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Registration of 3D medical images consists in comput-
ing the “best” transformation between two acquisitions,
or equivalently, determines the point to point correspon-
dence between the images. Registration algorithms are
usually based either on features extracted from the im-
age (feature-based approaches) or on the optimization of
a similarity measure of the images intensities (intensity-
based or iconic approaches). Another classification cri-
terion is the type of transformation sought (e.g. rigid or
non-rigid).

In this chapter, we concentrate on feature-based ap-
proaches for rigid registration, similar approaches for
non-rigid registration being reported in another set of pub-
lication [35, 36]. We show how to reduce the dimension of
the registration problem by first extracting a surface from
the 3D image, then landmark curves on this surface and
possibly landmark points on these curves. This concept
proved its efficiency through many applications in medi-
cal image analysis as we will see in the sequel. This work
has been for a long time a central investigation topic of
the Epidaure team [2] and we can only reflect here on a
small part of the research done in this area.

We present in the first section the notions of crest lines
and extremal points and how these differential geometry
features can be extracted from 3D images. In Section 2,
we focus on the different rigid registration algorithms that
we used to register such features. The last section ana-
lyzes the possible errors in this registration scheme and
demonstrates that a very accurate registration could be
achieved.

1 Features Extraction: Extremal
Points and Lines

To extract reliable curves on a surface, most approaches
try to generalize the notion of “edges” to smooth surfaces
to find the most salient features on the surface: ridges.
Prior to the late 1980s and early 1990s, the interest in
ridges was mostly theoretical, in areas of mathematics re-
lated to catastrophe theory [33, 24, 21, 34, 1]. Crest lines
are then defined as the cuspidal edges of a caustic surface,
and the link between caustics and curvatures on a surface
was established.

Practical applications were then discovered by re-
searchers in computer vision, graphics, and medical imag-
ing together with the specification of algorithms to extract
ridges. In the following, we are going to focus on thecrest
and extremal lineas introduced in [25, 26] and developed
in [38, 39]. Basically, these curves are (subsets of) the
loci of the surface where one of the principal curvatures
reaches a locally optimum in the associated principal di-
rection. In these works, the crest lines are extracted using
third order derivatives of the image intensities. An alter-
native approach was presented in [14] with the use of a
B-spline approximation of the surface.

A different notion of ridges is given in [40, 10]: they
are defined as the salient structures of the intensity surface
defined byI = f(x, y, z). Here, the ridges are surfaces
and are more like results of the medial axis transform than
the intuitive notion of salient lines on a surface. Cuttinget
al [6] also developed a method using a template of ridges
to assist in their extraction from image data. This method
was extended by Deanet al [7]. A good review of the
many definitions of ridges can be found in [4].
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Figure 1: Differential geometry of 3D curves and surfaces. Left: principal directions and curvatures of a surface.
Right: Fŕenet trihedron of a 3D curve and first differential invariants: curvature and torsion.

1.1 Definition and Properties

Differential Geometry of 3D Surfaces

Let us first recall briefly some results of differential geom-
etry about surface curvatures (a good introduction to these
notions can be found in [9] or in [21]). In this paper, we
call asmooth surfacea 3D surface which is continuously
differentiable up to the third order. At any pointP of such
a 3D surface, we can define one curvature per directiont
in the tangent plane of the surface. Thisdirectional cur-
vaturekt is the curvature of the 3D curve defined by the
intersection of the plane(P, t,n) with the surface, where
n is normal to the surface.

Except for the points where this curvaturekt is the
same for all the directionst, which are calledumbilic
points, the total set of curvatures can be described with
only two privileged directions,t1 andt2, and two asso-
ciated curvature values,k1 = kt1 andk2 = kt2 , which
are called respectively the principal directions and the as-
sociated principal curvatures of the surface at pointP , as
shown in Figure 1. These two principal curvatures are
the extrema of the directional curvatures at pointP , and
(except for umbilic points) one of these two is maximal
in absolute value, let us sayk1: we call this thelargest
curvature, in order not to be mistaken with the maximal
curvature. We simply call thesecond (principal) curva-
ture the other principal curvaturek2.

Extremal Lines

The crest lines are intuitively the loci of the surface where
the “curvature” is locally maximal. More precisely, we
define them as the loci of the surface where the largest
curvature,k1, is locally maximal (in absolute value) in
the associated principal directiont1. In [26], it is shown
that these points can be defined as the zero-crossing of an
extremality functione, which is the directional derivative
of k1 in the directiont1.

We have proposed another method to compute them in
[39, 38], for the case of iso-intensity surfaces. Our method
is based on the use of the implicit functions theorem. Ba-
sically, we have shown that the crest lines can be extracted
as the intersection of two implicit surfacesf = I and
e = 0, wheref represents the intensity value of the im-
age,I an iso-intensity threshold, ande = ∇k1 · t1 is the
extremality function (see Figure 2, left). We have pro-
posed an algorithm, called the Marching Lines, to auto-
matically extract these crest lines. This algorithm can also
be used to overcome some orientation problems (mainly
due to the fact that the principal directions are only di-
rections and not oriented vectors), by locally orienting the
principal directions along the extracted lines.

