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Abstract. The “Demons Algorithm” in increasingly used for non-rigid
registration of 3D medical images. However, if it is fast and usually accu-
rate, the algorithm is based on intuitive ideas about image registration
and it is difficult to predict when it will fail and why. We show in this
paper that this algorithm can be considered as an approximation of a sec-
ond order gradient descent on the sum of square of intensity differences
criterion. We also reformulate Gaussian and physical model regulariza-
tions as minimization problems. Experimental results on synthetic and
3D Ultrasound images show that this formalization helps identifying the
weak points of the algorithm and offers new research openings.

1 Introduction

Over recent years, a number of non-rigid registration techniques has been pro-
posed. In 1981, Broit [Bro81] used the linear correlation as a measure of similarity
between the two images to match. Bajcsy [BK89] differentiated this criterion and
used a fixed fraction of its gradient as an external force to interact with a linear
elasticity model.

Christensen [CJM97] shows that the linear elasticity, valid for small displace-
ments, cannot guaranty the conservation of the topology of the objects as the
displacements become larger: the Jacobian of the transformation can become
negative. Thus, he proposed a viscous fluid model of transformations as it can
handle larger displacement. This model is also linearized in practice.

Bro-Nielsen [BN96] started from the fluid model of Christensen and used
the linearity of partial derivative equations to establish a regularization filter,
several order of magnitude faster than the previous finite element method. He
also justified his forces as the differential of the sum of square intensity differ-
ences criterion, but he still used a fixed fraction of this gradient, and show that
Gaussian smoothing is an approximation of the linear elastic model.

Some authors [MMV98] tried to apply to non-rigid registration some cri-
terions developed for rigid or affine matching using bloc-matching techniques.
However, the evaluation of such a criterion imposes a minimal window size, thus
limiting the resolution of these algorithm. Moreover, the regularization of the
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displacement field is usually implicit, i.e. only due to the integration of the cri-
terion over the window, which means that there is no control on the quality of
the solution transformation.

Recently, Thirion [Thi98] proposed to consider non rigid registration as a
diffusion process. He introduced in the images entities (demons) that push ac-
cording to local characteristics of the images in a similar way Maxwell did for
solving the Gibbs paradox in thermodynamics. The forces he proposed were
inspired from the optical flow equations. This algorithm is increasingly used
in several teams as it it remarkably fast [BFC98,WGR+99,PTSR98]. However,
there is up to now no underlying theory that could predict when it fails and why.

In this paper, we investigate non-rigid registration as a minimization prob-
lem. In the next section, we differentiate the sum of square intensity differences
criterion (SSD) and show that the demons forces are an approximation of a sec-
ond order gradient descent on this criterion. In the third section, we investigate
regularization and show that the Gaussian smoothing is a greedy optimization of
the regularized criterion. The experiment section shows that really minimizing
the SSD criterion can lead to improvement with respect to the original demons
algorithm, but more importantly that regularization is the critical step for non-
rigid registration.

2 Non-Rigid Registration by Gradient Descent

Simple transformations, like rigid or affine ones, can be represented by a small
number of parameters (resp. 6 and 12 in 3D). When it comes to free-form defor-
mations, we need to specify the coordinates T (x) of each point x of the image
after the transformation. Such a non-parametric transformation is usually rep-
resented by its displacement field U(x) = T (x)− x (or U = T − Id).

Now, the goal of the registration is to find the transformation T that maps
each point x of an image I to the “homologous” point y = T (x) in image J . In
this paper, we consider the registration of images from the same modality and we
assume that they differ only by a geometric transformation and an independent
Gaussian noise on the intensities. With these hypotheses, the well known SSD
criterion is perfectly adapted for registration. Taking into account the fact that
the image I deformed by T is I ◦ T (-1) (and not I ◦ T ), we have:

SSDI(T ) =
∫ (

(T 	 I)(x) − J(x))2
.dx =

∫ (
I ◦ T (-1) − J)2 (1)

Known (or even unknown) intensity transformations are often better hypotheses
even within mono-modal registration but they deserve other registration criteri-
ons. They will be investigated in a forthcoming study.

