
A geometric algorithm to find small but highly
similar 3D substructures in proteins
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Abstract
Motivation: Most biological actions of proteins depend on
some typical parts of their three-dimensional structure,
called 3D motifs. It is desirable to find automatically
common geometric substructures between proteins to dis-
cover similarities in new structures or to model precisely a
particular motif. Most algorithms for structural comparison
of proteins deal with large (fold) similarities. Here, we focus
on small but precise similarities.
Results: We propose a new 3D substructure matching
algorithm based on geometric hashing techniques. The key
feature of the method is the introduction of a 3D reference
frame attached to each residue. This allows us to reduce
drastically the complexity of the recognition. Our experi-
mental results confirm the validity of the approach and allow
us to find smaller similarities than previous methods.
Availability: The program uses commercial libraries and
thus cannot be completely freely distributed. It can be found
at ftp://www.inria.fr in the directory epidaure/Outgoing/
xpennec/Prospect, but it requires a key to be run, available
by request to xavier.pennec@sophia.inria.fr
Contact: Xavier.Pennec@sophia.inria.fr; Nicholas.Ayache
@sophia.inria.fr

Introduction

Most biological actions of proteins, such as catalysis or re-
gulation of the genetic message (transcription, maturation,
etc.), depend on some typical parts of their three-dimensional
structure, called 3D structural or binding motifs. Proteins
with similar 3D motifs often show similar biological prop-
erties, and it is therefore highly desirable to find similar 3D
motifs between proteins (Branden and Tooze, 1991). Since
proteins are composed of possibly thousands of atoms, the
search requires efficient and fully automated methods.

There is quite an extensive literature on 3D protein struc-
ture comparison. Early techniques, such as Rossmann and
Argos (1976) and Remington and Matthews (1980), required
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seed matches and tried to align the entire structures in 3D.
Then, a series of algorithms focused on backbone fragment
similarities, first finding compatible fragments and then ex-
tending and clustering them in more global matches.
Examples of such algorithms can be found in Alexandrov et
al. (1992) and Lessel and Schomburg (1994). Holm and
Sander (1994) give a good review of available techniques at
that time. A more recent trend, reflected in Holm and Sander
(1995), Madej et al. (1995) and Alexandrov and Fischer
(1996), reviewed in Gibrat et al. (1996), is to model a protein
by the set of its secondary structure elements (SSEs) and
identify very rapidly the matches between SSEs using binary
geometric constraints. Then, an exhaustive search for com-
patible SSE matches is performed using interpretation trees,
maximal clique or clustering algorithms [see Grimson
(1990) for a review of geometric matching algorithms].

However, while these techniques are well adapted to de-
tecting large structural similarities (folds or topological simi-
larities), it has been argued (Mizuguchi and Go, 1995; Gibrat
et al., 1996) that similarities of small proteins with few or no
secondary structure elements may not be detected at all: even
a precisely conserved motif will go essentially unnoticed if
it does not include enough α helices or β strands. To look for
such similarities, we have to focus on the 3D configuration
of residues in space and forget their primary and secondary
structures.

In this spirit, Fischer et al. (1992) and Bachar et al. (1993)
have exploited the geometric hashing paradigm previously
introduced in computer vision by Lamdan and Wolfson
(1988) and Wolfson (1990). They proposed substructure
matching methods based on pre-processing and recognition
algorithms of complexity O(n3), where n is the number of
residues of interest (either in the motif or in the protein). A
key point of their approach is the possibility to refer to two
rigid invariants (the ‘distance coordinates’) of any residue of
the protein with respect to two other residues picked arbi-
trarily as forming a geometric ‘basis’. The results reported in
their publications were encouraging, and motivated our
work.

Our main idea, introduced in Pennec and Ayache (1994b),
was to reduce the size of a ‘basis’ from two to a single resi-
due. To achieve this goal, we introduce a 3D reference frame
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Fig. 1. Geometry of a residue around the Cα and definition of a basis.

attached to each one. Doing this, we can now choose a single
residue as a basis, and compute six rigid invariants (the para-
meters of translation and rotation) attached to any other resi-
due. This allows us to reduce drastically the complexity of
both the pre-processing and recognition stages of geometric
hashing, typically from O(n3) to O(n2). The idea of using
frames instead of just the Cα position to represent amino
acids was also proposed in Boutonnet et al. (1995) and Oren-
go and Taylor (1996).

