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Registration of 3D medical images consists in com-
puting the “best” transformation between two acqui-
sitions, or equivalently, determines the point to point
correspondence between the images. Registration al-
gorithms are usually based either on features extracted
from the image (feature-based approaches) or on the
optimization of a similarity measure of the images in-
tensities (intensity-based or iconic approaches). An-
other classification criterion is the type of transforma-
tion sought (e.g. rigid or non-rigid).

In this chapter, we concentrate on feature-based ap-
proaches for rigid registration, similar approaches for
non-rigid registration being reported in another set of
publication [41, 42]. We show how to reduce the dimen-
sion of the registration problem by first extracting a sur-
face from the 3D image, then landmark curves on this
surface and possibly landmark points on these curves.
This concept proved its efficiency through many appli-
cations in medical image analysis as we will see in the
sequel. This work has been for a long time a central in-
vestigation topic of the Epidaure team [3] and we can
only reflect here on a small part of the research done in
this area.

We present in the first section the notions of crest
lines and extremal points and how these differential ge-
ometry features can be extracted from 3D images. In
Section 2, we focus on the different rigid registration al-
gorithms that we used to register such features. The last
section analyzes the possible errors in this registration
scheme and demonstrates that a very accurate registra-
tion could be achieved.

1 Features Extraction: Extremal
Points and Lines

To extract reliable curves on a surface, most approaches
try to generalize the notion of “edges” to smooth sur-
faces to find the most salient features on the surface:
ridges. Prior to the late 1980s and early 1990s, the in-
terest in ridges was mostly theoretical, in areas of math-
ematics related to catastrophe theory [38, 27, 24, 39, 2].
Crest lines are then defined as the cuspidal edges of a
caustic surface, and the link between caustics and cur-
vatures on a surface was established.

Practical applications were then discovered by re-
searchers in computer vision, graphics, and medical
imaging together with the specification of algorithms to
extract ridges. In the following, we are going to focus
on the crest and extremal line as introduced in [28, 29]
and developed in [44, 45]. Basically, these curves are
(subsets of) the loci of the surface where one of the prin-
cipal curvatures reaches a locally optimum in the asso-
ciated principal direction. In these works, the crest lines
are extracted using third order derivatives of the image
intensities. An alternative approach was presented in
[17] with the use of a B-spline approximation of the
surface.

A different notion of ridges is given in [46, 13]: they
are defined as the salient structures of the intensity sur-
face defined by I = f(x, y, z). Here, the ridges are
surfaces and are more like results of the medial axis
transform than the intuitive notion of salient lines on a
surface. Cutting et al [9] also developed a method using
a template of ridges to assist in their extraction from im-
age data. This method was extended by Dean et al [10].
A good review of the many definitions of ridges can be
found in [5].

This draft paper is provided to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other
copyright holders. All person copying this information are expected to adhere to the terms and constraints invoked by each author’s copyright. This work may not
be reposted without the explicit permission of the copyright holder.



34 Landmark-Based Registration Using Features Identified Through Differencial Geometry 566

Figure 1: Differential geometry of 3D curves and surfaces. Left: principal directions and curvatures of a surface.
Right: Frénet trihedron of a 3D curve and first differential invariants: curvature and torsion.

More recently, there has been a raising interest for
ridges in computer graphics because it synthetises some
important visual and geometric surface information and
could even be used to greatly enhance surface remesh-
ing [31, 1]. In particular, new algorithms have been
designed to extract ridges on meshes [32], sometimes
with topological guaranties (especially around umbil-
ics) [7, 40, 8].

1.1 Definition and Properties

1.1.1 Differential Geometry of 3D Surfaces

Let us first recall briefly some results of differential ge-
ometry about surface curvatures (a good introduction to
these notions can be found in [12] or in [24]). In this
paper, we call a smooth surface a 3D surface which is
continuously differentiable up to the third order. At any
point P of such a 3D surface, we can define one curva-
ture per direction t in the tangent plane of the surface.
This directional curvature kt is the curvature of the 3D
curve defined by the intersection of the plane (P, t,n)
with the surface, where n is normal to the surface.

Except for the points where this curvature kt is the
same for all the directions t, which are called umbilic
points, the total set of curvatures can be described with
only two privileged directions, t1 and t2, and two asso-
ciated curvature values, k1 = kt1 and k2 = kt2 , which
are called respectively the principal directions and the
associated principal curvatures of the surface at point
P , as shown in Figure 1. These two principal curvatures
are the extrema of the directional curvatures at point P ,
and (except for umbilic points) one of these two is max-
imal in absolute value, let us say k1: we call this the
largest curvature, in order not to be mistaken with the
maximal curvature. We simply call the second (princi-
pal) curvature the other principal curvature k2.

1.1.2 Extremal Lines

The crest lines are intuitively the loci of the surface
where the “curvature” is locally maximal. More pre-

cisely, we define them as the loci of the surface where
the largest curvature, k1, is locally maximal (in abso-
lute value) in the associated principal direction t1. In
[29], it is shown that these points can be defined as the
zero-crossing of an extremality function e, which is the
directional derivative of k1 in the direction t1.

