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Left-Invariant Riemannian Elasticity:
a distance on shape diffeomorphisms?

X. Pennec

INRIA Sophia - Projet Epidaure, 2004 Route des Lucioles BP 93
06902 Sophia Antipolis Cedex, France
Xavier.Pennec@sophia.inria.fr

Abstract. In inter-subject registration, one often lacks a good model
of the transformation variability to choose the optimal regularization.
Some works attempt to model the variability in a statistical way, but
the re-introduction in a registration algorithm is not easy. In [1], we
interpreted the elastic energy as the distance of the Green-St Venant
strain tensor to the identity. By changing the Euclidean metric for a more
suitable Riemannian one, we defined a consistent statistical framework
to quantify the amount of deformation. In particular, the mean and the
covariance matrix of the strain tensor could be efficiently computed from
a population of non-linear transformations and introduced as parameters
in a Mahalanobis distance to measure the statistical deviation from the
observed variability. This statistical Riemannian elasticity was able to
handle anisotropic deformations but its isotropic stationary version was
locally inverse-consistent. In this paper, we investigate how to modify the
Riemannian elasticity to make it globally inverse consistent. This allows
to define a left-invariant ”distance” between shape diffeomorphisms that
we call the left-invariant Riemannian elasticity. Such a closed form energy
on diffeomorphisms can optimize it directly without relying on a time and
memory consuming numerical optimization of the geodesic path.

1 Introduction

Most non-linear image registration algorithms optimize a criterion including an
image intensity similarity and a regularization term. Many image similarity cri-
teria are now available, ranging from the simple sum of squared intensity differ-
ences to robust information theory based measures. In inter-subject registration,
the main problem is not really the intensity similarity measure but rather the
regularization criterion. Some authors used physical models like elasticity or fluid
models [2, 3]. For efficiency reasons, other authors proposed to use non-physical
but efficient regularization methods like Gaussian filtering [4–6]. This type of
regularization was then extended to more general isotropic vectorial filters [7],
and to non-stationary regularization criteria in order to take into account some
anatomical information about the tissue types [8, 9].

However, since we do not have in general a model of the deformation of
organs across subjects, no regularization criterion is obviously more justified than

Mathematical Foundations of Computational Anatomy (MFCA'06) 1



the others. We could think of of relating the anatomy of two different subjects
by building a model of the organ growth: inverting the model from the first
subject to a sufficiently early stage and growing toward the second subject image
would allow to relate the two anatomies. However, such a computational model
is out of reach now, and most of the existing work in the literature rather try to
capture the organ variability from a statistical point of view on a representative
population of subjects (see e.g. [10–12]). Although the image databases are now
large enough to be representative of the organ variability, the problem remains
of how to use this information to better guide inter-subject registration.

Ashburner at al observed in [13] that, as the structural variability is often
greater in certain directions [14], some form of a tensor field describing nor-
mal variability in each direction may be appropriate. A data representation of
this form, together with a canonical brain template and associated error variance
image, would allow anatomical comparisons to be made against the normal pop-
ulation. This is in essence what we proposed with the Statistical Riemannian
Elasticity [1]: an integrated framework to compute statistics on deformations
and reintroduce them in the registration procedure, based on the field of strain
tensors. The basic idea is to interpret the elastic energy as a distance in the
space of positive definite symmetric matrices (tensors). By changing the classi-
cal Euclidean metric for a more suitable one, namely a log-Euclidean one in [1],
we defined a natural framework for computing statistics on the strain tensor. A
related idea was already present in [13] with a regularization prior based on a
log-Gaussian distribution of the singular values of the Jacobian matrix of the
transformation. Our key contribution in [1] was to consider the strain tensor
instead of the Jacobian of the transformation. This allows to easily extend such
an isotropic and stationary prior to anisotropic and non stationary ones.

