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Abstract. In this paper, we propose and analyze several methods to estimate a rigid transformation from a set of
3-D matched points or matched frames, which are important features in geometric algorithms. We also develop
tools to predict and verify the accuracy of these estimations. The theoretical contributions are: an intrinsic model
of noise for transformations based on composition rather than addition; a unified formalism for the estimation
of both the rigid transformation and its covariance matrix for points or frames correspondences, and a statistical
validation method to verify the error estimation, which applies even when no “ground truth” is available. We
analyze and demonstrate on synthetic data that our scheme is well behaved. The practical contribution of the paper
is the validation of our transformation estimation method in the case of 3-D medical images, which shows that an
accuracy of the registration far below the size of a voxel can be achieved, and in the case of protein substructure
matching, where frame features drastically improve both selectivity and complexity.

1. Introduction

Many algorithms in Computer Vision concernmatch-
ing tasks, whose aim is to find the correspondence
between two representations of an object. Matching
tasks are closely related, but not equivalent, toregis-
trationprocesses, which involve the evaluation of a ge-
ometric transformation. The main problem of match-
ing methods is generally to reduce the complexity of
associating features, such as in (Ayache & Faugeras,
1986) or (Huttenlocher & Ullman, 1987) for Align-
ment, (Grimson, 1992) for Interpretation Trees, (Lam-
dan & Wolfson, 1988; Wolfson, 1990) or (Rigoutsos
& Hummel, 1993) for Geometric Hashing, (Besl &
McKay, 1992) or (Zhang, 1994) for Iterative Closest
Point (ICP) methods.

In the following, we do not discuss matching meth-
ods per se, but the estimation of the 3-D motion. The
traditional approach is to apply a least squares method
using, for example, the singular value decomposition
in (Arun et al., 1987) and (Umeyama, 1991), or the
quaternion representation in (Horn, 1987). Some au-
thors, such as (Zhuang & Huang, 1994), concentrate
on the robustness of that estimation.

Uncertainty handling is a central topic in several
works, like (Durrant-Whyte, 1988a; Durrant-Whyte,
1988b) or (Ayache, 1991; Zhang & Faugeras, 1992).
There are fewer studies, however, dealing with the
precision of the estimated motion, which is our main
concern here. Early experimental works can be found
in (Fang & Huang, 1984), (Snyder, 1989), or (Haralick
et al., 1989). A theoretical evaluation of the errors
on the rotation estimation is introduced in (Kanatani,
1993) and (Kanatani, 1994). The present paper is
the continuation of the work presented in (Pennec &
Thirion, 1995).

As previous studies deal principally with point-to-
point correspondences, one of our contributions is a
method which applies also to frame-to-frame corre-
spondences (a frame is a local coordinate system, i.e.
a point with a trihedron). This raises some interesting
problems in error modeling: a common assumption
is that errors in geometric features can be modeled
with an additive error on the parameters of the feature
representation. We demonstrate that some important
invariance properties are not conserved with this type
of noise and we strongly believe that the assumption
of additivity should be replaced by the composition
with an error motion. This idea leads us to the devel-
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opment of a formalism which unifies the handling of
the error for the application, composition and estima-
tion of rigid motions, in the case of point-to-point or
frame-to-frame correspondences.

Section 2 investigates rigid motions and the han-
dling of uncertainty on geometric features, from the
probabilistic point of view. Section 3 describes the
statistical point of view, in particular the noise model
which should be used. We present a method to esti-
mate a rigid motion and its covariance matrix from a
set of matched points or a set of matched frames. In a
similar framework, we are able to estimate the fusion
of several rigid motions. Those estimates are used to
evaluate the noise process on the features used, and
sort matched primitives (points or frames) in order to
reject outliers, that is, matched primitives which are
“obviously” incompatible with the estimated motion.

Section 4 describes our robust motion estimation al-
gorithm based on the theoretical results of section 2.
It can be placed after, or better, embedded within your
favorite matching algorithm. Essentially, this algo-
rithm is the iteration of three processes: motion esti-
mation, noise process estimation and outliers rejection.
It gives, from an initial set of matched primitives with
or without a priori knowledge of their covariance, a
final rigid motion and its covariance matrix, an estima-
tion of the noise process on features, and the sorted set
of matched primitives compatible with that motion.

Another contribution is presented in section 5, where
we describe an a posteriori method to validate statis-
tically our motion estimation algorithm. This statisti-
cal validation applies even when no “ground truth” is
available.

Finally, we present in section 6 experimental results
showing the performance of our registration algorithm
and its statistical validation. Those results are given for
synthetic data, and also for real data, namely 3D medi-
cal images, for which the evaluation of the precision of
the registration is vital. Another application example
is presented with 3D protein substructure matching.

2. Probabilistic features and rigid motions

2.1. Representation of rigid motion and frames

Let B = {o, i, j,k} be the canonical right-handed or-
thonormal coordinate system of Euclidean spaceR3

(we have thuso = (0, 0, 0)> and[i, j,k] = Id). Let
F = {t, i′, j′,k′} be another right-handed orthonor-
mal coordinate system (i.e. a frame), which coordi-

nates are expressed inB. The rigid motion fromB to
F can be written in homogeneous coordinates

M =
[

R t
0 1

]
with R = [i′, j′,k′]

Let R be a rotation of angleθ around the unit axis
n. Using the rotation vectorr = θn (see (Ayache,
1991) and appendix A.1), we can also represent the
rigid motion M by the six dimensional vectorf> =
(r>, t>).

We note thatf represents both the rigid motionM
and the frameF , with respect to the canonical co-
ordinate systemB. Other representations could have
been chosen for the rotation, e.g. quaternions, Euler’s
angles. . . butf would still represent the same rigid mo-
tion or feature frame. For convenient notation within
the text, we writef = (r, t) and call it indifferently a
frame or a rigid motion when there is no ambiguity.

2.2. Utility of frames in geometric computations

The use of frame features instead of points is motivated
by three main reasons. Firstly, frames are natural fea-
tures emerging from some geometric problems. For
instance, extremal points (defined in (Thirion & Gour-
don, 1995)) are points on an iso-surface optimizing a
differential geometry criterion. Since they lie on a sur-
face, they are provided with the two principal curvature
directionst1, t2 and the surface normaln (see Fig. 1),
which forms a frame.

curvature

direction

Maximal

principal

Normal

Crest line
n

t2

k1

t1

Fig. 1. Frame features naturally arise from geometric problems.
Top: (extremal) points on iso surfaces. Bottom: geometric descrip-
tion of an amino acid.
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In protein substructure matching, an amino acid lo-
cation is characterized by the position of 3 atoms in a
specific geometry (see figure 1). Since the constraints
are identical for every amino acid, the shape of the
triangle is not discriminant and the only geometric de-
scriptor of an amino acid is its pose, which is again
described by a frame. For computer vision applica-
tions, we could also think to model each vertex of a
polyhedral scene by a frame.

The second reason is that more information is
available, thus higher selectivity and/or accuracy (for
complexity reasons, however, the extra information
should be statistically relevant in order to be useful).
The introduction of normals in (Feldmaret al., 1994)
allows, for instance, an easy search for seed matches
by the use of bitangents, and an improvement of the
accuracy in the pose estimation. In the same way,
using frame features instead of points allows one to
exploit the maximum information about the features
(see section 6), and can lead to a drastic reduction
of the problem complexity as in (Pennec & Ayache,
1994). Last but not least, frames and rigid motions are
equivalent objects from a mathematical viewpoint, and
knowing how to handle uncertainty on rigid motions is
also necessary.

2.3. Operations on frames and motions

Rigid motions can be composed, inverted and applied
to points: the composition (operator◦), inverse ((−1))
and apply (?) operations on rotation vectors (see ap-
pendix A.1), can be easily extended to motions in the
following way.

• Application off = (r, t) to pointx:

y = f ? x = r ? x + t

• Composition off1 = (r1, t1) by f2 = (r2, t2):

f = f2 ◦ f1 =
∣∣∣∣
r2 ◦ r1

r2 ? t1 + t2

• Inverse off = (r, t):

f (−1) =
∣∣∣∣
r(−1)

r(−1) ? (−t)

Due to the equivalence of frames and motions, the
application of a rigid motionf to a framefm is simply
the compositionfs = f ◦ fm. We note that in this

formula,fm andfs have the same interpretation (frame
or motion), butf is always a motion.

2.4. Probabilistic features

Estimated or measured values of geometric features are
corrupted by measurement errors. Letx be the exact
representation of such a feature andx̂ the measured
one. From a probabilistic point of view,̂x is the obser-
vation or realization of an-D random vector character-
ized by its probability density function (pdf)ρx. For
computational reasons, however, a common assump-
tion is to retain only the first and second order centered
moments of the pdf, i.e. the expectation vector and
covariance matrix of therepresentationconsidered as
a random vector. This approach was mainly developed
in robotics (Smith & Cheeseman, 1987; Smithet al.,
1987; Durrant-Whyte, 1988a; Durrant-Whyte, 1988b)
with some applications in computer vision (Zhang &
Faugeras, 1992). We note that no assumption is made
about the physical noise process. The expectation and
the covariance matrix of an “uncertain feature” are de-
fined by

x̄ = E(x̂) =
∫

y.ρx(y).dy

Σxx = E
(
(x̂− x̄)(x̂− x̄)>

)

The probabilistic featurêx is then treated as the
couple(x̄,Σxx). A common hypothesis is that the
noise iscentered, i.e. E(x̂) = x̄ = x. In this case,
a probabilistic feature is the couple(x,Σxx) and a
deterministic feature has a null covariance matrix.

It is now interesting to see how to generalize our
group operations on probabilistic features. For that
purpose, we use the classical first order approximation
of Jacobians.

Propagation through an explicit functionLet x =
(x̄,Σxx) be an m-D random vector andh a p-
dimensionalC1 function acting onx. Then thep-D
random vectorz = h(x) is determined, up to the first
order, byz = (z̄,Σzz) where

{
z̄ = h(x̄)
Σzz = Jh.Σxx.J>h

(1)

with

Jh =
∂h(x)

∂x
=




∂h1
∂x1

. . . ∂h1
∂xm

...
. ..

...
∂hp

∂x1
. . .

