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Abstract

Tensors are nowadays a common source of geometric information. In this paper,
we propose to endow the tensor space with an affine-invariant Riemannian metric.
We demonstrate that it leads to strong theoretical properties: the cone of positive
definite symmetric matrices is replaced by a regular and complete manifold without
boundaries (null eigenvalues are at the infinity), the geodesic between two tensors and
the mean of a set of tensors are uniquely defined, etc. We have previously shown that
the Riemannian metric provides a powerful framework for generalizing statistics to
manifolds. In this paper, we show that it is also possible to generalize to tensor fields
many important geometric data processing algorithms such as interpolation, filtering,
diffusion and restoration of missing data. For instance, most interpolation and Gaussian
filtering schemes can be tackled efficiently through a weighted mean computation.
Linear and anisotropic diffusion schemes can be adapted to our Riemannian framework,
through partial differential evolution equations, provided that the metric of the tensor
space is taken into account. For that purpose, we provide intrinsic numerical schemes
to compute the gradient and Laplace-Beltrami operators. Finally, to enforce the fidelity
to the data (either sparsely distributed tensors or complete tensors fields) we propose
least-squares criteria based on our invariant Riemannian distance which are particularly
simple and efficient to solve.

Keywords: Tensors, Diffusion Tensor MRI, Regularization, Interpolation, Extrapolation,
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1 Introduction

Positive definite symmetric matrices (so-called tensors in this article) are often encountered
in image processing, for instance as covariance matrices for characterizing statistics on defor-
mations, or as an encoding of the principal diffusion directions in Diffusion Tensor Imaging
(DTI). The measurements of these tensors is often noisy in real applications and we would



like to perform estimation, smoothing and interpolation of fields of this type of features. The
main problem is that the tensor space is a manifold that is not a vector space with the usual
additive structure. As symmetric positive definite matrices constitute a convex half-cone
in the vector space of matrices, many usual operations (like the mean) are stable in this
space. However, problems arise when estimating tensors from data (in standard DTI, the
estimated symmetric matrix could have negative eigenvalues), or when smoothing fields of
tensors: the numerical schemes used to solve the Partial Differential Equation (PDE) may
sometimes lead to negative eigenvalues if the time step is not small enough. Even when a
SVD is performed to smooth independently the rotation (eigenvectors basis trihedron) and
eigenvalues, there is a continuity problem around equal eigenvalues.

In previous works [Pennec, 1996, Pennec and Ayache, 1998], we used invariance require-
ments to develop some basic probability tools on transformation groups and homogeneous
manifolds. This statistical framework was then reorganized and extended in [Pennec, 1999,
Pennec, 2004] for general Riemannian manifolds, invariance properties leading in some case
to a natural choice for the metric. In this paper, we show how this theory can be applied to
tensors, leading to a new intrinsic computing framework for these geometric features with
many important theoretical properties as well as practical computing properties.

In the remaining of this section, we quickly investigate some connected works on tensors.
Then, we summarize in Section 2 the main ideas of the statistical framework we developed
on Riemannian manifolds. The aim is to exemplify the fact that choosing a Riemannian
metric “automatically” determines a powerful framework to work on the manifold through
the introduction of a few tools from differential geometry. In order to use this Riemannian
framework on our tensor manifold, we propose in Section 3 an affine-invariant Riemannian
metric on tensors. We demonstrate that it leads to very strong theoretical properties, as well
as some important practical algorithms such as an intrinsic geodesic gradient descent. Section
4 focuses on the application of this framework to an important geometric data processing
problem: interpolation of tensor values. We show that this problem can be tackled efficiently
through a weighted mean optimization. However, if weights are easy to define for regularly
sampled tensors (e.g. for linear or tri-linear interpolation), the problem proved to be more
difficult for irregularly sampled values.

With Section 5, we turn to tensors field computing, and more particularly filtering. If
the Gaussian filtering may still be defined through weighted means, the partial differential
equation (PDE) approach is slightly more complex. In particular, the metric of the tensor
space has to be taken into account when computing the magnitude of the spatial gradient
of the tensor field. Thanks to our Riemannian framework, we propose efficient numerical
schemes to compute the gradient, its amplitude, and the Laplace-Beltrami operator used in
linear diffusion. We also propose an adjustment of this manifold Laplacian that realizes an
anisotropic filtering. Finally, Section 6 focuses on simple statistical approaches to regularize
and restore missing values in tensor fields. Here, the use of the Riemannian distance inherited
from the chosen metric is fundamental to define least-squares data attachment criteria for
dense and sparsely distributed tensor fields that lead to simple implementation schemes in
our intrinsic computing framework.



1.1 Related work

Quite an impressive literature has now been issued on the estimation and regularization of
tensor fields, especially in the context of Diffusion Tensor Imaging (DTI) [Basser et al., 1994,
Le Bihan et al., 2001, Westin et al., 2002]. Most of the works dealing with the geometric na-
ture of the tensors has been performed for the discontinuity-preserving regularization of the
tensor fields using Partial Differential Equations (PDEs). For instance, [Coulon et al., 2004]
anisotropically restores the principal direction of the tensor, and uses this regularized di-
rections map as an input for the anisotropic regularization of the eigenvalues. A quite
similar idea is adopted in [Tschumperlé, 2002], where a spectral decomposition W(z) =
U(x) D(z) U(x)" of the tensor field is performed at each points to independently regularize
the eigenvalues and eigenvectors (orientations). This approach requires an additional reori-
entation step of the rotation matrices due to the non-uniqueness of the decomposition (each
eigenvector is defined up its sign and there may be joint permutations of the eigenvectors
and eigenvalues) in order to avoid the creation of artificial discontinuities. Another problem
arises when two or more eigenvalues become equal: a whole subspace of unit eigenvectors
is possible, and even a re-orientation becomes difficult. An intrinsic integration scheme for
PDEs that uses the exponential map has been added in [Chefd’hotel et al., 2002], and allows
to perform PDEs evolution on the considered manifold without re-projections. In essence,
this is an infinitesimal version of the intrinsic gradient descent technique on manifolds we
introduced in [Pennec, 1996, Pennec, 1999] for the computation of the mean.

The affine-invariant Riemannian metric we detail in Section 3.3 may be traced back
to the work of [Nomizu, 1954] on affine invariant connections on homogeneous spaces. It
is implicitly hidden under very general theorems on symmetric spaces in many differential
geometry textbooks [Kobayashi and Nomizu, 1969, Helgason, 1978, Gamkrelidze, 1991] and
sometimes considered as a well known result as in [Bhatia, 2003]. In statistics, it has been
introduced as the Fisher information metric [Skovgaard, 1984] to model the geometry of the
multivariate normal family. The idea of the invariant metric came to the mind of the first
author during the IPMI conference in 2001 [Coulon et al., 2001, Batchelor et al., 2001], as an
application to diffusion tensor imaging (DTI) of the statistical methodology on Riemannian
manifolds previously developed (and summarized in the next Section). However, this idea
was not exploited until the end of 2003, when the visit of P. Thompson (UCLA, USA) raised
the need to interpolate tensors that represent the variability from specific locations on sulci
to the whole volume. The expertise of the second author on DTI [Fillard et al., 2003] pro-
vided an ideal alternative application field. During the writing of this paper, we discovered
that the invariant metric has been independently proposed by [Foérstner and Moonen, 1999
to deal with covariance matrices, and very recently by [Fletcher and Joshi, 2004] for the
analysis of principal modes of sets of diffusion tensors. By looking for a suitable met-
ric on the space of Gaussian distributions for the segmentation of diffusion tensor images,
[Lenglet et al., 2004a, Lenglet et al., 2004b] also end-up with the same metric. It is interest-
ing to see that completely different approaches, relying on an affine-invariant requirement
on the one hand, and relying on an information measure to evaluate the distance between
distributions on the other hand, lead to the same metric on the tensor space. However, to
our knowledge, this Riemannian metric has not been promoted as a complete computing



framework, as we propose in this paper.

2 Statistics on geometric features

We summarize in this Section the theory of statistics on Riemannian manifolds developed in
[Pennec, 1999, Pennec, 2004]. The aim is to exemplify the fact that choosing a Riemannian
metric “automatically” determines a powerful framework to work on the manifold through
the use of a few tools from differential geometry.

In the geometric framework, one can specify the structure of a manifold M by a Rieman-
nian metric. This is a continuous collection of scalar products on the tangent space at each
point of the manifold. Thus, if we consider a curve on the manifold, we can compute at each
point its instantaneous speed vector and its norm, the instantaneous speed. To compute
the length of the curve, we can proceed as usual by integrating this value along the curve.
The distance between two points of a connected Riemannian manifold is the minimum length
among the curves joining these points. The curves realizing this minimum for any two points
of the manifold are called geodesics. The calculus of variations shows that geodesics are the
solutions of a system of second order differential equations depending on the Riemannian
metric. In the following, we assume that the manifold is geodesically complete, i.e. that the
definition domain of all geodesics can be extended to R. This means that the manifold has
no boundary nor any singular point that we can reach in a finite time. As an important
consequence, the Hopf-Rinow-De Rham theorem states that there always exists at least one
minimizing geodesic between any two points of the manifold (i.e. whose length is the distance
between the two points).