In this paper, the goal is to better understand the link between Rieman-
nian elasticity and invariant metrics on groups of diffeomorphisms, as used for
instance in [15, 16]. We also reformulate the derivation of the whole theory to
better stress the link with classical mechanics. We first detail how the standard
elastic regularization can be optimized in a gradient descent based registration
algorithm. Then, we introduce in Section 3 the Riemannian elasticity energy by
changing the Euclidean distance on the strain Tensor to the identity by a log-
Euclidean Riemannian distance. The simplest distances are the isotropic ones:
the energy expression turns out to be very similar to the classical elastic energy
while being locally inverse-consistent. One can also include non-stationary and
anisotropic statistics on the strain tensors observed in a population by taking the
Mahalanobis distance on the logarithmic strain tensor (statistical Riemannian
elasticity). The gradients of these Riemannian elastic criteria needed to imple-
ment a practical registration algorithm are detailed in Section 4. In Section 5, we
modify the spatial integration of the isotropic Riemannian elasticity in order to
make it globally inverse-consistent. This leads to a left- (or right-) invariant en-
ergy on shape diffeomorphisms that can be optimized directly without having to
find the geodesics through an optimization process as in standard diffeomorphic
matching algorithm.
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2 Standard elastic regularization

Let I(x) and J(x) the intensity functions of two images and Φ(x) be a non-linear
space transformation assumed to be diffeomorphic with a positive Jacobian ev-
erywhere. We denote by {eα} a set of orthonormal vectors (a basis) of the three-
dimensional space, and by ∂αΦ the directional derivatives of the transformation
along the spaces axis α. The general registration method is to optimize an energy
of the type: C(Φ) = Sim(Images, Φ) + Reg(Φ). Starting from an initial trans-
formation Φ0, a first order gradient descent methods computes the gradient of
the energy ∇C(Φ), and update the transformation using: Φt+1 = Φt−η∇C(Φt).
From a computational points of view, this Lagrangian framework can be advanta-
geously changed into a Eulerian framework to better conserve the diffeomorphic
nature of the mappings [9]. In the following, we do not focus on the optimiza-
tion of the similarity criterion (see e.g. [5, 6]), but rather on the computation of
the gradient of the regularization. We assume Neumann boundary conditions on
transformations and an invariant integration domain (Φ(Ω) = Ω), so that we
can drop the integration domain to simplify notations.

2.1 Elastic deformations

In continuum mechanics [17], one characterizes the deformation of an infinitesi-
mal volume element in the Lagrangian framework using the Cauchy-Green tensor
Σ = ∇ΦT ∇Φ =

∑
α ∂αΦ ∂αΦT. This symmetric matrix is positive definite if the

transformation is diffeomorphic, and measures the local amount of non-rigidity.
Let ∇Φ = V S RT be a singular value decomposition of the transformation Ja-
cobian (R and V are two rotation matrices and S is the diagonal matrix of the
positive singular values). The Cauchy-Green tensor Σ = R S2 RT is equal to
the identity if and only if the transformation is locally a rigid transformation.
Eigenvalues between 0 and 1 indicate a local compression of the material along
the associated eigenvector, while a value above 1 indicates an expansion.

To quantify the deformation, one usually prefers the related Green-St Venant
strain tensor E = 1

2 (Σ − Id), whose eigenvalues are null for no deformation.
This tensor is often expressed using the displacement field: E = 1

2 (∇U +∇UT +
∇UT∇U) (dropping the quadratic term leads to the linear elasticity). Assuming
an isotropic material and a linear Hooks law to relate strain and stress tensors,
one can show that the motion equations derive from the St Venant-Kirchoff
elasticity energy [17]:

RegSVKE(Φ) =
∫

µTr(E2) +
λ

2
Tr(E)2 =

∫
µ

4
Tr
(
(Σ − Id)2

)
+

λ

8
Tr(Σ − Id)2

2.2 Optimizing the elasticity

To minimize this energy in a registration algorithm, we need its gradient. Since
∂uΣ =

∑
α

(
∂αΦ ∂αuT + ∂αu ∂αΦT

)
, the derivative of the elastic energy in the
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direction (i.e. displacement field) u is:

∂uRegSVKE(Φ) =
∫
µ
2 Tr((Σ − Id) ∂uΣ) + λ

4 Tr(Σ − Id) Tr(∂uΣ)

=
∑
α

∫
〈 µ (Σ − Id) ∂αΦ | ∂αu 〉+ λ

2 Tr(Σ − Id) 〈 ∂αΦ | ∂αu 〉

Using an integration by part with homogeneous Neumann boundary conditions
[6], we have

∫
〈 v | ∂αu 〉 = −

∫
〈 ∂αv | u 〉, so that the gradient is finally:

∇RegSVKE(Φ) = −
∑
α ∂α

(
Z ∂αΦ

)
with Z = µ(Σ − Id) + λ

2 Tr(Σ − Id) Id

Here, Z is the derivative of the density of energy at each point with respect to
the strain tensor Σ and is known as the 2nd Piola-Kirchoff tensor. The 3rd order
tensor Z∂αΦ is the first Piola-Kirchoff tensor and corresponds to the derivative
of the density of energy with respect to the Jacobian of the transformation.

