y, we call every feature�x
minimizing�2x an expected feature, and we denote byIE(x) the set of all expected features of the random

featurex. Thus we haveIE(x) = arg miny2M �E( dist(y; x)2)� (11)

If there is at least one expected feature�x, then�x =�x(�x) is called the standard deviation ofx and �2x
the variance. In general, there can be several ex-
pected values. However, Karcher [14] and Kendall
[16] show, under some strong conditions, the existence
and uniqueness of the expected value.

In a very similar way, we can define the set of em-
pirical means of featuresfxig byIM(fxig) = arg miny2M Xi dist(y; xi)2! (12)

and if there is at least one mean�y, we call s =q 1nPi dist(y; xi)2 the empirical standard deviation

ands2 the empirical variance.
Other types of central values can be defined in this

framework: we define more generally the “mean devi-
ation” at order� by��(y) = (E( dist(y; x)�)1=�= �RM dist(y; x0)�:px(x0):dx0�1=� (13)

If this function is finite overM, the features�x� min-
imizing it are called central features of order�. To
be more practical, we obtain the modes of the pdf for� = 0, the median features for� = 1, of course
the mean or expected features for� = 2, and the
“barycenter” of the support of the pdf (which is a com-
pact set) if the mean deviation is finite for� = 1.
This can also be applied to define the empirical central
features at any order.

The nice properties of the Fréchet expectation and
mean features are, in our case, due to the invariant dis-
tance (see appendix A.4 for proofs); these sets are sta-
ble under the transformation group:IE(g ? x) = g ? IE(x)IM(fg ? xig) = g ? IM(fxig) (14)

Since the distance we use does not depend on the rep-
resentation, the results of all minimization are ensured
to be also independent of the representation. Thus we
have obtained a stable definition (and a mean of com-
putation via optimization) for the expected features of
a pdf and for the empirical mean features.
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Assume that we have a set of frame measurementsfi = (ri; xi). We are looking for the mean framef = (r; x) in the Fréchet sense. Since the distance
from f to fi is

dist(f; fi) = N�(f (-1) Æ fi) = N�(f (-1)i Æ f)
with f (-1)i Æ f = (r(-1)i Æ r ; r(-1)i ? (x� xi)) , the least
squares criterion reduces toC�(f) = �2Xi kr(-1)i Æ rk2 +Xi kx� xik2
We can thus minimize independently for the position
and the orientation. Moreover, the solution is indepen-
dent of the parameter�.

The position is given by the barycenter of the frame
positions and the orientation is obtained by an iterative
gradient descent (equations can be found in [22]). The
gradient descent can be repeated for several starting
points to verify that the global minimum is obtained
an to test its uniqueness. Another method following
the same principles but incorporating second order in-
formations (covariance matrices) was also proposed in
[22].

We can now come back to the mean rotation prob-
lem raised in introduction : the mean rotation matrixR = 1nPiRi is generally not a rotation matrix, nor is
the mean unit quaternionq = 1nPi qi a unit quater-
nion. These two solutions have thus to be discarded.
The standard mean rotation vectorr = 1nPi ri is
always a rotation vector, but the results is not coher-
ent with the action of rotations. On the contrary, the
Fréchet expectation is always correctly (but not always
uniquely) defined, as illustrated in figure (8).6. Experiments: a data fusion problem
We presented in [22] an algorithm for the registration
based on 3D frames which also quantifies the uncer-
tainty on both the data and the transformation. We
used it to register medical images and showed that the
accuracy of the registration is far below both the voxel
size and the uncertainty of the individual features. In
this method, only the most stable features are used to
compute the registration, and a lot of matches are dis-
carded due to their large uncertainty.

The aim of the present experiments is to fuse to-
gether several registered images of a single patient in
order to construct an average model based on extremal
points. We are interested here in both the “topologi-
cal” stability of the model features (their probability of
observation) and their geometric stability, i.e. their de-
viation from the model in different observation. Thus
the selectivity of the features (section 3.4) is of the up-
per importance. Such a study on several patients will
eventually lead to identify the most stable anatomical
features (landmarks), and will allow to reduce better
the complexity while increasing the robustness of the
registration task.