A thorough analysis of the propagation of the uncertainties
in the computation of invariants, transformation estimation,
and clustering (Pennec, 1996; Pennec and Thirion, 1997)
guided our implementation to ensure efficiency and robust-
ness of the approach. Our experimental results confirm the
validity of the approach, and show that we can detect smaller
similarities than previous methods.

The paper is organized as follows: first we detail the refer-
ence frame attached to each residue, and then we describe the
new geometric hashing algorithm we propose for matching.
Third, we report our experimental study. Finally, we present
some potential extensions for our work.

Protein structure modeling

Topologically, the backbone of the chain is linear, but its ge-
ometry is more complex. Rotations are allowed around the
bonds Cα–C and Cα–N, and hence the geometry of the chain
is weakly constrained. However, the geometry of the atoms
attached to the Cα is perfectly determined. In particular, the
three atoms N, Cα, C form a known triangle from which we
can define a frame (a point and a trihedron; see Figure 1),
which uniquely defines the position and orientation of the
residue in space. We will hence model a residue by a couple
(point, trihedron) and a protein by the set of these frames.

The structure comparison problem is thus stated as fol-
lows: given two sets of frames, find all rigid transformations
that match a minimum number of residues of the two struc-
tures. We delay the problem of the classification criterion and
the assessment of the matches’ significance until the Dis-
cussion. The problem can be extended to the comparison of
a target molecule with a database of proteins.

Matching proteins

The problem we are confronted with is very close to recogni-
tion problems in volume image analysis, especially in the

medical field. In this case, one has to process points extracted
from surfaces with their associated Frénet trihedron (Thi-
rion, 1996; Guéziec et al., 1997). In both cases, the model
adopted to reduce the data is a set of frames. Classical tech-
niques rely on a model-based approach for object recogni-
tion (Grimson, 1990). Given a database of modeled objects
(called models), the aim is to recognize in a scene what ob-
jects are present, and how they are placed. The simplest prob-
lem where the database is reduced to only one object is called
simply matching or sometimes registration.

The geometric hashing algorithm

The geometric hashing algorithm was introduced (Lamdan
and Wolfson, 1988; Wolfson, 1990) for model-based rec-
ognition in computer vision. The basic idea is to store in a
database at pre-processing time a redundant representation
of models, based on local features to allow for occlusion and
invariant by rigid transformation. By doing so, the represen-
tation of the scene computed at recognition time will present
some similarities with that of some database objects. Accu-
mulating this evidence will allow the recognition and regis-
tration of objects present in the scene and in the database.

Invariant description. In our case, local features are frames.
However, any model frame can be matched with any scene
frame. Thus, to obtain an invariant description, we have to
consider binary constraints between frames. Indeed, a pair of
frames has six invariants given by the rigid transformation
parameters from the one frame to the other (expressed in one
of the frames).

In order to deal with occlusion, the representation of one
frame has to be redundant: each frame will then be associated
with any other frame of the object to compute the set of 6D
invariant vectors characterizing this reference frame. The
global representation is then the set of every frame pair of the
model, each one being an entry for the hash table, with the
6D invariant vector as index.

Pre-processing. In order to optimize the access to the repre-
sentation for recognition time, the geometric hashing algo-
rithm uses a hash table for storing models. Indeed, given one
object, we just compute the 6D invariant vector associated
with each possible pair (the reference frame, another model
frame), and set it as an index in a 6D hash table for the pair.
Each model is processed independently, but stored in the
same hash table. The complexity of the step is O(Mm2),
where M is the number of models and m the mean number
of residues per model. Typical values for m range from <15
for template motifs to a few hundreds for big proteins. The
complexity in space for the hash table is the same since it
only depends on the number of entries. This step is per-
formed without any knowledge of the scene to be matched
and hence can be done once for all.
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Fig. 2. Pre-processing: the 6D invariant vector associated with every model frames pair is computed with its error zone and used as an index for
the pair in the hash table. Recognition: for each scene frame pair, we compute the 6D invariant vector and retrieve through the hash table every
compatible model frame pair. For each such pair, we tally a vote for the matching of the reference frames [here the match (Fmi , Fsj) scores 2].

Recognition. Choose a reference frame; for each different
scene frame, compute the 6D invariant vector and retrieve
the compatible model pairs (the reference frame, another
model frame) in quasi constant time thanks to the hash table.
During the process, maintain a list of the model reference
frames found, and for each one accumulate the number of
compatible pairs. This will be the score for the matching of
these model reference frames with the considered scene ref-
erence frame.