3 Log-Euclidean Riemannian elasticity

In the standard elasticity theory, the deviation of the positive definite symmetric
matrix Σ (the strain tensor) from the identity (the rigidity) is measured using
the Euclidean matrix distance dist2Eucl(Σ, Id) = Tr((Σ − Id)2). However, it has
been argued in recent works that the Euclidean metric is not a good metric for
the tensor space because positive definite symmetric matrices only constitute a
cone in the Euclidean matrix space. Thus, the tensor space is not complete (null
or negative eigenvalues are at a finite distance). For instance, an expansion of
a factor

√
2 in each direction (leading to Σ = 2 Id) is at the same Euclidean

distance from the identity than the “black hole” transformation Φ(x) = 0 (which
has a non physical null strain tensor). In non-linear registration, this asymmetry
of the regularization leads to different results if we look for the forward or the
backward transformation: this is the inverse-consistency problem [18].

3.1 A Log-Euclidean metric on the strain tensor

To solve the problems of the Euclidean tensor computing, affine-invariant Rie-
mannian metrics were recently proposed [19–22]. Using these metrics, symmetric
matrices with null eigenvalues are basically at an infinite distance from any ten-
sor, and the notion of mean value corresponds to a geometric mean, even if it has
to be computed iteratively. More recently, [23] proposed Log-Euclidean metrics,
which exhibit the same properties while being much easier to compute. As these
metrics simply consist in taking a standard Euclidean metric after a (matrix)
logarithm, and since they correspond to the previous ones as long as the ref-
erence point is the identity, we relied on the later in the original definition of
the Riemannian elasticity [1]. However, the Riemannian Elasticity principle can
be generalized to any Riemannian metric on the tensor space without any re-
striction. We will see that the full linear invariance properties of affine-invariant
metrics will prove to be necessary in Section 5 to properly define a left-invariant
energy on shape diffeomorphisms.
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In the log-Euclidean Riemannian framework, the deviation between the ten-
sor Σ and the identity is the tangent vector log(Σ) − log( Id) = log(Σ). In-
terestingly, this tensor is known in continuum mechanics as the logarithmic or
Hencky strain tensor [24], and is used for modeling very large deformations. [25].
It is considered as the natural strain tensor for many materials, but its use was
hampered for a long time because of its computational complexity [26].

For registration, the basic idea is to replace the elastic energy with a regular-
ization that measures the amount of logarithmic strain by taking a Riemannian
distance between Σ and Id. With a log-Euclidean metric, this give the log-
Euclidean Riemannian elasticity:

RegLERE(Φ) = 1
4

∫
dist2Log (Σ, Id) = 1

4

∫
dist2Eucl (log(Σ), log( Id))2 = 1

4

∫
‖log(Σ)‖2

3.2 Isotropic Log-Euclidean Riemannian elasticity

The simplest metric on a logarithmic strain tensor W = log(Σ) is ‖W‖2 =
Tr(W 2). More generally, any metric is given by a bilinear form G(W1,W2) on
the space of symmetric matrices, and is uniquely specified by the quadratic form
‖W‖2 = G(W,W ). A metric is isotropic if ‖W‖2 = ‖R W RT‖2 for any rotation
R. This means that it only depends on the eigenvalues of W , or equivalently
on the matrix invariants Tr(W ), Tr(W 2) and Tr(W 3). However, as the form is
quadratic in W , we are left only with Tr(W )2 and Tr(W 2) that can be weighted
arbitrarily, e.g. by µ and λ/2 (with n.λ > −2µ where n is the dimension of the
space to ensure the positive definiteness of the metric). Finally, the isotropic
log-Euclidean Riemannian elasticity (ILERE) energy has the form:

RegILERE(Φ) =
∫
µ
4 Tr

(
(log(Σ))2

)
+ λ

8 Tr(log(Σ))2

We retrieve the classical form of the isotropic elastic energy with Lamé coeffi-
cients, but with the logarithmic strain tensor. This form was expected as the St
Venant-Kirchoff energy was also derived for isotropic materials.