The key point is to be able to compute the “mean
feature” even in the presence of large deviations. We
saw for instance in section 3.4 that the selectivity of
a trihedron match remains high even for a large error
bound: it is most interesting to keep in our model the
mean frames and not only the mean points. In such a
case, the Fréchet expectation we defined in section 5.2
is particularly well suited. We use more precisely the
mean feature (equation 12), defined with the invariant
distance on rigid transformations (see 4.6 and section
5.3 for the algorithm).6.1. 3D medial images
We present results from an experiment performed us-
ing 3D Magnetic Resonance images (MRI) in col-
laboration with Dr. R. Kikinis and Dr C. Guttmann
from the Brigham and Woman’s Hospital. These im-
ages are part of an extensive study of the evolution
of the Multiple Sclerosis (MS) disease. The same
patient gets a complete 3D MR examination several
times during one year (typically 24 different 3D ac-
quisitions). The aim is to register precisely in 3D all
those images in order to segment the lesions and eval-
uate very accurately their evolution. The images are
first echo,256 � 256 � 54 voxels, the voxel size is1mm� 1mm� 3mm.6.2. Extremal points and frames
Our registration algorithm relies on the extraction of
feature points in 3D medical images, defined with dif-
ferential geometry criteria: theExtremal Points(de-
fined in [29]). These are points on the object sur-
face for which both principal curvatures are extremal.
The interesting thing is that not only do we get some
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fxig) = E(fxigfxig) ' E(fxig)

(a) Standard and Fréchet expectations are identical at theorigin. (b) When the Fréchet expectation is near the origin, the standard
expectation can be considered as a first order approximation.
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fxig)E(fxig)


fxig)E(fxig)
(c) Near the Domain boundary, standard and Fréchet expectations

greatly differ. We note that with this relatively small noise, it would
be possible to detect the boundary effect.

(d) With a greater amount of noise, it is no longer possible toguess
the correct clustering to avoid the boundary effect.

Fig. 8. Behavior of expected rotations and their covariance matrices: projection of the measured rotation vectors, their standard and Fréchet
expectation and the corresponding uncertainty ellipsoid at �2 = 15 onto the(rx; ry) plane. The circle represent the domain boundary for
the rotation vector (� = krk = �). Remember that when we cross this boundary on one side at point r = �:n, we reenter the domain at the
symmetric pointr0 = ��:n.

invariant measurements associated with those points
(the principal curvatures), which are used to reduce
the complexity of the matching process, but we get
also the principal directions, which form, with the nor-
mal to the surface and the extremal point itself, an or-
thonormal basis, that is, a frame.

Typically, we extract about 3000 extremal points
from a 3.5 million voxels image. Our matching al-
gorithm produces about 600 pairs of associated ex-
tremal points between two images with a residual
mean square error (RMS) of about1mm, and about
1000 additional matches with a RMS around5mm.6.3. Building a model
Among the 24 images of a patient, one is considered as
the reference for registration: the algorithm presented
in [22] registers the 23 others using the 600 most ge-

ometrically stable frames. The accuracy obtained for
the transformation is sufficiently small (compared to
the large deviations on frames that we want to handle)
to consider that the transformations are exact.

Then we regroup the frames that we can match with-
out ambiguity in several images. We consider that two
framesf1 = (r1; x1) andf2 = (r2; x2) are matched
without ambiguity if the distance between them is
less than a given threshold (more exactly a threshold�0 ' 20o onkr(-1)1 Ær2k for the orientation and a thresh-
oldd0 = 0:8mm onkx1�x2k for the position), and if
there is no other frame that can be matched with any of
the two frames within these bounds. To find matched
frames among multiple images, we compute matches
between each pair of images, and look for maximal
cliques of correspondences between the whole set of
images. This process is rather time consuming and
can certainly be improved. However, the high selectiv-
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ity of frames keeps the algorithm complexity at a rea-
sonable level, which would not be the case with only
points (see section 3.4).

For each group of matched frames, we compute the
Fréchet mean frame (section 5.3) using the invariant
distance of section 4.6. To build a interesting model,
we add to this mean frame its variance and more pre-
cisely the variance�� on the orientation and the vari-
ance�x on the position. Let�f = (�r; �x) be the mean
frame; these variances are computed with:�2� =Xi k�r(-1) Æ rik2 and �2x =Xi kxi � �xk2
This characterizes the geometric stability of this fea-
ture. To characterize its “topological” stability, we add
also its probability of observation, i.e. the number of
images where it is observed divided by the total num-
ber of images (here 24).

6.4. Results
In figure 9 we present the surface of the brain and
the crest lines extracted from the first image and the
most stable frames from the model. Remember that
those frames do not exist in any of the 24 images: they
are mean frames. We observed that about 30 frames
are extremely well preserved, both geometrically and
topologically, and 70 others are observed in more than
80% of the images.

An interesting result is that the most stable extremal
points are located on the surface of the brain and not
on the skin nor on the skull. Since the images come
from the magnetic resonance modality, the skull is in-
deed not very visible. This points out the fact that the
registration is mainly done on the surface of the brain,
as expected.