Figure 1: Left: The tangent planes at points x and y of the sphere Sy are different: the vectors v
and w of Tx M cannot be compared to the vectors ¢t and u of Ty M. Thus, it is natural to define
the scalar product on each tangent plane. Right: The geodesics starting at x are straight lines in
the exponential map and the distance along them is conserved.

2.1 Exponential chart

Let x be a point of the manifold that we consider as a local reference and Xy a vector of the
tangent space Ty M at that point. From the theory of second order differential equations, we



know that there exists one and only one geodesic starting from that point with this tangent
vector. This allows to develop the manifold in the tangent space along the geodesics (think
of rolling a sphere along its tangent plane at a given point). The geodesics going through
the reference point are transformed into straight lines and the distance along these geodesics
is conserved (at least in a neighborhood of x).

The function that maps to each vector Xy € T, M the point y of the manifold that is
reached after a unit time by the geodesic starting at x with this tangent vector is called the
exponential map. This map is defined in the whole tangent space TxM (since the manifold
is geodesically complete) but it is generally one-to-one only locally around 0 in the tangent
space (i.e. around x in the manifold). In the sequel, we denote by Xy = log,(y) the inverse
of the exponential map: this is the smallest vector such that y = exp, (Xy). If we look for
the maximal definition domain, we find out that it is a star-shaped domain delimited by
a continuous curve Cy called the tangential cut-locus. The image of Cy by the exponential
map is the cut locus Cy of point x. This is the closure of the set of points where several
minimizing geodesics starting from x meet. On the sphere Sy(1) for instance, the cut locus
of a point x is its antipodal point and the tangential cut locus is the circle of radius 7.

The exponential map within this domain realizes a chart called the exponential chart. 1t
covers all the manifold except the cut locus of the reference point x, which has a null measure.
In this chart, geodesics starting from x are straight lines, and the distance from the reference
point are conserved. This chart is somehow the “most linear” chart of the manifold with
respect to the reference point x.

2.2 Practical implementation

In fact, most of the usual operations using additions and subtractions may be reinterpreted
in a Riemannian framework using the notion of bipoint, an antecedent of vector introduced
during the 19th Century. Indeed, one defines vectors as equivalent classes of bipoints (ori-
ented couples of points) in a Euclidean space. This is possible because we have a canonical
way (the translation) to compare what happens at two different points. In a Riemannian
manifold, we can still compare things locally (by parallel transportation), but not any more
globally. This means that each “vector” has to remember at which point of the manifold it
is attached, which comes back to a bipoint.

However, one can also see a vector Xy (attached at point x) as a vector of the tangent
space at that point. Such a vector may be identified to a point on the manifold using the
geodesic starting at x with tangent vector Xy, i.e. using the exponential map: y = exp, (Xy).
Conversely, the logarithmic map may be used to map almost any bipoint (x,y) into a vector
Xy = log, (y) of Tu M. This reinterpretation of addition and subtraction using logarithmic
and exponential maps is very powerful to generalize algorithms working on vector spaces to
algorithms on Riemannian manifolds, as illustrated by Table 1. It is also very powerful in
terms of implementation since we can practically express all the geometric operations in these
terms: the implementation of log, and exp, is the basis of any programming on Riemannian
manifolds, as we will see in the following.



2.3 Basic statistical tools

The Riemannian metric induces an infinitesimal volume element on each tangent space, and
thus a measure d M on the manifold that can be used to measure random events on the man-
ifold and to define the probability density function (if it exists) of these random elements.
It is worth noticing that the induced measure dM represents the notion of uniformity ac-
cording to the chosen Riemannian metric. This automatic derivation of the uniform measure
from the metric gives a rather elegant solution to the Bertrand paradox for geometric prob-
abilities [Poincaré, 1912, Kendall and Moran, 1963]. However, the problem is only shifted:
which Riemannian metric do we have to choose? We address this question in Section 3 for
real positive definite symmetric matrices (tensors): it turns out that requiring an invariance
by the full linear group will lead to a very regular and convenient manifold structure.

Let us come back to the basic statistical tools. With the probability measure of a random
element, we can integrate functions from the manifold to any vector space, thus defining the
expected value of this function. However, we generally cannot integrate manifold-valued
functions. Thus, one cannot define the mean or expected “value” of a random manifold
element using a weighted sum or an integral as usual. One solution is to rely on a distance-
based variational formulation: the Fréchet or Karcher expected features basically minimize
globally (or locally) the variance. As the mean is now defined through a minimization
procedure, its existence and uniqueness are not ensured any more (except for distributions
with a sufficiently small compact support). In practice, one mean value almost always exists,
and it is unique as soon as the distribution is sufficiently peaked. The properties of the mean
are very similar to those of the modes (that can be defined as central Karcher values of order
0) in the vectorial case.

To compute the mean value, we designed in [Pennec, 1999, Pennec, 2004] an original
Gauss-Newton gradient descent algorithm that essentially alternates the computation of the
barycenter in the exponential chart centered at the current estimation of the mean value,
and a re-centering step of the chart at the point of the manifold that corresponds to the
computed barycenter (geodesic marching step). To define higher moments of the distribution,
we used the exponential chart at the mean point: the random feature is thus represented
as a random vector with null mean in a star-shaped domain. With this representation,
there is no difficulty to define the covariance matrix and potentially higher order moments.

Vector space Riemannian manifold
Subtraction Y=y —x xy = log_(y)
Addition y=x+7Ty y = exp, (Xy)
Distance dist(z,y) = ||y — || dist(x,y) = ||X¥ |«
Mean value (implicit) > Tr; =0 > loge(x;) =0
Gradient descent Tppe = 2 — EVO(3y) | Xpye = expy, (—eVO(2y))
Linear (geodesic) interpolation || x(t) = 2y 4+t 2,25 x(t) = expy, (t X1X3)

Table 1: Re-interpretation of basic standard operations in a Riemannian manifold.



Based on this covariance matrix, we defined a Mahalanobis distance between a random and
a deterministic feature that basically weights the distance between the deterministic feature
and the mean feature using the inverse of the covariance matrix. Interestingly, the expected
Mahalanobis distance of a random element with itself is independent of the distribution and
is equal to the dimension of the manifold, as in the vectorial case.

As for the mean, we chose in [Pennec, 1996, Pennec, 1999, Pennec, 2004] a variational
approach to generalize the Normal Law: we define it as the distribution that minimizes the
information knowing the mean and the covariance. This amounts to consider a Gaussian
distribution on the exponential chart centered at the mean point that is truncated at the
cut locus (if there is one). However, the relation between the concentration matrix (the
“metric” used in the exponential of the probability density function) and the covariance
matrix is slightly more complex than the simple inversion of the vectorial case, as it has to
be corrected for the curvature of the manifold. Last but not least, using the Mahalanobis
distance of a normally distributed random feature, we can generalize the y? law: we were
able to show that is has the same density as in the vectorial case up to an order 3 in o.
This opens the way to the generalization of many other statistical tests, as we may expect
similarly simple approximations for sufficiently centered distributions.

3 Working on the Tensor space

Let us now focus on the space Sym. of positive definite symmetric matrices (tensors). The
goal is to find a Riemannian metric with interesting enough properties. It turns out that it
is possible to require an invariance by the full linear group (Section 3.3). This leads to a
very regular manifold structure where tensors with null and infinite eigenvalues are both at
an infinite distance of any positive definite symmetric matrix: the cone of positive definite
symmetric matrices is replaced by a space which has an infinite development in each of its
n(n+ 1)/2 directions. Moreover, there is one and only one geodesic joining any two tensors,
and we can even define globally consistent orthonormal coordinate systems of tangent spaces.
Thus, the structure we obtain is very close to a vector space, except that the space is curved.

3.1 Exponential, logarithm and square root of tensors

In the following, we will make an extensive use of a few functions on symmetric matrices.
The exponential of any matrix can be defined using the series exp(A) = Z:Of) Ak—f In the
case of symmetric matrices, we have some important simplifications. Let W = U D U™ be a
diagonalization, where U is an orthonormal matrix, and D = DIAG(d;) is the diagonal matrix
of the eigenvalues. We can write any power of W in the same basis: W* = U D¥ U". This
means that we may factor out the rotation matrices in the series and map the exponential

individually to each eigenvalue:

o0 Wk

exp(W) = Z o U DIAG(exp(d;)) U™.
k=0

The series defining the exponential function converges for any (symmetric) matrix ar-

gument, but this is generally not the case for the series defining its inverse function: the



logarithm. However, any tensor can be diagonalized into ¥ = U DIAG(d;) U™ with strictly
positive eigenvalues d;. Thus, the function

log(¥) = U (DIAG(log(d;))) U™

is always well defined on tensors. Moreover, if all the eigenvalues are small enough (|d; —1| <
1), then the series defining the usual log converges and we have:

log(2) = U (DIAG (f (_1;“ (d; — 1)’€>> U = f (_112k+1 (2 Ik (1)

k=1 k=1

The logarithm we defined is obviously the inverse function of exp. Thus, the matrix expo-
nential realizes a one-to-one mapping between the space of symmetric matrices to the space
of tensors.