3.3 Incorporating deformation statistics

In the context of inter-subject or atlas-to-image registration, we do not know
a priori the deformability of the material. Moreover, we don’t expect it to be
isotropic nor stationary. An interesting idea is to learn the local deformability
characteristics from a population of typical transformations Φi(x).

Based on the statistical framework presented in [22], we considered in [1]
the strain tensor as a random variable in the Riemannian space of tensors. We
defined the a priori deformability Σ̄(x) as the Riemannian mean of deformation
tensors Σi(x) = ∇ΦT

i ∇Φi. A related idea was suggested directly on the Jacobian
matrix of the transformation ∇Φ in [27], but using a general matrix instead of a
symmetric one raises important computational and theoretical problems. With
the Log-Euclidean metric on strain tensors, the statistics are quite simple since
we have a closed form for the mean value:

Σ̄(x) = exp(W̄ (x)) with W̄ (x) = 1
N

∑
i log(Σi(x))
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This mean deformability Σ̄ is not so easy to understand. If the reference
image is optimally centered with respect to the data, one could expect the mean
deformation to be null (W̄ = 0). However, this equation specifies n(n + 1)/2
scalar components while there are only n free scalar components at each point
of a displacement field. Thus, it seems at the first glance that n(n− 1)/2 scalar
components (e.g. off diagonal terms of W̄ ) could not be prescribed to zero. More
powerful tools from the singularity theory are probably necessary to definitely
conclude on that point.

Going one step further, we can compute the covariance matrix of the random
process Cov(Σi(x)) at each point. Let us decompose the symmetric tensor W =
log(Σ) into a vector Vect(W )T = (w11, w22, w33,

√
2w12,

√
2w13,

√
2w23) that

gathers all the tensor components in an orthonormal basis. In this coordinate sys-
tem, we define the covariance matrix Cov = 1

N

∑
Vect(Wi−W̄ )Vect(Wi−W̄ )T.

To adapt the metric on strain tensors to these first and second order mo-
ments of the random deformation process, a well known and simple tool is the
Mahalanobis distance, so that we finally define the statistical Log-Euclidean Rie-
mannian elasticity (SLERE) energy as:

RegSLERE(Φ) = 1
4

∫
µ2

(W̄ ,Cov)
(log(Σ(x))) = 1

4

∫
Vect(W−W̄ )Cov(-1)Vect(W−W̄ )T

As we are using a Mahalanobis distance, this least-squares criterion can be
seen as the log-likelihood of a Gaussian process on strain tensor fields: we are
implicitly modeling the a-priori probability of the deformation. In a registration
framework, this point of view is particularly interesting as it opens the way to
use Bayesian estimation methods for non-linear registration.

4 Optimizing the Riemannian elasticity

To use the logarithmic elasticity energies as regularization criteria in the registra-
tion framework, we have to compute their gradient. Let us consider the isotropic
Riemannian elasticity first. Thanks to the properties of the differential of the log
(see appendix A), we have Tr(∂V log(Σ)) = Tr(Σ(-1) V ) and 〈 ∂V log(Σ) |W 〉 =
〈 ∂W log(Σ) | V 〉. Thus, using V = ∂uΣ =

∑
α (∂αu ∂αΦT + ∂αΦ ∂αuT) and

W = log(Σ), we can write the directional derivative of the criterion:

∂uRegILERE(Φ) =
∫
µ
2 〈W | ∂V log(Σ) 〉+ λ

4 Tr(W ) Tr(∂V log(Σ))

=
∫
µ
2 〈 ∂W log(Σ) | V 〉+ λ

4 Tr(W ) Tr(Σ(-1) V )

=
∑
α

∫
µ 〈 ∂W log(Σ) ∂αΦ | ∂αu 〉+ λ

2 Tr(W ) 〈Σ(-1) ∂αΦ | ∂αu 〉

Integrating by part with homogeneous Neumann boundary conditions, we end
up with the gradient:

∇RegIRE(Φ) = −
∑
α ∂α(Z ∂αΦ) with Z = µ ∂Wlog(Σ) + λ

2 Tr(W ) Σ(-1) (1)

The same formula still holds for the general statistical Riemannian elasticity
with Z = ∂X log(Σ) where X is the symmetric matrix defined by Vect(X) =
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Cov(-1) Vect(log(Σ) − W̄ ). Thus, we may write the gradient of all (St-Venant-
Kirchoff, Isotropic Riemannian and Statistical Riemannian) elastic energies as:

