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Abstract

During a neurosurgical intervention, the brain tissues shift and warp. In order
to keep an accurate positioning of the surgical instruments, one has to estimate
this deformation from intra-operative images. We present in this article a feasibility
study of a tracking tool based on intra-operative 3D ultrasound (US) image se-
quences. The automatic processing of this kind of images is of great interest for the
development of innovative and low-cost image guided surgery tools. The difficulty
relies both in the complex nature of the ultrasound image, and in the amount of
data to be treated as fast as possible.
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1 Introduction

The use of stereotactic systems is now a quite standard procedure for neu-
rosurgery. However, these systems are only accurate under the assumption
that the skull and the brain move together as a unique rigid body during
surgery. In practice, relative motion of the brain with respect to the skull
(also called brain shift) occurs, mainly due to tumor resection, cerebrospinal
fluid drainage, hemorrhage or even the use of diuretics. Furthermore, this mo-
tion is likely to increase with the size of the skull opening and the duration of
the operation.
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Over the last years, the development of real-time 3D ultrasound (US) imaging
has revealed a number of potential applications in image-guided surgery as
an alternative approach to open MR and intra-interventional CT. The major
advantages of 3D US over existing intra-operative imaging techniques are its
comparatively low cost and simplicity of use. However, the automatic process-
ing of US images has not gained the same degree of development as other
medical imaging modalities, probably due to the low signal-to-noise ratio of
US images.

1.1 Context

We present in this article a feasibility study of a tracking tool for brain defor-
mations based on intra-operative 3D ultrasound (US) image sequences. This
work was performed within the framework of the European project ROBO-
SCOPE, a collaboration between The Fraunhofer Institute (Germany), Fokker
Control System (Netherlands), Imperial College (UK), INRIA (France), ISM-
Salzburg and Kretz Technik (Austria). The goal of the whole project is to
assist neuro-surgical operations using real-time 3D ultrasound images and a
robotic manipulator arm (fig. 1).

Fig. 1. Overview of the image analysis part of the Roboscope project.

The operation is planned on a pre-operative MRI (MR1) and 3D US images
are acquired during surgery to track in real time the deformation of anatomical
structures. The first US image (US1) is acquired with dura mater still closed
and a rigid registration with the preoperative MR is performed. This allows to
relate the MR and the US coordinate systems and possibly to correct for the
distortions of the US acquisition device. Then, brain deformations are tracked
in the time-sequence of per-operative US images. From these deformations,
one can update the preoperative plan and synthetize a virtual MR image that
matches the current brain anatomy.
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1.2 MR/US registration

The idea of MR/US registration is already present in (Trobaugh et al., 1994a;
Trobaugh et al., 1994b) where the US probe is calibrated (i.e. registered to the
surgical space) and then tracked using an optical device. The MR/US regis-
tration is then obtained using the registration of the MR image to the surgical
space by standard stereotactic neurosurgical procedures. (Richard et al., 1999)
improved this method by designing a real-time low-cost US imaging system
based on a PCI bus. In (Pagoulatos et al., 1999), the tracking of the US probe
is performed with a DC magnetic position sensor. In (Erbe et al., 1996), the
registration is performed by interactively delineating corresponding surfaces
in all images and a visual rigid fitting of the surfaces using a 6D space-mouse.
In (Hata et al., 1994), the outlines of the 2D US image is registered to the
MR surface using a Chamfer matching technique. All these techniques only
perform a rigid registration of the MR and the US images.

For a non rigid registration (i.e. a brain shift estimation), we have to turn
to (Gobbi et al., 1999; Gobbi et al., 2000; Comeau et al., 2000), where the
2D US probe is still optically and rigidly tracked but the corresponding MR
slice is displayed to the user who marks corresponding points on MR and US
slices. Then, a thin plate spline warp is computed to determine the brain shift.
This method is also developed in (Bucholz et al., 1997) with the possibility
of using 3D US images and a deformation computed using a spring model
instead of splines. More recently, Ionescu et al (Ionescu et al., 1999) registered
US with Computed Tomography (CT) data after automatically extracting
contours from the US using watershed segmentation. In these studies, there is
no processing of a full time sequence of US images : the brain shift estimation
is limited to a few samples at given time-points as the user interaction is
required at least to define the landmarks.

