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Abstract. High performance computing has become a key step to in-
troduce computer tools, like real-time registration, in the medical field.
To achieve real-time processing, one usually simplifies and adapts algo-
rithms so that they become application and data specific. This involves
designing and programming work for each application, and reduces the
generality and robustness of the method. Our goal in this paper is to show
that a general registration algorithm can be parallelized on an inexpen-
sive and standard parallel architecture with a mall amount of additional
programming work, thus keeping intact the algorithm performance.

For medical applications, we show that a cheap cluster of dual-processor
PCs connected by an Ethernet network is a good trade-off between the
power and the cost of the parallel platform. Portability, scalability and
safety requirements led us to choose OpenMP to program multi-processor
machines and MPI to coordinate the different nodes of the cluster. The
resulting computation times are very good on small and medium resolu-
tion images, and they are still acceptable on high resolution MR images
(resp. 19, 45 and 95 seconds on 5 dual-processors Pentium IIT 933 MHz).

1 Introduction

One major concern in Image-Guided Therapy (IGT) is the simultaneous need
for high performance algorithms for planning, targeting, and monitoring, and
the time constraints imposed by the operating room [3]. For instance, in neuro-
surgery, pre-operative guidance using stereotactic systems allows the surgeon to
select the best and safest trajectory to penetrate the tissue. This step drastically
reduces the surgery time in the operating room. During surgery, the surgeon
may use an intra-operative guidance, in order to control his trajectory. How-
ever, these image-guided surgery systems are limited by the static knowledge of
the anatomical brain structures, since cerebrospinal fluid (CSF) leaks or tumor
removal deform the anatomical structures [I4]. Intra-operative (interventional)
imaging is being developed to solve these problems, and also to detect com-
plications during surgery, such as bleeding. Typically, fluoroscopic, sonographic
and more recently ultrasound images are used. Concurrently, 3D modalities were
developed, such as CT [4] or MRI [I32] guided interventional procedures.
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A typical example is a surgical tracking and visualization system developed
at the Brigham and Women’s Hospital, based on open-MR image guidance,
and used in 45 neurosurgical interventions [I]. During each craniotomy, 3 to 5
intra-operative MR datasets were acquired (with a typical resolution of 256 x
128 x 60) and rigidly registered to the pre-operative image to guide the initial
approach. The registration maximizes the mutual information and typically takes
five minutes. Since each acquisition lasts from 1 to 5 min, one would like to
obtain a registration time of under 1 min to add a minimal overhead to the
image acquisition and to remain faster than the medical need.

To decrease the computation time, Netsch et al. presented a multi-modal
registration algorithm [6] based on local correlation (LC) optimized by a Gauss-
Newton technique, using only 10% of image voxels that have the largest local
variance. They obtain a registration time of about 1 mn for typical MR and
CT images. Nevertheless, the optimization procedure used is not robust to the
outliers since it is a least-square minimization [12].

Recently, we presented a multi-modal registration algorithm, also based on
a local similarity measure, which explicitly takes into account the presence of
outliers [§]. We believe that our algorithm could lead to faster and more ro-
bust results while considering more image information. Our goal in this paper
is to show that such a registration algorithm can be parallelized on a cheap
and standard parallel architecture with a reasonably small amount of additional
programming work while keeping intact the algorithm’s performance. Other im-
portant requirements for the parallel environment are portability, scalability and
safety, since the software is intended to be used in a safety-critical environment.
Thus, the choice of a mature and well-tested environment is important.

We detail in Section P]the possible hardware platforms for parallel comput-
ing and the chosen software environments, namely OpenMP and MPI (Message
Passing Interface). Then, we recall in Section [3 the principles of the registra-
tion algorithm, a block matching technique detailed in [9§], and we detail some
improvements. Section [4] focuses on successive parallelizations of the main time
consuming steps. Finally, we analyze in Section[§ the gain in computation time
with respect to the number of processors and the data size.