Classically, one defines the (left) square root of a matrix B as the set {Bi/ 1={4c¢
GL,/AA" = B}. One could also define the right square root: {B}%/Q} ={AeGL,/ATA =
B}. For tensors, we define the square root as:

»2 = (A e Sym! /A =X}

The square root is always defined and moreover unique: let ¥ = U D?U™ be a diagonalization
(with positives values for the d;’s). Then A = U D U™ is of course a square root of ¥, which
proves the existence. For the uniqueness, let us consider two symmetric and positive square
roots A; and Ay of ¥. Then, A? = ¥ and A2 = X obviously commute and thus they can be
diagonalized in the same basis: this means that the diagonal matrices D and D3 are equal.
As the elements of Dy and Dy are positive, they are also equal and A; = Ay. Last but not
least, we have the property that

1
»12 = exp (§(log Z)) .

3.2 An affine invariant distance
Let us consider the following action of the linear group GL,, on the tensor space Sym.':
AxY =AYA" VAeGL, and X eSym/.

This group action corresponds for instance to the standard action of the affine group on the
covariance matrix ¥, of a random variables x in R": if y = Ax + ¢, then y = Az + ¢ and
Yy = Elly—9) (y — 9)"] = AL, A"

This action is naturally extended to tangent vectors is the same way: if I'(t) = ¥ +
t W + O(t?) is a curve passing at X with tangent vector T, then the curve A x I'(t) =
AY AT+t AW AT 4+ O(t?) passes through A x X with tangent vector A x W.

Following [Pennec and Ayache, 1998], any invariant distance on Sym;’ verifies dist(A
Y1, Ax3y) = dist(3,X3). Choosing A = 2;1/2, we can reduce this to a pseudo-norm, or
distance to the identity:

dist(Sy, Xp) = dist (Id,Zl_%EgEl_%) _ N (2;%222;%> .

8



Moreover, as the invariance has to hold for any transformation, N should be invariant under

the action of the isotropy group H(1Id) = O,, ={U € GL,, /UU" = 1d}:
YU €0,, NUSU")=N).

Using the spectral decomposition ¥ = UD?*U?", it is easy to see that N(X) has to be a
symmetric function of the eigenvalues. Moreover, the symmetry of the distance dist(3, Id) =
dist(Id, ) imposes that N(3) = N(XV). Thus, a good candidate is the sum of the squared
logarithms of the eigenvalues:

n

N(Z)* = | log(D)]*> = Y _(log(0:))*, (2)

=1

This “norm” verifies by construction the symmetry and positiveness. N(X) = 0 implies
that o; = 1 (and conversely), so that the separation axiom is verified. However, we do
no know any simple proof of the triangle inequality, which should read N(X;) + N(35) >

N(EII/QZQEII/Q), even if we can verify it experimentally (see e.g. [Forstner and Moonen, 1999]).

3.3 An invariant Riemannian metric

Another way to determine the invariant distance is through the Riemannian metric. Let us
take the most simple scalar product on the tangent space at the identity matrix: if W; and
W, are tangent vectors (i.e. symmetric matrices, not necessarily definite nor positive), we
define the scalar product to be the standard matrix scalar product ( Wy | Wy) = Tr(W Ws).
This scalar product if obviously invariant by the isotropy group O,,. Now, if W and W, are
two tangent vectors at Y, we require their scalar product to be invariant by the action of any
transformation: ( Wy | Wa)g = (A W) | AxW3) 5. This should be true in particular for
A = Y712 which allows us to define the scalar product at any ¥ from the scalar product at
the identity:

(Wy | Wa)y, = <E’%W12’%

2*%W22*%> — Tr (zféwlzflwzzfé) .

1d
One can easily verify that this definition is left unchanged if we use any other transformation
A = U X2 (where U is a free orthonormal matrix) that transports ¥ to the identity:
AxYX =AY A"=U0UU" = 1d.
To find the geodesic without going though the computation of Christoffel symbols, we may
rely on a result from differential geometry [Gamkrelidze, 1991, Helgason, 1978, Kobayashi and Nomizu, 196
which says that the geodesics for the invariant metrics on affine symmetric spaces are gen-
erated by the action of the one-parameter subgroups of the acting Lie group®. Since the
one-parameter subgroups of the linear group are given by the matrix exponential exp(t A),
geodesics on our tensor manifold going through ¥ with tangent vector W should have the
following form:

Limwy(t) = exp(t A) ¥ exp(t A)" with W=AY4+X A" (3)

!To be mathematically correct, we should consider the quotient space Sym;} = GL; /SO, instead of
Sym,; = GL,,/O,, so that all spaces are simply connected.

9



For our purpose, we need to relate explicitly the geodesic to the tangent vector in order
to define the exponential chart. Since ¥ is a symmetric matrix, there is hopefully an explicit
solution to the Sylvester equation W = AX + X AT, We get A = 1 (W X + £/2 Z £71/2),
where 7 is a free skew-symmetric matrix. However, introducing this solution into the equa-
tion of geodesics (Eq. 3) does not lead to a very tractable expression. Let us look at an
alternative solution.

Since our metric (and thus the geodesics) is invariant under the action of the group, we
can focus on the geodesics going through the origin (the identity). In that case, a symmetric
solution of the Sylvester equation is A = %W, which gives the following equation for the
geodesic going through the identity with tangent vector W:

t t *
U'1a,m) (8) = exp (5 W) exp (5 W) = exp(t W).

We may observe that the tangent vector along this curve is the parallel transportation of
the initial tangent vector. If W = U DIAG(w;) U™,

dl'(t L ! 5

d—g) = U DIAG (w;exp(t w;)) U" =T(t)2 WT(t)z =T(t)z x W.
By definition of our invariant metric, the norm of this vector is constant: ||F(t)1/ 2*W||1%(t)1 /251d —
W3 4= |[W||3. This was expected since geodesics are parameterized by arc-length. Thus,

the length of the curve between time 0 and 1 is

1
/
0

Solving for I'(1qw)(1) = X, we obtain the “norm” N(X) of Eq.(2). Using the invariance of
our metric, we easily obtain the geodesic starting from any other point of the manifold using
our group action:

2

dr (%)

—a dt = [|[W|3q.

ING)

L (t) = 22 % F(Id,2—1/2*W>(t) — ¥ exp (t E_%WZ_%> N3,

Coming back to the distance dist?(%, Id) = 3. (log 0;)?, it is worth noticing that tensors
with null eigenvalues are located as far from the identity as tensors with infinite eigenvalues:
at the infinity. Thanks to the invariance by the linear group, this property holds for the
distance to any (positive definite) tensor of the manifold. Thus, the original cone of positive
definite symmetric matrices (a linear manifold with a flat metric but which is incomplete:
there is a boundary at a finite distance) has been changed into a regular and complete (but
curved) manifold with an infinite development in each of its n(n + 1)/2 directions.

3.4 Exponential and logarithm maps

As a general property of Riemannian manifolds, geodesics realize a local diffeomorphism from
the tangent space at a given point of the manifold to the manifold: I'sw)(1) = expy (W)
associates to each tangent vector W € TxSym,’ a point of the manifold. This mapping is

10



called the exponential map, because it corresponds to the usual exponential in some matrix
groups. This is exactly our case for the exponential map around the identity:

exp(UDU") = exp(UDU™") = U DIAG (exp(d;)) U".

However, the Riemannian exponential map associated to our invariant metric has a more
complex expression at other tensors:

expy (W) = 27 exp (Z_%WE_%> 33

In our case, this diffeomorphism is global, and we can uniquely define the inverse mapping

everywhere:
1

logs(A) = 37 log (z-%Az—%) $3,
Thus, expy, gives us a collection of one-to-one and complete maps of the manifold, centered
at any point X. As explained in Section 2.1, these charts can be viewed as the development
of the manifold onto the tangent space along the geodesics. Moreover, as the manifold has a
non-positive curvature [Skovgaard, 1984], there is no cut-locus and the statistical properties
detailed in [Pennec, 2004] hold in their most general form. For instance, we have the existence
and uniqueness of the mean of any distribution with a compact support [Kendall, 1990].

3.5 Induced and orthonormal coordinate systems

One has to be careful because the coordinate system of all these charts is not orthonormal.
Indeed, the coordinate system of each chart is induced by the standard coordinate system

—
(here the matrix coefficients), so that the vector ¥ A corresponds to the standard derivative

in the vector space of matrices: we have A = ¥ + SA + O(||§7X||2) Even if this basis is

orthonormal at some points of the manifold (such as at the identity for our tensors), it has

to be corrected for the Riemannian metric at other places due to the manifold curvature.
From the expression of the metric, one can observe that

— 1 _1 _1
IZAS = [[Togs (A% = (272 logs (A) X724 = || log(X72 x A)[5.

— —

This shows that YA, = log(E_% *\) € TxSym;" is the expression of the vector XA in an

orthonormal basis. In our case, the transformation $'/2 € GL,, is moreover uniquely defined

(as a positive square root) and is a smooth function of ¥ over the complete tensor manifold.
—

Thus, XA, realizes an atlas of orthonormal exponential charts which is globally smooth with
respect to the reference point? ¥. This group action approach was chosen in earlier works
[Pennec, 1996, Pennec and Thirion, 1997, Pennec and Ayache, 1998] with what we called the
placement function.

For some statistical operations, we need to use a minimal representation (e.g. 6 param-
eters for 3 x 3 tensors) in a (locally) orthonormal basis. This can be realized through the
classical “Vec” operator that maps the element a;; of a n x n matrix A to the (i n + j)th

20n most homogeneous manifolds, this can only be realized locally. For instance, on the sphere, there is
a singularity at the antipodal point of the chosen origin for any otherwise smooth placement function.