We have proposed another method to compute them
in [45, 44], for the case of iso-intensity surfaces. Our
method is based on the use of the implicit functions
theorem. Basically, we have shown that the crest lines
can be extracted as the intersection of two implicit sur-
faces f = I and e = 0, where f represents the in-
tensity value of the image, I an iso-intensity thresh-
old, and e = ∇k1 · t1 is the extremality function (see
Figure 2, left). We have proposed an algorithm, called
the Marching Lines, to automatically extract these crest
lines. This algorithm can also be used to overcome
some orientation problems (mainly due to the fact that
the principal directions are only directions and not ori-
ented vectors), by locally orienting the principal direc-
tions along the extracted lines.

In fact, for each point of the surface, two different
extremality coefficients can be defined, corresponding
to the two principal curvatures:

e1 = ∇k1 · t1 and e2 = ∇k2 · t2 (1)

We found experimentally that the maxima (in absolute
values) are more stable landmarks than the minima:
crests or rifts (maxima) are stable, whereas the loci in
a valley where the ground floor is the flattest (minima)
are very sensitive to small perturbations in the data.

We call extremal lines all the lines defined as the zero-
crossings of either e1 or e2. There is therefore four
major different types of extremal lines, depending of
whether the corresponding curvature is the largest or the
second one and whether it is a local maximum or mini-
mum. Furthermore, the signs of the largest and second
curvatures help to distinguish between four additional
sub-types of extremal lines, leading to a classification
into 16 types. The crest lines are two of them: positive
largest curvature maxima (k1 > 0 and ∇e1 · t1 < 0)
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Figure 2: Left: Crest lines as the intersection of two implicit surfaces. Right: Definition of the extremal points as
the intersection of three implicit surfaces.

and negative largest curvature minima (k1 < 0 and
∇e1 · t1 > 0).

1.1.3 Extremal Points

We now define the extremal points as the intersection of
the three implicit surfaces: f = I , e1 = 0 and e2 =
0. The notions of extremal lines and extremal points
are closely related to the notion of corner points, in 2D
images, as defined in [23], [30], and [11]. A study of
the evolution in 2D of corner points with respect to the
scale can be found in [16]. A similar study on the scale-
space behavior of the extremal lines and the extremal
points was presented in [15].

Extremalities e1 and e2 are geometric invariants of
the implicit surface f = I: they are preserved with
rigid transforms (rotations and translations of the ob-
ject). Therefore, the relative positions of the extremal
points are also invariant with respect to a rigid transfor-
mation, i.e. for two different acquisitions of the same
subject. There are 16 different types of extremal points,
depending on the type of extremality: local minimum or
maximum of the extremalities e1 and e2 and the signs
of k1 and k2. This classification can be used to reduce
the complexity of the matching algorithm.

However, the intuitive interpretation of extremal
points is not straightforward. The extremal lines are 3D
curves, for which we are able to compute the curvature,
but the extremal points are generally not the points of
the extremal lines whose curvature is locally maximal.
Even if they are not extremal curvature points, the ex-
tremal points are very well defined, and there is no rea-
son for their locations along the extremal lines to be less
precise that the lines positions themselves, because the
precision of the computation of k1 and k2 is approxi-
mately the same.

1.1.4 Geometric Characteristics

Let us begin with the points on a surface. We have al-
ready seen (Figure 1, left) that any such point could be

provided with a trihedron (n, t1, t2) formed by the nor-
mal to the surface and the two principal directions. As
our points are also on extremal lines, we could provide
them with the differential characteristics of 3D curves
(Figure 1, right), i.e. the Frénet trihedron (t,nc,b),
where t is the tangent to the curve, nc its normal and b
the binormal.

These two trihedrons are not the same as the extremal
lines are generally not lines of curvature. However, as
the curve is embedded in the surface, the tangent to the
curve t is constrained to be in the tangent plane of the
surface spanned by (t1, t2). Thus, there are two inde-
pendent parameters characterizing the relative config-
uration of the trihedron: we can measure two angles
θ = ̂(t, t1) and φ = ̂(nc,n). These characteristics are
invariant with respect to rigid transformations.

Two other invariants come from the surface (principal
curvatures k1 and k2). One could also think to add the
curvature k, the torsion τ of the curve and the geodesic
torsion τg of the curve with respect to the surface but it
appears that k and τg are completely determined by the
surface invariants: k cos φ = k1 cos2 θ + k2 sin2 θ and
τg = (k2 − k1) cos θ sin θ. Thus, we are left with the
torsion of the curve.

However, the computation of the Frénet trihedron
(t,g,b) and the curve torsion τ has to be done on the
extremal curve itself after its extraction. If this can be
done directly on the polygonal approximation, a much
better method is to compute the characteristics on a lo-
cal B-spline approximation of the curve [18].

1.2 The Automatic Extraction of the Ex-
tremal Points

In practical cases, e1 and e2 can be computed for each
point of the 3D image with the equations described in
[43] directly from the differentials of the intensity func-
tion of the image f . We compute these differentials
with linear filtering, using the convolution of the dis-
crete image with the differentials of the Gaussian func-
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Figure 3: Extraction of the Extremal Points. An empty circle denotes a positive value, whereas a filled circle
indicates a negative one.

tion e−‖x‖
2/2σ2

. The normalization of these filters is not
straightforward; we use the responses to simple polyno-
mials, as proposed in [29]. We choose the Gaussian
function because it is isotropic, a prerequisite if we are
looking for geometric invariants for rigid transforma-
tions. Different values of σ can be chosen, depending
on the level of noise in the 3D images. Changing σ is
somewhat equivalent to changing the scale at which we
look for extremal lines and points.