∂hp

∂xm
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The Jacobian matrixJh generally depends on the point
xwhere it is computed, and we denote byJh|x its value
whenever the application point needs to be specified.
For a functionh(x,y) of two independent parameters,
the mean is simplȳz = h(x̄, ȳ) and the covariance
matrix

Σzz = JhxΣxxJ>hx
+ JhyΣyyJ>hy

with

Jhx =
∂h(x,y)

∂x
and Jhy =

∂h(x,y)
∂y

The composition of functions is often used to sim-
plify the calculus. Leth1, h2 andh be three multi-
dimensional functions such ash(x) = (h1 ◦ h2)(x) =
h1(h2(x)). The Jacobian ofh is then

Jh

∣∣∣∣
x

= Jh1

∣∣∣∣
h2(x)

. Jh2

∣∣∣∣
x

Propagation through an implicit functionLet x =
(x̄,Σxx) be am-D random vector andΦ : Rm ×
Rp → Rp a C1 function. We want to investigate the
p-dimensional random vectory implicitly defined by
Φ(x,y) = 0. From the implicit function theorem,
y = ϕ(x) exists around a given point(x0,y0) such

asΦ(x0,y0) = 0 if and only if
∂Φ
∂y

can be inverted at

this point and we have in this case

∂y
∂x

=
∂ϕ

∂x
= −

(
∂Φ
∂y

)−1
∂Φ
∂x

Using a first order Taylor series expansion,ȳ is implic-
itly defined byΦ(x̄, ȳ) = 0 and the covariance matrix
is given by

Σyy =
(

∂Φ
∂y

)−1
∂Φ
∂x

Σxx
∂Φ
∂x

>(
∂Φ
∂y

)−>
(2)

Minimizing a criterion Let C be a function of class
C2 from Rm × Rp to R+ (i.e. a criterion). We now
define thep-dimensional random vector̂y as the argu-
ment for which the criterion is minimum for a givenx:

ŷ = ArgMiny (C(x,y))

A necessary condition to obtain a minimum is

Φ(x, ŷ) =
∂C

∂y

>
∣∣∣∣∣
(x,ŷ)

= 0

and

H =
∂2C

∂y2

∣∣∣∣
(x,ŷ)

positive definite

We are then back to the case of an implicit function
and since the Hessian matrixH is symmetric, the co-
variance matrix of̂y at the minimum is

Σŷŷ = H−1 ∂̂Φ
∂x

Σxx
∂̂Φ
∂x

>
H−1 (3)

This propagation scheme will be used in section 2 for
the rigid motion minimizing the least squares criteria.

2.5. Propagation of uncertainty for rigid motions

To use the above framework on frames and rigid mo-
tions, we need to determine the Jacobians of the three
basic operations: composition, inversion of frames,
and application of a motion to a point. Appendix A.1
describes the tedious computations related to rotations,
in particular the Jacobian of the composition of rotation
vectors.

Application of a frame(f ,Σff ) to a point (x,Σxx)
Let J? be the Jacobian ofy = f ? x with respect to
f = (r, t) andR the rotation matrix associated to the
rotation vectorr.

J? = ∂(f?x)
∂f = ∂(r?x+t)

∂(r,t) =
[

∂(r?x)
∂r ; I3

]

∂(f?x)
∂x = ∂(r?x+t)

∂x = R

The computation of the Jacobian∂(r?x)
∂r is detailed

in appendix A.1.4. The covariance matrix ofy is then

Σyy = J? Σff J>? + R Σxx R> (4)

Composition of frame(f1,Σ11) by (f2,Σ22) Let J1

(resp.J2) be the Jacobian off = f2 ◦ f1 with respect
to f1 = (r1, t1) (resp.f2 = (r2, t2)). Then

J1 =
∂(f2 ◦ f1)

∂f1
=

[
∂(r2◦r1)

∂r1
0

0 R2

]

J2 =
∂(f2 ◦ f1)

∂f2
=

[
∂(r2◦r1)

∂r2
0

∂(r2?t1)
∂r2

I3

]
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The computation of the Jacobian ofr1 ◦ r2 with re-
spect to the rotation vectorsr1 andr2 are detailed in
appendix A.1.4. The covariance onf is simply given
by

Σff = J1 Σ11 J>1 + J2 Σ22 J>2 (5)

Inversion of frame(f ,Σff ) Let JI be the Jacobian
of f (−1) = (r(−1) , r(−1) ? (−t)) with respect tof =
(r, t). As r(−1) = −r, we have:

JI = −
[

I3 0
∂(r(−1)?t)

∂r(−1) R>

]

using once again the Jacobian of the application of
a rotation vector to a point (appendix A.1.4). The
covariance off (−1) is then

Σf (−1)f (−1) = JI Σff J>I (6)

We have now completed the computations needs to
propagate the covariance matrices through the three
basic operations on frames and points.

2.6. The noise model

The problem is now slightly different. In the previ-
ous sections, we considered that the pdf (or the mean
value and the covariance matrix) of the probabilistic
geometric features were known. In the real world, this
can be a very strong assumption, in particular when
we begin with simple measurements without any idea
of their noise. In such a case, a natural assumption
is to say that all measurements are corrupted by the
same noise process. This is the notion of Identically
Independently Distributed (IID) measurements (An-
derson, 1958). For points, the common assumption is
to impose the same covariance matrix on all point mea-
surements, which corresponds effectively to the same
additive noise. Regarding frames, we have to be more
careful.

Some paradoxes in standard geometric probabilities
(see for instance the Bertrand paradox in (Kendall &
Moran, 1963)) can be avoided by defining the uniform
pdf over a differential manifold (i.e. the set of geomet-
ric features of a given type) as the pdf which remains
invariant by the action of any transformation of a given
(Lie) group. The transformations considered can be,
for instance, the rigid motions: if we have a uniform
distribution over our manifold, this distribution has to

remain uniform when we apply the same rigid motion
to all the features (for other examples, see (Pennec &
Ayache, 1996)).

For our purpose, we have to impose a similar invari-
ance property on the noise process. Letf̂1 and f̂2 be
measurements of two framesf1 and f2, corrupted by
the same noise process. Thenf̂ ′1 = f ◦ f̂1 and̂f ′2 = f ◦ f̂2
are measurements off ′1 = f ◦ f1 andf ′2 = f ◦ f2 and
have to be corrupted by the same noise process (pos-
sibly different from the first one). This simply means
that two identical (or comparable) distributions remain
identical by a change of the reference frame, which
seems reasonable. A related assumption is usually re-
quired for criterions: ify minimizesC(x,Y), it is
desirable to have a criterion invariant by a given group
of transformation (i.e.C(f ? x, f ? Y) = C(x,Y)
for any transformationf ) in order to obtain the trans-
formed resultf ?y minimizing the criterionC(f ?x,Y)
on transformed data.

Why additive noise is not adaptedLet f̂1 and f̂2 be
measurements of the framesf1 andf2, corrupted (in-
dependently) by the same noise process of covariance
Σ. If the two noises are centered, this means that
f̂i = fi + δf i with E(δf i) = 0 and

E
(
δf i. δf>i

)
= Σ

If we change our view-point, i.e. apply a global
motionf to exact and measured values, we obtainf̂ ′i =
f ◦ f̂i = f ′i + δf ′i with E(δf ′i) = 0. The first order
approximation of Jacobians gives us the propagation
of covariance matrices:

E
(
δf ′i. δf ′>i

)
= Ji.Σ.J>i

with

Ji =
∂(f ◦ fi)

∂fi

In generalJi depends onf andfi, thereforeJ1 6= J2:
the covariance matrixΣ′

11 of f̂ ′1 is thus different from
the covariance matrixΣ′

22 of f̂ ′2. The two measure-
ments are no longer corrupted by the same noise pro-
cess. As we can see, using an additive noise hypothesis
can lead to paradoxes since the result of the computa-
tions depends upon the chosen reference frame.

A simple example with rotation vectorsWe consider
an example with rotations only, represented by their ro-
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tation vectors. Letr1 = (π
2 , 0, 0)> andr2 = (0, 0, 0)>

be two rotation vectors with the same covariance:

Σ11 = Σ22 = Σ = σ2




0 0 0
0 1 0
0 0 1




If we apply a global clockwise rotation ofπ/2
around thex axis, represented by the rotation vec-
tor r = (−π

2 , 0, 0)>, we obtain the new rotation vec-
tors r′1 = (0, 0, 0)> andr′2 = (−π

2 , 0, 0)>. Com-
puting the Jacobians and propagating covariances, we
find thatΣ′

11 = 8
π2 Σ, which is significantly different

from Σ′
22 = π2

8 Σ (the ratio is approximately 1.5: see
Fig. 2).

It is normal that covariance matrices change accord-
ing to the motion, but since they change differently at
different positions, we cannot define identical distribu-
tions as additive noises (with different means) sharing
the same covariance matrix: if these matrices areiden-
tical in one coordinate system, they are not in another
one. Since the IID hypothesis is used in most usual
statistical methods (and will be used in the following),
it is important to define it well.

A compositive noise modelIn order to satisfy the
invariance constraint, we propose to model the mea-
surement process by the composition of the exact value
with a noise (motion): letf be the exact representation
of a frame and̂f the measured one, thenf̂ = f ◦e where
e is a small rigid motion around the identity. In this
process,f is a deterministic frame, wherease andf̂ are
probabilistic.

With this noise model, the invariance property is
automatically verified: ifg is the global motion to
be applied,̂f ′ = g ◦ f̂ = (g ◦ f)◦ e = f ′ ◦ e. We
note that this compositive noise model corresponds to
the left compositionf ◦ e by the exact frame. We
could not have used the right compositione ◦ f since

in this case, the transformation off̌ = e ◦ f by g gives
f̌ ′ = g◦e◦f 6= e◦f ′. We can then characterize a noise
process on frames by a “random frame”e measuring
the identity (i.e. the canonical frame). A centered noise
corresponds toE(e) = Id, and is entirely defined by
its covariance matrix:e = ( Id,Σ). From now on,
the noise on frames is a compositive noise model, and
we use the probabilistic measuremente of identity to
represent it.

We note that this is also an additive noisein the
local frame, or more specially in the tangent space of
the manifold at the expected point.

Validity of the additive noise It is interesting to note
that, for 2D rotations (with angular representation) or
for translations (i.e. points), the composition corre-
sponds to the addition. In these cases, compositive
and additive noise models are identical, which have
provided a wrong intuition for more complex cases.
More generally, the additive noise model corresponds
to the compositive one as soon as the action of the
transformation group on features (or on itself) is lin-
earin the considered representation, in which case the
tangent space corresponds to the space itself. There
exists in this case a matrixF for each motionf such
that f ? x = F.x (or f ◦ g = F.g) and the Jacobian
∂(f ? x)/∂x = F is thus independent of the position
x of the feature.

The relevance of the compositive noise model to real
cases will be shown in section 7 with the analysis of
the estimated noise on extremal points.

3. Uncertainty and frames: the statistical point of
view

In the first part, we focus on how to modela priori
information about uncertainty, and how to propagate it
through the usual geometric computations. However,

rx rz

ry

r1

r2 r’1

r’2

Rotation of vector r
rx

rz

ry

Σ1 = Σ

Σ2 = Σ Σ′
1

Σ′
2

Fig. 2. The same covariance matrix on two rotation vectors in one reference frame generally leads to different covariance matrices in another
reference frame. The circle is the intersection of the definition domain of the rotation vector with the(ry, rz) plane.
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in real cases, we often need to estimate this information
a posteriorifrom data. This is the goal of statistics.

The first section is devoted to the estimation of a
rigid motion between two sets of matched features,
while considering that the noise process on features
is known. The following question is thus: how can
we estimate this noise process on features? The last
section of this part deals with outliers detection.

3.1. Estimation of a rigid motion

In this section, we address two main problems of es-
timation. The first is the estimation of a rigid motion
(f ,Σff ) from two sets of matched geometric features,
namely points or frames. This is the registration prob-
lem. The second is the fusion of several measurements
(fi,Σfifi) of the same motion in order to get a more
accurate estimation. This is a data fusion problem.