11



element Vec(A);,4; of a n x n dimensional vector Vec(A). Since we are working with sym-
metric matrices, we have only n(n + 1)/2 independent coefficients, say the upper triangular
part. However, the off-diagonal coefficients are counted twice in the L, norm at the iden-
tity: [|[W|5 =320, wi; +2 32, ;< wi;. Thus, to express our minimal representation in an
orthonormal basis, we need to multiply the off diagonal terms by /2:

T
Vec Id(W) = (wl,b \/§ Wy,2, W2 2, \/5 W1,3, \/§ Wa,3, W33, - - - \/§ Win, - - - \/§ W(n-1),n> wn,n> .

—
Now, for a vector XA € TxSym,t, we define its minimal representation in the orthonormal
coordinate system as:

— = 1 = 1 1
Vees (BA) = Veeq(EA,) = Veerq (2—5 SA 2—5) — Vecyq (log(E_E*A)>.

The mapping Vecy, realizes an explicit isomorphism between TxSym. and R™"+1)/2 with
the canonical metric.

3.6 Gradient descent and PDEs: an intrinsic geodesic marching
scheme

Let f(X) be an objective function to minimize, 3; the current estimation of ¥, and W; =
Osf = [0f/00;;] its matrix derivative at that point, which is of course symmetric. The
principle of a first order gradient descent is to go toward the steepest descent, in the direction
opposite to the gradient for a short time-step €, and iterate the process. However, the
standard operator ;.1 = ¥; —cW} is only valid for very short time-steps in the flat Euclidean
matrix space, and we could easily go out of the cone of positive definite tensors. A much
more interesting numerical operator is given by following the geodesic backward starting at
Y) with tangent vector W, during a time €. This intrinsic gradient descent ensures that we
cannot leave the manifold. It can easily be expressed using the exponential map:

Sis1 = Dimpwn (—€) = expy;, (—eW,) = B2 exp(—eX 2 W, 5 "7)%3,

This intrinsic scheme is trivially generalized to partial differential evolution equations
(PDEs) on tensor fields such as 9,3 (x,t) = —W (z,t): we obtain X(z, t+dt) = expy,  (—dtW (z,t)).

3.7 Example with the mean value

Let ¥ ...X 5 be a set of measures of the same Tensor. The Karcher or Fréchet mean is the
set of tensors minimizing the sum of squared distances: C(X) = 3.8 | dist*(%,%;). In the
case of tensors, the manifold has a non-positive curvature[Skovgaard, 1984], so that there
is one and only one mean value ¥ [Kendall, 1990]. Moreover, a necessary and sufficient
condition for an optimum is a null gradient of the criterion. Thus, the intrinsic Newton
gradient descent algorithm gives the following mean value at estimation step ¢ + 1:

N N

_ 1 _ 1 1 __1 o __1 _ 1

41 = exps, (ﬁ ) logzt(Ei)> — 5% exp <N Y log (Et 3355) )) S2 (4)
i=1 =1
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Note that we cannot easily simplify this expression further as in general the data ¥J; and the
mean value ¥; cannot be diagonalized in a common basis. However, this gradient descent
algorithm usually converges very fast (about 10 iterations, see Fig. 2).

3.8 Simple statistical operations on tensors

As described in [Pennec, 2004], we may generalize most of the usual statistical methods by
using the exponential chart at the mean point. For instance, the empirical covariance matrix

_ — ——
of a set of N tensors X; of mean ¥ is defined using the tensor product: ﬁ Yo TE QXY
Using our Vec mapping, we may come back to more usual matrix notations and write its
expression in a minimal representation with an orthonormal coordinate system:

N
1 — ——\ T
Cov = m i_g 1 Vng (221> Vng (221> .

One may also define the Mahalanobis distance
—\ 7T —
“?i,cov)(z) = Vecs: <EZ> Cov™ Vecs, (EZ) )

Looking for the probability density function that minimizes the information with a con-
strained mean and covariance, we obtain a generalization of the Gaussian distribution of the
form:

Nor(®) = b exp (~51(9)).

The main difference with a Euclidean space is that we have a curvature to take into
account: the invariant measure induced on the manifold by our metric is linked to the usual
matrix measure by dM(X) = d3/ det(X). Likewise, the curvature slightly modifies the usual
relation between the covariance matrix, the concentration matrix I' and the normalization
parameter k of the Gaussian distribution [Pennec, 2004]. These differences have an impact
on the calculations using continuous probability density functions. However, from a prac-
tical point of view, we only deal with a discrete sample set of measurements, so that the
measure-induced corrections are hidden. For instance, we can generate a random (general-
ized) Gaussian tensor using the following procedure: we sample n(n+1)/2 independent and
normalized real Gaussian samples, multiply the corresponding vector by the square root of
the desired covariance matrix (expressed in our Vec coordinate system), and come back to
the tensor manifold using the inverse Vec mapping. Using this procedure, we can easily
generate noisy measurements of known tensors (see e.g. Fig. 7).

To check the implementation of our charts and geodesic marching algorithms, we verified
experimentally the central limit theorem. This theorem states that the empirical mean
of N independently and identically distributed (IID) random variables with a variance ~?
asymptotically follows a Gaussian law of variance ?/N, centered at the exact mean value.
The principle of our experiments is now as follows. We randomly generated N random
Gaussian tensors around a random tensor ¥ with a variance of 42 = 1. We computed the
mean 3. using the algorithm of Eq. 4. The convergence is clearly very fast (Fig. 2, left).
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Now, if the error between the computed and the exact mean really follows a Gaussian law
of variance v2/N, then the normalized Mahalanobis distance p2 = N dist(Z, )2/~ should
follow a 2 distribution. However, this simple experiment only gives us one measurement.
Thus, to verify the distribution, we repeated this experiment with N varying from 10 to 1000.
Figure 2 presents the histogram of the normalized Mahalanobis distances we obtain. The
empirical distribution follows quite well the theoretical y2 distribution, as expected, with an
empirical mean of 5.85 and a variance of 12.17 (expected values are 6 and 12). Moreover, a
Kolmogorov-Smirnov test confirms that the distance between the empirical and theoretical
cumulative pdf is not significant (p-value of 0.19).

08

06

Distance between successive iterations

e g
1) a

o
o

2 4 6 8 I 2 1 [
Number of iterations

Figure 2: Mean of random Gaussian tensors. Left: Typical evolution of the distance between
successive iterations of the mean computation. The convergence is clearly very fast. Right: His-
togram of the renormalized Mahalanobis distance y? = N dist(3, 2)2 /7% between the computed
and the exact mean tensors. The curve is the pdf of the X% distribution.

4 Tensor Interpolation

One of the important operations in geometric data processing is to interpolate values between
known measurements. In 3D image processing, (tri-) linear interpolation is often used thanks
to its very low computational load and comparatively much better results than nearest
neighbor interpolation. Other popular methods include the cubic and, more generally, spline
interpolations [Thévenaz et al., 2000, Meijering, 2002].

The standard way to define an interpolation on a regular lattice of dimension d is to
consider that the interpolated function f(z) is a linear combination of samples f;, at integer
(lattice) coordinates k € Z%: f(x) =Y., w(x—k) fi. To realize an interpolation, the “sample
weight” function w has to vanish at all integer coordinates except 0 where it has to be one.
A typical example where the convolution kernel has an infinite support is the sinus cardinal
interpolation. With the nearest-neighbor, linear (or tri-linear in 3D), and higher order spline
interpolations, the kernel is piecewise polynomial, and limited to a few neighboring points
in the lattice.

When it comes to an irregular sampling (i.e. a set of measurements f at positions xy),
interpolation may still be defined using a weighted mean: f(z) = Z,ivzl wg(z) fr. To ensure
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that this is an interpolating function, one has to require that w;(x;) = §;; (where §;; is the
Kronecker symbol). Moreover, the coordinates are usually normalized so that Zszl wi(z) =
1 for all position x within the domain of interest. Typical examples in triangulations or
tetrahedrizations are barycentric and natural neighbor coordinates [Sibson, 1981].

4.1 Interpolation through weighted mean

To generalize interpolation methods defined using weighted means to our tensor manifold,
let us assume that the sample weights wy(z) are defined as above in RY. Thanks to their
normalization, the value f(z) interpolated from vectors f;, verifies S0 w;(x) (f;— f(z)) = 0.
Thus, similarly to the Fréchet mean, we can define the interpolated value (x) on our
tensor manifold as the tensor that minimizes the weighted sum of squared distances to the
measurements 3;: C(3(x)) = Zf\il w;(z) dist?(X;, X(z)). Of course, we loose in general
the existence and uniqueness properties. However, for positive weights, the existence and
uniqueness theorems for the Karcher mean can be adapted. In practice, this means that we

—
have a unique tensor that verifies S_~  w;(2)¥(x)%; = 0. To reach this solution, it is easy to
adapt the Gauss-Newton scheme proposed for the Karcher mean. The algorithm becomes:

Yeri(z) = expy,(y (sz logs, () (E: ))

= z§<x>exp(zwz<>1og(z F(@)mE <>)) 5} (@) (5)

Once again, this expression cannot be easily simplified, but the convergence is very fast
(usually less than 10 iterations as for the mean).