The hypothesis that the iso-surfaces are a good repre-
sentation of the surface of organs for the case of medi-
cal images is a prerequisite: sometimes, the iso-surface
can be extracted directly from the 3D image, such as
the skin surface in Magnetic Resonance Image (MRI)
or the bones in X-ray scanner images. For other soft tis-
sues, such as for the brain surface, a pre-segmentation
step is required to isolate the brain from the rest of the
data. This can be done with a combination of mathemat-
ical morphological operators, filtering, and the search
for connected parts or with an automatic “surface edge”
extractor, such as the zero-crossing of the image Lapla-
cian. In all cases, the final step of the segmentation is
performed using iso-surface techniques.

1.2.1 Computation of the Extremal Points in a 8-
Voxel Cell

One solution to get the set of extremal points of the 3D
image is to compute e1 and e2 for all the voxels of the
3D image and then to consider individually each cubic
cell, formed with 8 voxels (8-cell), as shown in Figure
3. There are therefore three values defined for each ver-
tex of the cube: f , e1, and e2. The extremal points in
that 8-cell are defined as the intersection of the three im-
plicit surfaces f = I , e1 = 0, and e2 = 0. The method
varies according to the type of interpolation or convolu-
tion function used to extend continuously the three val-
ues at the vertices of the cubic cell to the entire cell. The
tri-linear interpolation is a good first order approxima-
tion.

The extraction of a polygonal approximation of the
crest lines with some warranties about the topology and
the orientation of the reconstructed 3D curves is pre-

sented with the marching line algorithm [45]. Its ex-
tension to the extraction of the extremal points was per-
formed in [44]. We briefly recall here the method on a
very simple example where the iso-surface is a triangle
in the cell. This operation can be extended to any con-
figuration of the values of f and e1 while ensuring that
the extracted segments form a continuous and closed
3D curve (except when f or e1 is not defined, for in-
stance at the borders of the image). The original algo-
rithm also considers orientation problems, which allows
us to distinguish between minimum and maximum ex-
tremal points.

The first step (Figure 3, left) is to extract the iso-
surface within the cell. The iso-surface intersects the
edges on the cell with the value I . Computing, by linear
interpolation along the edges, the points where f = I ,
we get the three points {Q1, Q2, Q3}. Since we are us-
ing a tri-linear interpolation within the cell, the inter-
section of the iso-surface with the cell is the triangle
{Q1, Q2, Q3}.

In the second step (Figure 3, middle), we compute
the values of e1 for {Q1, Q2, Q3}, by linear interpola-
tion along the edges of the cubic cell. If they have the
same sign, there is no extremal line of e1 in this cell.
Otherwise we look for the two points along the triangle
edges where the interpolated value of e1 is null: we get
the two points {P1, P2} which form a segment. This is
the approximation of the extremal line within the cell.

The last step (Figure 3, right) is to compute the posi-
tion of the extremal point. Since P1 and P2 lie on the
surface of the cell, we compute the value of e2 at these
points with a bi-linear interpolation of e2 in the faces. If
the two values have the same sign, there is no extremal
point on this cell. Otherwise, as is shown here, we com-
pute its position P by interpolating the zero value along
the segment.

1.2.2 Randomized Extraction of Extremal Points

Of course, we could look for extremal points in all the
possible cells of the image, excepting regions of null
gradient and umbilics. However, it is much more effi-
cient to randomize the search: we start with seed cells,
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Figure 4: Left: An axial slice of a 3D CT image of a dry skull in Plexiglas. Middle and right: the crest lines
extracted on this image. The iso-intensity was manually chosen to delimit the skull. Original 3D Image courtesy
of GE-CGR, Buc, France.

randomly chosen in the 3D image and discard the ones
for which the sign of f − I is the same for all the ver-
tices. Then we compute the values of e1 for the 8 ver-
tices of the cell. Once again, a simple test discards the
cells which are not crossed by a k1 extremal line (the
sign of e1 is the same for the 8 vertices). If there is an
extremal line, we extract it from end to end, using the
Marching Lines algorithm (we follow the extremal line
“marching” from one cell to the next).

At each point of the polygonal approximation of the
crest line, we compute the second extremality e2 by bi-
linear interpolation. If there is a sign change, we com-
pute the extremal point on the segment of the extremal
line that we are currently following.

The randomized implementation of the Marching
Lines allows us to extract the main extremal lines (i.e.,
the longest ones, which experimentally appeared to be
the most reliable ones) of the 3D image, with only very
few seeds (with respect to the total number of voxels),
randomly distributed in the 3D images. The probabil-
ity of missing an extremal line is approximately pro-
portional to the inverse of its length. This method re-
duces drastically the number of computations to per-
form, compared to the extensive implementation: typ-
ically, one uses 10% of the number of voxels as seeds.
Even if the set of generated extremal points is not com-
plete, it is generally sufficient to perform a reliable 3D
registration.

1.3 Example of Extracted Extremal Lines
and Points

In Figure 4, we can see an example of the lines extracted
automatically (with a manual choice of the iso-intensity
threshold) in a CT image of a dry skull. Some of the 550
crest lines may be recognized as anatomical landmarks,
such as the orbits or the inferior border of the mandible.

The lines are colored by the sign of the e2 extremality.
Thus, extremal points are located at the color changes
along the lines. There are around 3000 such extremal
points.