Many papers on pose estimation focus on closed-
formed solutions in the case of point-to-point corre-
spondences (see the references in the introduction and
especially (Kanatani, 1993)), but fewer deal with the
uncertainty estimation of the pose found (see however
(Csurkaet al., 1995)). Moreover, we also want to
estimate the rigid motion from frame-to-frame corre-
spondences, and no classical method easily applies to
such a problem.

However, a unified framework for estimation with
uncertainty has been developed using the Extended
Kalman Filter (EKF) in (Ayache, 1991). We recall
in section 2 the basic principles of this algorithm and
introduce the notations and framework for motion es-
timation. In the following sections, we apply it to rigid
motion estimation from point matches, from frames
correspondences, and from a set of measurements of
this motion. A special section (2) will be devoted to the
computation of the uncertainty of the motion estimated
by a standard least-squares on points.

Kalman Filtering Assume we have a set of measure-
ments (or data){χi} and we search a state variableg
such that, for each exact dataχi, we have the vectorial
relation

zi(χi,g) = 0

This is called the measurement equation. In our case,
the stateg is the sought rigid motion and the data are
couples of matched points or frames, or simple mea-
surements of this rigid motion (section 2). Since we
are working with noisy data, we only know the mea-

sured values of datâχi = χi + ωi (the observation).
The additive noisesωi are assumed to be independent,
white and centered with a known covarianceΩi:

E(ωi) = 0 E(ωi. ω>i ) = Ωi

and E(ωi. ω>j ) = 0 for i 6= j

The measurement equations are generally not linear,
but assuming we know a good estimateĝ of the state
g, we can linearize them around the estimates and
solve the problem with standard linear optimization
techniques, namely here Kalman Filtering. This is
the basis of the Extended Kalman Filtering technique.
Since Kalman Filtering is a recursive filter, we assume
that we have at each stepi an estimatêgi−1 of the
state vector. We can then linearize the measurement
equation around(χ̂i, ĝi−1) with a first order Taylor
series expansion. Taking the following notations:

ẑi = zi(χ̂i, ĝi−1)

Mi =
∂̂zi

∂g
=

∂zi

∂g

∣∣∣∣
(χ̂i,ĝi−1)

∂̂zi

∂χ
=

∂zi

∂χ

∣∣∣∣
(χ̂i,ĝi−1)

the Taylor expansion of the measurement equation
zi(χi,g) = 0 gives

ẑi +
∂̂zi

∂g
.(g − ĝi−1) +

∂̂zi

∂χ
.(χi − χ̂i) ' 0

This equation can be re-written in the linear form
Mi . g = γi + νi where γi is the linearized
measurementγi = Mi.ĝi−1 − ẑi andνi is a centered
noise

νi =
∂̂zi

∂χ
.(χ̂i − χi)

of covarianceΣii:

Σii =

(
∂̂zi

∂χ

)
Ωi

(
∂̂zi

∂χ

)>

This draft paper is provided to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other

copyright holders. All person copying this information are expected to adhere to the terms and constraints invoked by each author’s copyright. This work may not

be reposted without the explicit permission of the copyright holder.



210 Pennec and Thirion

Assuming that an initial estimate(ĝ0 , Ĝ0) of the
state is given, a reasonable (weighted) least-squares
criterion to minimize can be constructed on the basis
of Mahalanobis distances:

C =
1
2
(ĝ0 − g)>Ĝ−1

0 (ĝ0 − g)

+
1
2

∑

i

(γi −Mi.g)>Σ(−1)
ii (γi −Mi.g)

The recursive solution for the minimization of this cri-
teria is called the Kalman Filter ((Jazwinsky, 1970;
Ayache, 1991)). At each step, the input is an estimate
(ĝi−1, Ĝi−1) of the state and the linearized measure-
ment(γi,Σii), and the output is the updated estimation
of the state(ĝi, Ĝi). We just recall here the equations
of the filter:

Ki = Ĝi−1.M>
i .(Σii + Mi.Ĝi−1.M>

i )−1

ĝi = ĝi−1 −Ki.ẑi

Ĝi = ( Id −Ki.Mi).Ĝi−1

(7)

For linear transformation of Gaussian variables, the
Kalman Filter produces the optimal estimate of the
state (in the sense of minimum error variance), which
turns out to be also the maximum likelihood estimate.
Moreover, it preserves the Gaussian nature of the ran-
dom variables and thus there is no loss of information
in keeping only the mean value and covariance matrix.

If the Gaussian assumption is removed, the Filter
remains the bestlinear estimator, but is no longer the
best one amongst all non-linear estimators. In the gen-
eral case of non-linear transformations with any type
of noise (which is our case in this article), the Extended
Kalman Filter only represent a sub-optimal non linear
estimator, but appears to provide accurate estimates in
practice. However, some care has to be taken about the
initial state and the order of the measurements.

Estimation from matched pointsAssume that we
have two sets of matched pointsxi andyi, one trans-
formed into the other with a rigid motionf such that
yi = f ? xi. During the measurement process, these
points are corrupted by additive noise: we only mea-
surex̂i = xi + δxi andŷi = yi + δyi and we want
to estimate the motionf and the covarianceΣff of this
estimation. We assume that the errorsδxi andδyi are
independent with covariancesΣxixi andΣyiyi .

The error vector is in this case the classical difference
in position zi = ŷi − f ? x̂i (and the measurement

equation iszi = 0). The sought state is a rigid motion
g = (r, t), and the observation vector is(χ̂i,Ωi):

χ̂i =
∣∣∣∣
x̂i

ŷi
Ωi =

[
Σxixi

0
0 Σyiyi

]

If R is the rotation matrix corresponding to the ro-
tation vectorr of the motiong, we have∂zi/∂χi =
[−R; Id] and hence

Σzizi
= Σyiyi

+ RΣxixi
R> (8)

The EKF process is then the following.

• Initialize the state with Identity or a least squares
estimate with a large covariance matrix (100 to
1000 times the least-squares covariance, for ex-
ample), in order to minimize the influence of the
initial state on both the estimation and its uncer-
tainty.

• For each couple of matched points(x̂i, ŷi):
Computêhi = ŷi − ĝi−1 ? x̂i

ComputeMi = ∂h
∂g = −∂(g?x)

∂g estimated at
(x̂i, ĝi−1)
ComputeΣzizi using Eq.(8) with rotationRi−1.
Update(ĝi−1, Ĝi−1) to (ĝi, Ĝi) using Eq.(7).

Least squares In the isotropic case (more specially
when Σxixi = Σyiyi = σ2 Id), the covariance on
the error vector becomesΣzizi = 2σ2 Id, and the
criterion reduces to a simple least squares

C =
1
2

∑

i

‖ŷi − f ? x̂i‖2 =
1
2

∑

i

z>i .zi

which can be solved exactly by several techniques.
One consists in computing the barycenters of the two
sets and searching for the rotation using quaternions
(see (Horn, 1987)).

The covariance matrix can be determined using
equation (3) with some important simplifications: as-
suming thatχ = (x1, . . .xn,y1, . . .yn)> is the vec-
tor of all observations andf the state, the associated
implicit function characterizing an optimum is

Φ(χ, f) =
∂C

∂f

>
=

∑

i

(
∂zi

∂f

)>
zi = 0

The values of the errorszi being often small around
the minimum, we can neglect in the derivatives ofΦ
the terms of the formz.z′′ with respect to the terms of
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the formz′.z′ (see (Gillet al., 1981, section 4.7)). We
obtain thus

H =
∂Φ
∂f

'
∑

i

(
∂zi

∂f

)>(
∂zi

∂f

)

∂Φ
∂χ

'
∑

i

(
∂zi

∂f

)>(
∂zi

∂χ

)

The covariance matrix of the state is then given by
equation 3:

Σff =H−1

�P
i

�
∂zi
∂f

�>�
∂zi
∂�

�
Σ��

�
∂zi
∂�

�>�
∂zi
∂f

��
H−1

= H−1

�P
i

�
∂zi
∂f

�>
Σzizi

�
∂zi
∂f

��
H−1

In our case, the error vectorszi are independent and
have identical diagonal covariances:zi = (0, 2σ2 Id)
(it is under this assumption that the least-squares es-
timator is optimal). The central term in the previous
equation collapse then into2σ2H and the covariance
of the motion can then be simplified in

Σf̂ f̂ = 2σ2H−1HH−1 = 2σ2H−1 (9)

with

H =
∑

i

(
∂(f̂ ? xi)

∂ f̂

)>(
∂(f̂ ? xi)

∂ f̂

)

Estimation from matched framesWe now face the
following problem. Assume we have two sets of
matched frames{fmi} and{fsi} (m for model ands
for scene), transformed one into another with a global
rigid motion f such thatfsi = f ◦ fmi . We only have
access to their measured valuesf̂si = fsi ◦ esi and
f̂mi = fmi ◦ emi and we want to estimate the rigid
motionf and the uncertaintyΣff of that estimate. We
assume moreover that the compositive noises are in-
dependent and centered:emi = ( Id,Σmimi) and
esi = ( Id,Σsisi).

Combining the two measurement equations with the
hypothesis and isolating the error term, we get our error
vector:

zi = f̂ (−1)
si

◦ f ◦ f̂mi = e(−1)
si

◦ emi (10)

Here, we are using a particular aspect of our repre-
sentation for frames: identity corresponds to a null
translation and a null rotation vector. This allows us to
solve this estimation problem using the EKF.

An initial estimate is easily obtained with the first
couple of frames:̂g0 = f̂s0 ◦ f̂ (−1)

m0 . From the obser-
vation vector:

χ̂ =

∣∣∣∣∣
f̂m
f̂ (−1)
s

Ω =
[

Σfmfm 0
0 Σ

f
(−1)
s f

(−1)
s

]

and the estimationŝJ1, Ĵ2, Ĵ3 andĴ4 at(f̂mi
, f̂si

, ĝi−1)
of the following Jacobians:

J1 = ∂(g◦fm)
∂g J2 =

∂(f (−1)
s ◦(g◦fm))

∂f
(−1)
s

J3 =
∂(f (−1)

s ◦(g◦fm))
∂(g◦fm) J4 =

∂((f (−1)
s ◦g)◦fm))

∂fm

we can simplify the Jacobians of the error vector:

∂z
∂g

= J3.J1
∂z
∂χ

= [J4 ; J2]

and its covariance matrix is given by

Σzz = Ĵ4Σfmfm Ĵ>4 + Ĵ2Σf
(−1)
s f

(−1)
s

Ĵ>2 (11)

The EKF estimation can thus be summarized as:

• Initialize the state with

(ĝ0 , Ĝ0) = (f̂s0 ◦ f̂ (−1)
m0

, Σ
(fs0◦f

(−1)
m0 )(fs0◦f

(−1)
m0 )

)

• For each couple of matched frames(f̂mi , f̂si):
Computêzi = f̂ (−1)

si ◦ ĝi−1 ◦ f̂mi and the Ja-
cobianŝJ1, Ĵ2, Ĵ3, Ĵ4.
ComputeMi = Ĵ3.Ĵ1 andΣzizi using Eq.(11).
Update (ĝi−1, Ĝi−1) to (ĝi, Ĝi) using
Eqs.(7).