Recently, an automatic rigid registration of MR and US images was presented
(Roche et al., 2001; Roche et al., 2000; Pennec et al., 2001a). This work is based
on image intensities and does not rely on feature extraction. However, the
estimated motion remains limited to rigid or possibly affine transformations.
Up to our knowledge, only (King et al., 2000) deals with an automatic non-
rigid MR/US registration: the idea is to register a surface extracted from the
MR image to the 3D US image using a combination of the US intensity and
the norm of its gradient in a Bayesian framework. The registration is quite
fast (about 5mn), even if the compounding of the 3D US and the computation
of its gradient takes about one hour. However, experiments are presented only
on phantom data and our experience (see section 3) is that real US images
may lead to quite different results.
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1.3 Tracking methods in sequences of US images

Since non-rigid MR/US registration is a difficult problem, we chose to split
it into two subproblems: first a rigid MR/US registration is performed with
dura matter still closed (there is no brain shift yet), for instance using the
approach of (Roche et al., 2000). Then we look for the non-rigid motion within
the US time-sequence. In the literature, we found a small number of articles
on the registration of 3D US images. (Strintzis and Kokkinidis, 1997) use a
maximum-likelihood approach to deduce a similarity measure for ultrasound
images corrupted by Rayleigh noise and a block-matching strategy to recover
the rigid motion. In (Rohling et al., 1998), the correlation of the norm of
the image gradient is used as the similarity measure to rigidly register two
US images in replacement of the landmark-based RANSAC registration of
(Rohling et al., 1997). However, these methods only deal with rigid motion
and consider only two images, eluding the tracking problem.

One has to move to cardiac application to find some real tracking of non-
rigid motion in US images. In (Papademetris et al., 1999), the endo- and epi-
cardial surfaces are interactively segmented on each 2D image plane. Then,
a shape-memory deformable model determines the correspondences between
the points of the 3D surfaces of successive images. These correspondences are
used to update an anisotropic linear elastic model (finite element mesh). The
approach is appealing but relies once again on an interactive segmentation. In
(Sanchez-Ortiz et al., 2000), a combination of feature point extraction (phase-
based boundaries) and a multi-scale fuzzy clustering algorithm (classifying
the very low intensities of intra-ventricular pixels) is used to segment the
surface of the left ventricular cavity. This process is done in 2D+T and then
reconstructed in 3D. Thus it exploits the whole sequence before tracking the
motion itself, which is not possible for our application. These two methods
are well suited for the shape of the cardiac ventricle using dedicated surface
models. If they could be adapted to the brain ventricles, it seems difficult to
extend them to the tracking of the volumetric deformations of the whole brain.

1.4 Intensity based non-rigid registration algorithms

Since feature or surface extraction is especially difficult in US images, we
believe that an intensity-based method can more easily yield an automatic
algorithm. Over recent years, several non-rigid registration techniques have
been proposed. (Bajcsy and Kovačič, 1989) differentiated the linear correlation
criterion and used a fixed fraction of its gradient as an external force to interact
with a linear elasticity model.
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(Christensen et al., 1997) show that the linear elasticity, valid for small dis-
placements, cannot guarantee the conservation of the topology of the objects
as the displacements become larger: the Jacobian of the transformation can
become negative. Thus, he proposed a viscous fluid model of transformations
as it can handle larger displacement. This model is also linearized in practice.

(Bro-Nielsen, 1996) started from the fluid model of Christensen and used the
linearity of partial derivative equations to establish a regularization filter,
several order of magnitude faster than the previous finite element method.
He also justified his forces as the differential of the sum of square intensity
differences criterion, but he still used a fixed fraction of this gradient, and
shows that Gaussian smoothing is an approximation of the linear elastic model.

Some authors (Maintz et al., 1998) tried to apply to non-rigid registration
some criteria developed for rigid or affine matching using block-matching tech-
niques. However, these criteria require a minimal window size, thus limiting
the resolution of the result. Moreover, the regularization of the displacement
field is usually implicit, i.e. only due to the integration of the criterion over
the window, which means that it is difficult to explicitly control the regularity
of the sought transformation.