In fact, for each point of the surface, two different ex-
tremality coefficients can be defined, corresponding to the
two principal curvatures:

e1 = ∇k1 · t1 and e2 = ∇k2 · t2 (1)

We found experimentally that the maxima (in absolute
values) are more stable landmarks than the minima: crests
or rifts (maxima) are stable, whereas the loci in a valley
where the ground floor is the flattest (minima) are very
sensitive to small perturbations in the data.

We callextremal linesall the lines defined as the zero-
crossings of eithere1 or e2. There is therefore four major
different types of extremal lines, depending of whether
the corresponding curvature is the largest or the second
one and whether it is a local maximum or minimum. Fur-
thermore, the signs of the largest and second curvatures
help to distinguish between four additional sub-types of
extremal lines, leading to a classification into16 types.
The crest lines are two of them: positive largest curvature
maxima (k1 > 0 and∇e1 · t1 < 0) and negative largest
curvature minima (k1 < 0 and∇e1 · t1 > 0).
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Figure 2: Left: Crest lines as the intersection of two implicit surfaces. Right: Definition of the extremal points as the
intersection of three implicit surfaces.

Extremal Points

We now define the extremal points as the intersection of
the three implicit surfaces:f = I, e1 = 0 ande2 = 0.
The notions of extremal lines and extremal points are
closely related to the notion of corner points, in 2D im-
ages, as defined in [20], [27], and [8]. A study of the
evolution in 2D of corner points with respect to the scale
can be found in [13]. A similar study on the scale-space
behavior of the extremal lines and the extremal points was
presented in [12].

Extremalitiese1 and e2 are geometric invariants of
the implicit surfacef = I: they are preserved with
rigid transforms (rotations and translations of the object).
Therefore, the relative positions of the extremal points are
also invariant with respect to a rigid transformation, i.e.
for two different acquisitions of the same subject. There
are 16 different types of extremal points, depending on
the type of extremality: local minimum or maximum of
the extremalitiese1 and e2 and the signs ofk1 and k2.
This classification can be used to reduce the complexity
of the matching algorithm.

However, the intuitive interpretation of extremal points
is not straightforward. The extremal lines are 3D curves,
for which we are able to compute the curvature, but the ex-
tremal points are generally not the points of the extremal
lines whose curvature is locally maximal. Even if they
are not extremal curvature points, the extremal points are
very well defined, and there is no reason for their loca-
tions along the extremal lines to be less precise that the
lines positions themselves, because the precision of the
computation ofk1 andk2 is approximately the same.

Geometric Characteristics

Let us begin with the points on a surface. We have already
seen (Figure 1, left) that any such point could be provided
with a trihedron(n, t1, t2) formed by the normal to the
surface and the two principal directions. As our points are
also on extremal lines, we could provide them with the
differential characteristics of 3D curves (Figure 1, right),
i.e. the Fŕenet trihedron(t,nc,b), wheret is the tangent
to the curve,nc its normal andb the binormal.

These two trihedrons are not the same as the extremal
lines are generally not lines of curvature. However, as
the curve is embedded in the surface, the tangent to the
curve t is constrained to be in the tangent plane of the
surface spanned by(t1, t2). Thus, there are two indepen-
dent parameters characterizing the relative configuration
of the trihedron: we can measure two anglesθ = ̂(t, t1)
andφ = ̂(nc,n). These characteristics are invariant with
respect to rigid transformations.

Two other invariants come from the surface (principal
curvaturesk1 andk2). One could also think to add the
curvaturek, the torsionτ of the curve and the geodesic
torsionτg of the curve with respect to the surface but it
appears thatk andτg are completely determined by the
surface invariants:k cos φ = k1 cos2 θ + k2 sin2 θ and
τg = (k2 − k1) cos θ sin θ. Thus, we are left with the
torsion of the curve.

However, the computation of the Frénet trihedron
(t,g,b) and the curve torsionτ has to be done on the
extremal curve itself after its extraction. If this can be
done directly on the polygonal approximation, a much
better method is to compute the characteristics on a local
B-spline approximation of the curve [15].
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Figure 3: Extraction of the Extremal Points. An empty circle denotes a positive value, whereas a filled circle indicates
a negative one.

1.2 The Automatic Extraction of the Ex-
tremal Points

In practical cases,e1 and e2 can be computed for each
point of the 3D image with the equations described in
[37] directly from the differentials of the intensity func-
tion of the imagef . We compute these differentials with
linear filtering, using the convolution of the discrete image
with the differentials of the Gaussian functione−‖x‖

2/2σ2
.

The normalization of these filters is not straightforward;
we use the responses to simple polynomials, as proposed
in [26]. We choose the Gaussian function because it is
isotropic, a prerequisite if we are looking for geometric
invariants for rigid transformations. Different values ofσ
can be chosen, depending on the level of noise in the 3D
images. Changingσ is somewhat equivalent to changing
the scale at which we look for extremal lines and points.

The hypothesis that the iso-surfaces are a good repre-
sentation of the surface of organs for the case of medical
images is a prerequisite: sometimes, the iso-surface can
be extracted directly from the 3D image, such as the skin
surface in Magnetic Resonance Image (MRI) or the bones
in X-ray scanner images. For other soft tissues, such as for
the brain surface, a pre-segmentation step is required to
isolate the brain from the rest of the data. This can be done
with a combination of mathematical morphological oper-
ators, filtering, and the search for connected parts or with
an automatic “surface edge” extractor, such as the zero-
crossing of the image Laplacian. In all cases, the final
step of the segmentation is performed using iso-surface
techniques.