4.2 Example of the linear interpolation

The linear interpolation is simple as this is a walk along the geodesic joining the two tensors.
For instance, the interpolation in the standard Euclidean matrix space would give ¥'(¢) =
(1 —t) X, +t%e. In our Riemannian space, we have the closed-form expression: X(t) =
expy;, (t logy, (32)) = expy, ((1 — ) logy, (21)) for ¢t € [0;1]. We displayed in Fig. 3 the flat
and the Riemannian interpolations between 2D tensors of eigenvalues (5,1) horizontally and
(1,50) at 45 degrees, along with the evolution of the eigenvalues, their mean (i.e. trace of
the matrix) and product (i.e. determinant of the matrix or volume of the ellipsoid).

With the standard matrix coefficient interpolation, the evolution of the trace is perfectly
linear (which was expected since this is a linear function of the coefficients), and the principal
eigenvalue regularly grows almost linearly, while the smallest eigenvalue slightly grows toward
a local maxima before lowering. What is much more annoying is that the determinant
(i.e. the volume) does not grow regularly in between the two tensors, but goes through
a maximum. If we interpret our tensors as covariance matrices of Gaussian distributions,
this means that the probability of a random point to be accepted as a realization of our
distribution is larger in between than at the measurement points themselves! On the contrary,
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Figure 3: Top: Linear interpolation between 2D tensors of eigenvalues (5,1) horizontally and (1,50)
at 45 degrees. Left: interpolation in the standard matrix space (interpolation of the coefficients).
Right: geodesic interpolation in our Riemannian space. Bottom: evolution of the eigenvalues,
their mean (i.e. trace of the matrix) and product (i.e. determinant of the matrix or volume of the
ellipsoid).

one can clearly see a regular evolution of the eigenvalues and of their product with the
interpolation in our Riemannian space. Moreover, there is a much smoother rotation of the
eigenvectors than with the standard interpolation.

4.3 Tri-linear interpolation

The bi- and tri-linear interpolation of tensors on a regular grid in 2D or 3D are almost as
simple, except that we do not have any longer an explicit solution using geodesics since there
are more than two reference points. After computing the (bi-) tri-linear weights with respect
to the neighboring sites of the point we want to evaluate, we now have to go through the
iterative optimization of the weighted mean (Eq. 5) to compute the interpolated tensor. We
display an example in Figure 4. One can see that the volume of the tensors is much more
important with the classical than with the Riemannian interpolation. We also get a much
smoother interpolation of the principal directions with our method.

4.4 Interpolation of non regular measurements

When tensors are not measured on a regular grid but “randomly” localized in space, defining
neighbors becomes an issue. One solution, proposed by [Sibson, 1981] and later used for
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Figure 4: Top left: Bi-linear interpolation between the four 2D tensors at the corners in the
standard matrix space (interpolation of the coefficients). Top right: Equivalent bi-linear interpo-
lation in our Riemannian space. Bottom left: A slice of the tri-linear interpolation between 3D
tensors in the standard matrix space (interpolation of the coefficients). Bottom right: Equivalent
tri-linear interpolation in our Riemannian space.

surfaces by [Cazals and Boissonnat, 2001], is the natural neighbor interpolation. For any
point z, its natural neighbors are the points of {z;} whose Voronoi cells are chopped off
upon insertion of x into the Voronoi diagram. The weight w; of each natural neighbor z; is
the proportion of the new cell that is taken away by z to x; in the new Voronoi diagram. One
important restriction of these interesting coordinates is that they are limited to the convex
hull of the point set (otherwise the volume or surface of the cell is infinite).

Another idea is to rely on radial-basis functions to define the relative influence of each
measurement point. For instance, a Gaussian influence would give a weight w;(x) = G,(x —
x;) to the measurement ¥; located at x;. Since weights need to be renormalized in our setup,
this would lead to the following evolution equation:

Sy Gola — x) Et(X)Ei) .

(6)

E”l(x):eXpW)( >, Gole — 7.
i=1 o\ T i
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The initialization could be the (normalized) Gaussian mean in the matrix space. An example
of the result of this evolution scheme is provided on top of Figure 10. However, this algorithm
does not lead to an interpolation, but rather to an approximation, since the weights are not
zero at other measurement points. Moreover, we have little control on the quality of this
approximation. It is only at the limit where o goes to zero that we end-up with a (non-
continuous) closest point interpolation.

We will describe in Section 6.3 a last alternative that performs the interpolation and
extrapolation of sparsely distributed tensor measurements using diffusion.

5 Filtering tensor fields

Let us now consider that we have a tensor field, for instance like in Diffusion Tensor Imag-
ing (DTI) [Le Bihan et al., 2001], where the tensor is a first order approximation of the
anisotropic diffusion of the water molecules at each point of the imaged tissues. In the brain,
the diffusion is much favored in the direction of oriented structures (fibers of axons). One of
the goal of DTTI is to retrieve the main tracts along these fibers. However, the tensor field
obtained from the images is noisy and needs to be regularized before being further analyzed.
A naive but simple and often efficient regularization on signal or images is the convolution
by a Gaussian. The generalization to tensor fields is quite straightforward using once again
weighted means (Section 5.1 below). An alternative is to consider a regularization using
diffusion. This will be the subject of Sections 5.3 and 5.4.

5.1 Gaussian Filtering
In the continuous setting, the convolution of a vector field Fy(x) by a Gaussian is:
F(a) = [ Guly—2) Flt) dy
Y

In the discrete setting, coefficients are renormalized since the neighborhood V is usually
limited to points within one to three times the standard deviation:

ZuEV(,z’) Go(u) Fo(z + u)
ZueV(x) Go(u)

F(z) = = arngin Z Go(u) [|[Fo(z +u) — F|%.

ueV(x)

Like previously, this weighted mean can be solved on our manifold using our intrinsic gra-
dient descent scheme. Starting from the measured tensor field ¥y(z), the evolution equation

Y uey Golu) Ei(x)E¢(x + u)
> ey Go(u) '

We illustrate in Fig. 5 the comparative Gaussian filtering of a slice of a DT MR image
using the flat metric on the coefficient (since weights are positive, a weighted sum of positive
definite matrices is still positive definite) and our invariant Riemannian metric. One can
see a more important blurring of the corpus callosum fiber tracts using the flat metric.

Y1 (7) = expy, (p) (
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However, the integration of this filtering scheme into a complete fiber tracking system would
be necessary to fully evaluate the pros and cons of each metric.

Figure 5: Regularization of a DTT slice around the corpus callosum by isotropic Gaussian filtering.
Left: raw estimation of the tensors. The color codes for the direction of the principal eigenvector
(red: left/right, green: anterior/posterior, blue: top/bottom). Middle: Gaussian filtering of
the coefficients (5x5 window, o = 2.0). Right: equivalent filtering (same parameters) using the
Riemannian metric.

5.2 Spatial gradient of Tensor fields

On a n-dimensional vector field F(z) = (fi(z1,...%a), ... fo(21,...24))" over R one may
express the spatial gradient in an orthonormal basis as:

oh .. oL

OF o T

VFT — <_) =[O F,...04F| = | :+ ..
oz Ofn Ofn

Ox1’? 77 Oxgq

The linearity of the derivatives implies that we could use directional derivatives in more
than the d orthogonal directions. This is especially well adapted to stabilize the discrete
computations: the finite difference estimation of the directional derivative is 9, F (z) = F(xz+
u) — F'(z). By definition, the spatial gradient is related to the directional derivatives through
VFT" u = 0,F(x). Thus, we may compute VF' as the matrix that best approximates (in
the least-square sense) the directional derivatives in the neighborhood V (e.g. 6, 18 or 26
connectivity in 3D):

(=1
VE(z) = argmanHGTu—(?F WP = Zuu Zué’uF(x)T

uey uey uey
(-1

ZuuT Zu (x +u)— F(x))"

uey uey

12
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We experimentally found in other applications (e.g. to compute the Jacobian of a de-
formation field in non-rigid registration [Rey et al., 2002, p. 169]) that this gradient ap-
proximation scheme was more stable and much faster than computing all derivatives using
convolutions, for instance by the derivative of the Gaussian.

To quantify the local amount of variability independently of the space direction, one
usually takes the norm of the gradient: |[VF(z)|* = Zle |0, F(z)||>. Once again, this can
be approximated using all directional derivatives in the neighborhood

Notice that this approximation is consistent with the previous one only if the directions u
are normalized to unity.

For a manifold valued field ¥(x) define on RY, we can proceed similarly, except that the
directional derivatives 0;X(x) are now tangent vectors of Ty, M. They can be approximated
just like above using finite “differences” in our exponential chart:

0,5(7) ~ B(x) D(x + u) = S(z)? log (z(x)*% (@ + u) z@)*%) ()3, (8)

As observed in Section 3.5, we must be careful that this directional derivative is expressed
in the standard matrix coordinate system (coefficients). Thus, the basis is not orthonormal:
to quantify the local amount of variation, we have to take the metric at the point 3(z) into
account, so that:

log (L(z)"2 Sz +u) X(x) 2 ’

ueV

5.3 Filtering using PDEs

Regularizing a scalar, vector or tensor field F' aims at reducing the amount of its spatial
variations. The first order measure of such variations is the spatial gradient VF that we
dealt with in the previous section To obtain a regularity criterion over the domain €2, we
just have to integrate: Reg(F) = [, ||[VF(z)|? dz. Starting from an initial field Fy(z), the
goal is to find at each step a ﬁeld F,(z) that minimizes the regularity criterion by gradient
descent in the space of (sufficiently smooth and square integrable) functions.