2 The Parallel Environment

Hardware Choices. A parallel computer is essentially made of processors,
memory, and an interconnection network that connects processors between each
other and with the memory. In shared memory computers, all the processors
are connected to the same memory and do not need to explicitly exchange in-
formation. However, they are limited to a few processors and in the amount of
memory that can be addressed. Distributed memory computer are composed of
nodes, containing processors and memory, and interacting by sending each other
messages through the interconnection network. There is virtually no limit on
the number of processors but the synchronization and the information exchange
takes much longer. Global data structures often have to be replicated on every
node for performance reasons, which also leads to larger memory needs.
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For medical applications, especially IGT, we believe that a cluster of sym-
metric multi-processors (SMP), typically PCs, connected by an internal network
is a good trade-off between the power and the cost of the parallel platform. The
system can be used as a research tool or as an embedded system in a clinical
environment. In this article, we used up to 10 PCs of our lab (dual-processors
Pentium IIT 933 MHz), connected by a fast Ethernet Network (100 Mbps us-
ing 2 interconnected 1Gbps switches). Such a hardware configuration is already
present in many labs and hospitals.

Software Choices. A parallel programming model that seemed appropriate
to adapt a sequential algorithm with minimum reprogramming is the Single-
Program-Multiple-Data (SPMD) approach, in which all the processors involved
execute the same program, but on different data. We used OpenMP to program
multi-processor machines and the Message Passing Interface (MPI) to coordinate
the different nodes of the cluster. One of their main advantages is the portability
over many different kind of SMP clusters: both are standards and do not depend
on the machine architecture, operating system, and network topology.

OpenMP is a set of compiler directives and library functions that specifies
the behavior of a program when executed on shared memory computers [7]. A
large part of the OpenMP C standard is implemented as “pragma” compiler
directives. This eases the parallelization of the sequential code and enables a
sequential compilation by standard C compilers. The core notions of OpenMP
are the parallel sections (a piece of code executed by all the processors with
shared or replicated variables), and parallel “for” statements that enable the
parallelization of independent iterations of a loop on multiple processors.

MPI is a standard for communication libraries between the nodes of a clus-
ter [5]. Among the most powerful functions, we can send a message to a node,
receive a message from a node, broadcast a message to all other nodes,
scatter subparts of a “list” to different nodes, or gather the subparts of a
“list”. An important difference between MPI and OpenMP is that each MPI
process has its own data and variables, as the memory is not shared.

Using MPI, we run a UNIX process on each PC of the cluster. Each process
uses OpenMP to start one thread per processor on its machine. To coordinate
the different processes, a master process does everything that cannot be done
in parallel, such as input/output (I/O) operations and tasks that have be done
sequentially. All the other processes are called slaves. In our case the master is
not dedicated, which means that it also can do everything that regular slaves do.

3 The Sequential Algorithm

The algorithm we parallelize in this article computes a parametric transforma-
tion (rigid, similarity, or affine) from correspondences between very similar areas
in both images, with a block matching strategy. This procedure is extensively de-
scribed in [9] for rigid registration of anatomical sections, in [8] for multi-modal
rigid registration of medical images, and in [I0JIT] to compute the mid-sagital
plane of the brain. In order to quickly approach the desirable optimum and to
extend the capture range of the search, a multi-resolution scheme is used. We
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previously used a coarse to fine strategy for the block sizes. Here, we use a small
and constant block size (43 voxels) and we subsample the original images by (at
most) a factor of two in each axis at each level of the pyramid. At each resolution
level, the correspondences are searched using a block matching strategy around
the current position. This is done by minimizing the simple but efficient local
linear correlation criterion, which is well suited to multi-modal registration [10].
Then, a robust transformation is computed by minimizing the distance between
matched points using Least Trimmed Squares (LTS) [12]. This process is iterated
until convergence. As we will discuss in Section 2] an acceptable registration can
be obtained before the highest resolution.

To further improve the robustness and speed-up the algorithm, we only select
points with a high local variance. However, unlike [6], we use all the points
for the low level, and we halve the number of relevant voxels at each pyramid
level, with a lower bound of 20%. Thus, all the image information is taken
into account for large displacements, while the algorithm adaptively focuses on
relevant image parts when estimating a more precise motion. The accuracy and
the high robustness of the algorithm (100% of the CT/MR registrations within
the voxel size) has been validated [I0] using the Vanderbilt database [15].

4 Parallel Implementations

A profiling of the sequential version of the algorithm showed that the program
spent most of its computation time (about 93%) in the vector field computation.
The remaining time was shared between image resampling, LTS minimization,
and I/O operations. Hence, our first concern was the vector field computation.