Computation of the Extremal Points in a 8-Voxel Cell

One solution to get the set of extremal points of the 3D
image is to computee1 ande2 for all the voxels of the 3D
image and then to consider individually each cubic cell,
formed with 8 voxels (8-cell), as shown in Figure 3. There
are therefore three values defined for each vertex of the
cube:f , e1, ande2. The extremal points in that 8-cell are

defined as the intersection of the three implicit surfaces
f = I, e1 = 0, ande2 = 0. The method varies according
to the type of interpolation or convolution function used
to extend continuously the three values at the vertices of
the cubic cell to the entire cell. The tri-linear interpolation
is a good first order approximation.

The extraction of a polygonal approximation of the
crest lines with some warranties about the topology and
the orientation of the reconstructed 3D curves is presented
with the marching line algorithm [39]. Its extension to the
extraction of the extremal points was performed in [38].
We briefly recall here the method on a very simple ex-
ample where the iso-surface is a triangle in the cell. This
operation can be extended to any configuration of the val-
ues off ande1 while ensuring that the extracted segments
form a continuous and closed 3D curve (except whenf or
e1 is not defined, for instance at the borders of the im-
age). The original algorithm also considers orientation
problems, which allows us to distinguish between mini-
mum and maximum extremal points.

The first step (Figure 3, left) is to extract the iso-surface
within the cell. The iso-surface intersects the edges on the
cell with the valueI. Computing, by linear interpolation
along the edges, the points wheref = I, we get the three
points{Q1, Q2, Q3}. Since we are using a tri-linear inter-
polation within the cell, the intersection of the iso-surface
with the cell is the triangle{Q1, Q2, Q3}.

In the second step (Figure 3, middle), we compute the
values ofe1 for {Q1, Q2, Q3}, by linear interpolation
along the edges of the cubic cell. If they have the same
sign, there is no extremal line ofe1 in this cell. Otherwise
we look for the two points along the triangle edges where
the interpolated value ofe1 is null: we get the two points
{P1, P2} which form a segment. This is the approxima-
tion of the extremal line within the cell.

The last step (Figure 3, right) is to compute the position
of the extremal point. SinceP1 andP2 lie on the surface
of the cell, we compute the value ofe2 at these points
with a bi-linear interpolation ofe2 in the faces. If the
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Figure 4:Left: An axial slice of a 3D CT image of a dry skull in Plexiglas.Middle and right: the crest lines extracted
on this image. The iso-intensity was manually chosen to delimit the skull. Original 3D Image courtesy of GE-CGR,
Buc, France.

two values have the same sign, there is no extremal point
on this cell. Otherwise, as is shown here, we compute
its positionP by interpolating the zero value along the
segment.

Randomized Extraction of Extremal Points

Of course, we could look for extremal points in all the
possible cells of the image, excepting regions of null gra-
dient and umbilics. However, it is much more efficient to
randomize the search: we start with seed cells, randomly
chosen in the 3D image and discard the ones for which
the sign off − I is the same for all the vertices. Then
we compute the values ofe1 for the 8 vertices of the cell.
Once again, a simple test discards the cells which are not
crossed by ak1 extremal line (the sign ofe1 is the same
for the 8 vertices). If there is an extremal line, we extract
it from end to end, using the Marching Lines algorithm
(we follow the extremal line “marching” from one cell to
the next).

At each point of the polygonal approximation of the
crest line, we compute the second extremalitye2 by bi-
linear interpolation. If there is a sign change, we compute
the extremal point on the segment of the extremal line that
we are currently following.

The randomized implementation of the Marching Lines
allows us to extract the main extremal lines (i.e., the
longest ones, which experimentally appeared to be the
most reliable ones) of the 3D image, with only very few
seeds (with respect to the total number of voxels), ran-
domly distributed in the 3D images. The probability of
missing an extremal line is approximately proportional to

the inverse of its length. This method reduces drastically
the number of computations to perform, compared to the
extensive implementation: typically, one uses 10% of the
number of voxels as seeds. Even if the set of generated
extremal points is not complete, it is generally sufficient
to perform a reliable 3D registration.

1.3 Example of Extracted Extremal Lines
and Points

In Figure 4, we can see an example of the lines extracted
automatically (with a manual choice of the iso-intensity
threshold) in a CT image of a dry skull. Some of the 550
crest lines may be recognized as anatomical landmarks,
such as the orbits or the inferior border of the mandible.
The lines are colored by the sign of thee2 extremality.
Thus, extremal points are located at the color changes
along the lines. There are around 3000 such extremal
points.