In an MR image, the surface of the brain is not very
well defined by an iso-intensity of the image. A pre-
segmentation step is usually needed to isolate the brain
from the rest of the data. This can be done with a com-
bination of mathematical morphological operators, fil-
tering, and the search for connected parts or with an
automatic “surface edge” extractor, such as the zero-
crossing of the image Laplacian. In Figure 5, we used a
segmentation of the surface of the brain and extracted
the crest lines on this surface. Lines in red (with a
positive largest curvature) roughly correspond to sulci
whereas blue lines (with a negative largest curvature)
could be interpreted as gyri.

2 Rigid Registration

Let us now consider two images of the same modality
and of the same patient, but in a different position. We
extract extremal lines on both images. The problem is to
put into correspondence the two sets of lines (the model
and the scene), which is often called the matching step,
and to compute the best rigid transformation that super-
imposes the matched lines.

It is important to note that a global registration al-
gorithm, for instance superimposing the barycenters of
all points and the inertia axes, will often fail due to the
occlusion. Indeed, the images being taken in different
positions, the region of interest are frequently different
in the two images, leading to crest lines and extremal
points present in one image and not in the other. The
images noise will also induce the extraction of spurious
lines and points in different parts of the two images.
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Figure 5: Left: A sagittal slice of a 3D MR image. Middle and right: 3D views of the extremal lines extracted
superimposed on the surface of the brain. Original MR images and segmentation courtesy of Prof. R. Kikinis,
Brigham and Women’s Hospital, Boston.

2.1 Curve Registration
Several algorithms adapted from computer vision have
been proposed and used over time. In [18], Guéziec
matches the crest lines using a combination of geomet-
ric hashing [25] and Hough transform (see for instance
[26]). The basic idea was to index each point of each
model crest line in a hash-table using its invariant char-
acteristics. At recognition time, the invariants of each
scene crest line point are used to recover, thanks to
the hash table, the possible matches with model points
(geometric hashing step). For each match (i.e., cou-
ple of model and scene points), a rigid transformation
is computed by superimposing the Frénet frames and
used to index the match in a new accumulator sampling
the rigid transformation space (Hough transform step).
Densely populated cells in this second accumulator are
detected as rigid body transformations that are candi-
dates to match a large number of crest points. For each
such cell, a refined least-squares transformation is com-
puted using the matches indexed in this cell.

2.2 Extremal Points Registration using
Alignment

With the development of completely automated meth-
ods to extract crest lines and the higher resolution of
images, the number of crest lines drastically increased,
leading to a much higher density of invariants in the
hash table. This could lead to an important number
of false positives that would overwhelm the correct
matches. The maximum complexity would then be
reached and the algorithm could even provide a wrong
answer. To address this problem, Thirion reduced once
again the image information by keeping only a very
small number of specific points on the crest lines: the

extremal points. Typically, they represent only 16% of
the number of crest line points, but we are still left with
2000 to 5000 points in each image.

Thirion used in [43] another computer vision based
technique: alignment (or prediction-verification) [4,
20]. The basic idea is to compute the registration of
each triplet of model points with each triplet of scene
points, superimpose the two sets of points using this
transformation and verify this match using an iterative
closest point algorithm (see Section 2.4). However, the
search for compatible triplets in the model and the scene
can be reduced since there are some unary invariants
(the principal curvatures k1 and k2), secondary invari-
ants (e.g. the distance between the two points, or the
relative orientation of the surface normals and the prin-
cipal curvatures) and even ternary invariants (involving
the whole triplet of extremal points). Thirion used 18
such invariants for each triplet, pre-computed and stored
them in a hash table to retrieve in constant time the com-
patible triplets. Thus, the complexity of the algorithm
is O(n4) since there are n3 triplets, and a verification of
O(n) for each triplet match. In practice, this complexity
is not reached as we can stop as soon as a given number
of points is matched after verification (typically 10 %).

2.3 Substructure Matching with Frame
Features

We came back in [19] to geometric hashing, but the
idea was to use all the geometric information on the fea-
tures while taking great care of the uncertainty handling
for the algorithm to be robust (see [33] for an analysis
of recognition algorithms with uncertain geometric fea-
tures). In addition to the point’s position, we can add the
normal vector n and the two principal directions t1 and
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Figure 6: Preprocessing: the 6D invariant vector associated with every couple of model frames is computed with
its error zone and used as an index for the couple in the hash table. Recognition: for each scene frame couple, we
compute the 6D invariant vector and retrieve through the hash table every compatible model frame couple. For
each such couple, we tally a vote for the matching of the reference frames (here the match (Fmi, Fsj) scores 2).

t2 of the surface to constitute a local coordinate system,
or a frame.

In this context, each medical image is modeled by
a set of frames and the matching problem is to find the
correspondences between two subsets of frames that are
in the same configuration in the two “images”, up to a
global rigid transformation.

2.3.1 Invariant Representation: Preprocessing
Step

To obtain an invariant representation with respect to the
global position and orientation of the considered struc-
ture, we can express the configuration of all frames rel-
ative to one frame (called the basis). For efficiency, this
representation is stored in a hash table and, for correct-
ness, we include the uncertainty of each invariant. As
only part of the frames are in the same configuration in
the two images, the one chosen as the basis may not be
present in the other image. The preprocessing step is
thus repeated with each frame as the basis.