We note that the SSD criterion is not symmetric. Indeed, registering J on I
leads to the criterion

SSDJ(T ) =
∫ (

I − J ◦ T )2 =
∫ (

I ◦ T (-1) − J)2
.|∇T (-1)| (2)

which has generally a minimum at a (hopefully slightly) different location.
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2.1 Taylor Expansion of the SSDJ Criterion

Let T be the current estimation of the transformation and (∇J ◦ T )(x) (resp.
(HJ ◦ T )(x)) be the transformed gradient (resp. Hessian) of the image J . A
perturbation by a displacement field u(x) gives the following Taylor expansion:

(J ◦ (T + u))(x) = (J ◦ T )(x) + (∇J ◦ T )T.u(x) + 1
2u(x)

T.(HJ ◦ T ).u(x)
Thus, the Taylor expansion of the criterion is:

SSDJ(T + u) = SSDJ(T ) + 2
∫

(J ◦ T − I) .(∇J ◦ T )T.u
+

∫
((∇J ◦ T )T.u)2 +

∫
(J ◦ T − I) .uT.(HJ ◦ T ).u+O(||u||2)

where ||u||2 =
∫

x ‖u(x)‖2.dx is the L2 norm of the small perturbation. As, by
definition,

∫
x
f(x)T.u(x).dx is the dot product of f and u in the space of square-

integrable functions, we get by identification:

∇SSDJ (T ) = 2(J ◦ T − I).(∇J ◦ T ) (3)
HSSDJ (T ) = 2(∇J ◦ T ).(∇J ◦ T )T + 2(J ◦ T − I).(HJ ◦ T ) (4)

2.2 Second Order Gradient Descent on SSDJ

Let us now approximate the criterion by its tangential quadratic form at the
current transformation T . We get the following first order approximation of the
criterion gradient: ∇SSDJ (T + u) � ∇SSDJ (T ) +HSSDJ (T ).u

Assuming that the Hessian matrix of the criterion is positive definite, the
minimum is obtained for a null gradient, i.e.: u = −H(-1)

SSDj
(T ).∇SSDJ (T ). This

formula require to invert the Hessian matrix HSSDJ (T ) at each point x of the
image. To speed up the process, we approximate this matrix by the closest scalar
matrix (for the L2 norm on the matrix vector space):

HSSDJ (T ) �
Tr (HSSDJ (T ))

n
.Id =

‖∇J ◦ T ‖2 + (J ◦ T − I).(∆J ◦ T )
3

.Id

where n is the space dimension (3 for us). Using this approximation, we get the
following adjustment vector field:

u � −3.(J ◦ T − I).(∇J ◦ T )
||∇J ◦ T ||2 + (J ◦ T − I).(∆J ◦ T ) (5)

2.3 Second Order Gradient Descent on SSDI

Let us now consider the criterion SSDI (formula 1). We can follow the same
calculi as above but replacing I by J and T with T (-1). Thus, the optimal ad-
justment field w is:

w � −3.(I ◦ T (-1) − J).(∇I ◦ T (-1))
||∇I ◦ T (-1)||2 + (I ◦ T (-1) − J).(∆I ◦ T (-1))
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Now, we can develop the expression (T (-1) + w)(-1) using a first order Taylor
expansion: (T (-1)+w)(-1) = T ◦(Id+w◦T )(-1) � T ◦(Id−w◦T ). Thus, u′ = −w◦T
is the optimal adjustment displacement field for SSDI with this formulation:

T̂ = T ◦ (Id + u′) with u′ =
3.(I − J ◦ T ).∇I

||∇I ||2 + (I − J ◦ T ).∆I
(6)

2.4 The Demons Method

For monomodal registration of non-segmented images, Thirion [Thi98] proposed
a force playing the same role as our adjustment displacement field. This force
was inspired from the optical flow equations, but was renormalized to prevent
instabilities for small image gradient values:

v =
(I − J ◦ T ).∇I

||∇I ||2 + α.(I − J ◦ T )2 (7)

2.5 Comparison

If we except the constant factor 3, absent from the demons equation, u′ and v
are almost equivalent. However, we get from the gradient descent an explicit and
automatic normalization between the gradient norm and the intensities at the
denominator: α = ∆I/(I − J ◦ T ) (Thirion used a constant value α = 1).

Another important difference is that formula (6) is only valid when the
Hessian matrix of the criterion is positive definite. With our approximation,
this means ||∇I ||2 + (I − J ◦ T ).∆I > 0. If this denominator becomes close to
zero, we have to switch to another gradient descent method, such as Levenberg-
Marquardt for instance. On the contrary, the demons forces (equ. 7) are always
defined and even bounded for α > 0 by ‖v‖ ≤ 1/(2

√
α). However, nothing

imposes that the SSD criterion decreases with such displacements.

