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Abstract seed matches and tried to align the entire structures in 3D.

Motivation: Most biological actions of proteins depend onThen, a series of algorithms focused on backbone fragment
some typical parts of their three-dimensional structureSimilarities, first finding compatible fragments and then ex-
called 3D motifs. It is desirable to find automaticallytending and clustering them in more global matches.
common geometric substructures between proteins to digxamples of such algorithms can be found in Alexandtov
cover similarities in new structures or to model precisely &l- (1992) and Lessel and Schomburg (1994). Holm and
particular motif. Most algorithms for structural comparison Sander (1994) give a good review of available techniques at
of proteins deal with large (fold) similarities. Here, we focughat time. A more recent trend, reflected in Holm and Sander
on small but precise similarities. (1995), Madejet al. (1995) and Alexandrov and Fischer
Results: We propose a new 3D substructure matchind1996), reviewed in Gibrat al.(1996), is to model a protein
algorithm based on geometric hashing techniques. The kBy the set of its secondary structure elements (SSEs) and
feature of the method is the introduction of a 3D referenciglentify very rapidly the matches between SSEs using binary
frame attached to each residue. This allows us to reduggometric constraints. Then, an exhaustive search for com-
drastically the complexity of the recognition. Our experi-patible SSE matches is performed using interpretation trees,
mental results confirm the validity of the approach and allownaximal clique or clustering algorithms [see Grimson
us to find smaller similarities than previous methods. (1990) for a review of geometric matching algorithms].
Availability: The program uses commercial libraries and However, while these techniques are well adapted to de-
thus cannot be completely freely distributed. It can be fourigcting large structural similarities (folds or topological simi-
at ftp://www.inria.fr in the directory epidaure/Outgoing/ larities), it has been argued (Mizuguchi and Go, 1995; Gibrat
xpennec/Prospect, but it requires a key to be run, availablet al, 1996) that similarities of small proteins with few or no

by request to xavier.pennec@sophia.inria.fr secondary structure elements may not be detected at all: even
Contact: Xavier.Pennec@sophia.inria.fr; Nicholas.Ayachea precisely conserved motif will go essentially unnoticed if
@sophia.inria.fr it does not include enoughhelices of} strands. To look for
such similarities, we have to focus on the 3D configuration
Introduction of residues in space and forget their primary and secondary

. . . . . structures.
Most biological actions of proteins, such as catalysis or '€~ |n this spirit, Fischeet al.(1992) and Bachagt al.(1993)

gulation of the genetic message (transc_ription, matura_tioH ve exploited the geometric hashing paradigm previously
etc.), depend on some typical parts ofthelrthree-dmensprm?roduced in computer vision by Lamdan and Wolfson

structure, called 3D structural or binding motifs. Protein
with similar 3D motifs often show similar biological prop- ?1988) and Wolfson (1990). They proposed substructure

! o . ! . - atching methods based on pre-processing and recognition
erties, and it is therefore highly desirable to find similar 3IZSn : . :
motifs between proteins (Branden and Tooze, 1991). Sin glgorithms of complexity Gf), wheren is the number of

proteins are composed of possibly thousands of atoms Esidues of interest (either in the motif or in the protein). A
search requires efficient and fully automated methods. point of their approach is the possibility to refer to two

; ) L . rigid invariants (the ‘distance coordinates’) of any residue of
There is quite an extensive lllterature on 3D protein strugh protein with respect to two other residues picked arbi-
ture comparison. Earl)_/ techniques, such as Rossmann qn rily as forming a geometric ‘basis’. The results reported in
Argos (1976) and Remington and Matthews (1980), requIreieir publications were encouraging, and motivated our
work.
Our main idea, introduced in Pennec and Ayache (1994b),
was to reduce the size of a ‘basis’ from two to a single resi-
1To whom correspondence should be addressed due. To achieve this goal, we introduce a 3D reference frame
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medical field. In this case, one has to process points extracted

S~ €3
N T B AL from surfaces with their associated Frénet trihedron (Thi-
m 1534 L N 2 % rion, 1996; Guézieet al, 1997). In both cases, the model
Ca Co adopted to reduce the data is a set of frames. Classical tech-

niques rely on a model-based approach for object recogni-
Fig. 1.Geometry of a residue around theahd definition of abasis. ~ ion (Grimson, 1990). Given a database of modeled objects
(called models), the aim is to recognize in a scene what ob-