2.3.2 Recognition Step

Choosing a frame of the second structure (the scene) as
the basis, we compute the invariant representation and
retrieve, thanks to the hash table, what are the compati-
ble model frame couples. If the basis belongs to a com-
mon substructure, then a significant number of frames
are in the same configuration with respect to it. We then
match the model and scene bases (Fig. 6).

This process is repeated for every extremal point as
the basis to find its possible matches in the model and
we only keep the matches that are above a given thresh-
old (typically 10 % of the number of extremal points).

2.3.3 Clustering Compatible Matches and Verifica-
tion

For each individual match, we maintain during the
recognition step an estimation of the associated trans-
formation by fusing the transformations between con-
firming frames. To group matches belonging to the
same (rigid) substructure, we run a very simple cluster-
ing algorithm on the associated transformation. Indeed,
up to measurement errors, frames should undergo a sim-
ilar transformation within a single substructure. Each
cluster is then refined by an iterative closest neighbor
technique where we enforce symmetry of the matches
and verify their validity with a χ2 test.

2.3.4 Matching Crest Lines

In order to reduce once again the complexity of the al-
gorithm, we exploited in this method the structure of the
extremal points: they belong to crest lines. The princi-
ple is to consider each model crest line as a different
object. Index all model lines in the same hash-table, we
retrieve at recognition time the model lines correspond-
ing to each scene crest line.

However, different crest line matches can correspond
to different transformations. Thus, we run once again
our clustering algorithm on the transformations to find
out the compatible line matches and we obtain a single
transformation from the model to the scene image.

2.4 ICP on Frames
When images are close enough, one can use still an-
other algorithm: the Iterative Closest Point [6, 47]. The
basic principle is the following. For each scene point,
we look for the closest point in the model with the cur-
rent transformation, compute a new rigid transforma-
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Figure 7: Example of registered crest lines between two CT skull images of the same phantom acquired in two
different positions. Extremal points are represented by a color change from yellow to blue on the lines. Left:
Front view with all crest lines from the two skulls after registration. Middle: Left view of the matched crest lines.
Right: Closeup on the occipital foramen on the right. In this last image, the width of a line is a tenth of a voxel,
which shows the very precise registration of these extremal points. One can also see that the trihedron part of the
matched frames is very well conserved.

tion with these matches, and iterate the process until
convergence.

Of course, since we have more geometric informa-
tion than just the point position, we use a generalization:
the Iterative Closest Feature [33]. The idea is to use a
higher dimensional space for the closest point search.
In our case, the space is made of the extremal point po-
sition, the trihedron (n, t1, t2), and the unary invariants
k1 and k2. The important point is to set an appropriate
metric on this space in order to combine efficiently the
different units of measurement. In our algorithm, this is
done using the inverse of the covariance matrix of the
features. This matrix can be re-estimated after conver-
gence and the whole process iterated. However, we did
not observe a critical influence of the covariance ma-
trix values, as soon as it is approximately respecting the
variation range of the different components.

2.5 Examples of Rigid Registrations
2.5.1 Registration of CT Images of the Skull

Figure 7 presents an example of the registration of two
CT images of the a dry skull in a Plexiglas box in two
different positions. We used the geometric hashing al-
gorithm on frames (Section 2.3). As the transformation
between the two images is close enough to the iden-
tity, the ICP algorithm also gives very similar results.
About 75 crest lines are matched with more than 4 ex-
tremal points among the 550 lines in each image leading
to a total of 550 matched extremal points (only on the
75 matched lines). Using the techniques described in
Section 3.2.2, we have computed that the typical object
accuracy (the expected standard RMS error on image

super-imposition due to the transformation in the area
of the matched features) is 0.04 mm, whereas the typi-
cal corner accuracy is 0.1 mm. This is to be compared
with the voxel size: 1 x 1 x 1.5 mm.

2.5.2 Registration of MR Images of the Head

Figure 8 is an example of the registration of two MR T1
images of the same patient. In this case, 240 crest lines
are matched among approximately 2100 in each image,
for a total of 860 matched extremal points among 3600
in each image (about 25 %). We used the zero-crossing
of the Laplacian to define the interest surfaces. Thus,
there are crest lines all over the head. However, if some
of the matched lines are located on the surface of the
skin (we can recognize the nose and the eyes), most of
them are located on the surface of the brain. The typ-
ical object accuracy of the registration is 0.06 mm for
a typical corner accuracy of 0.125 mm. Once again,
the accuracy is far below the voxel size (0.97 x 0.97 x
1.5 mm).

3 Robustness and Uncertainty
Analysis

Once we have registered the images, i.e. found matches
and a rigid transformation, the question is: how confi-
dent can we be with this result? There are two main
types of errors in feature-based registration algorithms.
Firstly, the matches could be completely wrong and
we simply recognized by chance n features in approx-
imately the same configuration. This is called a gross
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Figure 8: Example of registered crest lines between two MR T1 images of the same patient. Only the 240 matched
lines are displayed. Extremal points are represented by a color change from yellow to blue on the lines. Left:
View of matched crest lines from the left of the head. Middle: View from the front.

error in statistics and a false positive in recognition. But
even if we got the matches right, the features we are us-
ing to compute the registration are corrupted by noise
and induce a small error, or uncertainty, on the transfor-
mation parameters. In this section, we analyze in turn
these two types of error.