3 Constraining the Transformation: Regularization

One of the main problem with free form deformations is that we can theoretically
map all points of the same intensity to one point having this intensity in the
other image. Of course, when repeated for all intensities, such a transformation
perfectly minimizes the SSD criterion, but is also perfectly irregular. To regu-
larize the transformation, there are two main methods: either rely on physical
models, such as elastic and viscous fluid ones, or rely on regularization theory.
We will see in the experimental part that the choice of the transformation con-
straints appears to be critical for doing measurements on the deformation field
whereas it has little influence on the resampled image appearance.

3.1 Physical Models

Within physical models, elasticity was first used [BK89]. It is based on the Green-
St. Venant strain tensor: E = 1

2 (∇T
T .∇T − Id) = 1

2 (∇U +∇T
U +∇T

U .∇U ). Then
the St. Venant Kirchoff elastic energy is given by W = λ

2 (Tr(E))
2 + µ.Tr(E2),
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where λ and µ are Lamé coefficients describing the material. For linear elasticity,
one simply neglects the quadratic term in the strain tensor, and one gets the
following evolution equation: f + µ∆U + (λ+ µ)∇(∇ · U) = 0

When [CRM94] showed the invalidity of linear elasticity for large deforma-
tions, most efforts turned on viscous fluid models [CJM97,BN96]. This time,
equations are based on the velocity v through the rate of deformation ten-
sor D = 1

2 (∇v +∇T
v ). The energy is once again W = λ

2 (Tr(D))2 + µ.Tr(D2)
and we get the same evolution equation as before, but with the velocity field:
f + µ∆v + (λ+ µ)∇(∇ · v) = 0

3.2 Gaussian Smoothing

The principle is to add a smoothness functional φ(T ) to our criterion in order to
disadvantage oscillatory solutions. Thus, φ should measure what remains of T
after a high pass filter in the frequency domain [GJP93]. Let K = k.Id be an
isotropic (i.e. radial basis) high-pass filter, K̃ = k̃.Id its Fourier transform (also
a high-pass filter) and ∗ the convolution operator. Thanks to Parseval theorem,
the above properties of the smoothness kernel suggest functionals of the form:

φ(T ) =
1
2

∫
‖K ∗ T ‖2dx =

1
2

∫
‖K̃.T̃‖2 =

1
2

∫
k̃2.‖T̃‖2dω

One can show that (for well formed kernel k), the gradient is:∇φ(T ) = (k∗k)∗T .
The Hessian matrix is more difficult to compute.

Ideally, we should add the gradient and Hessian matrix of the smoothing
kernel to the gradient and Hessian matrix of our SSD criterion. In the original
Demon’s algorithm of [Thi98], Thirion prefers to use a greedy algorithm where
he performs alternatively a gradient descent step on the SSD and a smoothing
step. Let us consider the high-pass filter k ∗ k = (δ − Gσ)/2. Its gradient is
∇φ(T ) = T −Gσ ∗ T , and a single step of a first order gradient descent gives:

Tn+1 = Tn −∇φ(Tn) = Gσ ∗ Tn

We note that smoothing the global displacement field U (or equivalently the
global transformation T ) could be considered as a rough simulation of an elastic
model. By the way, [BN96] reported very similar results for these two methods.
Following the same principle, we could consider the adjustment field u or v
(equations 5,6,7) as an approximation of the velocity field: smoothing it with a
Gaussian should be a rough simulation of a fluid model.

3.3 Comparison of Methods

Physical models are interesting because they model materials we are used to.
However, the resolution of such models is often very complex and requires simpli-
fications to be computationally tractable, such as the linearization of the strain
tensor for elasticity of neglecting the pressure for fluids. Moreover computa-
tion times are usually high even if new implementations of fluid models are
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much faster [BN96]. Basically, the important point point seems to be that elas-
tic equations are performing a regularization on the displacement field whereas
fluid equations perform it on the velocity field.

On the other hand, Gaussian smoothing appears as a greedy optimization
which is fast and easy to compute. Smoothing the global transformation (as in
the original demons) could be considered as a rough simulation of an elastic
model whereas smoothing the adjustment field simulates a rough fluid model.

4 Experiments

In Section 2, we saw the the demons are approximately minimizing the SSD
criterion if the the Hessian matrix of this criterion is positive definite. To ver-
ify if minimizing the real criterion, we implemented a very simple version of
the demons with a steepest descent instead of the newton like method: at each
point of the image, we compute the gradient and look for the minimal difference
of intensities along this line. Then we smooth the adjustment field (with stan-
dard deviation σfl), add it to the global transformation, and smooth the global
transformation (with standard deviation σel).