. _ ~ jects are present, and how they are placed. The simplest prob-

attached to each one. Doing this, we can now choose a sin@én where the database is reduced to only one object s called

residue as a basis, and compute six rigid invariants (the paﬁmp|y matching or sometimes registration.
meters of translation and rotation) attached to any other resi-

due. This allows us to reduce drastically the complexity oﬁ, ic hashi lqorith
both the pre-processing and recognition stages of geometri@€ 9eometric hashing algorithm

hashing, typically from Of) to O@?). The idea of uSiNg The geometric hashing algorithm was introduced (Lamdan
frames instead of just theg(position to represent amino 4 \Wolfson, 1988; Wolfson, 1990) for model-based rec-
acids was also proposed in Boutoretedl.(1995) and Oren-  gqgpition in computer vision. The basic idea is to store in a
go and Taylor (1996). _ __database at pre-processing time a redundant representation
A thorough analysis of the propagation of the uncertaintiesy models, based on local features to allow for occlusion and
in the comp_utation of invariants, transformation (_as_timatioqm,ariant by rigid transformation. By doing so, the represen-
and clustering (Pennec, 1996; Pennec and Thirion, 199¢)ion of the scene computed at recognition time will present
guided our implementation to ensure efficiency and robusk,me similarities with that of some database objects. Accu-
ness of the approach. Our experimental results confirm thg,jating this evidence will allow the recognition and regis-

validity of the approach, and show that we can detect smallgkion of objects present in the scene and in the database.
similarities than previous methods.

The paper is organized as follows: first we detail the refetnvariant descriptionln our case, local features are frames.
ence frame attached to each residue, and then we describeHlogvever, any model frame can be matched with any scene
new geometric hashing algorithm we propose for matchingrame. Thus, to obtain an invariant description, we have to
Third, we report our experimental study. Finally, we presentonsider binary constraints between frames. Indeed, a pair of

some potential extensions for our work. frames has six invariants given by the rigid transformation
parameters from the one frame to the other (expressed in one
Protein structure modeling of the frames).

In order to deal with occlusion, the representation of one

Topologically, the backbone of the chain is linear, but its g&rame has to be redundant; each frame will then be associated
ometry is more complex. Rotations are allowed around thgith any other frame of the object to compute the set of 6D
bonds —C and @—N, and hence the geometry of the chainnvariant vectors characterizing this reference frame. The
is weakly constrained. However, the geometry of the atoniobal representation is then the set of every frame pair of the
attached to the s perfectly determined. In particular, the model, each one being an entry for the hash table, with the
three atoms N, & C form a known triangle from which we 6D invariant vector as index.
can define a frame (a point and a trihedron; see Fiure
which uniquely defines the position and orientation of thé’re-processingin order to optimize the access to the repre-
residue in space. We will hence model a residue by a cougsigntation for recognition time, the geometric hashing algo-
(point, trihedron) and a protein by the set of these frames!ithm uses a hash table for storing models. Indeed, given one

The structure comparison problem is thus stated as faibject, we just compute the 6D invariant vector associated
lows: given two sets of frames, find all rigid transformationgvith each possible pair (the reference frame, another model
that match a minimum number of residues of the two strudtame), and set it as an index in a 6D hash table for the pair.
tures. We delay the problem of the classification criterion angach model is processed independently, but stored in the
the assessment of the matches’ significance until the Di§ame hash table. The complexity of the ste@(In?),
cussion. The problem can be extended to the comparisonvgfereM is the number of models andthe mean number

a target molecule with a database of proteins. of residues per model. Typical values fiorange from <15
for template motifs to a few hundreds for big proteins. The

complexity in space for the hash table is the same since it
only depends on the number of entries. This step is per-
The problem we are confronted with is very close to recognfermed without any knowledge of the scene to be matched
tion problems in volume image analysis, especially in thand hence can be done once for all.

Matching proteins
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Indexing the invariant space: Hash table

Model

e

Fig. 2. Pre-processing: the 6D invariant vector associated with every model frames pair is computed with its error zone andnagedfais an
the pair in the hash table. Recognition: for each scene frame pair, we compute the 6D invariant vector and retrieve tiasiugdbtbesvery
compatible model frame pair. For each such pair, we tally a vote for the matching of the reference frames [here fing, fRgjctcéres 2].