Recently, (Thirion, 1998) proposed to consider non rigid registration as a
diffusion process. He introduced in the images entities (demons) that push
according to local characteristics of the images in a similar way Maxwell did
for solving the Gibbs paradox in thermodynamics. The forces he proposed
were inspired from the optical flow equations. This algorithm is increasingly
used in several teams as reported by (Dawant et al., 1999; Bricault et al.,
1998; Webb et al., 1999; Prima et al., 1998). In (Pennec et al., 1999; Cachier
et al., 1999), we investigated the non-rigid registration using gradient descent
techniques. Differentiating the sum of square intensity differences criterion
(SSD), we showed that the demons forces are an approximation of a second
order gradient descent on this criterion. The same gradient descent techniques
were applied to a more complex similarity measure in (Cachier and Pennec,
2000): the sum of Gaussian-windowed local correlation coefficients (LCC).

1.5 Overview of the article organization

In this article, we develop an automatic intensity-based non-rigid tracking al-
gorithm suited for real-time US images sequences, based on encouraging pre-
liminary results reported in (Pennec et al., 1999; Cachier et al., 1999; Pennec
et al., 2001b; Pennec et al., 2001a). We first present the registration method
for two US images. We detail in section 2.1 a new parameterized deformation
field. Then, we define in sections 2.2 and 2.3 the similarity and regularization
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energies, which are optimized in section 2.4 using a gradient descent algo-
rithm. We show in section 2.6 how to turn the registration of two images into
a tracking algorithm. In section 3, we present qualitative results of the track-
ing algorithm on a sequence of US images of a phantom, and quantitative
results on a small sequence of US images of a dead pig brain with a simulated
cyst. Our results tend to justify the choices of the similarity energy and of the
model of deformations, particularly with the longer term goal of achieving a
real-time tracking system.

2 The tracking algorithm

When analyzing the problem of tracking the brain deformation in 3D US time-
sequences, we made the following observations. First, deformations are small
between successive images in a real-time sequence, but they are possibly large
deformations around the surgical tools with respect to the pre-operative image.
Thus, the transformation space should allow large deformations, but only small
deformations have to be retrieved between successive images. Second, there is
a poor signal to noise ratio in US images and the absence of information in
some areas. However, the speckle (inducing localized high intensities) is usually
persistent in time and may produce reliable landmarks for successive images
(Meunier and Bertrand, 1995). As a consequence, the transformation space
should be able to interpolate in areas with few information while relying on
high intensity voxels for successive images registration. Last but not least, the
algorithm is designed in view of a real-time registration during surgery, which
means that, at equal performances, one should prefer the fastest method.

Following the encouraging results obtained in (Pennec et al., 1999; Cachier
et al., 1999) for the intensity based non-rigid registration of two 3D US im-
ages, we adapt in this section the method in four different directions, according
to the previous observations. We first look for more robust free-form trans-
formations. Then we compare different image similarity criteria and different
optimization strategies. Finally, we transform the registration algorithm into
a tracking tool suited for time sequences.

2.1 Parameterization of the transformation

The brain shift is only a small deformation, but the introduction of surgical
tools and the removal of tissues near the region of interest may locally in-
troduce some large deformations. Simple transformations, like rigid or affine
ones, can be represented by a small number of parameters (resp. 6 and 12 in
3D). When it comes to free-form deformations, we need to specify the coor-
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dinates T (x) of each point x of the image after the transformation. Such a
non-parametric transformation is usually represented by its displacement field
U(x) = T (x)−x (or U = T − Id), sampled at each voxel. This strategy proved
to be successful in textured enough regions but induces convergence problems
in large uniform areas (as it is the case in the phantom sequence of section
3.1) because the propagation of regularization constraints is very slow.

We found that a re-parameterization of the transformation was necessary to
promote a better conditioning of the problem. We previously had a displace-
ment ti for each voxel position xi. Now, ti represents a parameter of a smooth
transformation defined by:

T (t1, ...tn)(x) =
∑

i

ti.Gσ(x− xi) (1)

Note that when σ goes to 0, the parameterization tends toward the previous
parameterization. Moreover, this parameterization can still interpolate any
value at each site xi. The transformation being described as being a sum
of Gaussians, rather than a sum of Diracs, the gradient descent algorithm
uses the derivatives of the similarity with respect to the displacement of an
entire group of voxels, which is more robust to noise, and will lead to a faster
propagation of regularity constraints in uniform intensity areas.