To compute the first order variation, we write a Taylor expansion for an incremental step
in the direction of the field H. Notice that H(z) is a tangent vector at F'(x):

Reg(F + ¢ H) = Reg(F) + 26/ (VF(z) | VH(x)) dx+ O(£?).
Q
We get the directional derivative: dyReg(F) =2 [,(VF(x) | VH(z)) dz. To compute the
steepest descent, we now have to find the gradient VReg(F) such that for all variation H,
we have g Reg(F) = [, ( VReg(F)(z) | H(z)) () dv. Notice that VReg(F)(x) and H (x)
are elements of the tangent space at F'(x), so that the scalar product should be taken at
F(x) for a tensor field.
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Figure 6: Norm of the gradient of the tensor field. Left: computed on the coefficients with Eq. 7
(with the flat metric). Middle: we computed the directional derivatives with the exponential map
(Eq. 8), but the norm is taken without correcting for the metric. As this should be very close to the
flat gradient norm, we only display the difference image. The main differences are located on very
sharp boundaries, where the curvature of our metric has the most important impact. However, the
relative differences remains small (less than 10%), which shows the stability of both the gradient
and the log / exp computation schemes. Right: Riemannian norm of the Riemannian gradient
(Eq. 9). One can see much more detailed structures within the brain, which will now be preserved
during an anisotropic regularization step.

The case of a scalar field Let f: R? — R be a scalar field. Our regularization criterion
is Reg(f) = J, |V f(z)||> dz. Let us introduce the divergence div(.) = (V |.) and the
Laplacian operator Af = div(Vf). The divergence is usually written V' = (0y,...,0,),
so that in an orthonormal coordinate system we have Af = (V |Vf) = Zle 02f. Let

now G(x) be a vector field. Typically, we will use G(x) = V f(z). Using the standard
differentiation rules, we have:

div(h Q) = (V |h G = hdiv(G) + (Vh | G).

Now, thanks to the Green’s formula (see e.g. [Gallot et al., 1993]), we know that the flux
going out of the boundaries of a (sufficiently smooth) region €2 is equal to the integral of the
divergence inside this region. If we denote by n the normal pointing outward at a boundary
point, we have:

/BQUIGIn) dn:/QdiV(hG):/SlhdiV(G)+/S)<Vh|G>.

This result can also be interpreted as an integration by part in R%. Assuming homogeneous
Neumann boundary conditions (gradient orthogonal to the normal on 9Q: (G |n) = 0),
the flow across the boundary vanishes, and we are left with: [, (G | Vh) = — [, h div(G).
Thus, coming back to our original problem, we have:

OnReg(f)(x) = 2 /

Q

(Vf(x) | Vh(x)) dx = —2/ h(z) Af(x) dx.

Q

Since this last formula is no more than the scalar product on the space Ls(£2,R) of square
integrable functions, we end-up with the classical Euler-Lagrange equation: VReg(f) =
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—2Af(z). The evolution equation used to filter the data is thus
frn(@) = fi(z) — eVReg(f)(z) = fi(z) + 2eA fi().

The vector case Let us decompose our vector field F'(x) into its n scalar components
fi(z). Likewise, we can decompose the d x n gradient VF into the gradient of the n scalar
components V f;(z) (columns). Thus, choosing an orthonormal coordinate system on the
space R", our regularization criterion is decoupled into n independent scalar regularization
problems:

Reg(F)a) = 3 [ IVA@I do = 3 Reatf),

Thus, each component f; has to be independently regularized with the Euler-Lagrange equa-
tion: VReg(f;) = —2Af;. With the convention that the Laplacian is applied component-wise
(so that we still have AF = div(VEF) = V"VF = (Afy,...Af,)"), we end-up with the vec-
torial equation:

VReg(F) = —2AF  for  Reg(F) — / IV F ()] da.
Q
The associated evolution equation is Fy1(x) = Fy(x) + 2 eAF(x).

Tensor fields For a tensor field X(z) € Sym; over R?, the procedure is more complex as
we should use the covariant derivative (the connection) to differentiate vectors fields on our
manifold. However, we may avoid the introduction of additional complex mathematical tools
by coming back to the basic definitions. We summarize below the main ideas, while the full
calculations are worked out in Appendix A.1. Let (z1,...24) be an orthonormal coordinate
system of R?. Our regularization criterion is:

Reg(®) = [ V2@, do =3 [ 10ZIE. (10

The idea is to write this criterion as the trace of sums and products of standard Euclidean
matrices and to compute its directional derivative Oy Reg for a perturbation field W. This
expression contains of course derivatives 0;IW that we need to integrate. However, as every-
thing is expressed in the standard Euclidean chart (matrix coefficients), and assuming the
proper Neumann boundary conditions, we shall safely use the previous integration by part
formula [, Tr((0;W) A;) = — [, Te(W (9;A;)). Notice that we are using the matrix coeffi-
cients only as a chart and not as a metric. Eventually, we rewrite the obtained expression in
terms of our Riemannian metric to obtain the formula defining the gradient of the criterion:
OwReg = [, (W | VReg)y. By identification, we get: VReg(X) = —2 AX, where A is the
Laplace-Beltrami operator on our manifold:

d
A= AL with AT =T - (9,5) SV (9,T). (11)
=1
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As we can see, the flat Euclidean second order directional derivatives 9?% are corrected by
an additional term due to the curvature of our manifold. To conclude, the gradient descent
on the regularization criterion with the intrinsic geodesic marching scheme of Section 3.6
leads to:

St (1) = exDs, ) (—¢ VReg(D)(2)) = xpg ) (2¢ AB(2)).

For the numerical computation of the Laplacian, we may approximate the first and second
order tensor derivative by their Euclidean derivatives. This gives a fourth order approxima-
tion of the Laplace-Beltrami operator (see Appendix A.2). However, this numerical scheme is
extrinsic since it is based on (Euclidean) differences of tensors. We propose here an intrinsic
scheme based on the exponential chart at the current point. We already know from Eq. 8

-
that 3(x)X(x 4+ u) is an approximation of the first order directional derivative 0,%(z). We

show in Appendix A.2 that X(z)X(z + u) + X(2)X(z — u) is a forth order approximation of
the Laplace Beltrami operator in the direction wu:

ALY =022 —2(9,8) 2V (0,%) = Z(2)2(x + u) + 2(2)S(x — u) + O(||ul|*). (12)

To compute the complete manifold Laplacian of Eq. 11, we just have to compute the
above numerical approximations of the tensor field derivatives along d orthonormal basis
vectors z;. However, like for the computation of the gradient, we may improve the stabil-
ity of the numerical scheme by averaging the derivatives in all possible directions in the
neighborhood V. Assuming a symmetric and isotropic neighborhood, we finally obtain:

B d AdN(z)  2d Y(2)X(z 4+ u)
AR = Gardw) 2 P = CardV) 2 JulP (1)

5.4 Anisotropic filtering

In practice, we would like to filter within the homogeneous regions, but not across their
boundaries. The basic idea is to penalize the smoothing in the directions where the deriva-
tive is important [Perona and Malik, 1990, Gerig et al., 1992]. If ¢(.) is a weighting function
decreasing from ¢(0) = 1 to ¢(+o00) = 0, this can be realized directly in the discrete im-
plementation of the Laplacian (Eq. 13): the contribution A, of the spatial direction u
to the Laplace-Beltrami operator is weighted by our decreasing function according to the
norm ||0,X||s of the gradient in that direction. The important point here is that we should
evaluate the norm of directional derivatives of the tensor field with our invariant metric.
With our finite difference approximations, this leads to the following modified Laplacian:

Agniso2(x) = LZC(”&LE@HE(I)) A%¥(x)

Card(V) 2= Tl Jull
2d HZ(m)E(m—ku)”z(m) Y(z)S(x + u)
Card(V) 2= ° Tl ull? (1)
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Figures 7 and 8 present example results of this very simple anisotropic filtering scheme
on synthetic and real DTI images. We used the function c(z) = exp (—x?/k?), where the
threshold k controls the amount of local regularization: for a gradient magnitude greater
than 2 to 3 times k, there is virtually no regularization, while the field is almost linearly
smoothed for gradient magnitudes below a fraction (say 0.1) of k. For both synthetic and
real data, the histogram of the gradient norm is very clearly bimodal so that the threshold
k is easily determined.

In Fig. 7, we generated a tensor field with a discontinuity, and add independent Gaussian
noises according to Section 3.8. The anisotropic smoothing perfectly preserves the discon-
tinuity while completely smoothing each region. In this synthetic experiment, we retrieve
tensor values that are very close to the initial tensor field. This could be expected since
the two regions are perfectly homogeneous. After enough regularization steps, each region
is a constant field equal to the mean of the 48 initially noisy tensors of the region. Thus,
similarly to the Fuclidean mean of identically and independently distributed measurements,
we expect the standard deviation of the regularized tensors to be roughly 7 ~ /48 times
smaller than the one of the noisy input tensors.

s L 1 | | mme 1
—oiiE B e
===\ ;g:s%z'\' === | iyl

Figure 7: Left: 3D synthetic tensor field with a clear discontinuity. Middle: The field has been
corrupted by a Gaussian noise (in the Riemannian sense). Right: result of the regularization after
30 iterations (time step € = 0.01).