The process is repeated with each scene frame taken as the
reference frame. The output is the list of model and scene
matching reference frames with their associated score (see
Figure 2). We only keep the matches with a score above a
threshold. This parameter is either static or dynamically
adapted during the algorithm. It is also possible to keep a
fixed number of matches (usually the best ones).

Error handling. Because of the resolution of the determina-
tion of protein structure, conformational deformations, and
even structural differences between molecules that induce
different constraints on the motif, one has to deal with errors
in atom positions. Hence, each residue frame is given an as-
sociated covariance matrix, which is propagated through the
computations (Pennec, 1996).

Since we now have probabilistic invariants, we should
index and retrieve them using their error zone, which is de-
fined as the uncertainty ellipsoid at a given χ2. A statistical
study shows that when the bin size of the hash table is more
or less the error zone size, we have a mean number of 2d bins
intersecting the error zone, where d is the number of invari-
ants (six in our case). From a computational point of view, we
have found that replacing such an ‘uncertain hash table’ by

KD trees (Preparata and Shamos, 1985) was more efficient
for retrieving compatible invariants.

Clustering

The correspondence between a model reference frame and a
scene reference frame is sufficient to compute a rigid trans-
formation between the two proteins, but it is not very precise.
During the recognition step, every compatible pair brings in
some additional information (the matching of secondary
frames). We use this information to refine the transformation
between the model and the scene basis at a small cost using
an extended Kalman filter (Pennec and Thirion, 1997).

Actually, the matches belonging to a common substructure
will present a similar transformation. We can then regroup
them by clustering their transformations [this idea was previ-
ously used in Vriend and Sander (1991)]. We first classify
matches by decreasing information (the information of a ran-
dom transformation is the opposite of the log of the determi-
nant of its covariance matrix). Then, we choose the most in-
formative transformation among the set to cluster and itera-
tively merge the closest compatible transformation to the
current state estimate [according to the Mahalanobis distance
µ2(x,y) = (x – y)Τ (Σx + Σy)–1 (x – y) and the χ2 test; Pennec
and Thirion, 1997]. Each used transformation is removed
from the set. Once there are no more transformations to
merge, we have obtained one cluster represented by its mean
transformation and we iterate the clustering stage on the re-
maining transformations. In this process, an efficient way of
finding the nearest (Mahalanobis) neighbor would be an im-
portant improvement for the complexity. A more rigorous
algorithm would be to let the different clusters compete with



3D substructures in proteins

519

Fig. 3. Left: the model is mapped onto the scene and three matches are satisfying the symmetric closest point and χ2 test constraints. Right: these
three matches are used to recompute the rigid transformation and update the position of the model. Since the same matches are satisfying the
constraints, the algorithm can stop.

each other and to compute the mean transformation of a
cluster with a Mahalanobis distance minimization at each
step. As for the geometric hashing step, we only keep clusters
that have a minimal number of matches. The complexity is
O(kmkc) with a number km of matches and kc of clusters on
output, but kc is quasi constant in practice, a few dozens at the
very most.

Verification and extension

Clusters must now be checked and their matching list ex-
tended. This is done using an alignment test: using the rigid
transformation previously determined, the model is mapped
onto the scene and the possible matches are verified. Each
frame of the model is examined as follows (Figure 3).

Map the model frame onto the scene and search for the
closest frame of the scene. In order to keep the algorithm
symmetrical between the model and the scene, map back the
scene frame to the model and verify that the original model
frame is its closest neighbor. If not, reject the model frame.

Compute the Mahalanobis distance between the trans-
formed model frame and the scene one, and decide using a
χ2 test whether this match is valid. If not, reject the model
frame.

Update the rigid transformation of the cluster with this new
match using the extended Kalman filter.

This process is repeated until convergence (stability of
matches) or a maximum number of iterations (we experim-
ented using 10). Seeking the closest neighbor is performed
using k-D trees (Preparata and Shamos, 1985). The complex-
ity of constructing a k-D tree is O(n log n) with O(n) storage.

The search for a closest neighbor is sub-linear, and almost
constant in practice. Hence, the whole stage has a complexity
O(n log n + nk).