In this article, we used a site xi at each voxel of the image. One could think
of reducing the number of sites to decrease the number of parameters and
go toward smoother transformations. However, we observed that this is not
equivalent to the smoothing performed in section 2.3: the Gaussian introduced
here parameterizes the width of the neighborhood around voxel xi for which
the voxel intensities will have an influence on the transformation parameter
ti at xi. Thus, it can be seen as a regularization of the similarity energy land-
scape, as we will see in Eq. 6, and not as a regularization of the transformation.
Thus, reducing the number of sites (at a fixed Gaussian width) would only
reduce the resolution of the transformation.

2.2 Similarity energy

Even if there is a poor signal to noise ratio in US images, the speckle is
usually persistent in time and may produce reliable landmarks within the
time-sequence (Meunier and Bertrand, 1995). Hence, it is desirable to use a
similarity measure which favors the correspondence of similar high intensities
for the registration of successive images in the time-sequence. First experi-
ments presented in (Pennec et al., 1999; Cachier et al., 1999) indicated that
the simplest one, the sum of square differences (SSD), could be suited. Let
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I be the reference image and J ◦ T the transformed image to register; the
criterion to minimize is:

SSD(T ) =
∫

(I − J ◦ T )2

In (Cachier and Pennec, 2000), we developed a more complex similarity mea-
sure: the sum of Gaussian-windowed local correlation coefficients (LCC). Let
G ? f denote the convolution of f by the Gaussian function G. We define the
local mean by Ī = (G?I), the local variance by σ2

I = G?(I− Ī)2, and the local

correlation of I and J ◦T by LC(T ) = G?
[
(I − Ī)(J ◦ T − J ◦ T )

]
. Then, the

global criterion to maximize is the sum of the local correlation coefficients:

LCC(T ) =
∫ LC(T )

σI .σJ◦T

We showed that this criterion can be differentiated up to the second order
using only recursive Gaussian convolutions which are very fast and in a time
independent of the standard deviation of the Gaussian. Thus it may be opti-
mized using a gradient descent like the SSD criterion.

We run most of the experiments presented in section 3 with the LCC criterion
and we did not find significant differences with the results of the algorithm
using the SSD. However, the LCC is still around 2 times slower than the SSD.
Since the computation time of the US-US non-rigid registration is a key issue
for real-time motion tracking, we preferred to keep the SSD criterion. We
believe that this choice is justified anyway for the registration of successive
images in the time sequence, but it could be reconsidered for the update of
the global deformation (transformation from the first image to the current
one, see section 2.6) if the sequence was to present some important intensity
changes along time.

2.3 Regularization energy

In non-rigid registration, there is a trade-off to find between the similarity
energy, reflected by the visual quality of the registration, and the smoothing
energy, reflected by the regularity of the transformation (the term “regularity”
should be taken in its broadest sense, since the smoothing energy may allows
occasional discontinuities in the displacement field (Hellier et al., 1999)).

In the regularization theory framework, one minimizes the weighted sum of
the energies: Esim + λ.Ereg. This formulation has proven to be successful for
data approximation, and has been used for various approaches of non-rigid
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registration algorithms (Ferrant et al., 1999). However, there is an important
difference between data approximation and image registration. In data ap-
proximation, both energies measure different properties of the same object
(the similarity and the smoothness of the data), while the two energies relate
to different objects in image registration (the intensities of the images for the
matching energy and the transformation for the regularization energy). Thus,
one has to find a non linear tradeoff between the two energies.

Another widely spread method attempts to separate the image measure from
the transformation measure, and could be compared with the approach of
game theory. It consists in alternatively decreasing the similarity energy and
the smoothing energy. This approach is chosen in many block-matching al-
gorithms (Ourselin et al., 2000) and in some optical-flow-based techniques
(Thirion, 1998). In view of a real-time system, this is particularly well suited
for the stretch energy (or membrane model) Ereg = ||∇T ||2 =

∫
Tr(∇T.∇T T)

as the associated Euler-Lagrange evolution equation corresponds to the heat
propagation in a homogeneous material. Thus, one step of gradient descent cor-
responds to convolution of the transformation by a Gaussian with a standard
deviation linked to the time step of the gradient descent (Morel and Solimini,
1995). This way, we get a simple regularization by a Gaussian smoothing of
the transformation parameters ti with a smoothing parameter (the σT of this
Gaussian) that has a physical meaning.