In an MR image, the surface of the brain is not very
well defined by an iso-intensity of the image. A pre-
segmentation step is usually needed to isolate the brain
from the rest of the data. This can be done with a combi-
nation of mathematical morphological operators, filtering,
and the search for connected parts or with an automatic
“surface edge” extractor, such as the zero-crossing of the
image Laplacian. In Figure 5, we used a segmentation of
the surface of the brain and extracted the crest lines on
this surface. Lines in red (with a positive largest curva-
ture) roughly correspond to sulci whereas blue lines (with
a negative largest curvature) could be interpreted as gyri.
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Figure 5: Left: A sagittal slice of a 3D MR image.Middle and right: 3D views of the extremal lines extracted
superimposed on the surface of the brain. Original MR images and segmentation courtesy of Prof. R. Kikinis, Brigham
and Women’s Hospital, Boston.

2 Rigid Registration

Let us now consider two images of the same modality and
of the same patient, but in a different position. We extract
extremal lines on both images. The problem is to put into
correspondence the two sets of lines (the model and the
scene), which is often called the matching step, and to
compute the best rigid transformation that superimposes
the matched lines.

It is important to note that a global registration algo-
rithm, for instance superimposing the barycenters of all
points and the inertia axes, will often fail due to the oc-
clusion. Indeed, the images being taken in different po-
sitions, the region of interest are frequently different in
the two images, leading to crest lines and extremal points
present in one image and not in the other. The images
noise will also induce the extraction of spurious lines and
points in different parts of the two images.

2.1 Curve Registration

Several algorithms adapted from computer vision have
been proposed and used over time. In [15], Guéziec
matches the crest lines using a combination of geometric
hashing [22] and Hough transform (see for instance [23]).
The basic idea was to index each point of each model crest
line in a hash-table using its invariant characteristics. At
recognition time, the invariants of each scene crest line
point are used to recover, thanks to the hash table, the pos-
sible matches with model points (geometric hashing step).
For each match (i.e., couple of model and scene points),

a rigid transformation is computed by superimposing the
Frénet frames and used to index the match in a new accu-
mulator sampling the rigid transformation space (Hough
transform step). Densely populated cells in this second ac-
cumulator are detected as rigid body transformations that
are candidates to match a large number of crest points.
For each such cell, a refined least-squares transformation
is computed using the matches indexed in this cell.

2.2 Extremal Points Registration using
Alignment

With the development of completely automated methods
to extract crest lines and the higher resolution of images,
the number of crest lines drastically increased, leading
to a much higher density of invariants in the hash table.
This could lead to an important number of false positives
that would overwhelm the correct matches. The maxi-
mum complexity would then be reached and the algorithm
could even provide a wrong answer. To address this prob-
lem, Thirion reduced once again the image information by
keeping only a very small number of specific points on the
crest lines: the extremal points. Typically, they represent
only 16% of the number of crest line points, but we are
still left with 2000 to 5000 points in each image.

Thirion used in [37] another computer vision based
technique: alignment (or prediction-verification) [3, 17].
The basic idea is to compute the registration of each triplet
of model points with each triplet of scene points, super-
impose the two sets of points using this transformation
and verify this match using an iterative closest point al-
gorithm (see Section 2.4). However, the search for com-
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patible triplets in the model and the scene can be reduced
since there are some unary invariants (the principal cur-
vaturesk1 and k2), secondary invariants (e.g. the dis-
tance between the two points, or the relative orientation
of the surface normals and the principal curvatures) and
even ternary invariants (involving the whole triplet of ex-
tremal points). Thirion used 18 such invariants for each
triplet, pre-computed and stored them in a hash table to
retrieve in constant time the compatible triplets. Thus, the
complexity of the algorithm isO(n4) since there aren3

triplets, and a verification ofO(n) for each triplet match.
In practice, this complexity is not reached as we can stop
as soon as a given number of points is matched after veri-
fication (typically 10 %).

2.3 Substructure Matching with Frame
Features

We came back in [16] to geometric hashing, but the idea
was to use all the geometric information on the features
while taking great care of the uncertainty handling for the
algorithm to be robust (see [29] for an analysis of recog-
nition algorithms with uncertain geometric features). In
addition to the point’s position, we can add the normal
vectorn and the two principal directionst1 andt2 of the
surface to constitute a local coordinate system, or a frame.

In this context, each medical image is modeled by a set
of frames and the matching problem is to find the corre-
spondences between two subsets of frames that are in the
same configuration in the two “images”, up to a global
rigid transformation.

Invariant Representation: Preprocessing Step To ob-
tain an invariant representation with respect to the global
position and orientation of the considered structure, we
can express the configuration of all frames relative to one
frame (called the basis). For efficiency, this representa-
tion is stored in a hash table and, for correctness, we in-
clude the uncertainty of each invariant. As only part of
the frames are in the same configuration in the two im-
ages, the one chosen as the basis may not be present in
the other image. The preprocessing step is thus repeated
with each frame as the basis.

Recognition Step Choosing a frame of the second
structure (the scene) as the basis, we compute the invari-
ant representation and retrieve, thanks to the hash table,
what are the compatible model frame couples. If the basis
belongs to a common substructure, then a significant num-
ber of frames are in the same configuration with respect to
it. We then match the model and scene bases (Fig. 6).

This process is repeated for every extremal point as the
basis to find its possible matches in the model and we only

keep the matches that are above a given threshold (typi-
cally 10 % of the number of extremal points).