Fusion of rigid motions or framesConsider now a
set {f̂i} of measurements of the same framef such
as f̂i = f ◦ ei. The goal is to estimate the frame
(f ,Σff ). Assuming an errorei = ( Id,Σii) on each
measurement, the error vector is

zi = f̂ (−1)
i ◦ f = e(−1)

i (12)

An initial estimate is easily obtained with the first
frame: ĝ0 = f̂0. The measurement̂χ is now simply
χ̂ = f̂ (−1) and its covariance matrixΩ = Σf (−1)f (−1) .
The EKF process can thus be summarized as:
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• Initialize the state with(ĝ0 , Ĝ0) = (f̂0,Σf0f0)
• For each measurement of framef̂i:

Computêzi = f̂ (−1)
i ◦ ĝi−1

ComputeMi =
∂(f (−1)◦g)

∂g andĴ1 = ∂(f (−1)◦g)
∂f (−1)

estimated at(f̂ (−1)
i , ĝi−1)

ComputeΣzizi
= Ĵ1Σf (−1)f (−1) Ĵ>1

Update (ĝi−1, Ĝi−1) to (ĝi, Ĝi) using
Eqs.(7).

3.2. Estimation of the noise process on features

In the previous section, we assumed that the noise
process corrupting the measurements was known, and
we estimated the motion. We are now trying to estimate
the noise process while the motion is known (or already
estimated). In fact, we only estimate its covariance
matrix since the mean value should be null with our
hypotheses (which is verified experimentally).

Estimation of the noise on points

Anisotropic noise: Let {xi} and{yi} be two sets of
matched points with measured valuesx̂i = xi + δxi

andŷi = yi + δyi, andf̂ be an estimate of the motion
f = (r, t) linking them together (yi = f ? xi).

The error vectorzi = ŷi − f̂ ? x̂i is, up to the first
order,zi = δyi−r?δxi if we assume an exact motion
(this assumption will be removed later).

Assuming that each measurement errorδxi andδyi

comes from noise processes of covariancesΣxx and
Σyy, the covariance on the error vectorzi should be
Σzz = Σyy + RΣxxR>, which can be estimated by

Σ̂zz =
1
N

∑

i

zi z>i (13)

If we assume that one set of points is exact, then we
can solve for the uncertainty of the other:

Σxx = 0 =⇒ Σ̂yy = Σ̂zz

and

Σyy = 0 =⇒ Σ̂xx = R>Σ̂zzR

If we assume that both sets have the same noiseΣ, we
obtainΣ̂zz = Σ+RΣR>, which is uniquely solvable
for Σ unlessR is a rotation of angleθ = π/2 or θ = π
(see (Koch, 1988) for a solving method). If the rotation
between the two sets is small, the covariance on points
is approximated at first order by

Σ̂xx = Σ̂yy =
Σ̂zz

2
=

1
2 N

∑

i

zi z>i

Isotropic noise: We have in this caseΣxx = Σyy =
Σ = σ2 Id, and hence the covariance matrix of the
error vector should beΣzz = 2 σ2 Id. Using the
estimation proposed in equation (13) and taking the
trace, we obtain:

Tr(Σ̂zz) = 2σ̂2. d =
1
N

∑
‖zi‖2

whered is the dimension of the space (d = 3 in our
case). SincêC = 1

2

∑ ‖zi‖2 is the value of the least-
squares criterion at the minimum, the variance estima-
tion can be summarized as

σ̂2 =
Ĉ

d N

Estimation of the noise on frame features

Standard noise process:With the same notations as
in the previous sections, and neglecting once again the
error on the estimatêf of the motionf , the error is:

ei = f̂ (−1)
si

◦ f̂ ◦ f̂mi = e(−1)
si

◦ emi

Assuming a common underlying process of mea-
surement errorsesi = emi = ( Id,Σ), we can deter-
mine thate(−1)

si = ( Id,Σ) (since the Jacobian of the
inversion is− Id at the origin), henceei = ( Id, 2Σ).
It should be noted that the covariances behave here as
usual, but only because errors are close to identity. An
estimator of the covarianceΣ = Σmimi = Σsisi of
frame features is given by

Σ̂ =
1

2 N

∑

i

ei e>i

A simplified model: In some cases, for example with
a small number of matches, the estimation of the above
covariance matrix can be unstable. We can use instead
a kind of isotropic model of noise with a standard devi-
ationσθ for the rotation part andσd for the translation
part. Splitting the error vector into a rotation and a
translation componente>i = (e>θi

, e>di
), we can then

estimate the variances by

σ̂2
θ =

∑ ‖eθi‖2
6 N

and σ̂2
d =

∑ ‖edi‖2
6 N
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Discussion about noise estimation:Several problems
arise in the covariance estimation scheme: assuming
a Gaussian noise model with outliers (contaminated
Gaussian for instance), it is clear that estimating the
covariance matrix on all points, including outliers, will
produce a significant elevation of the covariance.

On the other side, estimating on inliers only will
induce an under-estimation which corresponds, on a
theoretical point of view, to the following partial inte-
gration on the inlier domainD

Σ′ =
∫

D
(x− x̄).(x− x̄)>.ρ(x).dx

instead of the whole spaceRd for the real covariance
matrixΣ.

With the Gaussian assumption, and aχ2 threshold on
the Mahalanobis distance selection (see the following
section), this equation reduces toΣ′ = α(χ).Σ where
the correction factorα is defined by an integral of
the χ2 distribution. In practice, this factor is only
slightly inferior to one with standard values of theχ2

threshold, and we prefer to compute the covariance
with matches that have a Mahalanobis distance less
than 1.5 or 2 times theχ2 threshold. This includes
only the outliers that are almost inliers and ensures a
very small underestimating bias with usual values of
the χ2 threshold. This remains, however, the weak
point of our method concerning robustness, at least
theoretically (see section 4.2).

Another bias in the covariance estimation comes
from the lest-squares technique we choose to deter-
mine the motion (which is indeed not exact): if one
set of features is an exact model, the residuals are a
good estimation of the real error, but when both sets
of features are corrupted by noise, the residue min-
imization makes the residuals slightly inferior to the
real error. From (Bard, 1974), the number of observa-
tionsN in all our covariance estimations should thus
be replaced byN ′ = N − l/m, wherem is the di-
mension of the vectorial equations andl the number
of parameters we have estimated. In our case, this is
a rigid motion estimation, sol = 6. If we estimate it
from point matches, we havem = 3 whereasm = 6
from frames. We should then replaceN with N ′ is the
previous equations, where

• N ′ = N − 2 for points,
• N ′ = N − 1 for frames.

3.3. Rejecting outliers: Mahalanobis distance and
χ2 test

Another interesting problem that arises within this
framework is compatibility. For a given motion, we
want to know, for instance, if a scene feature is com-
patible with a model feature, i.e. if the scene feature
can be considered as the transformation of the model
feature modulo measurement errors. Considering sets
of matched features, we may also want to sort the
matches by saliency. These two problems are impor-
tant for the estimation since least squares techniques
are known to be sensitive to outliers, and the EKF is
moreover order dependent: a preliminary phase where
matches are sorted by relevancy and outliers rejected
often gives substantial improvements on the quality of
the estimation.

A related question is to determine when two mea-
surements originate from the same object and differ
only because of measurement error, This can be used,
for instance, for clustering motions, i.e. to find sub-
groups of consistent motions. A fusion could then be
used within each subgroup to obtain a better estimate
of the motion.

Such problems are traditionally tackled via Maha-
lanobis distances for sorting hypotheses andχ2 tests
for rejecting outliers. Until now, we did not need to as-
sume Gaussian distributions on our random variables.
For theχ2 test, however, this assumption is required.
Two main reasons allow us to assume that the distribu-
tions of the noise is Gaussian: firstly, the measurement
errors are often the sum of independent errors and thus
tend toward a Gaussian process by the Central Limit
Theorem. Secondly, when the mean and variance of
an unknown distribution are the only information avail-
able (which is our case), a simple maximum entropy
derivation gives the Gaussian distribution as the one
that assumes the minimal information (Bard, 1974).

Two points and a motion Let (x,Σxx) and(y,Σyy)
be two measured points and(f ,Σff )a rigid motion. We
want to test the validity of the hypothesisy = f ? x.

We saw in section 2.4 how to compute(f ?
x,Σ(f?x)(f?x)) from (x,Σxx) and (f ,Σff ). If the
motion was independent of the datax andy, then the
covariance on the error vectorz = y− f ?x should be
zero with covarianceΣ = Σyy + Σ(f?x)(f?x). In our
case, the motion is computed from the data and the in-
dependence assumption does not hold. Thus we have
to use the covariance of the residue (Förstner, 1987):
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Σ = Σyy +
(

∂(f ? x)
∂x

)
.Σxx

(
∂(f ? x)

∂x

)>

which does not take into account the uncertainty due
to the motion (it is often very small with respect to the
features uncertainty). Aχ2 test is then well suited to
verify if z is compatible with its theoretical covariance.
The squared Mahalanobis distanceµ2 is

µ2 = z>Σ(−1)z

The statistical test says that the hypothesis is good
if µ2 ≤ ε, where the thresholdε is set such that, if the
hypothesis is true, we will choose it with the probability
α. Some values ofε andα for this 3-Dχ2 test are given
found in table 1: for example, ifµ2 > 11.34, there is
less than 1% of probability thaty be a measurement of
f ? x. We can thus reject this match.

Two frames and a motionLet (fm,Σmm) and
(fs,Σss) be two measured frames and(f ,Σ) a rigid
motion. We want to test the hypothesis thatfs = f ◦fm.
From section 2.4 we can compute the covarianceΣ on
the error vectore = f (−1)

s ◦ f ◦ fm (with the same
remark as for points concerning the independence of
the motion) and use the squared Mahalanobis distance
µ2 = e>Σ(−1)e and a 6-Dχ2 test to decide if the
hypothesis is true or not (see table 1).

Two frames Let (f1,Σ11) and(f2,Σ22) be two mea-
sured frames. We want to test the hypothesis that they
are measurements of the same framef . Let Σ be the
covariance on the error vectore = f (−1)

1 ◦ f2. We
can once again use the squared Mahalanobis distance
µ2 = e>Σ(−1)e and a 6-Dχ2.

3.4. Conclusion: uncertainty and rigid motions

We introduce in this section a new model of noise
based on composition and show why it is better adapted
than the classical additive noise. Estimation problems
within this framework require the computation of a co-
variance matrix of the estimate: the Extended Kalman
Filter provides a unified formalism to handle this. At

Table 1. Table of theχ2 distribution for 3 and 6 degrees of freedom.

α Dim 50% 90 % 95 % 99%

ε 3 2.37 6.25 7.81 11.34

ε 6 5.35 10.65 12.59 22.46

last, the Mahalanobis distances andχ2 tests allow the
comparison and discrimination of hypotheses based on
frames and rigid motions.