Recognition.Choose a reference frame; for each differenkD trees (Preparata and Shamos, 1985) was more efficient
scene frame, compute the 6D invariant vector and retriefer retrieving compatible invariants.
the compatible model pairs (the reference frame, another
model frame) in quasi constant time thanks to the hash tab@
During the process, maintain a list of the model reference
frames found, and for each one accumulate the number pfie correspondence between a model reference frame and a
compatible pairs. This will be the score for the matching ofcene reference frame is sufficient to compute a rigid trans-
these model reference frames with the considered scene igfmation between the two proteins, but it is not very precise.
erence frame. During the recognition step, every compatible pair brings in
The process is repeated with each scene frame taken asdhge additional information (the matching of secondary
reference frame. The output is the list of model and scefgymes). We use this information to refine the transformation
matching reference frames with their associated score (s§gtween the model and the scene basis at a small cost using
Figure2). We only keep the matches with a score above gn extended Kalman filter (Pennec and Thirion, 1997).
threshold. This parameter is either static or dynamically Actually, the matches belonging to a common substructure
adapted during the algorithm. It is also possible to keep\gjl| present a similar transformation. We can then regroup
fixed number of matches (usually the best ones). them by clustering their transformations [this idea was previ-
ously used in Vriend and Sander (1991)]. We first classify
Error handling.Because of the resolution of the determinamatches by decreasing information (the information of a ran-
tion of protein structure, conformational deformations, andom transformation is the opposite of the log of the determi-
even structural differences between molecules that inducant of its covariance matrix). Then, we choose the most in-
different constraints on the motif, one has to deal with errofermative transformation among the set to cluster and itera-
in atom positions. Hence, each residue frame is given an disely merge the closest compatible transformation to the
sociated covariance matrix, which is propagated through tleairrent state estimate [according to the Mahalanobis distance
computations (Pennec, 1996). H2(xy) = X =)' (3 + %)~ (x —y) and the(? test; Pennec
Since we now have probabilistic invariants, we shoulénd Thirion, 1997]. Each used transformation is removed
index and retrieve them using their error zone, which is dérom the set. Once there are no more transformations to
fined as the uncertainty ellipsoid at a giy&nA statistical merge, we have obtained one cluster represented by its mean
study shows that when the bin size of the hash table is mdransformation and we iterate the clustering stage on the re-
or less the error zone size, we have a mean numbgbini2  maining transformations. In this process, an efficient way of
intersecting the error zone, wherés the number of invari-  finding the nearest (Mahalanobis) neighbor would be an im-
ants (six in our case). From a computational point of view, weortant improvement for the complexity. A more rigorous
have found that replacing such an ‘uncertain hash table’ lalgorithm would be to let the different clusters compete with

lustering
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Fig. 3.Left: the model is mapped onto the scene and three matches are satisfying the symmetric closestptsEist emastraints. Right: these
three matches are used to recompute the rigid transformation and update the position of the model. Since the same atétfyieg tre s
constraints, the algorithm can stop.

each other and to compute the mean transformation of e search for a closest neighbor is sub-linear, and almost
cluster with a Mahalanobis distance minimization at eachonstantin practice. Hence, the whole stage has a complexity
step. As for the geometric hashing step, we only keep clustetgn log n + nk).

that have a minimal number of matches. The complexity is

O(kmke) with a numbekr, of matches ani; of clusters on  Algorithm analysis

output, buk. is quasi constantin practice, afew dozens atthe, = | ] ] )
very most. Simplifications.The time- and memory-consuming step in

this algorithm is the creation, pre-processing and retrieval of
o . binary invariants. We hawe? such invariants for the model
Verification and extension andn? for the scene. With an ideal hash table, the pre-proces-

. ... sing step would b®(m?) and the recognition step(n?)
Clusters must now be checked and their matching list & hanks to a constant access time to compatible invariants

tended. Thi_s s dont_e using an alignment test “S"_‘g the rigf rough the hash table. With the introduction of noise in
transformation previously determined, the model is mapp asurements, the actual complexity is much higher. Practi-
onto the scene and the possible matches are verified. E% ly, we have found that using KD trees was more efficient

frame of the model is examined as follows (Fig8jre in time and memory: the pre-processing stage is NG

Map the model frame onto the scene and search for t Pt
closest frame of the scene. In order to keep the algorith}IrIT%egl m) and the recognition iB(n” log m).

symmetrical between the model and the scene, map back

scene frame to the model and verify that the original mOd%nder a threshold (typically around 20 A). Moreover, we do

frame is its closest neighbor. If not, reject the model framef1 . e :
A ot want to find matches within a single secondary structure
Compute the Mahalanobis distance between the tran€ 9 y

However, the residues of a motif are usually close in space,
d we can focus on pairs of frames with inter-distances

formed model frame and the scene one, and decide usin helix orf strand). Thus, we do notindex nor try to retrieve