Clustering Compatible Matches and Verification For
each individual match, we maintain during the recognition
step an estimation of the associated transformation by fus-
ing the transformations between confirming frames. To
group matches belonging to the same (rigid) substructure,
we run a very simple clustering algorithm on the associ-
ated transformation. Indeed, up to measurement errors,
frames should undergo a similar transformation within a
single substructure. Each cluster is then refined by an it-
erative closest neighbor technique where we enforce sym-
metry of the matches and verify their validity with aχ2

test.

Matching Crest Lines In order to reduce once again the
complexity of the algorithm, we exploited in this method
the structure of the extremal points: they belong to crest
lines. The principle is to consider each model crest line
as a different object. Index all model lines in the same
hash-table, we retrieve at recognition time the model lines
corresponding to each scene crest line.

However, different crest line matches can correspond
to different transformations. Thus, we run once again our
clustering algorithm on the transformations to find out the
compatible line matches and we obtain a single transfor-
mation from the model to the scene image.

2.4 ICP on Frames

When images are close enough, one can use still another
algorithm: the Iterative Closest Point [5, 41]. The basic
principle is the following. For each scene point, we look
for the closest point in the model with the current trans-
formation, compute a new rigid transformation with these
matches, and iterate the process until convergence.

Of course, since we have more geometric information
than just the point position, we use a generalization: the
Iterative Closest Feature [29]. The idea is to use a higher
dimensional space for the closest point search. In our
case, the space is made of the extremal point position, the
trihedron(n, t1, t2), and the unary invariantsk1 andk2.
The important point is to set an appropriate metric on this
space in order to combine efficiently the different units
of measurement. In our algorithm, this is done using the
inverse of the covariance matrix of the features. This ma-
trix can be re-estimated after convergence and the whole
process iterated. However, we did not observe a critical
influence of the covariance matrix values, as soon as it is
approximately respecting the variation range of the differ-
ent components.
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Figure 6: Preprocessing: the 6D invariant vector associated with every couple of model frames is computed with
its error zone and used as an index for the couple in the hash table.Recognition: for each scene frame couple, we
compute the 6D invariant vector and retrieve through the hash table every compatible model frame couple. For each
such couple, we tally a vote for the matching of the reference frames (here the match (Fmi, Fsj) scores 2).

Figure 7: Example of registered crest lines between two CT skull images of the same phantom acquired in two different
positions. Extremal points are represented by a color change from yellow to blue on the lines.Left: Front view with
all crest lines from the two skulls after registration.Middle: Left view of the matched crest lines.Right: Closeup on
the occipital foramen on the right. In this last image, the width of a line is a tenth of a voxel, which shows the very
precise registration of these extremal points. One can also see that the trihedron part of the matched frames is very
well conserved.
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Figure 8: Example of registered crest lines between two MR T1 images of the same patient. Only the 240 matched
lines are displayed. Extremal points are represented by a color change from yellow to blue on the lines.Left: View of
matched crest lines from the left of the head.Middle: View from the front.

2.5 Examples of Rigid Registrations

Registration of CT Images of the Skull Figure 7
presents an example of the registration of two CT images
of the a dry skull in a Plexiglas box in two different posi-
tions. We used the geometric hashing algorithm on frames
(Section 2.3). As the transformation between the two im-
ages is close enough to the identity, the ICP algorithm
also gives very similar results. About 75 crest lines are
matched with more than 4 extremal points among the 550
lines in each image leading to a total of 550 matched ex-
tremal points (only on the 75 matched lines). Using the
techniques described in Section 3.2, we have computed
that the typical object accuracy (the expected standard
RMS error on image super-imposition due to the trans-
formation in the area of the matched features) is 0.04 mm,
whereas the typical corner accuracy is 0.1 mm. This is to
be compared with the voxel size: 1 x 1 x 1.5 mm.

Registration of MR Images of the Head Figure 8 is
an example of the registration of two MR T1 images of
the same patient. In this case, 240 crest lines are matched
among approximately 2100 in each image, for a total of
860 matched extremal points among 3600 in each image
(about 25 %). We used the zero-crossing of the Laplacian
to define the interest surfaces. Thus, there are crest lines
all over the head. However, if some of the matched lines
are located on the surface of the skin (we can recognize
the nose and the eyes), most of them are located on the
surface of the brain. The typical object accuracy of the
registration is 0.06 mm for a typical corner accuracy of
0.125 mm. Once again, the accuracy is far below the voxel
size (0.97 x 0.97 x 1.5 mm).

3 Robustness and Uncertainty
Analysis

Once we have registered the images, i.e. found matches
and a rigid transformation, the question is: how confident
can we be with this result? There are two main types of
errors in feature-based registration algorithms. Firstly, the
matches could be completely wrong and we simply rec-
ognized by chancen features in approximately the same
configuration. This is called agross errorin statistics and
a false positivein recognition. But even if we got the
matches right, the features we are using to compute the
registration are corrupted by noise and induce a small er-
ror, or uncertainty, on the transformation parameters. In
this section, we analyze in turn these two types of error.

3.1 Robustness Analysis

Since our features are noisy, we had to allow for a cer-
tain error when matching them. In the registration algo-
rithm of Sections 2.3 and 2.4, this is computed from the
covariance matrices. The existence of such an error zone
allows us to match features that by chance fall in this area.
When this probability is sufficiently high, individual false
matches can combine themselves (conspiracy) to produce
an important matching score.