This framework can be used in a large number of
vision problems. We present in the next section an
application to registration; but we could also use this
framework for matching algorithms (see (Pennec &
Ayache, 1994)). Further applications include the clus-
tering of rigid motions between image structures, or
rigid motions in a displacement field, in order to detect
and isolate objects. This can also prove to be useful
when dealing with the accumulation stage of geometric
hashing or Hough transform algorithms.

4. A practical and robust algorithm for motion
estimation

The output of a feature-based matching algorithm usu-
ally consists in two sets of matched features. The basic
idea is that if we can compute a reliable estimation of
the motion, and the confidence that we have in it, we
can give a confidence value on the registration at each
point of the image.

The method is the following. We take as input of the
evaluation step two sets of matched features and com-
pute the rigid motion between them. Assuming that
all the features are corrupted by the same noise pro-
cess, we compute statistics (i.e. the covariance matrix
of the process) on features, and use this information
to recompute the rigid motion and its associated co-
variance. This iterative process can be continued until
convergence. This allows us to predict a variance on
the position of each registered point of the image.

4.1. The iterative process

The considered features are again points and frames,
but initially without any uncertainty information1.
Without loss of generality, such a framework can be
extended to other types of features. In order to use an
EKF, we first need to estimate the features covariance
matrix (this is detailed in section 3.2). We start with

1. A least squares estimate off , using point posi-
tions only, or directly a least median of squares on
frames (see section 4.2).

2. Estimate the noise process on features.
3. Order matches by increasing Mahalanobis dis-

tances.
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We now have enough information on the features
to start the iterative process. Step 1 can be ignored
if a reliable motion is provided, as step 3 if matches
are already sorted with respect to some other criterion.
This ordering of matches is, however, needed to ensure
the robustness of the EKF: since the equations are lin-
earized in the EKF, the estimate is order-dependent. If
the differences are usually not significant, some spe-
cial cases can lead to quantitative errors. Step 2 is not
used if an estimation of the noise process (even a gross
estimation) is given on input (which is what we usually
do unless it is the first time we use a new type of data).

Ordering also helps outliers rejection for the motion
computation while keeping these matches for other
purposes. In protein substructure matching, for in-
stance in (Pennec & Ayache, 1994), we want to com-
pute the motion with reliable amino-acids matches
(which can have some precise interactions with other
molecules), but we also want to see less constrained
matches that point out other structural similarities.

The iterative process itself is as follows.

1. Estimate the motion(f ,Σff ) from the matches us-
ing an EKF (in decreasing significance order) until
the Mahalanobis distance of the matches becomes
larger than a predeterminedε threshold (this is the
χ2 test to reject outliers).

2. Estimate the noise process with all features (see
section 3.2).

3. Sort matches by their Mahalanobis distance. Out-
liers are the tail of the list.

The process is repeated until convergence, or for a
preset maximum number of iterations (typically 5 to
10). Convergence means in particular that the current
estimate of the motion is exactly the same as at the
previous step.

The estimation of the noise process is the weak point
of our scheme for robustness since it is relatively error-
prone. This step is dismissed if a reliable estimation of
this noise is furnished, but when it comes to a new type
of data, we need to estimate it. In practice, we estimate
the noise on features (i.e. its covariance matrix) only
once per three or four iterations in order to stabilize the
convergence (in this case around 15 to 20 iterations),
and results on real data appear to be quite accurate.
A rigorous treatment of this point would require the
robust estimation of a covariance matrix.

4.2. Variations on the algorithm

Since a frame is composed of a point and a trihedron,
we can also apply point techniques to frames. On this
basis, we can then distinguish four ways of estimat-
ing both the motion and the noise process: EKF on
frames with complete or simplified noise model, EKF
on points with a complete noise model (on points),
and standard least-squares on points (isotropic noise
model).

The appropriate method depends upon the number
of matches, the relative quality of the trihedron and the
isotropy of the noise. A comparison of the different
methods is presented in section 6.1.

In terms of robustness (see (Huber, 1981; Meeret al.,
1991) for a review on robust statistics), the algorithm
we propose belongs to the class of iterative redescend-
ing M-estimators (i.e. robust algorithms based on least
squares). However, the breakdown point (the max-
imum amount of outliers before failure) is not very
high. The algorithm can be robustified to a breakdown
point of about 0.5 by using a least median of squares
between the initialization step (in order to have an esti-
mation of the noise process) and the iterative process,
that achieve the goal of efficiency (i.e. reaches a vari-
ance on the estimate close to the lowest possible one).
This is particularly easy and cheap in complexity for
frames. Indeed, a single match determines a unique
motion between the model and scene sets: for each of
theN frame matches, we classify the other matches by
increasing Mahalanobis distances and take the value
of the median for the score of this match. The match
minimizing the median squared Mahalanobis distance
is then used as the initial motion for the iterative pro-
cess. The complexity ofO(N2 log N) can be drasti-
cally reduced by a Monte Carlo sampling (see (Meer
et al., 1991)).

4.3. Final Precision evaluation

From (f̂ ,Σff ), we can compute for each pointx of
the model image (or object) its transformationŷ =
f̂ ? x and the uncertaintyΣŷŷ = Σ(f̂?x)(f̂?x). This
information could be used directly as an input for other
statistical algorithms but is too rich to give a simple idea
of the level of accuracy for the end user. In order to
give a more intuitive information, we compute instead
the RMS error expectation at this point: ify = f ?x is
the real location of the transformed pointx, we shall
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find it in ŷ = f̂ ? x. The expectation of the squared
distanced2 = ‖y − ŷ‖2 between them is

σ2(ŷ) = E
(
(ŷ − y)>(ŷ − y)

)
= Tr(Σŷŷ)

In the case of 3-D medical images, and in order
to characterize the precision with a single value, we
can estimate (among other measurements) the averaged
RMS for the 8 vertices of the 3D image (we call this
value thetypical boundary precisionσcorner), which
is representative of the maximum error, or estimate the
averaged RMS on the position of the matches frames
(thetypical object precisionσobject).

4.4. Conclusion on registration and accuracy

From two sets of matched features, and aχ2 thresh-
old ε, we propose a method to estimate the motion
f and its precisionΣff , discard outliers, and provide
an estimation of the noise process on features. Then
we extract from the motion uncertainty a single value
characterizing the registration accuracy.

5. A statistical validation of registration methods

We have now a way to estimate motions and asso-
ciated covariances, but what confidence can we have
in it ? We propose in this section a method to esti-
mate the accuracy of a registration algorithm when no
“ground truth” is available. It also validates the esti-
mation process for feature based registration methods
which generate covariance matrices. This is a sta-
tistical method which only assumes that the noise on
features is centered.

5.1. External markers

We believe that no method can give an exact reference
for the motion, but when a method A is one order of
magnitude more accurate than a method B, A can serve
as a reference for an experimental validation of B. This
means that all methods are ultimately statistical.

Debates about the use of external markers are typical
in the case of 3D medical image registration problems.
Here, validation methods are vital (literally), because
the registration can be used to plan a surgical proce-
dure. In fact, external markers have a very strong ad-
vantage in matching methods, because we can extract
features corresponding to physical and discriminable

objects and obtain an “exact” matching. But regarding
registration, we have to keep in mind that the mea-
surements of marker positions are corrupted just as the
measurement of any other landmark, which implies
the elaboration of a theoretical model of the markers,
and the application of a statistical method to evalu-
ate the motion and its uncertainty. Other authors have
concluded experimentally that, for the case of high res-
olution medical images, marker-based techniques are
probably much less accurate than image-based tech-
niques (see (van den Elsen, 1993)).

Hence, marker-based techniques are not more de-
terministic than other registration methods, and the re-
sults of the present paper could also be applied to them
(generally, markers are modeled as points or frames).

5.2. Analytical methods

Ideally, we might think of modeling analytically the
whole process, from the physical object positions to
the final estimated motion. For real cases, this implies
modeling object deformations (nothing is really rigid),
evaluating the distortions due to image acquisition and
reconstruction process, evaluating the errors in the ex-
traction of feature points, before considering the errors
made during registration. This is generally impossible
to do in practice, when all this also depends on the
shape of the object, and the tuning of the acquisition
device.

5.3. Ana posterioriestimation of the errors

The method that we present now applies when there is
no ground truth for the motion, and when the analytical
determination of the errors is impossible (the majority
of cases). We consider the registration method as a
black box which takes two representations of the same
object as input, and gives an estimated rigid motion as
output.

Assuming independence of couples of matched fea-
tures, we can subsample the matches in order to get
several independent estimates of the unknown motion,
and compare them. In particular, we can split the set
of matches in two sets approximately equal in size and
obtain two estimates off :

f̂1 = f ◦ e1 and f̂2 = f ◦ e2

The two motions should be very close, and we can
study their “difference”e = (f̂2)(−1)◦ f̂1 = (e2)(−1)◦
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e1 which does not depend on the exact motionf and
should be close to identity.

If matches are randomly subsampled to a fixed num-
berM of matches, in order to conserve independence
and a similar distribution of matches in space, then
the estimation errorse1 ande2 follow the same law
of covarianceΣ(M). If moreover both the feature
extraction and the registration method are unbiased2

(which means thatE(e1) = E(e2) = Id), then we
can derive that the covariance of(e2)(−1) is alsoΣ
and the measured errore should then have a covari-
anceΣee(M) = 2Σ(M).

Repeating the experiment withn homogeneous sets
of matches, we can estimate the covariance matrix of
the estimation off from M feature matches by

Σ(M) =
1

2 n

n∑

i=1

ei e>i

5.4. A posteriorivalidation of the uncertainty

Our estimation scheme produces not only a motion
estimation̂f but also a covariance estimation on itΣf̂ f̂ .
The goal of this section is to verifya posteriorithat the
distribution of f̂ has for mean valuef with the given
covariance. We consider first the case of synthetic
data where the exact motionf is known. Since every
experiment is based on a different exact motion and
produce a different covariance matrix on the estimate,
we have to “normalize” our results in order to obtain
several estimates of the same distribution.

To normalize the mean motion, we compute for
each registration the error vectore = f (−1) ◦ f̂ (for
simpler notations, the index of the registration exper-
iment is omitted). Its distribution should have a zero
mean, but its covariance matrix is given, sincef is ex-
act, byΣee = J.Σf̂ f̂ .J

> with J = ∂e/∂ f̂ . A new
change of variables is needed to normalize the dis-
tributions with respect to this covariance: under the
Gaussian hypothesis, the Mahalanobis distance with
identityµ2 = e> Σ(−1)

ee e should beχ2
6 distributed.

We can now repeat this experiment onM pairs of
images to obtainM independent valuesµ2

i and verify
if it is really χ2

6 distributed. The Kolmogorov-Smirnov
test (Presset al., 1991) is well adapted to do that (re-
ferred from now on to the K-S test), but since it only
gives a binary answer, we also use the fact that the

mean value of aχ2
6 distribution is6 and its variance is

12: We callvalidation indexthe estimated mean value
of µ2

i :

I = µ̄2 =
1
M

∑
µ2

i

and its variance is computed accordingly with

σ2
I =

1
M − 1

∑
(µ2

i − µ̄2)2

This index can be interpreted as an indications on
how the estimation method under-estimates (I > 6)
or over-estimates (I < 6) the error on the estimated
motion. It is a kind of relative error on the error esti-
mation.