∇Reg(Φ) = −
∑
α ∂α(Z ∂αΦ) (2)

and only the 2nd Piola-Kirchoff tensor Z differs:

ZSVKE = µ(Σ − Id) + λ
2 Tr(Σ − Id) Id (3)

ZILERE = µ ∂W log(Σ) + λ
2 Tr(log(Σ)) Σ(-1) (4)

ZSLERE = ∂X log(Σ) with Vect(X) = Cov(-1) Vect(log(Σ)− W̄ ) (5)

4.1 Practical implementation

A simple and easily parallelisable implementation is the following. First, one
computes the image of the gradient of the transformation, or more particularly
the directional derivatives, for instance using finite differences. ∂αΦ(x) = (Φ(x+
τα eα) − Φ(x − τα eα))/2τα, where τα is the voxel size in the direction α. This
operation is not computationally expensive, but requires to access the value of
the transformation field at neighboring points, which can be time consuming due
to systematic memory page faults in large images.

Then, we process these 3 vectors completely locally to compute 3 new vectors
vα = Z(∂αΦ). This operation is computationally more expensive but is mem-
ory efficient as the resulting vectors can replace the old directional derivatives.
Finally, the gradient of the criterion ∇E =

∑
α ∂αvα may be computed using

finite differences on the resulting image. ∇E(x) =
∑
α(vα(x + τα eα) − vα(x −

τα eα))/2τα. Once again, this is not computationally expensive, but it requires
intensive memory accesses.

The only additional cost for the Riemannian Elasticity is the computation of
the logarithm W = log(Σ) and its directional derivative ∂W log(Σ). This would
probably be prohibitive if we had to rely on numerical approximation methods.
Fortunately, we were able to compute an explicit and very simple and efficient
closed-form expression that only requires the diagonalization of Σ (see appendix
A). Experiments performed in [1] showed that optimizing the isotropic Rieman-
nian elasticity was only 3 time longer than optimizing the standard elasticity.

5 Left Invariant Riemannian Elasticity

Let us now investigate the invariance properties in view of relating the Rie-
mannian elasticity to metrics on diffeomorphisms. Since ∇(Φ(-1)) ◦Φ = (∇Φ)(-1),
the isotropic logarithmic distance of a strain tensor to the identity is locally
inverse-consistent. We have indeed Tr

(
log(ΣΦ)2

)
= Tr

(
log(ΣΦ(-1) ◦ Φ)2

)
and

Tr (log(ΣΦ)) = Tr (log(ΣΦ(-1) ◦ Φ)). This means that, locally, a scaling of a fac-
tor 2 at the same distance from the identity than a scaling of 0.5. However, this
property does not hold globally due to the change of the volume element during
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the change of variable y = Φ(x):

RegIRE(Φ(-1)) =
∫
µ
4 Tr

(
(log(ΣΦ(-1)(y)))2

)
+ λ

8 Tr(log(ΣΦ(-1)(y)))2.dy

=
∫
µ
4 Tr

(
(log(ΣΦ(x)))2

)
+ λ

8 Tr(log(ΣΦ(x)))2.
√
|ΣΦ(x)|.dx

5.1 Inverse Consistent Riemannian Elasticity

Following an idea suggested in [28], we can integrate with a volume element
which is the geometric mean between the one in the original space and the one
in the arrival space, i.e.:

√
|∇Φ(x)|.dx = |Σ(x)|1/4.dx. If f is a locally inverse

consistent functional (i.e. such that f(Φ(-1)) ◦ Φ = f(Φ)), then the integral value
F (Φ) =

∫
f(Φ).

√
|∇Φ| is also inverse consistent. Indeed, the change of variable

y = Φ(x) induces dy = |∇Φ(x)|.dx, but since |∇(Φ(-1)) ◦ Φ| = |∇Φ|(-1), we have:

F (Φ(-1)) =
∫

f(Φ(-1))(y).
√
|∇(Φ(-1))(y)|.dy =

∫
f(Φ)(x).