In Figure 8, we display the evolution of (a slice of) the tensor field, the norm of the
gradient and the fractional anisotropy (FA) at different steps of the anisotropic filtering
of a 3D DTI. The FA is based on the normalized variance of the eigenvalues. It shows
the differences between an isotropic diffusion in the brain (where the diffusion tensor is
represented by a sphere, FA=0) and a highly directional diffusion (cigar-shaped ellipsoid,
FA=1). Consequently, the bright regions in the image are the potential areas where nervous
fibers are located. One can see that the tensors are regularized in “homogeneous” regions
(ventricles, temporal areas), while the main tracts are left unchanged. It is worth noticing
that the fractional anisotropy is very well regularized even though this measure has almost
nothing in common with our invariant tensor metric.

Figure 9 displays closeups around the ventricles to compare the different regularization
methods developed so far. One can see that the Riemannian metric gives much less weight
to large tensors, thus providing a regularization which is more robust to outliers. The
anisotropic filtering further improves the results by preserving the discontinuities of the
tensor scale (e.g. at the boundary of the ventricles), but also the discontinuities of the tensor
orientation, which is exactly what is needed for fiber tracking in DTT.
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Figure 8: Anisotropic filtering of a DTT slice (time step 0.01, x = 0.046). From left to right:
at the beginning, after 10 and after 50 iterations. Top: A 3D view of the tensors as ellipsoids.
The color codes for the direction of the principal eigenvector. The results could be compared with
the isotropic Gaussian filtering displayed in Figure 5. Middle: Riemannian norm of the gradient.
Bottom: fractional anisotropy.
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Figure 9: Closeup on the results of the different filtering methods around the splenium of the

corpus callosum. The color codes for the direction of the principal eigenvector (red:
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6 Regularization and restoration of tensor fields

The pure diffusion is efficient to reduce the noise in the data, but it also reduces the amount
of information. Moreover, the amount of smoothing is controlled by the time of diffusion
(time step € times the number of iterations), which is not an easy parameter to tune. At
an infinite diffusion time, the tensor field will be completely homogeneous (or homogeneous
by part for some anisotropic diffusion schemes), with a value corresponding to the mean of
the measurements over the region (with Neumann boundary conditions). Thus, the absolute
minimum of our regularization criterion alone is of little interest.

To keep close to the measured tensor field ¥o(z) while still regularizing, a more theoreti-
cally grounded approach is to consider an optimization problem with a competition between
a data attachment term and a possibly non-linear anisotropic regularization term:

C(X) = Sim(3,%50) + A Reg(X).
Like before, the intrinsic evolution equation leading to a local minimum is:

Yi11(7) = expy, () (= (VSim(X, E0) + A VReg(¥)(x))) -

6.1 The regularization term

As we saw in the previous section, the simplest regularization criterion is the norm of the
gradient of the field Reg(F) = [, [[VF(z)|* dz. To preserve the discontinuities, the gradient
of this criterion (the Laplacian) may be tailored to prevent the smoothing across them, as
we have done in Section 5.4. However, there is no more convergence guarantee, since this
anisotropic regularization “force” may not derive from a well-posed criterion (energy). Follow-
ing the pioneer work of [Perona and Malik, 1990], there has been quite an extensive amount
of work to propose well posed PDEs for the non-linear, anisotropic and non-stationary reg-
ularization of scalar and vector fields (see e.g. [Weickert, 1998, Sapiro, 2001] to cite only
a few recent books). Some of these techniques were recently adapted to work on matrix
valued fields [Weickert and Brox, 2002] (with the flat metric) or on the rotation manifolds
[Tschumperlé and Deriche, 2002].

One of the main idea is to replace the usual simple regularization term Reg(F) =
Jo IVE( )H2 dx by an increasing function ® of the norm of the spatial gradient: Reg(F) =
Jo ®(|IVF(z)|)dz. With some regularity conditions on the ®-function [Aubert and Kornprobst, 2001],
one can recompute the previous derivations with this ®-function, and we end-up with:

This scheme was used in [Chefd’hotel et al., 2004] with the flat Euclidean metric on
tensors, in conjunction with a geometric numerical integration scheme that preserves the
rank of the matrix. Their conclusion was that the rank/signature preserving flow tends
to blend the orientation and diffusivity features (eigenvalue swelling effect). This rank-
signature preserving flow is based on the matrix exponential but does not make any ref-
erence to a specific metric. Reformulated in our notations, their evolution equation is:
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Y(z,t + dt) = exp(dt Az, t)) X(z,t) exp(dt A(z,t)), where A(x,t) is implicitly related to
the driving tangent vector field using: 0,%(x,t) = —W(x,t) = A(x, t)2(z, t) + X(z, 1) A(z, t).
From the first expression of our geodesics (Eq. 3 in Section 3.3), we can see that this is a
geodesic marching scheme for our metric. However, they use the flat Euclidean metric on
coefficients to evaluate the norm of the spatial gradient of the tensor field. We claim that
a consistent framework should use the invariant metric. This leads to very different driving
gradient fields W (x,t). Indeed large eigenvalues naturally dominate small ones with the
flat metric on coefficients, which means that small eigenvalues are completely smoothed out.
This produces the eigenvalue swelling effect they observed. On the contrary, the use of the
invariant metric perfectly respects the discontinuities of small and large eigenvalues in our
experiments of Sections 5 (even if the anisotropic diffusion PDE is not exactly the same).

We are currently investigating how to adapt the ®-function formalism to our Riemannian
tensor framework. The gradient of the modified criterion can be computed with the invariant
metric like in Appendix A.1 to obtain a weighted manifold Laplacian with an additional
anisotropic correction term. However, designing an efficient discrete computation scheme is
more difficult. We may compute the directional derivatives using finite differences in the
flat matrix space and use the intrinsic evolution scheme, but we believe that there are more
efficient ways to do it using the exponential map. In the following, we keep the isotropic
regularization based on the squared amplitude of the gradient.

6.2 A least-squares attachment term

Usually, one considers that the data (e.g. a scalar image or a displacement vector field Fy(z))
are corrupted by a uniform (isotropic) Gaussian noise independent at each spatial position.
With a maximum likelihood approach, this amounts to considering a least-squares criterion
Sim(F) = [, ||F(x) — Fy(x)||* de. Like in the previous section, we compute the first order
variation by writing the Taylor expansion

Sim(F +¢e H) = Sim(F) + 2 5/ (H(x) | F(x) — Fy(x)) dx 4+ O(£?).
Q

This time, the directional derivative 0y Sim(F') is directly expressed using a scalar product
with H in the proper functional space, so that the steepest ascent direction is V.Sim/(F') =
2 (F(x) — Fo(x)).

On the tensor manifold, assuming a uniform (generalized) Gaussian noise independent at
each position also leads to a least-squares criterion through a maximum likelihood approach.
The only difference is that it uses our Riemannian distance:

Sim(Z):/Q dist? (S(z) , So()) d:B:/QHE(x)Zo(:U)H

Thanks to the properties of the exponential_gap, one can show that the gradient of the
squared distance is: Vy dist*(X, o) = —2 X% [Pennec, 2004]. One can verify that this is

—
a tangent vector at 3 whereas ¥y is not. Finally, we obtain a steepest ascent direction of
our criterion which is very close to the vector case:

dzx.

2
3(x)

VSim(X)(z) = =2 X(z)Xo(x). (15)
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6.3 A least-squares attachment term for sparsely distributed ten-
sors

Now, let us consider the case where we do not have a dense measure of our tensor field,
but only N measures ¥; at irregularly distributed sample points z;. Assuming a uniform
Gaussian noise independent at each position still leads to a least-squares criterion:

Sim(X Z dist? (X X)) = /QZ dist? (X(z) , X)) §(z — x;) da.

In this criterion, the tensor field () is related to the data only at the measurement points
x; through the Dirac distributions é(x —x;). If the introduction of distributions may be dealt
with for the theoretical differentiation of the criterion with respect to the continuous tensor
field ¥, it is a real problem for the numerical implementation. In order to regularize the
problem, we consider the Dirac distribution as the limit of the Gaussian function G, when
o goes to zero. Using that scheme, our criterion becomes the limit case o = 0 of:

Simy(X) = /Qi dist? (Z(z) , %) Golx — ;) da. (16)

From a practical point of view, we need to use a value of o which is of the order of the spatial
resolution of the grid on which () is evaluated, so that all measures can at least influence
the neighboring nodes.

Now that we came back to a smooth criterion, we may differentiate it exactly as we did
for the dense measurement setup. The first order variation is:

Simge(3 +eW) = Sim,(3) — 2 65\[: /Q < W (x) ‘ Gy — ;) Z(T)E:> dx + O(e?),

so that we get:
N —
VSimg(z) = —2 Z Go(x — x;) ()% (17)

=1

6.4 Interpolation through diffusion

With the sparse data attachment term (16) and the isotropic first order regularization term
(10), we are looking for a tensor field that minimizes its spatial variations while interpolating
(or more precisely approximating at the desired precision) the measurement values:

Z/ ) dist® (X(z;) , Ei)—l—/\/QHVE(x)H%(I) dr.