This method can be generalized to validate our es-
timation scheme with real data: randomly splitting
the set of matches in two (approximately equal) sets,
we compute two estimates(f̂1,Σf1f1) and(f̂2,Σf2f2)
which are two independent measures of the exact mo-
tion f . Their “difference”e = (f̂2)(−1) ◦ f̂1 can now
be used just as above. Some results with synthetic and
real data are given in sections 6.1 and 6.2.

5.5. Conclusion on statistical validation

We show in this section that all validation methods
are ultimately statistical and present a quite general
method to estimate the quality of a registration process,
independently of our previous method. This leads us to
the validation of our uncertainty prediction with both
synthetic and real data.

6. Experiments

The first part of this section deals with the comparison
of the four different methods on synthetic data, and
shows how to choose the best method among isotropic
or anisotropic noise and points or frames features. We
will see through these experiments that all the methods
are perfectly validated in their own domain. The sec-
ond and third part focuses on real data, with 3D medical
image registration and protein substructure matching.

6.1. Synthetic data experiments

For our synthetic experiments, we have used lists of
associated frames or points with a Gaussian error dis-
tribution on the positions and on the orientations and
a uniform random placement in 256x256x256 voxels
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images (one voxel equal one millimeter). The exact
motion is chosen randomly but the translation is lim-
ited to a third of the image size in order to obtain
an overlap between the two images. The covariance
matrix of the simulated noise process is given by the
experiments on 3D medical images (see the covariance
matrix of table 2). We use aχ2 value of 16 for frames
and 8 for points, which corresponds to a 96% confi-
dence interval, and limit the number of iterations to a
maximum of 15.

We also run several other sets of experiments using
a real model randomly moved and perturbed, and a
uniform model of noise with the same covariance. All
those experiments showed very similar results.

Anisotropic versus simplified noise modelWe have
presented in section 3.2 two models of noise for points
(iso and anisotropic) and their equivalent for frames.
The question we investigate here is which one should
we use, and does the anisotropic model provide an
improved accuracy of the registration? In these exper-
iments, frames are generated with a compositive model
of noise and points with an additive one.

We claim that the relevant parameter to decide which
method is the most suited is the number of matches.
Indeed, the estimation of the 21 parameters (resp. 6
for points) of the covariance matrix is less stable than
the estimation of the 2 (resp. 1) parameters of the
simplified model, in particular with a small number of
samples. However, for a sufficient number of matches,
we can estimate the whole covariance matrix with a
good confidence, even if the original noise is isotropic.

In figures 3 and 4, we plot on the top the valida-
tion index (ideally 6) and its standard deviation. The
dotted lines represent the theoretical mean value and
standard deviation of aχ2

6 distribution. We also in-
dicate experiments where the K-S test at 5% rejects
the validation. On the bottom of the figures, we plot
the typical precisions as a function of the number of
matches for isotropic methods and the gain in preci-
sion obtained using anisotropic methods. Each sample
point is the averaged result of 100 trials.

As expected, the validation index shows that
isotropic methods need less matches to have a good
uncertainty prediction than anisotropic methods ones:
about 10 points are needed for the isotropic method
on points to be reliable, versus 15 to 20 matches for
the anisotropic one. For frames, these figures are as
expected a little bigger: respectively 15 to 20 and 30 to
40 matches are needed. On the other hand, anisotropic
methods lead to a more accurate motion estimation: in
this case, it is roughly 1.25 times more accurate for
frames and between 1.15 and 1.4 times more accurate
for points. However, we note that these values are just
examples and do vary with the anisotropy of the origi-
nal noise. From now on, we use the simplified model
of noise for less than 40 matches with frames (20 with
points) and the anisotropic one otherwise.

The difficult and possibly inaccurate point in our our
scheme is therefore the covariance matrix estimation
which is, as we have already noted, not really robust.
In order to verify the robustness and accuracy of the
remainder of the algorithm, we run another series of
experiments where we fix the covariance on features
(i.e. we consider that it is already known and we do
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Validation indexK-S test : rejected
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Fig. 3. Validation index with respect to the number of matches for anisotropic (top right) and simplified (top left) noise model on point features.
The typical precisions are presented for the isotropic model (bottom left), along with the ratio between isotropic and anisotropic precisions
(bottom right).
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Fig. 4. Validation index with respect to the number of matches for anisotropic (top right) and simplified (top left) noise model on frame
features. The typical precisions are presented for the isotropic model (bottom left), along with the ratio between isotropic and anisotropic
precisions (bottom right).

not have to estimate it) and introduce about 10% of
outliers. In all cases, even with 5 points or frames
matches, the Kolmogorov-Smirnov test (at 5%) suc-
cessfully validate the rigid motion and its uncertainty
estimation.

Comparison of Frame and Point based methodsAn
interesting question is what improvement in accuracy is
brought by the use of frames instead of points ? Since
we add trihedra to points in order to make frames,
frame methods should be at least as accurate as point
ones. On the other hand, the extraction of trihedra from
real images is usually based on higher derivatives than
the point position. Hence, points are usually less noisy
than trihedra and we do not expect a breakthrough for
accuracy in using frames. However, as points become
noisier and noisier, there should be sensible improve-
ment with frames.

We choose to run the experiment with a random
number of points between 150 and 250, a fixed standard

deviation ofσθ =0.02 rad for the orientation sampling,
and a standard deviation increasing fromσd =0.2 mm
to 2.8 mm on point position sampling.

Since the typical precisions do vary with the number
of matches and the noise process, but in a similar way
for both methods, we plot in figure 5 the ratio of typical
precisions (standard deviations) for point and frame
with respect to the standard deviation on position. Each
sample is the averaged result of a set of 50 synthetic
“images”.

Using frames in spite of points can then lead to
an sensible improvement in accuracy, particularly
with a small number of matches, or when points be-
comes noisy with respect to trihedrons. On the other
hand, several experiments showed that the frame based
method remain at least as accurate as the point based
one even when trihedrons become very noise. In gen-
eral, we should then use the maximal amount of infor-
mation we have on features and thus the frame based
method if we can define trihedrons.

Table 2. Estimated covariance matrix for the compositive noise on extremal points (expressed in the local frame).

Σee =

er
> et

>

2
666666664

0.0024 0.0000 −0.0000 0.0002 −0.0011 0.0000
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Fig. 5. Ratio between Point and Frame based precisions methods
with respect to standard deviation on position. The error bar is the
standard deviation in 50 trials.

6.2. Real data experiments: 3D medical imaging

We present results from an experiment performed us-
ing 3D Magnetic Resonance images (MRI). The im-
ages were provided by R. Kikinis from the Brigham
and Woman’s Hospital, and are part of an extensive
study of the evolution of the Multiple Sclerosis (MS)
disease. The same patient recieved a complete 3D MR
examination several times during one year (typically
24 different 3D acquisitions). The aim is to register

Fig. 6. The same slices from four registered 3D MR images of
the Multiple Sclerosis study. Note the evolution of two MS lesions
(white spots). One is growing in the anterior left hemisphere, one
is shrinking in the right posterior hemisphere. There is two weeks
between each acquisition.

precisely in 3D all those images in order to segment
the lesions and evaluate very accurately their evolution
(MS lesions are white spots in the images in figure 6).

The images are first echo,256 × 256 × 54 voxels,
the voxel size is 1 mm× 1 mm× 3 mm. We have
already presented an algorithm to perform, fully au-
tomatically, the registration of the images in (Thirion,
1994). However, there is a need to estimate accurately
the errors in these registrations. The registered images
are resampled using a tri-linear interpolation method.
The same slices of several different 3D MRI are pre-
sented in figure 6, after resampling with the estimated
motions. Figure 7 presents the differences between im-
ages and shows visually the quality of the registration,
and also that the evolutions of the lesions are clearly
detected.

Points and frames in medical imagesOur registration
algorithm relies on the extraction of feature points in
3D medical images, defined with differential geometry
criteria (see figure 8). In our case, these are theEx-
tremal Points, as defined in (Thirion & Gourdon, 1993),
which are those points of the object surface for which
both principal curvatures are extremal. The interesting
thing is that not only do we get some invariant mea-
surements associated with those points (the principal
curvatures), which are used to reduce the complexity
of the matching process, but we get also the principal

Fig. 7. Differences between images after registration, with respect
to the first one. The intensity is multiplied by 5, and shifted such
that no difference is a gray value. The growing lesion appear as a
white disk, and the shrinking lesion as black a disk.
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Fig. 8. Lines of extremal curvature on the brain circumvolutions.
The extremal points, which are used in the registration, are specific
points of those lines.

directions, which form, with the normal to the surface
and the extremal point itself, an orthonormal basis, that
is, a frame (see figure 1 in section 2.2).

Typically, we extract about 2000 extremal points
from a 3.5 million voxels image. Our matching al-
gorithm produces about 600 pairs of associated ex-
tremal points between two images, with a residual
mean square error (RMS) of about1mm. With a den-
sity fewer than0.1% of extremal points in the image,
the probability of false matches is very low.

Results With 24 different images, we could have gen-
erated 576 couples of images. In order to achieve in-
dependence, we have restricted our experiments to 58
randomly chosen registrations. For each registration,
we randomly split the list of matches in two approx-
imately equal lists and compute the validation index
I from the two rigid motion estimates. We fuse then
the two motion estimates in order to compute the final
motion and its uncertainty.

We find a typical boundary precision around
σcorners = 0.114 mm and a typical object precision far
below the voxel size:σobject = 0.060. The validation
index isI = µ̄ = 6.19 with a variance ofσ2

I = 17.05
(remember that the theoretical values are 6 and 12)
and the K-S test validate our results for real data with
a significance level of 0.16. These values were found

using frames and showed an improvement of 10% in
accuracy with respect to points.

Analysis of the estimated noise on featuresThese ex-
periments showed an interesting difference between
the point and frame noise model. Indeed, point based
methods gave a quite isotropic noise of standard devi-
ationσ = 0.5, whereas the frame based method gave
the covariance matrix on frame features displayed in
Table 2 .

As said in the synthetic experiments section, this co-
variance is roughly diagonal, with standard deviations
σrx

= 0.05, σry
= 0.055, σrz

= 0.20 for the rotation
vector part (in radian), andσdx

= 0.5, σdy
= 0.55,

σdz = 0.25 for the position part (in mm), which gives
a mean standard deviation on position ofσ = 0.46,
comparable with the one computed on points only.

In order to interpret these values, we have to remem-
ber that, with the compositive noise model, the error
vector is expressed in the local frame. In our case, the
frame is defined by{t1, t2, n} wheret1 andt2 are the
two principal directions of the surface at the extremal
point andn the normal. As far as the rotation vector is
concerned, the values of the standard deviations show
that the expected error rotation around then (= z) axis
is four times the expected error rotation around thet1

or t2 axes. This means that the normaln is about
four times more stable than the principal directions.
Regarding the position, we can see that the coordinate
along the normal to the surface is 3 to 4 times more
stable than coordinates in the tangent plane, which is
in accordance with what was expected for extremal
points.