4.1 Synthetic experiments

In this experiment, we want to register a small 2D disk on a “C”. We made
the experiment with the original demons method and our first order gradient
descent simulating “elastic” (σel  σfl) and “fluid” (σel � σfl) deformations
(Figure 1).

Even using the same standard deviation for smoothing transformations, the
demons (Figure 1, bottom left) and the minimization of the SSD criterion (bot-
tom, middle) do not give the same results. This could be explained by demons
forces where adding a high square intensity difference to a small gradient at the
denominator lead to very small displacements. Smoothing is then sufficiently
strong to prevent “white matter” to enter the interior of the “C”. Thus, in this
particular case, minimizing explicitly the SSD criterion gives better results.

There is surprisingly few differences between the structure of the “elastic”
(Fig. 1, bottom middle) and the “fluid” (bottom right) deformations except in
the interior of the “C”. The “fluid” matches the edge much closer, but we can
observe a singularity on the upper left part of the interior of the “C” (Jacobian
going negative, visualized by an unexpected crossing of two grid lines). In fact,
for such strong deformations, Gaussian smoothing is no more an approximation
of physical models.

4.2 Registration of Ultrasound Images

In this experiment, we register two 3D US images from the European project
ROBOSCOPE. A catheter was introduced in the brain of a (dead) pig and a
balloon was inflated at different volumes to simulate the deformation that could
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Fig. 1. Registration of a disk on a C. The grids are added after the registration
to help visualizing the deformation. Top: reference image on the left, and image
to register on the right. Bottom: from left to right, registration results with
demons (σ = 1.2), with the new method simulating elastic deformations (σfl = 0,
σel = 1.2) and with the new method simulating fluid deformations (σfl = 3,
σel = 0).

happen during a tumor excision. Images presented in Figure (2) are 75x62x73
isotropic sub-images extracted from the original US images.

The result of the registration is visually correct both for the demons and
for the new implementation. There is no significant difference on the difference
image. Since we know that the deformation is physical and quite regular, we
wanted to analyze the displacement field. We run the new implementation with
σfl = 3 and σel = 7 whereas σ(� σel) is limited to 2 in the original implementa-
tion of the demons. The visualization of the deformed grid on Figure (2) clearly
shows that the new deformation field is much smoother.

To analyze the deformation field more carefully, we used the method devel-
oped in [RSDA99] to compute the Jacobian of the transformation that expresses
the local volume variation due to the non-rigid transformation. We extracted an
“edge surface” of this image of Jacobian and superimposed the results on the
bottom of Figure (2). With the new method, we almost obtain the delineation
of the balloon, except in the right part (the catheter in a fixed point and we
segment on motion) and on the right lower part where the balloon is not visible
in the images. More interestingly, the volumes measured inside our segmentation
are respectively 0.982 and 0.875 cm3 instead of 1.25 and 1 cm3, which gives a
ratio of 1.12 instead of 1.25. If this result is not perfect, it is encouraging. With
the original demons, the deformation field is too noisy to measure something
useful.
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Fig. 2. Tracking deformations in 3D ultrasound images of a pig brain. Images
were provided by Volker Paul, Fraunhofer (Institute) Society, Munich (Germany)
as part of the EC-funded ROBOSCOPE project. Top left: three orthogonal
views of the image to register (balloon volume: 1.25 cm3). Top right: refer-
ence image (balloon volume: 1 cm3). Bottom: “edges” of the Jacobian with
new method (left) and with demons (right). We added on the upper left cor-
ner of each image triplet a slice (corresponding to the lower right image) after
registration to visualize the corresponding deformation.

5 Discussion

Among non-rigid registration algorithms, the demon’s method is fast but not well
understood from a theoretical point of view. We showed in this article that the
forces proposed by Thirion correspond to a second order gradient descent on the
sum of square of intensity differences (SSD) criterion. Experiments showed that
the real minimization of the SSD criterion could give a better results than the
demons with synthetic data, but demons are performing well on real data. Both
synthetic and real data experiments put into evidence that a good regularization
is critical to obtain a useful deformation field.

The understanding of the demons algorithm and its weaknesses opens many
new research avenues for non-rigid registration. Probably the most important
one is regularization: the first work will be to minimize the criterion and the
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smoothing kernel in the same gradient descent step. The second work will be to
look for families of smoothing kernels that better approximate physical models,
the filtering methodology ensuring reasonable computation times.

Last but not least, the SSD criterion relies on imaging acquisition assump-
tions that are hardly verified in modalities such as US. We need to develop new
criterions better adapted to the physics of the acquisition process. Then, the
gradient descent scheme developed in this paper offers us a methodology to plug
them into an operational registration algorithm.
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