3.1 Robustness Analysis

Since our features are noisy, we had to allow for a cer-
tain error when matching them. In the registration al-
gorithm of Sections 2.3 and 2.4, this is computed from
the covariance matrices. The existence of such an er-
ror zone allows us to match features that by chance fall
in this area. When this probability is sufficiently high,
individual false matches can combine themselves (con-
spiracy) to produce an important matching score.

However, we should note that such a false positive
is a correct recognition from a feature point of view (a
globally consistent matching) but is incorrect from the
image or data point of view. This problem is inherent
to the ascendent organization of information: some im-
portant information can be dismissed by simplifying the
image as a set of features.

In [34], we developed a generic method to evaluate
the probability of matching τ features just by chance.
The basic framework is the following. Let us assume for
the moment that the transformation between the two im-
ages is fixed. First, we compute the selectivity η, which
is the probability that a random feature (uniformly dis-
tributed in the image) falls in a given error zone. Then,
we compute the probability that at least τ of the m scene
features fall in one of the n model error zones. In our
analysis, computations are simplified by assuming that
all features are randomly distributed.

Now, we will accept a match if there exists one trans-
formation such that at least τ features are put into cor-

respondence. Thus, to obtain the mean number of false
positives, we just have to integrate over all possible
transformations. Let d be the “diameter” of the images,
we get the following estimation:

P ' (2πd)3

3

1− e−(nmη)
τ∑

j=0

(nmη)j

j!

 .

In the example of Section 3.3, we compute that the
selectivity is ηpt = 2.10−6 if we just use the position
of the extremal points and ηfr = 1.5.10−8 if we model
them using frames. The diameter of the image is d '
400mm and we extracted around 2,500 extremal points
in each image. We plot in Figure 9 the number of false
positives P with these values.

The actual matches found involve about 500 features
and the probability of being a false positive is thus prac-
tically zero. However, we must be careful that the “ob-
ject” we registered is not always the one we wanted,
even if this is definitely not a false positive: there can
be several different rigid motions in a single image, for
instance the skull and the brain in MR images.

3.2 From Feature to Transformation Un-
certainty

Here, we assume that the matches are right. How-
ever, measurement errors on the features induce an es-
timation error on the transformation. We developed in
[36, 35] a method where we register the features, esti-
mate the noise on the frames and propagate this noise to
estimate the uncertainty of the rigid transformation.

3.2.1 Feature Uncertainty

For extremal points (modeled as frames), we proposed
a “compositive” model of noise. Basically, this means
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Figure 9: Qualitative estimation of the number of false
positives involving at least τ matches in MR images of
2500 features. Comparison between frames and points:
we need roughly 5 times more point matches than frame
matches to obtain the same probability (10 frames and
56 point matches for a probability of 10−10).

that the noise is assumed to be identical on all extremal
points in the local frame (i.e., with respect to the sur-
face normal and the principal directions). This has to
be compared with the standard additive noise model on
points where we assume an identical noise with respect
to the image axes. In the case of the MR images of the
next Section, this leads to an interesting observation: we
draw in Figure 10 a graphical interpretation of the co-
variance matrix estimated on the extremal points after
registration.

We obtain an approximately diagonal covariance ma-
trix with standard deviations σt1 ' σt2 ' 2 deg,
σn = 6 deg for the rotation vector (these are typical
values of the angle of rotation around the corresponding
axis) and σxt1

' σxt2
' 0.8 mm, σxn

= 0.2 mm for
the position. As far as the trihedron part is concerned,
this means that the surface normal is more stable than
the principal directions, which is expected since the nor-
mal is a first order differential characteristic of the im-
age and the principal directions are second order ones.

For the position, the coordinate along the normal is
once again more stable than in the tangent plane for the
same reasons. The 3D standard deviation of the position
is σ = 1.04, which is in agreement with the additive
noise model on points. However, for the additive noise
model, the estimated covariance is isotropic. Thus, us-
ing an adapted model of noise on frames allows us to
extract much more information about the feature noise.
This constitutes an a-posteriori validation of our “com-
positive” model of noise on extremal points.

Figure 10: Graphical interpretation of the “composi-
tive” noise model estimated on extremal points. The
uncertainty of the origin (point X) is 4 times larger in
the tangent plane than along the surface normal. The
uncertainty of the normal is isotropic, whereas the prin-
cipal directions t1 and t2 are 3 times more uncertain in
the tangent plane.

3.2.2 Transformation Uncertainty

Now the problem is to propagate the feature uncertainty
to the rigid transformation. Let f represent a rigid trans-
formation and χ̂ the observed data. The optimal trans-
formation f̂ minimizes a given criterion C(f, χ) (for
instance the least-squares or the Mahalanobis distance).
Let Φ(f, χ) = ∂C(f, χ)/∂f . The characterization of
an optimum is Φ(f̂ , χ̂) = 0. Now, if the data are
moving around their observed values, we can relate the
new optimal parameters using a Taylor expansion. Let
Ĥ = ∂Φ/∂f and ĴΦ = ∂Φ/∂χ be the values of the sec-
ond order derivatives of the criterion at the actual values
(χ̂, f̂). We have

Φ(χ̂ + δχ, f̂ + δf) ' ĴΦ.δχ + Ĥ.δf = 0
⇔ Σf̂ f̂ = E (δf.δf T) = Ĥ (-1)ĴΦΣχ̂χ̂Ĵ T

ΦĤ (-1)

Thus, we can express (an approximation of) the covari-
ance of the resulting transformation using the covari-
ance on features and the criterion derivatives.