The probability of observation of frames is linked
with the choice of the error bound for the multiple
matching step. The above figures where obtained with            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Fig. 9. The surface of the brain is displayed along with the crest lines extracted from the first image. Spheres represent the model extremal
points computed as the mean over the 24 images. Their size is inversely proportional to their stability. Top line from left to right: front and rear
views of the head. Bottom line: left and right views.
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64 Penne and Ayahe�0 ' 20o andd0 = 0:8 mm. Since only 70 frames
are observed in more than 80% of the cases, these
bounds seem to be quite restrictive. Thus we have re-
made the experiment with larger bounds (�0 ' 30o
andd0 = 1:4mm) and 200 frames are now observed
at 80% (figure 10). However, the multiple matching
step is in this case much longer and less reliable.

In order to obtain more accurate statistics, we plan
to adapt automatically the error bound for each group
of matched feature in order to maximize for each
model feature the number of non ambiguous matches.
This should allow to compute even more robustly the
stable features. At the current stage, we did not ob-
serve correlation between the probability of observa-
tion and the geometrical stability of the frames (vari-
ances�� and�x). We believe that a more thorough
analysis with an automatic choice of the error bounds
should allow to detect interesting correlations.

This kind of statistical model comprising second
order informations characterizes the features that are
geometrically and topologically stable in one object
(here the head of a patient). It can thus be considered
as a reference for the evaluation of feature selection
criterions. For instance, we plan to compare several
multi-scale criterions for selecting extremal points [7]
with this model in order to select the best ones and val-
idate them. Another interesting experiment would be
to compute the models of several patients and compare
them to characterize the anatomically stable extremal
points. The results could then be incorporated into
an anatomical atlas (see for instance [28]). The prob-
lem is more complex since transformations are not any
more rigid.
            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Fig. 10. Extremal points matched in more than 80% of the 24 im-
ages with a larger error bound.

7. Conlusion
We show in this paper that a wide range of para-
doxes arise when we try to generalize to geometric
features the classical algorithms used for points, and
we demonstrate, in the case of homogeneous features,
that they can be avoided by the careful definition of
basic operators which respect the following rules:� Independence of the representation.� Invariance or “commutativity” with respect to the

action of the associated transformation group.

We develop general methods that allow to define three
basic operators following these rules: the invariant
measure, invariant distances and stable expectation
and mean features. These methods are illustrated with
frame features under the rigid transformation group,
and an application to the data fusion problem is pre-
sented.

We believe that the application of these two basic
rules to a large number of geometrical problems can
lead to a proper mathematical framework that will give
reasonable and robust results in any situation without
the need to design ad-hoc heuristics. We are currently
working on a theory of uncertainty on geometric fea-
tures continuing the formalism introduced in this pa-
per. A further interesting development will concern
the invariants and their relationship with the statistical
theory of shapes.AppendixA.1. Proofs for lassial geometri proba-bilitiesA.1.1. Invariant measures on a group
Let dLG(f) be the following measure:dLG(f) = dfjJL(f)j with JL(f) = �(f Æ e)�e ����e= Id
wherejJ j = j det(J)j. We want to show that it is left
invariant. We have:
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Uniform distribution, distane and expetation for geometri features 65dLG(g Æ f) = d(g Æ f)���� �((gÆf)Æe)�e ���e= Id ����d(g Æ f) = det��(g Æ f)�f � df
and we get by the chain rule:�((g Æ f) Æ e)�e ����e= Id = �(g Æ f)�f : (f Æ e)e ����e= Id
Sincedet(A:B) = det(A): det(B) for square matri-
ces, we can conclude thatdLG(g Æ f) = dLG(f). The
proof for the right invariance of the proposed measuredRG(f) is analogous.A.1.2. Invariant measure on an homogeneousmanifold
Let dM(x) be the following measure:dM(x) = dxjJ(fx)j
with:J(fx) = �(fx ? e)�e ����e=O and fx 2 Fx
The condition (6):8h 2 H; ���� �(h ? e)�e ����e=O���� = 1
is indeed required fordM(x) to be invariant with re-
spect to the choice offx 2 Fx. Letfx andf 0x = fxÆh
(with h 2 H) be two transformations ofFx. By the
chain rule, we can write:J(f 0x) = �(fx?(h?e))�e ���e=O= �(fx?e0)�e0 ���e0=O : �(h?e)�e ���e=O= J(fx): �(h?e)�e ���e=O
and we havejJ(fx)j = jJ(f 0x)j if and only if��� �(h?e)�e ���e=O��� = 1. The proof of the invariance of the

measuredM(x) is then very similar to the proof for
the group measure (and can be obtained by replacing(f Æ e) by (f ? e)).