Algorithm analysis

Simplifications. The time- and memory-consuming step in
this algorithm is the creation, pre-processing and retrieval of
binary invariants. We have m2 such invariants for the model
and n2 for the scene. With an ideal hash table, the pre-proces-
sing step would be O(m2) and the recognition step O(n2)
thanks to a constant access time to compatible invariants
through the hash table. With the introduction of noise in
measurements, the actual complexity is much higher. Practi-
cally, we have found that using KD trees was more efficient
in time and memory: the pre-processing stage is now in O(m2

log m) and the recognition in O(n2 log m).
However, the residues of a motif are usually close in space,

and we can focus on pairs of frames with inter-distances
under a threshold (typically around 20 Å). Moreover, we do
not want to find matches within a single secondary structure
(α helix or β strand). Thus, we do not index nor try to retrieve
binary invariants within such structures. These two heuristics
theoretically limit the complexity well below the above va-
lues.

Parameters. There are a small number of parameters that
need to be adjusted in the algorithm. The major ones are the
standard deviations σpos and σrot for the noise on residues
position and orientation. To compare these values easily with
the RMS and the mean angle after matching, we use the 3D
values of the standard deviations, which means that the cova-
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Fig. 4. Top, from left to right: the location of the HTH motif detected in 2WRP (tryptophan repressor of E.coli) and the locations of the
substructures detected in 2CRO (CRO protein of phage 434). Bottom: registration of the three CRO substructures in the 2WRP coordinate frame.

riance matrix of the rotation vector is
∑ rot � DIAG(�2

rot�3,�2
rot�3,�2

rot�3) and similarly for the co-
variance matrix of the position. In our experiments, we
usually use σpos = 0.6 Å and σrot = 15�. The related χ2 test
thresholds are �2

i  for the binary invariant compatibility, �2
c for

clustering transformations and �
2
v on features for the verifica-

tion step. Since all these values are relative to the same di-
mension (the dimension of rigid transformations in 3D is
six), we use a single value �

2 � �
2
i � �

2
c � �

2
v � 16.

From the complexity point of view, the main parameter is
the threshold dmax on the distance between residues to select
binary invariants. We usually use dmax = 18 Å. The last para-
meters are the minimal number of matches for the recogni-
tion step (nr) and for clustering (nc). We use nr = nc = 5. These
values should be decreased to four or three to find smaller
similar substructures.

Experiments

Comparison of 2CRO and 2WRP

We choose to compare the tryptophan repressor of Escheri-
chia coli (PDB code 2WRP; Lawson et al., 1988) and the
CRO protein of phage 434 (PDB code 2CRO; Mondragon et
al., 1989), which are known to share a common substructure:

the helix–turn–helix motif (Brennan and Matthews, 1989;
Harrison and Aggarwal, 1990). This motif is responsible for
the binding of DNA within several prokaryotic proteins. The
atom coordinates of proteins are provided by Brookhaven
National Laboratory’s Protein Data Bank (Bernstein et al.,
1977; Abola et al., 1987).

The execution time for the comparison of 2CRO and
2WRP is 18 s on a PC (pentium pro 200 MHz) running
Linux. We have synthesized in Table 1 the output of the algo-
rithm. The HTH motif is the most evident common substruc-
ture and is perfectly detected without spurious matches (37
GLY – 88 SER is not detected, but this match is indeed argu-
able considering the distance after registration and especially
the difference in orientation). The two other detected sub-
structures turn out to be quite interesting as they also match
part of the HTH motif and were not previously detected. The
second substructure is a kind of ‘turn–helix’ structure with
the turn preceding the proper HTH motif of 2CRO. The last
substructure is located farther in 2CRO and seems to be
another HTH motif with shorter helices. We show in Figure
4 the location of the detected substructures in the two pro-
teins and the registration between them. The images are
made using the Rasmol program of R.Sayle (Sayle and Bis-
sel, 1992) (the scripts for these visualizations are automati-
cally produced by our program).
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Table 1. Detected matches between the proteins 2CRO and 2WRP:
synthesized output of the algorithm. Since the detected substructures are all
part of the HTH motif in 2WRP, the matches are presented as a multiple
alignment. Conserved residues are displayed in bold. The score is the
information of the transformation. It is related to the mean Mahalanobis
distance between matches divided by the number of matches

2WRP 2CRO (1) 2CRO (2) 2CRO (3)