√
|∇(Φ)(x)|.dx = F (Φ)

As the log-Euclidean distance of a strain tensor to the identity is locally
inverse consistent, we thus obtain a globally inverse consistent (isotropic) Rie-
mannian elasticity with:

RegICRE(Φ) =
∫ {

µ

4
Tr
(
log(Σ)2

)
+

λ

8
Tr(log(Σ))2

}
.|Σ|1/4.dx

Another formulation may be obtained using the change of variable y = Φ(x)
and will turn out to be generalizable to a left-invariant energy:

RegICRE(Φ) =
∫

‖log(Σ ◦ Φ(-1))‖2
.|Σ ◦ Φ(-1)|−1/4 (6)

In this formula, the norm ‖.‖ refers to an isotropic norm on symmetric matrices.
The derivative of this new criterion can be deduced from ∂uRegIRE using:

∂u det(Σ)1/4 = 1
4Tr(Σ(-1).∂uΣ).det(Σ)1/4 = 1

2

∑
α 〈Σ(-1).∂αΦ | ∂αu 〉det(Σ)1/4

We have one again ∂uRegICRE(Φ) =
∑
α

∫
〈 Z.∂αΦ | ∂αu 〉, with

ZICRE =
(

ZIRE +
1
2
‖W‖2.Σ(-1)

)
det(Σ)1/4

Thus, we have obtained an inverse invariant energy on diffeomorphisms which
allows us to optimize directly their regularity in registration processes without
having to integrate numerically along the transformation trajectory for com-
puting the length of geodesics, as for the invariant metrics on diffeomorphisms
proposed in [15, 16].
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5.2 Left-invariant Riemannian elasticity

This energy is positive and null only is the transformation is locally rigid every-
where. It can be turned into a left- (or right-) invariant “distance” by left- (resp.
right) translation. Let us investigate the left-invariant “distance” (The right-
invariant distance is automatically given by distR(Φ, Ψ) = distL(Φ(-1), Ψ (-1))):

dist2L(Φ, Ψ) = RegICRE(Φ(-1) ◦ Ψ) =
∫

‖log(ΣΦ(-1)◦Ψ )‖2
.|Φ(-1) ◦ Ψ |1/4

Thanks to the inverse invariance, the “distance” is symmetric. It is null if and
only if the two diffeomorphisms differ by a local rotation everywhere. However,
to show that this is really a left-invariant distance on diffeomorphisms of rigid
shapes, the triangular inequality remains to be established. Moreover, we suspect
that we obtain an extrinsic distance and not a Riemannian one.

The expression of the left-invariant distance can be worked out to see how
much it differs from the previously proposed statistical Riemannian elasticity.
We first notice that ∇(Φ(-1) ◦ Ψ) = ∇Ψ.∇(Φ(-1)) ◦ Ψ = ∇Ψ.(∇Φ)(-1) ◦ (Φ(-1) ◦ Ψ).
Using the singular value decomposition ∇Φ = U.S.V T, there exists a rotation
R = V.UT at each point such that R.∇Φ = Σ

1/2
Φ . Thus, we have:

ΣΦ(-1)◦Ψ = RT.
(
Σ
−1/2
Φ ◦ (Φ(-1) ◦ Ψ)

)
.ΣΨ .

(
Σ
−1/2
Φ ◦ (Φ(-1) ◦ Ψ)

)
.R

But thanks to log(RT.Σ.R) = RT. log(Σ).R and to the isotropy of the norm on
symmetric matrices, the rotation R disappear in the distance. Finally, using the
change of variable y = Ψ(x), we end up with

dist2L(Φ, Ψ) =
∫ ∥∥∥log

(
(Σ−1/2

Φ ◦ Φ(-1)).(ΣΨ ◦ Ψ (-1)).(Σ−1/2
Φ ◦ Φ(-1))

)∥∥∥2

.

det(ΣΨ ◦ Ψ (-1))−1/4.det(ΣΦ ◦ Φ(-1))−1/4

Besides symmetric corrections for the volume element, one recognize here
the affine-invariant distance on symmetric matrices instead of the log-Euclidean
one as we originally proposed for the statistical Riemannian elasticity. Using the
resampled tensor fields Σ̂φ = ΣΦ ◦ Φ(-1) and Σ̂ψ = ΣΨ ◦ Ψ (-1), we finally obtain:

dist2L(Φ, Ψ) =
∫

dist2Aff
(
Σ̂Φ , Σ̂Ψ

)
.det(Σ̂Ψ )−1/4.det(Σ̂Φ)−1/4 (7)