In summary, the algorithm will alternatively perform one step of gradient de-
scent on the similarity energy Esim and one step of transformation smoothing
by Gaussian filtering of standard deviation σT .

2.4 Minimizing the similarity energy for a free-form deformation

Let T be the current estimation of the transformation and (∇J ◦ T )(x) (resp.
(HJ ◦ T )(x)) be the transformed gradient (resp. Hessian) of the image J . A
perturbation by a displacement field u(x) gives the following Taylor expansion:

(J ◦ (T + u))(x) = (J ◦ T )(x) + (∇J ◦ T )T.u(x) + 1
2
u(x)T.(HJ ◦ T ).u(x)

Thus, the Taylor expansion of the criterion is:

SSD(T + u) = SSD(T ) + 2
∫

(J ◦ T − I) .(∇J ◦ T )T.u

+
∫

((∇J ◦ T )T.u)2 +
∫

(J ◦ T − I) .uT.(HJ ◦ T ).u + O(||u||2)

where ||u||2 =
∫
x ‖u(x)‖2.dx is the L2 norm of the small perturbation. As,

by definition,
∫
x f(x)T.u(x).dx is the dot product of f and u in the space of
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square-integrable functions, we get by identification:

∇SSD(T ) = 2(J ◦ T − I).(∇J ◦ T ) (2)

HSSD(T ) = 2(∇J ◦ T ).(∇J ◦ T )T + 2(J ◦ T − I).(HJ ◦ T ) (3)

Let us now approximate the criterion by its tangential quadratic form at the
current transformation T . We get the following first order approximation of
the criterion gradient: ∇SSD(T + u) ' ∇SSD(T ) + HSSD(T ).u

Assuming that the Hessian matrix of the criterion is positive definite, the
minimum is obtained for a null gradient, i.e.: u = −H(-1)

SSD(T ).∇SSD(T ). This
formula require to invert the Hessian matrix HSSD(T ) at each point x of the
image. To speed up the process, we approximate this matrix by the closest
scalar matrix (for the L2 norm on the matrix vector space):

HSSD(T ) ' Tr (HSSD(T ))

n
.Id =

‖∇J ◦ T‖2 + (J ◦ T − I).(∆J ◦ T )

3
.Id

where n is the space dimension (3 for us). Using this approximation, we get
the following adjustment vector field:

u ' −3.(J ◦ T − I).(∇J ◦ T )

||∇J ◦ T ||2 + (J ◦ T − I).(∆J ◦ T )
(4)

In fact, when minimizing the reverse SSD criterion
∫

(I ◦ T (-1) − J)2, one finds
that the optimal adjustment is given by (Pennec et al., 1999; Cachier et al.,
1999):

T̂ = T ◦ (Id + u′) with u′ =
3.(I − J ◦ T ).∇I

||∇I ||2 + (I − J ◦ T ).∆I

which justifies the empirical force used by Thirion’s demons:

v =
(I − J ◦ T ).∇I

||∇I ||2 + α.(I − J ◦ T )2

In practice, we have modified the Newton optimization scheme described above
into a Levenberg-Marquardt method where the adjustment vector field is given
at each step by u = −(λ.Id+HSSD)(-1).∇SSD. Dropping the second order terms
in the Hessian, we are left with:

u = −3.(J ◦ T − I)/(||∇J ◦ T ||2 + λ2).(∇J ◦ T ) (5)
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The parameter λ performs a tradeoff between a first order gradient descent
(λ � 1 means that we don’t trust the Hessian matrix and we simply go along
the gradient with a small time-step) and a second order gradient descent
(λ � 1 means that we use our simplified Hessian matrix). At each step, λ is
divided by a fixed value α (typically 5) if the similarity criterion decreased,
and the criterion is re-estimated with λ multiplied by α otherwise until the
criterion decreases.

2.5 Minimizing the similarity energy for the new type of transformations

We now detail the differences induced by our new parameterization of the free-
form transformation on the SSD criterion. Using the Gaussian parameteriza-
tion of the transformation (eq. 1), ti is now a parameter of the transformation.
Let G(xi,σ) ? f denote the convolution by a Gaussian of variance σ centered at
xi. Deriving the SSD w.r.t. this parameter gives:

∇SSD(T ) = 2 G(xi,σ) ?
(
(J ◦ T − I).(∇J ◦ T )

)
(6)

HSSD(T ) = 2 G2
(xi,σ) ?