66 MET 15 MET

67 SER 16 THR

H 68 GLN 17 GLN 45 LEU

E 69 ARG 18 THR 46 PHE

L 70 GLU 19 GLU 47 GLU

I 71 LEU 20 LEU 48 ILE

X 72 LYS 21 ALA 49 ALA

73 ASN 22 THR 50 MET

74 GLU 23 LYS 12 ALA 51 ALA

T 75 LEU 24 ALA 13 LEU 52 LEU

U 76 GLY 25 GLY 14 LYS 53 ASN

R 77 ALA 26 VAL 15 MET 54 CYS

N 78 GLY 27 LYS 16 THR 55 ASP

79 ILE 28 GLN 17 GLN 56 PRO

80 ALA 29 GLN 18 THR 57 VAL

H 81 THR 30 SER 19 GLU 58 TRP

E 82 ILE 31 ILE 20 LEU 59 LEU

L 83 THR 32 GLN 21 ALA 60 GLN

I 84 ARG 33 LEU 22 THR

X 85 GLY 34 ILE 23 LYS

86 SER 35 GLU 24 ALA

87 ASN 36 ALA

Score 19.4 16.9 7.3

No. matches 22 13 16

RMS 0.66 0.65 0.81

Mean angle 15.9 16.1 22.8

Discussion

In order to test the sensitivity of the algorithm to the input
parameters, we have also carried out the same experiment
with a smaller expected noise on residues (σpos = 0.4 Å and
σrot = 10�). The HTH motif was the only common substruc-
ture detected and only two matches are missing (28 GLN –
R 79 ILE and 29 GLN – R 80 ALA).

With a larger expected noise (σpos = 0.8 Å and σrot = 20�),
the HTH motif is still the first ranking substructure with an
additional match (8 LYS – R 62 LEU). The second substruc-
ture detected is the ‘small HTH’ without modification. The
‘turn–helix’ structure now ranks 6, but is transformed into
another small HTH with a new (but badly matched) α helix
before the turn. In fact, although it presents 20 matches (from
6 LEU – R 68 GLN to 24 ALA – R 86 SER plus 53 ASN –
R 59 GL), the RMS and the mean angle have been multiplied

by two, which explains the lower score and ranking. The six
other detected substructures are made of two α helices.

This shows that the use of frames instead of points im-
proves the robustness of motif detection. Indeed, the orienta-
tion of a residue is crucial in determining the position of col-
lateral chains and most protein interactions happen within
these side atoms. The position of these atoms is then not only
determined by the position of the backbone, but also by its
orientation. Thus, using just points to represent residues gen-
erally leads to a significant increase in matches with non-
compatible orientations, and implies a drastic reduction of
selectivity for the matching process.

Other experiments show that the algorithm performs very
similarly for detecting motifs based on β strands, for instance
Greek key motifs or the β sheet DNA binding motif common
to the arc repressor of Salmonella bacteriophage P22
(1ARR) and the Met repressor of E.coli (1CMA) (Raumann
et al., 1994).

From these experiments, we can see that our similarity cri-
terion (the information, or ‘accuracy’, of the transformation)
is only capturing the geometric properties and does not in-
clude a statistical analysis of the similarity significance. For
instance, when comparing several structures, a few α helix
or β strand matches are usually not significant, but only re-
flect the fact that two structures have such secondary struc-
ture elements. In order to scale up the method and compare
a structure to the whole Protein Data Bank, we will need to
incorporate a false-positive analysis, as in Grimson and Hut-
tenlocher (1990), computing explicitly the probability of ob-
taining such a similarity score with random structures.

Conclusion

Modeling residues by the three atoms of their backbone al-
lows us to define a complete and unique associated reference
frame, which turns out to be very stable. Each residue pair
hence has six invariants for rigid transformations that we use
in a geometric hashing scheme to discover initial matches.
These are clustered, verified and extended. The error in-
herent to the problem is integrated in the process, thanks to
a rigorous theoretical framework for uncertainty handling.
Experiments confirm the validity, efficiency and robustness
of our approach.

This algorithm is also currently used for substructure
matching in volume images (medical images) with frames
extracted from surfaces (extremal points) (Guéziec et al.,
1997). This stresses the analogy between 3D matching prob-
lems and points out the fact that frames can, in numerous
cases, advantageously replace points.

Future work will follow three axes. We plan first to use a
probabilistic scheme for geometric hashing, for instance Ri-
goutsos and Hummel (1993), and incorporate a substitution
matrix for matching residue types. A second improvement
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would be a ‘multi-scale analysis’ of detected motifs, for in-
stance studying size versus RMS, and a false-positive analy-
sis to reject statistically non-significant similarities. Last but
not least, the extension of our algorithm for multiple align-
ments, along with this more selective classification of simila-
rities, could allow scanning of the Protein Data Bank or one
of its representative sets.
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