However, we should note that such a false positive is a
correct recognition from a feature point of view (a glob-
ally consistent matching) but is incorrect from the image
or data point of view. This problem is inherent to the as-
cendent organization of information: some important in-
formation can be dismissed by simplifying the image as a
set of features.
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In [30], we developed a generic method to evaluate the
probability of matchingτ features just by chance. The
basic framework is the following. Let us assume for the
moment that the transformation between the two images
is fixed. First, we compute theselectivityη, which is the
probability that a random feature (uniformly distributed in
the image) falls in a given error zone. Then, we compute
the probability that at leastτ of them scene features fall
in one of then model error zones. In our analysis, com-
putations are simplified by assuming that all features are
randomly distributed.

Now, we will accept a match if there exists one trans-
formation such that at leastτ features are put into cor-
respondence. Thus, to obtain the mean number of false
positives, we just have to integrate over all possible trans-
formations. Letd be the “diameter” of the images, we get
the following estimation:

P ' (2πd)3

3

1− e−(nmη)
τ∑

j=0

(nmη)j

j!

 .

In the example of Section 3.3, we compute that the se-
lectivity is ηpt = 2.10−6 if we just use the position of the
extremal points andηfr = 1.5.10−8 if we model them us-
ing frames. The diameter of the image isd ' 400mm and
we extracted around 2,500 extremal points in each image.
We plot in Figure 9 the number of false positivesP with
these values.

Figure 9: Qualitative estimation of the number of false
positives involving at leastτ matches in MR images of
2500 features. Comparison between frames and points:
we need roughly 5 times more point matches than frame
matches to obtain the same probability (10 frames and 56
point matches for a probability of10−10).

The actual matches found involve about 500 features
and the probability of being a false positive is thus practi-
cally zero. However, we must be careful that the “object”
we registered is not always the one we wanted, even if
this is definitely not a false positive: there can be several
different rigid motions in a single image, for instance the
skull and the brain in MR images.

3.2 From Feature to Transformation Uncer-
tainty

Here, we assume that the matches are right. However,
measurement errors on the features induce an estimation
error on the transformation. We developed in [32, 31] a
method where we register the features, estimate the noise
on the frames and propagate this noise to estimate the un-
certainty of the rigid transformation.

Feature Uncertainty For extremal points (modeled as
frames), we proposed a “compositive” model of noise.
Basically, this means that the noise is assumed to be iden-
tical on all extremal pointsin the local frame(i.e., with
respect to the surface normal and the principal directions).
This has to be compared with the standard additive noise
model on points where we assume an identical noise with
respect to the image axes. In the case of the MR images
of the next Section, this leads to an interesting observa-
tion: we draw in Figure 10 a graphical interpretation of
the covariance matrix estimated on the extremal points af-
ter registration.

We obtain an approximately diagonal covariance ma-
trix with standard deviationsσt1 ' σt2 ' 2 deg,σn =

Figure 10: Graphical interpretation of the “compositive”
noise model estimated on extremal points. The uncer-
tainty of the origin (pointX) is 4 times larger in the tan-
gent plane than along the surface normal. The uncertainty
of the normal is isotropic, whereas the principal directions
t1 andt2 are 3 times more uncertain in the tangent plane.
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Figure 11: Uncertainty induced on the point positions (image corners, left; some object points, right) by the transfor-
mation.

6 deg for the rotation vector (these are typical values of
the angle of rotation around the corresponding axis) and
σxt1

' σxt2
' 0.8 mm,σxn

= 0.2 mm for the position.
As far as the trihedron part is concerned, this means that
the surface normal is more stable than the principal direc-
tions, which is expected since the normal is a first order
differential characteristic of the image and the principal
directions are second order ones.

For the position, the coordinate along the normal is
once again more stable than in the tangent plane for the
same reasons. The 3D standard deviation of the posi-
tion is σ = 1.04, which is in agreement with the ad-
ditive noise model on points. However, for the additive
noise model, the estimated covariance is isotropic. Thus,
using an adapted model of noise on frames allows us to
extract much more information about the feature noise.
This constitutes ana-posteriori validation of our “com-
positive” model of noise on extremal points.

Transformation Uncertainty Now the problem is to
propagate the feature uncertainty to the rigid transforma-
tion. Letf represent a rigid transformation andχ̂ the ob-
served data. The optimal transformation̂f minimizes a
given criterionC(f, χ) (for instance the least-squares or
the Mahalanobis distance). LetΦ(f, χ) = ∂C(f, χ)/∂f .
The characterization of an optimum isΦ(f̂ , χ̂) = 0. Now,
if the data are moving around their observed values, we
can relate the new optimal parameters using a Taylor ex-
pansion. LetĤ = ∂Φ/∂f andĴΦ = ∂Φ/∂χ be the val-
ues of the second order derivatives of the criterion at the
actual values(χ̂, f̂). We have

Φ(χ̂ + δχ, f̂ + δf) ' ĴΦ.δχ + Ĥ.δf = 0
⇔ Σf̂ f̂ = E (δf.δf T) = Ĥ (-1)ĴΦΣχ̂χ̂Ĵ T

ΦĤ (-1)

Thus, we can express (an approximation of) the covari-
ance of the resulting transformation using the covariance
on features and the criterion derivatives.