The compositive noise model exhibits here an
anisotropy which is not detectable with a classical
noise: the absence of orientation information leads to
a quasi isotropic noise for points, and an additive noise
on frames would fail to detect this regularity since the
error would not be expressed in local frames. This
effect therefore constitutes an a posteriori justification
of our compositive noise model with real data.

Discussion Our matching algorithm tries to estimate
the motion of a single rigid substructure, with the
largest number of common extremal points, which is
the brain in those images. However, with that level
of accuracy, the assumption of a global rigid motion
does not hold any more, and we can distinguish sev-
eral structures undergoing slightly different motions.
The skull, for example, can move (quite rigidly) with
respect to the brain, and the skin surface is subject to
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large deformations (this is very clear with animated
sequences spanning the one year study). The points
corresponding to those structures have been rejected as
outliers, but, with the help of the framework developed
in this paper, we can think to classify and discriminate
substructures. This is an improvement of our registra-
tion method that we are currently implementing.

Even for the brain itself, there are local deforma-
tions, for example due to the studied MS lesions, which
are larger than the typical boundary error we measured,
but because we are interested in an average motion for
the whole structure of interest (here the brain), it makes
sense to search for such an accurate motion. In fact,
our registration is so accurate that it allows us to visual-
ize, for the first time, the dynamic effect of the lesions
on the surrounding brain tissues.

6.3. 3D substructure matching of proteins

Most biological actions of proteins depend on some
typical parts of their three-dimensional structure,
called 3D motifs. To automatically discover corre-
sponding 3D motifs between proteins, we proposed
in (Pennec & Ayache, 1994) a new 3D substructure
matching algorithm based on the geometric hashing
technique. The key feature of the method is the intro-
duction of a 3D reference frame attached to each amino
acid (see figure 1 in section 2.2). This allows to com-
pute for every couple of amino acids 6 invariants, that
are used in the first step of the algorithm: a geometric
hashing aimed to recognize possible correspondences
between individual model and scene frames. The intro-
duction of frame features instead of points drastically
reduce the complexity of both the preprocessing and
recognition stages, typically fromO(n4) to O(n2). A
clustering step based on motions performs then the ag-
gregation of compatible matches. Individual motions
within a cluster are fused using the scheme of section 2
in order to obtain a unique and accurate global motion.
The last step is an alignment test realized as a kind of
“iterative closest frame” (by analogy with ICP (Besl
& McKay, 1992)), where our robust motion estimation
scheme is embedded.

The noise on frame features is fixed on input and
determines the type of common substructures the al-
gorithm extracts. A small noise produces small but
very accurate sets of matches, whereas a large noise
favors more global substructure matches. For all our
experiments, we use the atom coordinates of proteins

provided by Brookhaven National Laboratory’s Protein
Data Bank (Bernsteinet al., 1977; Abolaet al., 1987).
Visualization is done using the RasMol program of R.
Sayle (Sayle & Bissel, 1992).

Detection of the Helix-Turn-Helix motifStructural
motifs can be defined as the super-secondary struc-
ture. They are the simple combination of a few sec-
ondary structure elements. Some of them are associ-
ated with particular functions or are simple parts of
larger structural and functional assemblies. For in-
stance, the Helix-Turn-Helix motif is responsible for
the binding of DNA within many procaryotic proteins.
Some of them bind tightly to the DNA at a promoter of
a gene, preventing RNA polymerase from fixing and
hence blocking the initiation of the transcription. They
are repressors. Conversely, activators bind next to the
promoter and help polymerase to bind.

We choose to compare two proteins known to bind
DNA: the tryptophan repressor of E. Coli (PDB code
2WRP (Lawsonet al., 1988), 105 amino-acids) and
phage 434 CRO (PDB code 2CRO (Mondragonet al.,
1989), 65 amino-acids), whose Helix-Turn-Helix se-
quence were determined in (Brennan & Matthews,
1989; Harrison & Aggarwal, 1990).

Looking for a 3D binding motif, we used a quite
small model of isotropic noise (σθ = 0.1 rad= 5 deg
andσd = 0.35 Å ). The algorithm ends up with only
the correct matches from (15 MET - 66 MET) to (36
ALA - 87 ASN). The last match (37 GLY - 88 SER)
is indeed very arguable considering the distance after
registration and especially the difference in orientation.
The typical object precision due to the registration (on
the 22 matched amino-acids) is given toσobj = 0.29
Å. We show in figure 9 the two proteins and the regis-
tration found in figure 10. The only two other common
substructures found score 13 and 8 matches and corre-
spond to alpha helices, which are very stable secondary
structure elements.

Discussion In order to test the stability of our algo-
rithm, we also did the experiment with a noise two
times larger (σθ = 10 deg andσd = 0.7 Å ). We just
find four additional matches preceding the beginning
of the HTH motif ( from (7 LYS - 61 LEU) to (11 ILE
- 64 GLY)). The two other clusters now score 14 and
9 matches. This shows that the detection of the HTH
motif is very stable, and we argue that this is mainly
due to the selectivity brought by the use of frames.

Indeed, the orientation of an amino acid is crucial
to determine the position of collateral chains and most
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Fig. 9. The CRO protein (2CRO) of phage 434 on the left and the tryptophan repressor of E. Coli (2WRP) on the right. The matched part (the
HTH motif) is displayed in black.

interactions of the protein happen within these side
atoms. The position of these atoms is then not only
determined by the position of the backbone but also
its orientation and using just points to represent amino
acids generally leads to a significant amount of addi-
tional matches with non compatible orientations. This
implies a drastic reduction of selectivity for the match-
ing process. In this case, frames bring rather more
selectivity than more precision.

7. Conclusion

We developed a new formalism to handle uncertainty
for rigid motion evaluation, which consider residual
errors as residual geometric motions, and not as an ad-
ditive noise applied to the measurements coordinates or            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Fig. 10. Registration found between the HTH motifs of 2CRO and
2WRP. We can see that not only the backbone is very well matched,
but also collateral chains are pretty well conserved.

to the parameters of the unknowns. This leads to new
formulae for the equations of measurement which are
used within the Extended Kalman Filter framework to
evaluate both the motion and its covariance matrix, in
the case of 3-D points or 3-D frames matches. We pro-
vide a quite general scheme to estimate approximately
the accuracy of a registration method, and a more pre-
cise way to validate the predictions of our registration
scheme. Several experiments on both synthetic and
real data validate our framework and justify the com-
positive noise model. A practical result is to show that,
in the case of 3D medical images, a precision of the
registration far below the voxel size can be achieved.
In the case of 3D protein substructure matching, frame
features drastically improve the selectivity and reduce
the complexity of the process.

This work also opens new theoretical questions
about the noise on geometric features under a given
type of motion, and offer numerous possibilities of ex-
tensions: other types of features, more general trans-
formation groups, and also other high level algorithms
based on this framework, such as clustering or match-
ing.

Appendix

A.1. Rotations

A.1.1. Geometric parameters: axis and angle

Let R be a 3D rotation matrix (RR> = Id and
det(R) = 1). It is characterized by its axisn (unit
vector) and its angleθ. The relationship between these
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two representations are given by Rodrigues formula
(see for instance (Kanatani, 1993)).

R = Id + sin θ Sn + (1− cos θ)Sn
2

= cos θ Id + sin θ Sn + (1− cos θ)n.n>
(A1)

The matrixSn is the skew matrix corresponding to
(left) cross product: for all vectorv we haveSnv =
n×v. If the coordinates ofn are (nx, ny, nz), the
matrixSn is

Sn =




0 −nz ny

nz 0 −nx

−ny nx 0




and we have the relationSn
2 = n.n> − Id, used

to derive the second part of equation A1. Note that
Sn uniquely determines the vectorn. Conversely, let
Tr(R) be the trace ofR; the parameters are:





θ = arccos
(

Tr(R)− 1
2

)

Sn =
R−R>

2 sin θ

(A2)

The last equation is valid only whenθ ∈]0;π[. Indeed,
for θ = 0 (i.e. identity) the rotation axisn is not
determined, andsin(θ) = 0 for reflections (θ = π).

R close to identity:θ is small Since the axisn is not
defined for identity, there is a singularity and a numer-
ical instability around it. However, we can compute
the rotation vector with a Taylor expansion:

Sr = θ Sn = θ
2 sin θ (R−R>)

= 1
2

(
1 + θ2

6

)
(R−R>) + O

(
θ4

)

R close to a reflection:π−θ is small The axis is this
time well defined, but we have to use another equation.
From Rodrigues formula, we getR + R> − 2 Id =
2(1 − cos θ)Sn

2, and sinceSn
2 = n.n> − Id, we

have

n.n> = Id +
1

2(1− cos θ)
(
R + R> − 2 Id

)

Let % = (1− cos θ)−1; taking diagonal terms in the
last equation givesn2

i = 1 + %.(Ri,i − 1) and thus

ni = εi

√
1 + %.(Ri,i − 1)

The off diagonal terms are used to determine the signs
εi: considering that the sign ofn1 is ε ∈ {−1;+1},
we can compute that

sign(nk) = ε.sign(R1,k + Rk,1)

If we have an exact reflection, the signε does not
matter since rotating clockwise or counter-clockwise
gives the same result, but for a quasi-reflection, this
sign is important. In this case, the vectorw =
2 sin θ n is very small but not identically null: it
can be computed without numerical instabilities with
Sw = R −R>. Sinceθ < π, the largest component
wk in absolute value of this vector must have the same
sign as the corresponding componentnk of vectorn.

A.1.2. Rotation vector

The representation of a rotation by its axis and angle
values or by a unit quaternion are very useful for a
lot of problems, but they are not minimal: there are
quadratic constraints needed to enforce unitary vectors.
This is a problem for most minimization techniques,
and especially the extended Kalman filter (EKF).

A minimal representation is obtained with therota-
tion vectorr = θ n. Some problems of uniqueness are
encountered aroundθ = π and four charts are theoret-
ically needed to define an atlas (a set of differentiable
maps covering the complete manifold). The rotation
vector can be computed from the rotation matrix with
the equations of section A.1.1. Conversely, Rodrigues
formula allows us to compute the rotation matrix from
the rotation vector:

R = Id +
sin θ

θ
Sr +

(1− cos θ)
θ2

Sr
2

with θ = ‖r‖. In order to avoid numerical instabilities,
we have to use a Taylor expansion for a smallθ:

sin θ
θ = 1− 1

6θ2 + O
(
θ4

)

(1−cos θ)
θ2 = 1

2 − 1
24θ2 + O

(
θ4

)

A more developed presentation of the rotation vector
is given in (Ayache, 1991).