However, a covariance matrix on a rigid transforma-
tion is quite hard to understand since it mixes angular
values for the rotation and metric values for the transla-
tion. To characterize the transformation accuracy with
a single number, we can compute the uncertainty (ex-
pected RMS error) induced on a set of representative
points by the registration uncertainty alone (without the
uncertainty due to the feature extraction). In our case,
two sets are particularly well suited: the position of the
matched extremal point represents the localization of
the object of interest, whereas the corners of the image
symbolize the worst case. In the example below, we
find for instance a typical boundary precision around
σcorn = 0.11 mm and a typical object precision far be-
low the voxel size: σobj = 0.05 mm for echo-1 regis-
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Figure 11: Uncertainty induced on the point positions
(image corners, left; some object points, right) by the
transformation.

trations. The values are even a little smaller for echo-2
registrations: σcorn = 0.10 and σobj = 0.045 mm.

3.2.3 Validation Index

Last but not least, we need to validate this whole chain
of estimations to verify if our uncertainty prediction is
accurate. We observed that, under the Gaussian hypoth-
esis, the Mahalanobis distance between the estimated
and the exact transformation (or between two indepen-
dent estimations of the same transformation) should be
χ2

6 distributed (if the covariance matrix on the estima-
tion is exact). To verify this, the idea is to repeat a reg-
istration experiment N times and to compute the empir-
ical mean value I = µ̄2 = 1

N

∑
µ2

i and the variance σ2
I

of this Mahalanobis distance. The values for an exact
χ2

6 are respectively 6 and 12. We can also verify using
the Kolmogorov-Smirnov test (K-S test) that the empir-
ical distribution corresponds to the exact distribution.
The validation index I [36] can be interpreted as an in-
dication of how the estimation method under-estimates
(I > 6) or over-estimates (I < 6) the covariance matrix
of the estimated transformation. It can also be seen as a
sort of relative error on the error estimation.

We run several sets of tests with synthetic data and
verify that our uncertainty estimations very perfectly
validated for more than 15 extremal point matches.
Now, the question we want to answer is: is it still valid
for real data?

3.3 Validation with Real Data

The experiment is performed using multiple 2D con-
tiguous Magnetic Resonance images (MRI) which con-
stitute a 3D representation of the head. The im-
ages are part of an extensive study of the evolution
of the Multiple Sclerosis (MS) disease performed at
the Brigham and Woman’s Hospital (Harvard Medical
School, Boston) by Dr. Guttmann and Prof. Kikinis.
Each patient underwent a complete head MR examina-
tion several times during one year (typically 24 differ-
ent 3D acquisitions). The aim is to register precisely all
the images acquired at multiple time points in order to

segment the lesions and evaluate very accurately their
evolution.

Each acquisition provides a first echo image and a
second echo image (typically 256 x 256 x 54 voxels of
size .9375 x .9375 x 3mm). The two images represent
the same slice of T2 weighted signal imaged at differ-
ent echo times. Thus, they are expected to be in the
same coordinate system. This protocol was designed to
optimize the contrast in the two channels for easier tis-
sue segmentation. Considering two acquisitions A and
B, the registrations of echo-1 images (A1 to B1) and
echo-2 images (A2 to B2) give two relatively indepen-
dent estimates of the genuine transformation from A to
B. The comparison of these two transformations using
the Mahalanobis distance gives a real validation index
which can be tested for the accuracy of the uncertainty
estimation.

In this experiment, the images being close enough,
we used the iterative closest feature algorithm. Typi-
cally, we match 1000 extremal points out of the about
3000 extracted with a residual mean square error (RMS)
of about 1mm.

3.3.1 Direct Validation Shows Biases

With n different acquisitions, we can run n ∗ (n− 1)/2
registrations per echo. In a first experiment, we com-
pared directly the registrations between the correspond-
ing echo-1 and echo-2 images. The resulting validation
index clearly indicates that the transformations do not
agree (µ̄ = I > 50 instead of 6). However, our regis-
tration method cannot detect systematic biases.

To discover the biases, we ran a series of experiments
where we repeated the same registration while varying
the algorithm parameters. This confirms that the ob-
served uncertainty is similar in size and shape to the
predicted one. Moreover, other experiments show that
the inter-echo-1 and the inter-echo-2 registrations are
compatible but the two groups significantly differ (Fig-
ure 13). Thus we concluded that there was a system-
atic bias between echo-1 and echo-2 registrations. Ad-
ditional experiments showed that the bias was different
for each registration.

3.3.2 Estimation of the Biases

To estimate the biases, we first observed that the trans-
formation from image A1 to image B2 can be written
fA1B2 = fB ◦ fAB1 = fAB2 ◦ fA. If measurements
where perfect, the bias fA could be expressed for any
other image Z: fA = f (-1)

AZ2
◦ fZ ◦ fAZ1 . Since measure-

ments are noisy, we obtain an estimator of the bias fA

by taking the Fréchet mean value [37]:

f̄A = arg min
f

 ∑
Z 6=A

dist2
(
f , f (-1)

AZ2
◦ fZ ◦ fAZ1

) .
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Figure 12: Left: Example of MS images. The same slice of one acquisition in echo-1 (left) and echo-2 (right). Right:
evolution of an image row going through a lesion across 24 time points over a year. Left: without registration; Right: after
registration and intensity correction. Original 3D Images courtesy of Dr. Charles Guttmann and Prof. Ron Kikinis from the
Brigham and Woman’s Hospital (Harvard Medical School, Boston).