Other simple formulations of the left (and of the right) invariant “distance”
are possible, and we are currently analyzing them to find out the more intu-
itive ones. Following the statistical framework of [29], computing the derivatives
will allow determining the barycentric equation of the Fréchet “mean diffeomor-
phisms” according to these “metrics”, and a gradient descent algorithm to obtain
them. Then, we hope to be able to compute second order moment and to define
a kind of Mahalanobis distance (including local anisotropy and non-stationarity)
on shape diffeomorphisms.
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6 Discussion

Riemannian elasticity is an integrated framework to compute the statistics on
deformations and re-introduce them as constraints in non-linear registration al-
gorithms. This framework is based on the interpretation of the elastic energy as a
Euclidean distance between the Cauchy-Green strain tensor and the identity (i.e.
the local rigidity). By providing the space of tensors with a more suitable Rie-
mannian metric, for instance a Log-Euclidean one, we can define proper statistics
on deformations, like the mean and the covariance matrix. Taking these mea-
surements into account in a statistical (i.e. a Mahalanobis) distance, we end-up
with the statistical Riemannian elasticity regularization criterion. This criterion
can also be viewed as the log-likelihood of the deformation probability, which
opens the way to Bayesian deformable image registration algorithms.

We investigated in this paper the theoretical properties of the isotropic and
stationary version and we showed that it was possible to obtain an inverse-
consistent criterion by modifying the spatial integration measure. It is remark-
able that this allows to define a left or right invariant energy between two dif-
feomorphisms without having to optimize for the geodesic path between them.
However, many questions are left open. For instance, it remains to be established
that our energy is a distance, and if it is Riemannian or extrinsic. Determining
the geodesics (if they exist) would also be very interesting to better understand
the properties of these energies. This would probably help also in generalizing
the statistical Riemannian elasticity in a consistent way, in order to measure and
take into account anisotropic and non-stationary behavior of the deformations.
On a more theoretical point of view, it would be interesting to make the link
between our approach and the Brownian warps of [28, 30].
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A Appendix: tensor derivatives

A.1 Exponential of a tensor

Let W = R S RT be a diagonalization of a symmetric matrix. We can write
any power of W in the same basis: W k = R Sk RT. Thus, the rotation matrices
can be factored out in the series defining the matrix exponential, so that the
exponential is applied directly to the eigenvalues:

exp(W ) =
+∞∑
k=0

W k

k!
= R DIAG(exp(si)) RT

This series converges for any symmetric matrix argument, and it is easy to
see that its inverse is well defined for any positive definite symmetric matrix
Σ = R DIAG(ai) RT. This is the function: log(Σ) = R (DIAG(log(ai)))RT. It is
important to notice that there is no series expansion which is converging for all
arguments, like for the exponential.

A.2 Differential of the exponential

The matrix exponential and logarithm realize a one-to-one mapping between the
space of symmetric matrices to the the space of tensors. Moreover, one can show
that this mapping is diffeomorphic, since the differential has no singularities. Us-
ing the Taylor expansion (W + εV )k = W k + ε

∑k−1
i=0 W i V W k−i−1 + O(ε2) for

k ≥ 1, we obtain by identification the directional derivative ∂V exp(W ) by gath-
ering the first order terms in ε in the series exp(W +εV ) =

∑+∞
k=0 (W + εV )k/k!:

∂V exp(W ) = (d exp(W ))(V ) =
+∞∑
k=1

1
k!

k−1∑
i=0

W i V W k−i−1 (8)

For simplifying the differential, we can see that using the diagonalization W =
RS RT in the series gives:

∂V exp(W ) = R ∂(RT V R) exp(S) RT
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Thus, we are left with the computation of ∂V exp(S) for S diagonal. As [SlV Sk−l−1]ij =

sli vij sk−l−1
j , we have [∂V exp(S)]ij =

{∑+∞
k=1

1
k!

∑k−1
l=0 sli sk−l−1

j

}
vij = qij vij

with

qij =
+∞∑
k=1

1
k!

k−1∑
l=0

sli sk−l−1
j =

+∞∑
k=1

1
k!

ski − skj
si − sj

=
exp(si)− exp(sj)

si − sj

= exp(sj)
(

1 +
(si − sj)

2
+

(si − sj)2

6
+ O

(
(si − sj)3

))
The last Taylor expansion shows that this formula is computationally well posed.
Moreover, we have qij ≥ 1 > 0, so that we can conclude that d exp(S) is a diag-
onal linear form that is always invertible: the exponential is a diffeomorphism.