(
(∇J ◦ T ).(∇J ◦ T )T + (J ◦ T − I).(HJ ◦ T )

)
(7)

Thus, the Gaussian parameterization acts as a smoothing on the gradient
and Hessian of the energy. Therefore, it will be more robust and may escape
from previous local minima. The minimization is performed as above with a
Levenberg-Marquardt method using these regularized version of the energy
derivatives.

2.6 From the registration to the tracking algorithm

In the previous sections, we studied how to register two US images together.
We now have to estimate the deformation of the brain between the first image
(since the dura mater is still closed, it is assumed to correspond to the pre-
operative brain) and the current image of the sequence. One could think of
registering directly US1 (taken at time t1) and USn (at time tn) but the defor-
mations could be quite large and the intensity changes important. To constrain
the problem, we need to exploit the temporal continuity of the deformation.

First, assuming that we already have the deformation TUS(n) from image US1

to USn, we register USn with the current image USn+1, obtaining the trans-
formation dTUS(n). If the time step between two images is short with respect
to the deformation rate (which should be the case in real-time sequences at a
rate ranging from 1 to 5 images per second), this registration should be easy.
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Moreover, the intensity changes should be small. For this step, we believe that
the SSD criterion is well adapted.

Then, composing with the previous deformation, we obtain a first estimation
of TUS(n + 1) ' dTUS(n) ◦ TUS(n). However, the composition of deformation
fields involves interpolations and just keeping this estimation would finally
lead to a disastrous cumulation of interpolation errors:

TUS(n + 1) = dTUS(n) ◦ dTUS(n− 1) . . . dTUS(2) ◦ dTUS(1)

Moreover, a small systematic error in the computation of dTUS(n) leads to a
huge drift in TUS(n) as we go along the sequence.

Fig. 2. The deformations computed in the tracking algorithm.

Thus, we only use dTUS(n) ◦ TUS(n) as an initialization for the registration of
US1 to USn. Starting from this position, the residual deformation should be
small (it corresponds to the correction of interpolation and systematic error
effects) but the difference between homologous point intensities might remain
important. In this case, the LCC criterion might be better than the SSD one
despite its worse computational efficiency.

One of the main consequences is that the first US image will have to be of
very high quality since it will be the only reference for tracking deformations
along the whole sequence. One possibility consists in acquiring several images
of the still brain in order to compute a mean image of better quality. Another
possibility consists in performing some anisotropic diffusion on US1 to improve
its quality.

3 Experiments

In this section, we present qualitative results of the tracking algorithm on a
sequence of US images of a phantom, and quantitative results on a small se-
quence of US images of a dead pig brain with a simulated cyst. Experiments
were performed using the SSD and the LCC criterion without significant dif-
ferences in the results. Since the LCC is around 2 times slower than the SSD,
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we present here results and computation times for the SSD criterion. All 3D-
US images were acquired using a commercial 3D-US volume scanner Voluson
530 D from Kretz Technology (4-9 MHz, 90 degrees aperture).

3.1 A Phantom study

Within the ROBOSCOPE project, an MR and US compatible phantom was
developed by Prof. Auer and his colleagues at ISM (Austria) to simulate brain
deformations. It is made of two balloons, one ellipsoid and one ellipsoid with
a “nose”, that can be inflated with known volumes. Each acquisition consists
in one 3D MR image and one 3D US image (see Fig. 3 for an example). The
goal is to use the US sequence to track the deformations and compute the
corresponding virtual MR images from the first MR image. Then, the original
MR images can be used to assess the quality of the tracking.

Since the US probe cannot enter the MR machine, it was removed for the MR
acquisitions. Thus, we had to compensate for the apparent motion of the probe
by first computing a rigid registration of all the US images together. Then we
run the deformation tracking algorithm. The registration of each image of the
sequence takes between 10 and 15 minutes on a standard PC running linux.