MPI / OpenMP Implementation of the Vector Field Computation.
At each iteration, one has to compute the block B’; that best matches each
selected block B;, compute the new transformation and resample the image.
For the parallel algorithm, each process has a copy of the initial images, and
locally resamples it to limit the communication time. The master divides the
list of Npjocrs blocks into Np,ocs sub-lists and scatter them to the processes.
Each process computes Nyjocks/Nproes block displacements, and returns its local
sub-list Sub; of correspondences to the master (gathering step). Then, the
master computes the new transformation and broadcasts it to all the slaves.
We observed an acceleration of 48% on two processors, which is close to the
50% theoretical gain. We may further reduce the communication time by using
OpenMP to drive dual-processors workstations. In practice, this only decreased
the necessary amount of memory by avoiding the replication of large floating
point images.

OpenMP Implementation of Image Resampling. As the number of pro-
cessors used becomes high, the resampling of images takes a higher percentage of
the total computation time (see Fig.[Il). An MPI implementation of the resam-
pling would ask each process to take a part of the image, resample it and then
send it to every other process, thus requiring much communication time. With
an OpenMP implementation, each process (i.e. machine) does the resampling of
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Fig.1. Left: Computation time of parallel part (vector field computation), sequen-

tial part (remaining), and total computation time, using 1 to 10 processors on mono-

and dual-pro workstations. Right: Speedup of the implementation, normalized by the

execution time on a single CPU Pentium IIT 933 MHz, with the theoretical Amdahl’s

value.

all the points, but it shares the load among all the processors available on the
machine with a “for” loop on all the image points. We expected an acceleration
of about 50%, and obtained 40%. The difference between theory and experimen-
tal results are essentially due to the bounded memory access speed (in our case
133 MHz for 933 MHz Pentium IIT dual-processors).

5 Experiments

We illustrate our algorithm with two data sets. The first one is an MR/CT multi-
modal case from the Vanderbilt database [15]. These low resolution image
represent a typical multi-modal registration in a clinical application. To simulate
an IGT application, we also used high resolutionf] sets of pre- and post-operative
MR images, acquired by La Pitié Salpétriere Hospital (Paris) in the context of
the treatment of Parkinson’s disease by deep brain stimulation (DBS).

We used up to 10 PCs of our lab (dual-processors Pentium III 933 MHz),
connected by a fast Ethernet Network (100 Mbps). We applied our algorithm
with mono-processor and dual-processors architecture independently, from one
to ten machines. For each case, we made 100 registrations to estimate the mean
time of the vector field computation and the mean time for rest of the program.

Computation Times of the Parallel Section. We present the wallclock
time (Fig. [ left) for a typical registration problem, as a percentage of the
computation time with one single CPU workstation. The total computation time
is drastically reduced with the first machines (82% of gain for 4 dual-processors),
and decreases much slower with each additional machine (only a 10% gain for
the next 6 machines). The computation time of the vector field drops from 93%
of the total computation time (for a mono-processor machine) to 51% (for a
cluster of 10 dual-processors), reaching the constant computation time of the

L' T1 MR: 2562 x 26 voxels of 1.25% x 4 mm?, CT: 5122 x 28 voxels of 0.65% x 4 mm?.
2 T1 MR: 256 x 124 voxels of size 0.9375% x 1.4 mm?.
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sequential part. This means that we need to investigate the parallelization of
the “constant time operations” to further improve the time performance.

Performance Analysis. (Fig. [ right) shows the speedup of the parallel im-
plementation w.r.t. the number of CPUs, normalized by the execution time on a
single CPU. This experiment was done using 1 to 10 mono-processor machines,
and 1 to 10 dual-processors. To evaluate the quality of the performance, we also
plot the theoretical speedup factors provided by Amdahl’s law: if a% of the
code is sequential, and the remaining code is parallelized on N processors, the
maximum speedup factor (with no communication delays) is S = 1/(a + 132).
Using “constant time” values (Fig. [I, right), we estimated that o ~ 7% for
the mono-processor case, and a slightly inferior value of 6% for dual-processors,
due to the OpenMP parallelization of the image resampling. As expected, the
measured speedup is higher for dual-processors machines (the sequential part
takes a smaller time) but it is also relatively closer to its theoretical curve. This
can be explained by a lower communication overhead du to the shared memory
(OpenMP part). Therefore, it is definitely cheaper, faster, and more efficient to
use dual-processor machines.