Operations on rotation vectorsLet r be a generic ro-
tation vector. The associated rotation matrix is denoted
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by R and the parameters byθ = ‖r‖ andn = r/‖r‖).
We are interested in this section in applyingr to the
vectorx: y = r ? x, inverse it: r(−1), and compose
rotation vectorsr1 andr2: r = r2 ◦ r1. The two first
operations are easy to perform:

r ? x = R.x and r(−1) = −r

The composition is more complex. Of course we
can compute the associated rotation matrices, multiply
them, (R = R2.R1) and come back fromR to the ro-
tation vectorr, but it would be difficult to differentiate.
We choose to use the unit quaternion representation as
an intermediate step (see section (A.1.3) below). Let
r1 and r2 be two rotation vectors. We compute the
associated unit quaternionsq1 andq2, and multiply
them:q = q2 ∗q1. Then we come back to the rotation
vectorr(q):

r2 ◦ r1 = r(q(r2) ∗ q(r1))

A.1.3. Quaternions

Quaternions are the elements of a 4 dimensional al-
gebra onR which we shall noteQ. This is also the
first non-commutative division ring (skew field) found
by Hamilton in 1843. We can construct this algebra
in several ways, but the we are interested in considers
a quaternionq ∈ Q as a coupleq = (a,v), where
a ∈ R is the real part andv ∈ R3 the so-called pure
part. The operations defined on quaternions to form
the algebra are :

• Addition : (a1,v1)+(a2,v2) = (a1+a2,v1+v2)
• Internal multiplication : (a1,v1) ∗ (a2,v2) =

(a1a2− < v1|v2 >,v1 × v2 + a1v2 + a2v1)
where ‘×’ and ‘< .|. >’ are the usual cross and
dot products onR3

Moreover, we define the conjugate quaternion and the
norm

• (a,v) = (a,−v)
• |q|2 = ‖q‖2Q = q̄ ∗ q = a2 + ‖v‖2R3 = ‖q‖2R4

This allows to write very simply the inverse quaternion
q−1 = q̄/|q|2 for q 6= 0. We shall note that the norm
is compatible with the product:|q1 ∗ q2| = |q1|.|q2|.

The set of quaternions(0,x) with x ∈ R3 is trivially
identified withR3 itself. Let x andy be two vectors
(elements ofR3). Their quaternion product isx ∗ y =
(− < x|y >,x× y) andq ∗ x ∗ q̄ is a vector for any
quaternionq.

A more detailed introduction to quaternions and
their properties is available in (Casteljau, 1987) and
(Altmann, 1986).

Quaternions and rotations Letqbe a unit quaternion.
Then there existsθ ∈ [0, π] andn unit vector onR such
that q =

(
cos

(
θ
2

)
, sin

(
θ
2

)
n
)
. The map

Rq : Q −→ Q
x 7−→ y = q ∗ x ∗ q̄

is an inner automorphism ofQ that conserves pure
quaternions (null real part). Its restriction toR3 is the
vectorial rotation ofR3 with angleθ around the unit
vectorn. In a symmetric way, we can match to every
rotation ofR3 two unit quaternionsq and−q.

Let R ∼ q denote the association between rotation
matrixR and rotation quaternionq. As direct proper-
ties of this representation, we have:

• If R1 ∼ q1 andR2 ∼ q2 thenR1.R2 ∼ q1 ∗q2.
• If R ∼ q thenR−1 ∼ q̄

By definition, the application ofR ∼ q to vectorx is

• y = Rx = q ∗ x ∗ q̄

Conversions between unit quaternions and rotation
vectors Let r = θ n and q = ±(a,v) be related
to the same rotationR. We have thena = cos(θ/2)
andv = sin(θ/2) n. The conversion from rotation
vector to quaternion is then

q(r) =
(

cos(θ/2) ;
sin(θ/2)

θ
r
)

with θ = ‖r‖. Conversely, the rotation vector can be

written (the notation
‖q‖=1
=== means equal if‖q‖ = 1)

r(q) = 2 sign(a) arcsin

(
‖v‖√

a2 + ‖v‖2

)
v
‖v‖

‖q‖=1
=== 2 sign(a)

arcsin(‖v‖)
‖v‖ v

More details will be found with Jacobians of these
operations.
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A.1.4. Jacobians

We now have to differentiate the previous operations.
These Jacobians (see section 2.4) are needed to prop-
agate the covariance matrices, and in the linearization
of the Extended Kalman Filtering equations. We recall
first the differentiation of some usual operators for 3D
vectors.

• Norm and Normalization:

∂‖x‖
∂x

=
x>

‖x‖
∂

∂x

(
x
‖x‖

)
=
−Sx

2

‖x‖3

• Dot product:

∂ < x|y >

∂x
= y>

∂ < x|y >

∂y
= x>

• Cross Product:

∂x× y
∂x

= −Sy
∂x× y

∂y
= Sx

Inversion of a rotation vector:r(−1) = −r The dif-
ferentiation of the inversion is very simple since:

∂r(−1)

∂r
=

∂(−r)
∂r

= − Id (A3)

Application of a rotation vector:r ? x = R.x The
problem is to compute the Jacobian∂(r?x)

∂r . Letα, β, γ
andδ be the following functions ofθ with their Taylor
expansions for a smallθ:

α = sin θ/θ = 1− θ2

6 + O
(
θ4

)

β = (1− cos θ)/θ2 = 1
2 − θ2

24 + O
(
θ4

)

γ = α′/θ = (cos θ − α)/θ2 = 1
3 − θ2

30 + O
(
θ4

)

δ = β′/θ = (α− 2β)/θ2 = − 1
12 + θ2

180 + O
(
θ4

)

With Rodrigues formula, we can then write

r ? x = x + α.Sr.x + β.Sr
2.x

and taking into account the following derivatives

∂(Sr.x)
∂r = −Sx

∂(Sr
2.x)

∂r = Sx.Sr − 2Sr.Sx

and∂θ/∂r = r>/θ, we can differentiate it using the
chain rule, which gives after factorizations

∂(r ? x)
∂r

= −Sx

(
γ.r.r> − β.Sr + α. Id

)

−Sr.Sx

(
δ.r.r> + 2β. Id

) (A4)

Link with other works: Another way to differentiate
the rotation application is given by N. Ayache in (Ay-
ache, 1991): letη be the functionη = (1 − α)/θ2

(η = 1
6 − θ2

120 + O
(
θ4

)
for a smallθ), Ur the matrix

Ur = η Sr
2 + β Sr + Id

anddu the infinitesimal vectordu = Ur.dr. Then
he showed that, for any small incrementdr of the
rotation vectorr, the incrementdR of the rotation
matrix R is given bydR = Sdu.R. To differentiate
the application, we can then write

(R + dR)x−R.x = dR.x = Sdu.R

= −S(R.x).du = −S(R.x).Ur.dr

and hence

∂(r ? x)
∂r

= −S(R.x).Ur (A5)

which is only a factorized form of equation (A4). From
a computational point of view, the first form is much
faster, in particular if we note that

Sr.Sx = x.r>− < x|r > Id = x.r> − Tr(x.r>) Id

Composition of two rotation vectorsThe most com-
plex part of these computations is the following: how to
compute the Jacobians ofr2◦r1 with respect to the two
rotation vectors? Fromr = r2◦r1 = r(q(r2)∗q(r1)),
we can easily derive with the chain rule

∂r
∂r1

=
∂r
∂q

.
∂q
∂q1

.
∂q1

∂r1
(A6)

The formula being symmetrical for the derivation with
respect tor2. The problem is now to compute these
intermediate Jacobians.

From rotation vectorr to unit quaternionq. Letq =
(a,v) be one of the unit quaternion associated with
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rotation vectorr, andθ = ‖r‖. Froma = cos(θ/2)
andv = sin(θ/2)

θ r, we get

∂a

∂r
= − sin(θ/2)

2
r>

θ
= −v>

2

∂v
∂r

=
cos(θ/2)

2θ
r.r> − sin(θ/2)

2θ

(
Sr

θ

)2

SinceSr
2 = r.r>−θ2 Id, and introducing the follow-

ing functions ofθ:

κ =
sin(θ/2)

θ
=

1
2
− θ2

48
+ O

(
θ4

)

λ =
sin(θ/2)

θ3
− cos(θ/2)

2θ2
=

1
24

(
1− θ2

40

)
+ O

(
θ4

)

we can summarize the results as follows

q =

∣∣∣∣∣∣
cos

(
θ
2

)

κ.r

∂q
∂r

=




−v>
2

κ Id − λ.r.r>


 (A7)

From unit quaternionq to rotation vectorr. Let
q = (a,v) be a quaternion. The unit quaternionq‖q‖
represent the rotation associated with rotation vectorr.
We can getr from q with the following equation.

r(q) = 2sign(a) arcsin

(
‖v‖√

a2 + ‖v‖2

)
v
‖v‖

‖q‖=1
=== 2 sign(a)

arcsin(‖v‖)
‖v‖ v

If a is positive, we can derive that

∂r
∂a =

−2v
a2 + ‖v‖2

‖q‖=1
=== −2v

∂r
∂v

=
2a

a2 + ‖v‖2
v.v>

‖v‖2

− 2
‖v‖ arcsin

( ‖v‖
a2 + ‖v‖2

)
Sv

2

‖v‖2

‖q‖=1
=== 2

arcsin(‖v‖)
‖v‖ Id

+2
(

a− arcsin(‖v‖)
‖v‖

)
v.v>

‖v‖2

For a negative, the above equations can be used for
q′ = −q and thus

∂r
∂a

=
∂r
∂a′

.
∂a′

∂a
= −2v′.(−1) = −2v

∂r
∂v

=
∂r
∂v′

.
∂v′

∂v

= −2
arcsin(‖v‖)

‖v‖ Id

+2
(
−a− arcsin(‖v‖)

‖v‖
)

v.v>

‖v‖2

To summarize the calculi for‖q‖ = 1, let µ = ‖v‖
andτ andυ the following functions ofa andµ

τ = 2 sign(a)
arcsin(µ)

µ

= 2 sign(a)
(

1 +
µ2

6

)
+ O

(
µ4

)

υ =
2a− τ

µ2
= 2 sign(a)

µ
√

1− µ2 − arcsin(µ)
µ3

= −2 sign(a)
(

2
3

+
µ2

5

)
+ O

(
µ4

)

where sign is the sign function with sign(0) = ±1
indifferently. We have then

r = τ.v

∂r
∂q

=
∂r

∂(a,v)
=

[−2v ; τ Id + υ.v.v>
] (A8)

Composition of the two quaternions:q = q2 ∗ q1

Let qi = (ai,vi). We have then

q = q2 ∗ q1 =

∣∣∣∣∣∣

a1a2− < v1|v2 >

v2 × v1 + a2v1 + a1v2

The Jacobians can then be easily written

∂q
∂q1

=
∂(q2 ∗ q1)

∂q1
= a2 Id +




0 −v>2

v2 Sv2


 (A9)

and (beware of the minus sign for the right-bottom
block of the matrix due to the cross product):

∂q
∂q2

=
∂(q2 ∗ q1)

∂q2
= a1 Id+




0 −v>1

v1 −Sv1


 (A10)
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Computations concerning rotations are now com-
pleted: we can apply, inverse and compose rotation
vectors and compute the Jacobians of these operations.
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Notes

1. If the covariance matrix (the noise process) is already provided
with the feature, we can use it directly.

2. The absence of bias for the registration process can be verified
on synthetic data.
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