Results are presented in figure 3: on the first line, we show the original US
images after the rigid registration. The second line represents the first US
image deformed to match the above US image. On the last two lines, we
show the MR image registered to the original US (our “ground truth”) and
the virtual MR produced by the tracking algorithm. To assess the quality of
the tracking, we superimposed on the virtual MR images the contours of the
balloons extracted from the “original” MR images.

Even if there are very few salient landmarks (all the information in the US
images is located in the thick and smooth balloons boundaries, and thus the
tracking problem is loosely constrained), results are globally good all along
the sequence. This shows that the SSD criterion correctly captures the infor-
mation at edges and that our regularized free-form deformation field is able
to interpolate reasonably well in uniform areas.

When looking at the virtual MR in more details, one can however find some
places where the motion is less accurately recovered: the contact between the
balloons and borders of the US images. Indeed, the parameterization of the
transformation and especially its smoothing are designed to approximate the
behavior of a uniform elastic like body. If this assumption can be justified for
the shift of brain tissues, it is less obvious for our phantom where balloons
are placed into a viscous fluid. In particular, the fluid motions between the
two balloons cannot be recovered. On the borders of the US images, there is
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US 1 US 2 US 3 US 4 US 5

Virtual US 2 Virtual US 3 Virtual US 4 Virtual US 5

MR 1 MR 2 MR 3 MR 4 MR 5

virtual MR 2 virtual MR 3 virtual MR 4 virtual MR 5

Fig. 3. Tracking deformations on a phantom. In this figure, each triplet of 2D
images represents 3 orthogonal views resliced from the 3D image. Top: The first
5 images of the sequence of 10 images after a rigid registration to compensate for
the motion of the probe and the “virtual” US images (US 1 deformed to match the
current US image) resulting from the tracking. Bottom: The “original” MR images
(rigidly registered to the corresponding US images to correct for the probe motion
and the phantom motion between MR acquisitions) and the virtual MR image
synthetized using the deformation field computed on the US images. To assess the
quality of the tracking, we superimposed the contours of the “original” MR images.
The volume of the balloons ranges from 60 to 90 ml for the ellipsoid one and 40 to
60 ml for the more complex one.
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sometimes a lack of intensity information and the deformation can only be
extrapolated from the smoothing of neighboring displacements. Since we are
not using a precise geometrical and physical model of the observed structures
like in (Skrinjar and Duncan, 1999), one cannot expect this extrapolation to
be very accurate.

As a conclusion from this experiment, one can say that elastic-like deforma-
tions are qualitatively well tracked in the sequence if there are some salient
intensity landmarks surrounding the area of interest.

3.2 Real (pig) brain images

This dataset was obtained by Dr. Ing. V. Paul at IBMT, Fraunhofer Insti-
tute (Germany) from a pig brain at a post-lethal status. A cyst drainage has
been simulated by deflating a balloon catheter with a complete volume scan
at three steps. We present in figure 4 the results of the tracking. Since we have
no corresponding MR image, we present on the two last lines the deformation
of a grid (a virtual MR image...), to emphasize the regularity of the estimated
deformation, and the deformation of a segmentation of the balloon. The reg-
istration of each image of the sequence takes between 10 and 15 minutes on a
standard PC running linux.

The correspondence between the original and the virtual (i.e. deformed US
1) images is qualitatively very good. In fact, if the edges are less salient than
in the phantom images, we have globally a better distribution of intensity
features over the field ov view due to the speckle in these real brain images.
One should also note on the deformed grid images that the deformation found
is very smooth.

To obtain a quantitative measurement of the transformation, we segmented
the first image and we deformed this segmentation according to the estimated
transformation field (see bottom line of Fig. 4). We can now compare the
volume of the deformed balloon with its theoretical value. In fact, since the
segmentation originally overestimates the balloon volume, we have to compare
the ratio between the deformed volume and the original one.

Image number 1 2 3 4

Original balloon volume (cm3) 1.25 1.00 0.75 0.5

Relative volume ratio 0.8 0.6 0.4

Measured balloon volume 1.28 1.10 0.80 0.67

Measured volume ratio 0.86 0.62 0.53
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US 1 US 2 US 3 US 4

Deformed grid 2 Deformed grid 3 Deformed grid 4

Original seg. Virtual seg. 2 Virtual seg. 3 Virtual seg. 4

Fig. 4. Tracking deformations on a pig brain. In this figure, each triplet of 2D
images represents 3 orthogonal views resliced from the 3D image. Top: The 4 images
of the pig brain with a deflating balloon simulating a cyst drainage. Middle: defor-
mation of a grid to visualize more precisely the location of the deformations found.
These images correspond to the deformation of an image of a 3D grid (a “virtual
MR” image) with strips orthogonal to each 2D resliced plane: they allow to visualize
the in-plane deformation for each 2D slice. Bottom: We segmented the balloon on
the first image. Then, this segmentation is deformed using the transformation found
and superimposed to the corresponding original US image.