However, a covariance matrix on a rigid transforma-
tion is quite hard to understand since it mixes angular

values for the rotation and metric values for the transla-
tion. To characterize the transformation accuracy with a
single number, we can compute the uncertainty (expected
RMS error) induced on a set of representative points by
the registration uncertainty alone (without the uncertainty
due to the feature extraction). In our case, two sets are
particularly well suited: the position of the matched ex-
tremal point represents the localization of the object of
interest, whereas the corners of the image symbolize the
worst case. In the example below, we find for instance
a typical boundary precision aroundσcorn = 0.11 mm
and a typical object precision far below the voxel size:
σobj = 0.05 mm for echo-1 registrations. The values are
even a little smaller for echo-2 registrations:σcorn = 0.10
andσobj = 0.045 mm.

Validation Index Last but not least, we need to vali-
date this whole chain of estimations to verify if our uncer-
tainty prediction is accurate. We observed that, under the
Gaussian hypothesis, the Mahalanobis distance between
the estimated and the exact transformation (or between
two independent estimations of the same transformation)
should beχ2

6 distributed (if the covariance matrix on the
estimation is exact). To verify this, the idea is to repeat a
registration experimentN times and to compute the em-
pirical mean valueI = µ̄2 = 1

N

∑
µ2

i and the variance
σ2

I of this Mahalanobis distance. The values for an exact
χ2

6 are respectively 6 and 12. We can also verify using
the Kolmogorov-Smirnov test (K-S test) that the empiri-
cal distribution corresponds to the exact distribution. The
validation indexI [32] can be interpreted as an indication
of how the estimation method under-estimates (I > 6) or
over-estimates (I < 6) the covariance matrix of the es-
timated transformation. It can also be seen as a sort of
relative error on the error estimation.

We run several sets of tests with synthetic data and ver-
ify that our uncertainty estimations very perfectly vali-
dated for more than 15 extremal point matches. Now, the
question we want to answer is: is it still valid for real data?
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Figure 12:Left: Example of MS images. The same slice of one acquisition in echo-1 (left) and echo-2 (right).Right: evolution
of an image row going through a lesion across 24 time points over a year. Left: without registration; Right: after registration and
intensity correction. Original 3D Images courtesy of Dr. Charles Guttmann and Prof. Ron Kikinis from the Brigham and Woman’s
Hospital (Harvard Medical School, Boston).

3.3 Validation with Real Data

The experiment is performed using multiple 2D contigu-
ous Magnetic Resonance images (MRI) which constitute
a 3D representation of the head. The images are part
of an extensive study of the evolution of the Multiple
Sclerosis (MS) disease performed at the Brigham and
Woman’s Hospital (Harvard Medical School, Boston) by
Dr. Guttmann and Prof. Kikinis. Each patient underwent
a complete head MR examination several times during
one year (typically 24 different 3D acquisitions). The aim
is to register precisely all the images acquired at multiple
time points in order to segment the lesions and evaluate
very accurately their evolution.

Each acquisition provides a first echo image and a sec-
ond echo image (typically 256 x 256 x 54 voxels of size
.9375 x .9375 x 3mm). The two images represent the
same slice of T2 weighted signal imaged at different echo
times. Thus, they are expected to be in the same coordi-
nate system. This protocol was designed to optimize the
contrast in the two channels for easier tissue segmenta-
tion. Considering two acquisitionsA andB, the regis-
trations of echo-1 images (A1 to B1) and echo-2 images
(A2 to B2) give two relatively independent estimates of
the genuine transformation fromA to B. The comparison
of these two transformations using the Mahalanobis dis-
tance gives a real validation index which can be tested for
the accuracy of the uncertainty estimation.

In this experiment, the images being close enough, we
used the iterative closest feature algorithm. Typically, we
match 1000 extremal points out of the about 3000 ex-
tracted with a residual mean square error (RMS) of about
1mm.

Direct Validation Shows Biases With n different ac-
quisitions, we can runn∗(n−1)/2 registrations per echo.
In a first experiment, we compared directly the registra-
tions between the corresponding echo-1 and echo-2 im-

ages. The resulting validation index clearly indicates that
the transformations do not agree (µ̄ = I > 50 instead of
6). However, our registration method cannot detect sys-
tematic biases.

To discover the biases, we ran a series of experiments
where we repeated the same registration while varying the
algorithm parameters. This confirms that the observed un-
certainty is similar in size and shape to the predicted one.
Moreover, other experiments show that the inter-echo-1
and the inter-echo-2 registrations are compatible but the
two groups significantly differ (Figure 13). Thus we con-
cluded that there was a systematic bias between echo-1
and echo-2 registrations. Additional experiments showed
that the bias was different for each registration.