Ī σI K-S test num. im. num. reg.
Theoretical values 6

√
12 = 3.46 0.01 – 1 n ≤ 24 n ∗ (n− 1)/2

patient 1 6.29 4.58 0.14 15 105
patient 2 5.42 3.49 0.12 18 153
patient 3 6.50 3.68 0.25 14 91
patient 4 6.21 3.67 0.78 21 210

Table 1: Theoretical and observed values of the real validation index with bias for different patients. The number of registra-
tions (which is also the number of values used to compute the statistics on the validation index) is directly linked to the number
of images used. Results indicate a very good validation of the registration accuracy prediction: the mean validation index is
within 10% of its theoretical value and the K-S test exhibits impressively high values.

Figure 13: This diagram represents three acquisitions A, B,
and C with the three echo-1 images (A1, B1, C1) and the
three echo-2 images (A2, B2, C2). The echo-1 and echo-
2 registrations are significantly different (µ2(fAB1 , fAB2),
µ2(fAC1 , fAC2), µ2(fBC1 , fBC2) ¿ 50) but the intra-echo-
1 and intra-echo-2 registrations are compatible (µ2(fBC1 ◦
fAB1 , fAC1) ' 6 and µ2(fBC2 ◦ fAB2 , fAC2) ' 6). This
led us to assume a global bias for each acquisition between
echo-1 and echo-2 images, represented here by the transfor-
mations fA, fB , and fC .

In this formula, each acquisition bias depends upon the
others. Thus, we begin with null biases (identity trans-
formations) and iteratively estimate each bias until con-
vergence.

We effectively obtain a different bias for each acqui-
sition that significantly differs from the identity. How-
ever, from a more global point of view, all the biases
could be modeled as an “additional” noise on the trans-
formation with an identity mean and standard deviations
of σr = 0.06 deg on the rotation (not significantly dif-
ferent from 0) and σx = 0.09, σy = 0.11 and σz = 0.13
mm on the translation (significantly different from 0).
Very similar values were observed for other patients.

3.3.3 Validation with Bias

Although the biases appear very small, they are suffi-
cient to explain the previous errors in the registration
accuracy prediction. Indeed, taking the biases into ac-
count, the real validation index between acquisition A
and B becomes:

IAB = µ2 (fB ◦ fAB1 , fAB2 ◦ fA) .

Since the biases are estimated from the registration val-
ues, using their uncertainties in this formula would bias
the validation index toward low values. Thus we con-
sider them as deterministic. The mean value and stan-
dard deviation of this new index across all registrations
are now very close to their theoretical value (see table
1).
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3.3.4 Origin of the Bias

Most of the extremal points we match are situated on
the surface of the brain and the ventricles. These sur-
faces appear differently in echo-1 and echo-2 images
due to the difference in contrast. Other artifacts such
as chemical shift or susceptibility effects (see for in-
stance [21]) may also account for the observed bias as
they influence the detection of extremal points. Indeed,
the two echoes are acquired with different receiver RF
bandwidth to improve the signal/noise ratio [22]. There-
fore, the chemical shift and the susceptibility effect are
different in the two echoes.

We plan to correlate the biases with diverse quanti-
ties in the images in order to understand their origin.
Ultimately, we would like to predict the biases in each
acquisition before registration. This would allow the
definite validation of the registration accuracy predic-
tion.

4 Conclusion

We presented in this chapter a method to extract reliable
differential geometry features (crest lines and extremal
points) from 3D images and several rigid registration
algorithms to put into correspondence these features in
two different images and to compute the rigid transfor-
mation between them. We also presented an analysis of
the robustness with the computation of the probability
(or mean number) of false positives and an analysis of
the accuracy of the transformation.

This method proves to be very powerful for
monomodal rigid registration of the same patient im-
aged at different times, as we show that an accuracy of
less than a tenth of voxel can be achieved. In the last
experiment, we showed that this uncertainty estimation
technique is precise enough to put into evidence system-
atic biases on the order of 0.1 voxel between features in
echo-1 and echo-2 images. Once corrected, multiple ex-
periments on several patients show that our uncertainty
prediction is validated on real data.

This registration technique is currently used in many
medical applications, such as the registration of a pre-
operative MR used for planning and MR with a stereo-
tactic frame for neuro-surgery navigation (European
Community project Roboscope), or the registration of
a series of acquisitions over time of images of Multiple
Sclerosis patients to study the disease’s evolution (Eu-
ropean Community project Biomorph).

Several tracks have been followed to generalize this
work to non-rigid registration. Feldmar [14] used
the principal curvatures to register surfaces with rigid,
affine, and locally affine transformations. Subsol de-
signed an algorithm for non-rigid matching of crest
lines. In [41], he used this method to warp 3D MR im-
ages of different patients’ brains in the same coordinate

system, and even to warp an atlas onto a given 3D MR
image of a brain in order to segment it. In [42], he used
the same method to construct automatically a morpho-
metric atlas of the skull crest lines from several acquisi-
tions of different patients’ CT images, with applications
in cranio-facial surgery.
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