A.2. Norm indued on the manifold bythe group
Let Ng be a norm on the groupG. We define the in-
duced semi-norm on the homogeneous manifoldM
as N(x) = inf(h2H; fx2Fx) (Ng(h Æ fx))= inf(h1;h2)2H2 (Ng(h1 Æ fx Æ h2)) (A1)

The positivity ofN follows immediately from the
positivity ofNg . The symmetry comes from the sym-
metry of the norm on the transformation space and the
symmetry of the norm definition:N(f (-1)x Æ O) = inf(h1;h2)2H2 (Ng(h1 Æ f (-1)x Æ h2))= inf(h01;h02)2H2 (Ng(h01 Æ f (-1)x Æ h02))= N(x)

The triangular inequality is preserved by the infi-
mum:inf(h1;h2)2H2 �Ng(h(-1)1 Æ f (-1)x Æ fy Æ h2)�� infh12H fNg(fx Æ h1)g+ infh12H fNg(fy Æ h2)g� infh1;h2 (Ng(h1 Æ fx Æ h2)) + infh1;h2 (Ng(h1 Æ fy Æ h2))
and we eventually getN(f (-1)x ? y) � N(x) +N(y).

Now the definiteness: if the infimum ofNg(h1 Æf Æ h2)) is reached for every transformationf by(h1; h2) 2 H2, then the semi-norm is separable and
is thus a norm (this is in particular always true if the
isotropy groupH is compact):N(x) = 0 , 9(h1; h2) 2 H2 = Ng(h1 Æ fx Æ h2) = 0, 9(h1; h2) 2 H2 = fx = h1 Æ h2, fx 2 H , Fx = H = FO, x = OA.3. Norm on rigid transformations
The “norm” definition is (� is a fixed parameter):N�(f)2 = N�((r; t))2 = kfk2 = �2 krk2 + ktk2

This “norm” is positive and null only forkrk =ktk = 0, that is for identity. Iff = (r; t), we have
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66 Penne and Ayahef (-1) = (r(-1); r(-1) ? (�t)) (see [23] for equations on ro-
tations and frames) and since� = krk is a “norm” on
rotations:N�(f (-1))2 = �2 kr(-1)k2 + k �R>:tk2 = N�(f)2

The triangular inequality follows from triangular in-
equalities on the rotation and translation “norms”: letf1 = (r1; t1) andf2 = (r2; t2) be two frames. We
have f (-1)1 Æ f2 = (r(-1)1 Æ r2 ; r(-1)1 ? (t2 � t1))
and thusN�(f (-1)1 Æf2)2 = �2 kr(-1)1 Æ r2k2+kR>1 :(t2�t1)k2. The triangular inequality on rotations ensures
that �(r(-1)1 Æ r2) � �1 + �2 (where�i = krik) and
we have on vectorskt2 � t1k2 = kt1k2 + kt1k2 �2 h t1 j t2 i. Hence:N�(f (-1)1 Æ f2)2 � �21 + �22 + 2�1�2 + kt1k2 + kt1k2
Since�21�22 � (�21+kt1k2)(�22+kt2k2), we obtain thatN�(f (-1)1 Æ f2)2 � (�21 + kt1k2) + (�22 + kt2k2)+2:p(�21 + kt1k2)(�22 + kt2k2)� �p�21 + kt1k2 +p�22 + kt2k2�2

Taking the root-square, we obtain the requested in-
equality N�(f (-1)1 Æ f2) � N�(f1) +N�(f2)A.3.1. Metri indued on points
The norm induced on points is defined byN(x) = inf(h2H; fx2Fx) (Ng(h Æ fx))= inf(h1;h2)2H2 (Ng(h1 Æ fx Æ h2))

Let fx = (0; x) 2 Fx andh1 = (r1; 0), h2 =(r2; 0) 2 H. We have thush1ÆfxÆh2 = (r1Ær2; r1?x)
and the (squared) norm of this transformation is sim-
ply N2�(h1 Æ fx Æ h2) = �kr1 Æ r2k2 + kxk2

The infimum is reached forr1 = r(-1)2 and we haveN(x) = kxk. We note that in this case the isotropy
groupH is reduced to the rotation groupSO3, which
is compact.A.4. Stability of the expeted and meanfeatures
Assume thatz = g ? x is the random feature obtained
by the transformation of the random featurex by g:�2z(y) = E � dist(g ? x; y)2�= E � dist(x; g(-1) ? y)2�= �2x(g(-1) ? y)
thanks to the invariance of the distance.�x 2 IE(x)
implies that�z = g ? �x 2 IE(z). Eventually, we getIE(z) = g ? IE(x) and �z = �x (A2)

The same argument holds for the stability of cen-
tral features of any order and in particular the mean
features of a setxi. If zi = g ? xi, we haveIM(fzig) = g ? IM(fxig) and sz = sxAknowledgments
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