Figure 13:This diagram represents three acquisitions A, B, and
C with the three echo-1 images (A1, B1, C1) and the three echo-
2 images (A2, B2, C2). The echo-1 and echo-2 registrations
are significantly different (µ2(fAB1 , fAB2), µ2(fAC1 , fAC2),
µ2(fBC1 , fBC2) ¿ 50) but the intra-echo-1 and intra-echo-2 reg-
istrations are compatible (µ2(fBC1 ◦ fAB1 , fAC1) ' 6 and
µ2(fBC2 ◦ fAB2 , fAC2) ' 6). This led us to assume a global
bias for each acquisition between echo-1 and echo-2 images,
represented here by the transformationsfA, fB , andfC .
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Ī σI K-S test num. im. num. reg.
Theoretical values 6

√
12 = 3.46 0.01 – 1 n ≤ 24 n ∗ (n− 1)/2

patient 1 6.29 4.58 0.14 15 105
patient 2 5.42 3.49 0.12 18 153
patient 3 6.50 3.68 0.25 14 91
patient 4 6.21 3.67 0.78 21 210

Table 1:Theoretical and observed values of the real validation index with bias for different patients. The number of registrations
(which is also the number of values used to compute the statistics on the validation index) is directly linked to the number of images
used. Results indicate a very good validation of the registration accuracy prediction: the mean validation index is within 10% of its
theoretical value and the K-S test exhibits impressively high values.

Estimation of the Biases To estimate the biases, we
first observed that the transformation from imageA1 to
imageB2 can be writtenfA1B2 = fB◦fAB1 = fAB2◦fA.
If measurements where perfect, the biasfA could be ex-
pressed for any other image Z:fA = f (-1)

AZ2
◦ fZ ◦ fAZ1 .

Since measurements are noisy, we obtain an estimator of
the biasfA by taking the Fŕechet mean value [28]:

f̄A = arg min
f

 ∑
Z 6=A

dist2
(
f , f (-1)

AZ2
◦ fZ ◦ fAZ1

) .

In this formula, each acquisition bias depends upon the
others. Thus, we begin with null biases (identity transfor-
mations) and iteratively estimate each bias until conver-
gence.

We effectively obtain a different bias for each acqui-
sition that significantly differs from the identity. How-
ever, from a more global point of view, all the biases
could be modeled as an “additional” noise on the trans-
formation with an identity mean and standard deviations
of σr = 0.06 deg on the rotation (not significantly differ-
ent from 0) andσx = 0.09, σy = 0.11 andσz = 0.13 mm
on the translation (significantly different from 0). Very
similar values were observed for other patients.

Validation with Bias Although the biases appear very
small, they are sufficient to explain the previous errors in
the registration accuracy prediction. Indeed, taking the
biases into account, the real validation index between ac-
quisition A and B becomes:

IAB = µ2 (fB ◦ fAB1 , fAB2 ◦ fA) .

Since the biases are estimated from the registration val-
ues, using their uncertainties in this formula would bias
the validation index toward low values. Thus we consider
them as deterministic. The mean value and standard de-
viation of this new index across all registrations are now
very close to their theoretical value (see table 1).

Origin of the Bias Most of the extremal points we
match are situated on the surface of the brain and the ven-
tricles. These surfaces appear differently in echo-1 and
echo-2 images due to the difference in contrast. Other ar-
tifacts such as chemical shift or susceptibility effects (see
for instance [18]) may also account for the observed bias
as they influence the detection of extremal points. Indeed,
the two echoes are acquired with different receiver RF
bandwidth to improve the signal/noise ratio [19]. There-
fore, the chemical shift and the susceptibility effect are
different in the two echoes.

We plan to correlate the biases with diverse quantities in
the images in order to understand their origin. Ultimately,
we would like to predict the biases in each acquisition be-
fore registration. This would allow the definite validation
of the registration accuracy prediction.

4 Conclusion

We presented in this chapter a method to extract reliable
differential geometry features (crest lines and extremal
points) from 3D images and several rigid registration al-
gorithms to put into correspondence these features in two
different images and to compute the rigid transformation
between them. We also presented an analysis of the ro-
bustness with the computation of the probability (or mean
number) of false positives and an analysis of the accuracy
of the transformation.

This method proves to be very powerful for monomodal
rigid registration of the same patient imaged at different
times, as we show that an accuracy of less than a tenth
of voxel can be achieved. In the last experiment, we
showed that this uncertainty estimation technique is pre-
cise enough to put into evidence systematic biases on the
order of 0.1 voxel between features in echo-1 and echo-2
images. Once corrected, multiple experiments on several
patients show that our uncertainty prediction is validated
on real data.

This registration technique is currently used in many
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medical applications, such as the registration of a pre-
operative MR used for planning and MR with a stereotac-
tic frame for neuro-surgery navigation (European Com-
munity project Roboscope), or the registration of a series
of acquisitions over time of images of Multiple Sclerosis
patients to study the disease’s evolution (European Com-
munity project Biomorph).

Several tracks have been followed to generalize this
work to non-rigid registration. Feldmar [11] used the prin-
cipal curvatures to register surfaces with rigid, affine, and
locally affine transformations. Subsol designed an algo-
rithm for non-rigid matching of crest lines. In [35], he
used this method to warp 3D MR images of different pa-
tients’ brains in the same coordinate system, and even to
warp an atlas onto a given 3D MR image of a brain in
order to segment it. In [36], he used the same method to
construct automatically a morphometric atlas of the skull
crest lines from several acquisitions of different patients’
CT images, with applications in cranio-facial surgery.
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