> : : . ; ifftary invariants within such structures. These two heuristics
X test whether this match is valid. If not, reject the mode[ eoretically limit the complexity well below the above va-

frame. lues
Update the rigid transformation of the cluster with thisnew™
match using the extended Kalman filter. Parameters.There are a small number of parameters that

This process is repeated until convergence (stability afeed to be adjusted in the algorithm. The major ones are the
matches) or a maximum number of iterations (we experinstandard deviationspes and oy for the noise on residues
ented using 10). Seeking the closest neighbor is performedsition and orientation. To compare these values easily with
using k-D trees (Preparata and Shamos, 1985). The compléixe RMS and the mean angle after matching, we use the 3D
ity of constructing a k-D tree &(nlogn) with O(n) storage. values of the standard deviations, which means that the cova-
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Fig. 4. Top, from left to right: the location of the HTH motif detected in 2WRP (tryptophan represgocatj and the locations of the
substructures detected in 2CRO (CRO protein of phage 434). Bottom: registration of the three CRO substructures in thed2veiRFreone.

riance matrix of the rotation vector s the helix—turn—helix motif (Brennan and Matthews, 1989;
> ot = DIAG(6%,/3,0%,/3,02,/3)and similarly for the co- Harrison and Aggarwal, 1990). This motif is responsible for
variance matrix of the position. In our experiments, weéhe binding of DNA within several prokaryotic proteins. The
usually userpos= 0.6 A ando,ot = 15°. The relategk? test  atom coordinates of proteins are provided by Brookhaven
thresholds arg?for the binary invariant compatibility2for ~ National Laboratory’s Protein Data Bank (Bernsteiral,
clustering transformations andon features for the verifica- 1977; Abolaet al, 1987).
tion step. Since all these values are relative to the same diThe execution time for the comparison of 2CRO and
mension (the dimension of rigid transformations in 3D i2WRP is 18 s on a PC (pentium pro 200 MHz) running
six), we use a single valyg = y2 = y2 = y2 = 16 Linux. We have synthesized in Talilthe output of the algo-
From the complexity point of view, the main parameter i$ithm. The HTH motif is the most evident common substruc-
the thresholdinaxon the distance between residues to seleétire and is perfectly detected without spurious matches (37
binary invariants. We usually udgayx= 18 A. The last para- GLY —88 SER is not detected, but this match is indeed argu-
meters are the minimal number of matches for the recogriible considering the distance after registration and especially
tion step ;) and for clustering). We usey, =n.=5. These the difference in orientation). The two other detected sub-
values should be decreased to four or three to find smallgiructures turn out to be quite interesting as they also match
similar substructures. part of the HTH motif and were not previously detected. The
second substructure is a kind of ‘turn—helix’ structure with
the turn preceding the proper HTH motif of 2CRO. The last
substructure is located farther in 2CRO and seems to be
Comparison of 2CRO and 2WRP another HTH motif with shorter helices. We show in Figure
4 the location of the detected substructures in the two pro-
We choose to compare the tryptophan represdesaiieri- teins and the registration between them. The images are
chia coli (PDB code 2WRP; Lawsoet al, 1988) and the made using the Rasmol program of R.Sayle (Sayle and Bis-
CRO protein of phage 434 (PDB code 2CRO; Mondragon sel, 1992) (the scripts for these visualizations are automati-
al., 1989), which are known to share a common substructureally produced by our program).

Experiments
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Table 1. Detected matches between the proteins 2CRO and 2WRP: by two, which explains the lower score and ranking. The six
synthesized output of the algorithm. Since the detected substructures are 6'iher detected substructures are made obtlelices.
part of the HTH motif in 2WRP, the matches are presented as a multiple This shows that the use of frames instead of points im-

alignment. Conserved residues are displayed in bold. The score is the . ! .
information of the transformation. It is related to the mean Mahalanobis ProOVes the robustness of motif detection. Indeed, the orienta-