The measurements indicates that we are overestimating the volume (under-
estimating the deformation) by 7.5% for image 2, by 3.3% for image 3, and
by 30% for image 4. However, one should note that volume measurements are
very sensitive as they relate to the cube of the balloon dimension: this corre-
sponds to an error of less than one millimeter on the balloon diameter. This
could be explained by an occlusion of the lower part of the balloon probably
due to an air bubble trapped inside the balloon during the experience: on US
4, almost the entire lower half of the balloon is shadowed by the air bubble.
In these conditions, one cannot expect a perfect retrieval. The estimated de-
formation at the occlusion being computed thanks to the regularization of the
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deformation field from neighboring structures, it is expected to be less than
the real deformations (maximal at the balloon boundaries).

Reducing the smoothing of the transformation could allow the algorithm to
find a closer fit. However, this could allow some unwanted high frequency
deformations due to the noise in the US images. We believe that it is better
to recover the most important deformations and miss some smaller parts than
trying to match exactly the images and have the possibility to create some
possibly large deformations.

4 Discussion and conclusion

The algorithm presented here partly fills the goals of the ROBOSCOPE project:
it is able to recover an important part of the deformations along the sequence
and issues a smooth deformation, despite the noisy nature of the US images.
Experiments show that this allows to simulate virtual MR images qualitatively
very close to the real ones. Quantitative measurements remains to be done,
but it seems that an accuracy of 1 to 2 mm is achievable in the areas where
there is an elastic deformation. This is encouraging since the accuracy of the
clinicians without per-operative imaging is estimated to be around 3 to 5 mm.
However, some improvements of the algorithm will likely be needed to cope
with non-elastic deformations in the CSF, the skull, and with the introduction
of the surgical tools.

We observed that the SSD criterion is well adapted for the registration of
successive images in the time-sequence and performs well on our examples
for the update of the global transformation. However, it is possible that other
types of sequences with intensity changes may require a more complex criterion
like the LCC.

The type of transformation is a very sensitive choice for such a tracking algo-
rithm. We made the assumption of a “uniform elastic” material. This may be
adequate for the brain tissues, but probably not for the ventricles and for the
tracking of the surgical tools themselves. Indeed, they will penetrate into the
brain without any elastic constraint with the neighboring tissues. A specific
adaptation of the algorithm around the tools will likely be necessary. Another
possibility for errors is the occlusion of a part of a structure visible in the US,
for instance the shadowing by the endoscope.

The computation time is still far from real time for a continuous tracking of
deformations during surgery but the implementation was focused on generic
components in order to test different criteria and gradient descent methods. A
dedicated re-implementation of the method may gain a factor 4 to 8, leading to
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a clinically useful tool for brain shift estimation (one estimation every minute
or 2). To be further accelerated and reach real-time video-rate for instance,
the algorithm must be parallelized. This would impose stronger hardware re-
quirements but it is rather straightforward for both the computation of the
image similarity and the regularization energies.

There are different parameters to tune in the algorithm but we believe that
most of them could be adjusted for specific types of US images sequences. More
sequences are anyway necessary to validate the estimation of the deformation.

In conclusion, we developed a tracking algorithm adapted to time sequences
of US images and not only the registration of two images. Experiments on a
phantom and on a real (pig) brain sequence show that the main part of the
deformation is retrieved with a smooth deformation field. The image similarity
criterion being independent from the type of transformation used, it could
be changed in the future to better fit the assumptions on the US images
depending on the application considered. We have shown here that the SSD
criterion performs reasonably well in view of real-time considerations, even
if a specific parallel version has to be designed in order to meet all the time
requirements. However, more experiments will be needed to choose the best
adapted parameterization of deformations and to validate the accuracy of the
estimation.
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