Influence of the Data Size. In the previous sections, we were only interested
in the speedup factor, but verified on many datasets that the computation time
was directly proportional to the volume of the data being registered. We report
in the following table the registration times (in seconds) for different cluster
configurations and the mean computation time per million of voxels. Even though
the computation times are excellent for small image volumes with a small cluster,
we still need at least 10 machines for comparable computation times on high
resolution images. However, extrapolating our measurements to an intermediate
image size typical for IGT (256 x 256 x 60 voxels [1]) gives acceptable computation
times for only a few machines.

lData type “Sequential[One dual—pro[S dual—pro‘llO dual—pro.‘
Time for 10° voxels 72 s 38 s 11.5 s 8.3 s
Vanderbilt (1.7 10° voxels) 118 s 63 s 19 s 14 s
Typical IGT (3.9 10° vozels)|| 280 s 150 s 45 s 33 s
Salpétriere (8.1 10° voxels) 600 s 316 s 95 s 69 s

Trade-Off between Precision and Computation Time. Even if we finally
obtained registration times of the order of one minute, which was our aim for
IGT applications, one could think of applications where we need to register
higher resolution images and/or reduce the number of machines. In this case,
it seems difficult to further improve the computation times without modifying
the parallel algorithmic scheme. However, the pyramidal approach used in the
algorithm provides a multi-scale transformation estimation where the last level
takes about 73% of the total computation time. This suggests that we could
drastically speed-up the registration by stopping the algorithm before this level.
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To estimate the loss in precision with respect to the pyramid level, we used
the transformation Ty obtained with the high level as the reference (our “ground
truth” for this experiment), and we computed the mean localization error of
representative points for the transformation T; at each level i. We report in
the following table this relative precision for the three high resolution datasets.
As these are pre- and post-operative MR images, there are some important
deformations between the images due to the surgical operation and artifacts
(distortion due to air-brain interfaces, presence of electrodes...). In all cases, the
relative precision of the transformation at level 1 is still below the voxel size,
and corresponds to a relative precision of 0.2 mm at the center of the brain.
Thus, an optimal trade-off between precision and computation time seems to be
obtained by stopping the algorithm at pyramid level 1; we obtain a one minute
registration with only two dual-processors machines. With low resolution images
(the Vanderbilt database), we obtain even more impressive computation times:
from 21 seconds for 1 dual-processors PC to 7 seconds for 5 dual-processors PCs.

l [ Data set 1 [ Data set 2 [ Data set 3 ‘
Voxel size[0.94” x 1.3 mm[0.90° x 1.0 mm[0.98" x 1.4 mm
RMS(T5) 3.54 mm 10.7 mm 8.96 mm
RMS(T>) 2.80 mm 1.08 mm 2.60 mm
RMS(T1)| 0.92 mm 0.68 mm 0.71 mm
RMS(To)| reference reference reference

6 Discussion and Conclusion

The registration algorithm we chose to parallelize computes at each step a sparse
vector field by block matching, which is used to estimate a robust parametric
(rigid to affine) transformation using Least-Trimmed-Squares, and embedded
in a multi-scale framework [10]. We proposed in this article parallel MPI and
OpenMP implementations of the two main time-consuming steps: the vector field
computation, with a resulting acceleration of approximately 48% on two proces-
sors, and the image resampling, with a speedup of a bit less (40%), mainly due
to memory access limitations. The speedup results on more than two processors
closely follow the theoretical bound given by Amdahl’s law. For the same number
of processors, dual-processors machines are cheaper than mono-processor ones,
and the parallelization is slightly more efficient (thanks to memory sharing in
OpenMP). The computation times themselves are excellent on small images (19
seconds for 5 dual-processors on Vanderbilt images), and still very good on typ-
ical intra-operative and high resolution MR images: 45 seconds and 1min35 for
5 dual-processors, 33 and 70 seconds for 10 dual-processors workstations. Thus,
we can conclude that a small cluster of dual-processors PCs is an optimal choice
for real-time registration in IGT.

One way to further accelerate the algorithm (or reduce the number of ma-
chines) is to slightly decrease its accuracy by stopping one level before the end in
the multi-scale pyramid: the relative precision of the transformation is still below
the voxel size, for only 27% of the total computation time. The registration of
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high resolution MRI now takes only 1 min on a cluster of only 2 dual-processors
PCs. With lower resolution images (the Vanderbilt database), we can even obtain
a registration time of 15 seconds.

The results obtained in this article, both in terms of computation time for
registration and methodology for parallelization, open research avenues for per-
forming huge computational tasks on large medical image databases, such as the
quantification of disease evolution on a large number of patients or information
retrieval and exploration in large image collections.
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