distance between matches divided by the number of matches tion of a residue is crucial in determining the position of col-
lateral chains and most protein interactions happen within
2WRP 2CRO (1) 2CRO (2)  2CRO (3) these side atoms. The position of these atoms is then not only
SOMET TEVET determined by the position of the backbone, but also by its
67 SER 16 THR orientation. Thus, qsing just points to represent resid_ues gen-
H 68GLN 17GLN 45 LEU erally Igads toa S|gn|f|cant increase in mat(;hes W|th non-
compatible orientations, and implies a drastic reduction of
E 69 ARG 18 THR 46 PHE - .
L 20GLU 19GLU 47GLU selectivity for Fhe matching process. _
Other experiments show that the algorithm performs very
[ 71LEU 20LEU 48ILE e . ; :
X S D LALA AOALA similarly for de’gectlng motifs based ﬁ_rzstr_ands, fqr instance
Greek key motifs or th@ sheet DNA binding motif common
73ASN 22 THR S0 MET to the arc repressor dbalmonella bacteriophage P22
racLu 23LYs 12ALA SLALA (1ARR) and the Met repressoricoli (LCMA) (Raumann
T 75LEU 24 ALA 13LEU 52LEU et al, 1094).
v 76GLY - 25GLY  14LYS S3ASN From these experiments, we can see that our similarity cri-
R TTALA - 26 VAL ISMET 54 CYS terion (the information, or ‘accuracy’, of the transformation)
N 78 GLY 2TLYS 16 THR 55 ASP is only capturing the geometric properties and does not in-
79ILE 28GLN 17GLN 56 PRO clude a statistical analysis of the similarity significance. For
80 ALA 29GIN 18 THR 57 VAL instance, when comparing several structures, aféslix
H 81 THR 30 SER 19GLU 58 TRP or B strand matches are usually not significant, but only re-
E 82ILE 31ILE 20LEU S9LEU flect the fact that two structures have such secondary struc-
L 83THR 32GLN 21 ALA 60GLN ture elements. In order to scale up the method and compare
I 84 ARG 33LEU 22 THR a structure to the whole Protein Data Bank, we will need to
X 85 GLY 34ILE 23LYS incorporate a false-positive analysis, as in Grimson and Hut-
86 SER 35 GLU 24 ALA tenlocher (1990), computing explicitly the probability of ob-
87 ASN 36 ALA taining such a similarity score with random structures.
Score 19.4 16.9 7.3
No. matches 22 13 16 i
RMS 0.66 0.65 0.81 Conclusion
Mean angle 15.9 16.1 22.8

Modeling residues by the three atoms of their backbone al-
lows us to define a complete and unique associated reference
frame, which turns out to be very stable. Each residue pair
Discussion hence has six invariants for rigid transformations that we use
in a geometric hashing scheme to discover initial matches.
In order to test the sensitivity of the algorithm to the inpuThese are clustered, verified and extended. The error in-
parameters, we have also carried out the same experiméstent to the problem is integrated in the process, thanks to
with a smaller expected noise on residugsd= 0.4 Aand a rigorous theoretical framework for uncertainty handling.
Orot = 10°). The HTH motif was the only common substruc-Experiments confirm the validity, efficiency and robustness
ture detected and only two matches are missing (28 GLNof our approach.
R 79 ILE and 29 GLN — R 80 ALA). This algorithm is also currently used for substructure
With a larger expected noisgphs= 0.8 Aand;=20°), matching in volume images (medical images) with frames
the HTH motif is still the first ranking substructure with anextracted from surfaces (extremal points) (Guégieal,
additional match (8 LYS — R 62 LEU). The second substruct997). This stresses the analogy between 3D matching prob-
ture detected is the ‘small HTH’ without modification. Thelems and points out the fact that frames can, in numerous
‘turn—helix’ structure now ranks 6, but is transformed intacases, advantageously replace points.
another small HTH with a new (but badly matchedijelix Future work will follow three axes. We plan first to use a
before the turn. In fact, although it presents 20 matches (fropmobabilistic scheme for geometric hashing, for instance Ri-
6 LEU — R 68 GLN to 24 ALA — R 86 SER plus 53 ASN —goutsos and Hummel (1993), and incorporate a substitution
R 59 GL), the RMS and the mean angle have been multipliedatrix for matching residue types. A second improvement
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would be a ‘multi-scale analysis’ of detected motifs, for inLamdan,Y. and Wolfson,H.J. (1988) Geometric hashing: a general and
stance studying size versus RMS, and a false-positive analysfficient model-based recognition schenf&oceedings of the

sis to reject statistically non-significant similarities. Last but Second ICC\pp. 238-289.

not least, the extension of our algorithm for multiple alignt-awson,C.L., Zhang,R.G., Schevitz,R.W., Otwinowski,Z., Joachi-
ments, along with this more selective classification of simila- Miak.A. and Siegler,P.B. (1988) Flexibility of the DNA-binding

rities, could allow scanning of the Protein Data Bank or one domains of TRP repress@iroteins: Struct. Funct. Genes, 18.
of its representative sets. Lessel,U. and Schomburg,D. (1994) Similarities between protein 3-D

structuresProtein Eng, 7, 1175-1187.
Madej, T., Gibrat,J.-F. and Bryant,S.H. (1995) Threading a database of
protein coresProteins: Struct. Funct. GengR3, 356—-369.
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