According to the previous sections, the gradient of this criterion is

VO(x :—2ZG S(2)%; — 2\ A (x).
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Using our finite difference approximation scheme (Eq. 13), the intrinsic geodesic gradient
descent scheme (Sec. 3.6) is finally:

041 (2) = expy, o) <g {Z Gole — ) (@) + N Y E(‘”)E;“" ). }) (18)

2
i1 =l

Last but not least, we need an initialization of the tensor field ¥y(z) to obtain a fully
operational algorithm. This is easily done with any radial basis function approximation, for
instance the renormalized Gaussian scheme that we investigated in Section 4.4. Figure 10
displays the result of this algorithm on the interpolation between 4 tensors. On can see that
the soft closest point approximation is well regularized into a constant field equal to the
mean of the four tensors if data attachment term is neglected. On the contrary, a very small
value of A is sufficient for regularizing the field between known tensors (as soon as ¢ is much
smaller than the typical spatial distance between two measurements).

The choice of the initialization is a critical issue from a computational point of view.
For instance, starting with a constant (or any harmonic) field is a bad idea: there is a null
Laplacian everywhere, except at the immediate neighborhood of the sparse tensors, exactly
where the data attachment term acts. Thus, we have a potentially destructive competition
between the two terms of the criterion in very localized area. On the contrary, starting with
a soft closest point approximation leads to a Laplacian which is non null on the boundaries of
the Voronoi cells of the measurement points, i.e. the farthest possible place from the sparse
measures. In that case, the Laplacian regularization will spread from these boundaries with
no constraints until it reaches the counterbalancing forces of the data attachment term in the
immediate vicinity of the sparse measurements. Thus, we may expect to reach the maximal
efficiency in terms of convergence rate.

7 Conclusion

We propose in this paper an affine invariant metric that endows the space of positive define
symmetric matrices (tensors) with a very regular manifold structure. In particular, tensors
with null and infinite eigenvalues are both at an infinite distance of any positive definite
symmetric matrix: the cone of positive definite symmetric matrices is replaced by a space
which has an infinite development in each of its n(n+1)/2 directions. Moreover, there is one
and only one geodesic joining any two tensors, and we can even define globally consistent
orthonormal coordinate systems of the tangent spaces. Thus, the structure we obtain is very
close to a vector space, except that the space is curved. We exemplify some the the good
metric properties for some simple statistical operations. For instance, the Karcher mean in
Riemannian manifolds has to be defined through a distance-based variational formulation.
With our invariant metric on tensors, the existence and uniqueness is insured, which is
generally not the case.

A second contribution of the paper is the application of this framework to important
geometric data processing problem such as interpolation, filtering, diffusion and restoration
of tensor fields. We show that interpolation and Gaussian filtering can be tackled efficiently
through a weighted mean computation. However, if weights are easy to define for regularly
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Figure 10: Interpolation and extrapolation of tensor values from four measurements using diffusion.
Top left: The four initial tensor measurements. Top right: Initialization of the tensor field using
a soft closest point interpolation (mean of the four tensors with a renormalized spatial Gaussian
influence). Bottom left: result of the diffusion without the data attachment term (1000 iterations,
time-step € = 1, A\ = +00). Bottom right: result of the diffusion with an attachment term after
(1000 iterations, time-step ¢ = 1, A = 0.01, 0 = 1 pixel of the reconstruction grid). The algorithm
did in fact converge in about 100 iterations.
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sampled tensors (e.g. for linear to tri-linear interpolation), the problem proved to be more
difficult for irregularly sampled values. The solution we propose is to consider this type
of interpolation as a statistical restoration problem where we want to retrieve a regular
tensor field between (possibly noisy) measured tensor values at sparse points. This type of
problem is usually solved using a PDE evolution equation. We show that the usual linear
regularization (minimizing the magnitude of the gradient) and some anisotropic diffusion
schemes can be adapted to our Riemannian framework, provided that the metric of the tensor
space is taken into account. We also provide intrinsic numerical schemes for the computation
of the gradient and Laplace-Beltrami operators. Finally, simple statistical considerations led
us to propose least-squares data attachment criteria for dense and sparsely distributed tensor
fields. The differentiation of these criteria is particularly efficient thanks to the use of the
Riemannian distance inherited from the chosen metric.

From a theoretical point of view, this paper is a striking illustration of the general frame-
work we are developing since [Pennec, 1996] to provide a rigorous computing environment
for geometric objects. This framework is based on the choice of a Riemannian metric on one
side, which leads to powerful differential geometry tools such as the the exponential maps
and geodesic marching techniques, and on the transformation of linear combinations or inte-
grals into minimization problems on the other side. The Karcher mean and the generalized
Gaussian distribution are a typical example that we previously investigated [Pennec, 2004].
In the present paper, we provide new examples with interpolation, filtering and PDEs on
Riemannian-valued fields.

Many research avenues are still left open, in particular the choice of the metric to use.
In a more practical domain, we believe that investigating new intrinsic numerical schemes to
compute the derivatives in the PDEs could lead to important gains in accuracy and efficiency.
Last but not least, all the results presented in this paper still need to be confronted to other
existing methods and validated in the context of medical DTT applications. We are currently
investigating another very interesting application field in collaboration with P. Thompson
and A. Toga at UCLA: the modeling and analysis of the variability of the brain anatomy.
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A Tensor regularization: the Laplace-Beltrami opera-
tor

A.1 Gradient of the L? regularization of a tensor field

Let ¥(z) € Sym; be a tensor field over RY, and (x,...74) be an orthonormal coordinate
system. To simplify the notations, we use in this section 0; for the spatial derivative 0/(0x;)
and we do not specify the (spatial) integration variable x. The L? regularization criterion is:

d d
2 2 i }
Reg(2) = [ 1920}l d = > 12zl - > JRE(CORRCR R
Using the Taylor expansion (X + eW)) = B — N W B6Y + O(£?) in the the Taylor

expansion of our regularization criterion and identifying the first order term to Reg(3 +
eW) = Reg(X) + € OwReg + O(&?), we get the directional derivative:

d
Ow Reg = 2 Z/ Tr((&-W) Y (%) B — (9;2) BV (9;%) BV WE('1)>
i=1 /€

The main goal is to find out the field of tangent vectors VReg(x) € Tx(,)Sym,! such that,
by definition of the gradient, we have the equality: dw Reg = [, (W | VReg)y, dx for every
field of tangent vectors W (x) € Tx,)Sym,'. As the above expression of Ow Reg is in the
standard Euclidean chart (matrix coefficients), we shall safely use the computations of the

previous sections. Notice that we are using the matrix coefficients only as a chart and not
as a metric. Let A; = £V (9,X) £V, We get:

d

Now, assuming the proper Neumann boundary conditions, we can apply the previous inte-
gration by part formula [, Tr((;W) A;) = — [, Te(W (9;A;)) to the first term:

dwReg = —2zd: / (Te(WED (BOA)T) =) + (W[ (0) 2 (9D))s)

d
= _QZ/ (W 2(0:M)E + (9,5) B (9,%) )5,
i=1 /@
We have obtained the expression that defines the gradient of our regularization criterion:
d
VReg= -2 (z (0,A,) = + (8;5) £V (az-z))
i=1

To compute explicitly its value, let us observe first that 9;3¢" = =3 (9;%) X" because
0;(XY ) = 0. Thus, thanks to the chain rule, we have:

S (9:A) £ =308 (2D (9,5) 2M) £ =078 —2(4;%) 2 (4%)
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Eventually, we end up with VReg(X) = —2AX, where A is the Laplace-Beltrami operator
on our manifold:

d
AL =AY with AT =% - (9,5) 5P (9,%)
=1

A.2 Numerical implementation of the Laplace-Beltrami operator

From the Taylor expansion of a tensor field (considered as a matrix field) ¥ at =, we have
S(z+eu) = X(x)+e0,5(x) +2023(x) /242 023(x) /6 + O(e*). Thus, we may approximate
the first and second order tensor derivatives by their Euclidean derivatives:

. 3(z) = %(Z(m—I—U)—E(ﬂS—U))+O(||U||3)

O*%(x) = (E(x +u) — E(x)) + (E(:c —u) — E(x)) + O(|Jul|*)

This finally gives us a fourth order approximation of the Laplace-Beltrami operator in the
spatial direction wu:
AX(r) = 022 —2(0,%) X (9,%)
Y(z+u)+X(x—u)—25(x)

—%(E(x +u) = Bz —uw) T (S(z + u) — Bz — u)) + O(||lul[*)

However, this numerical scheme is extrinsic since it is based on (Euclidean) differences of
tensors. We propose here an intrinsic scheme based on the exponential chart at the current

point: we claim that X(z)X(z + u) + X(z)X(x — u) is a forth order approximation of the
Laplace Beltrami operator in the direction u. Indeed, we have

D=

S(@)S(z +eu) = Xi(x) log (z—%(x)z(HgU) 2—%(1;)) 25 (z)

2
— Xi(2) log ( Id + W + %H + 0(53)) S ()

1

where we put W = £72 9,2 %72 and H = I 2% ¥~2. From the Log series (Eq. 1), we
get:
2

1 3 s
+eW + %H -5 (52W2 + 65(WH + HW)) + %Wg + 0(64)} b

NI

Y(x)X(r+eu) = X

The Taylor expansion of ¥ (z)X(x — cu) is obtained by replacing € by —¢, so that we finally
end up with $(2)2(z 4 cu) + 2(2)S(x — eu) = L2 [e2H — 2W?2 + O(e%)] L2, which proves
that

Y(2)X (2 +u) + Z(2)B(z — u) = 928 — 2 (9,2) TP (0,2) + O(||ul|*) = A 4+ O(|lul|*)
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