A.3 Differential of the logarithm

To compute the differential of the logarithm function, we do not have a series
that we could perturb like for the exponential, but we can simply inverse the
differential of the exponential as a linear form: as exp(log(Σ)) = Σ, we have
(d log(Σ)(V ) = (d exp(log(Σ))(-1)V . Using D = exp(S), the inverse is easily
expressed for a diagonal matrix: [(d exp(S))(-1) V ]ij = vij/qij . Thus we have:

[∂V log(D)]ij = vij
log(di)− log(dj)

di − dj

Notice that

q(-1)
ij =

log(di)− log(dj)
di − dj

=
1
dj

(
1− di − dj

2 dj
+

(di − dj)2

3 d2
j

+ O
(
(di − dj)3

))
so that the formula is numerically stable. Finally, using the identity log(Σ) =
RT log(R Σ RT) R for any rotation R, we have:

∂V log(R D RT) = R (∂RT V R log(D) ) RT

That way, we may compute the differential at any point Σ = R D RT.

A.4 Remarkable identities

∂log(Σ) log(Σ) = Σ(-1) log(Σ) = log(Σ) Σ(-1) (9)
〈 ∂V log(Σ) |W 〉 = 〈 ∂W log(Σ) | V 〉 (10)

∂log(Σ) log(Σ) = R
(
∂log(D) log(D)

)
RT = R Diag(log(di)/di) RT = Σ(-1) log(Σ)

〈 ∂V log(Σ) |R D RT 〉 = Tr ((∂RT V R log(D) ) RT W R)

= [RT V R]ij
log(di)− log(dj)

di − dj
[RT W R]ij

= Tr ((∂RT W R log(D) ) RT V R) = 〈 ∂W log(Σ) | V 〉
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Abstract. In this article, we focus on the computation of statistics of
invertible geometrical deformations (i.e., diffeomorphisms), based on the
generalization to this type of data of the notion of principal logarithm.
Remarkably, this logarithm is a simple 3D vector field, and can be used
for diffeomorphisms close enough to the identity. This allows to perform
vectorial statistics on diffeomorphisms, while preserving the invertibility
constraint, contrary to Euclidean statistics on displacement fields.

Overview

In this article, which is an extended abstract of [1], we focus on the compu-
tation of statistics of general diffeomorphisms, i.e. of geometrical deformations
(non-linear in general) which are both one-to-one and regular (as well as their
inverse). To quantitatively compare non-linear registration algorithms, or in or-
der to constrain them, computing statistics on global deformations would be very
useful as was done in [6] with local statistics.

The computation of statistics is closely linked to the issue of the parameter-
ization of diffeomorphisms. Many algorithms, as in [5], provide transformations
are always diffeomorphic, and parameterize them via their displacement field.
However, Euclidean means of displacement fields do not necessary yield invert-
ible deformations, which makes Euclidean statistics on these parameters prob-
lematic for diffeomorphisms. In [7], it was proposed to parameterize arbitrary
diffeomorphisms with Geodesic Interpolating Splines control points [4], and then
to perform Euclidean operations on these low-dimensional parameters. However,
although this guarantees the invertibility of the results, this may not be adequate
for the whole variety of invertible transformations used in medical imaging.

To fully take into account the group structure of diffeomorphisms, it has been
proposed to parameterize dense deformations with Hilbert spaces of time-varying
speed vector fields, which yield geometrical deformations via the integration of
an Ordinary Differential Equation (ODE) during one unit of time [8, 3]. In [9],
it is suggested that the linear space of intial momenta of the geodesics of these
spaces could provide an appropriate setting for statistics on diffeomorphisms.
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However, this is illustrated in [9] only in the case of landmark matching. To our
knowledge, this statistical framework has not been used yet in the general case,
certainly because of the iterative nature of the computation of the mean in this
setting, which requires very stable numerical algorithms to converge.

In this work, we introduce a novel parameterization of diffeomorphisms, based
on the generalization of the principal logarithm to non-linear geometrical defor-
mations. Interestingly, this corresponds to parameterizing diffeomorphisms with
stationnary speed vectors fields. As for matrices, this logarithm can be used
only for transformations close enough to the identity. However, our preliminary
numerical experiments on 3D non-rigid registration suggest that this limitation
affects only very large deformations, and may not be problematic for image reg-
istration results. This novel setting is the infinite-dimensional analogous of the
Log-Euclidean framework proposed in [2] for tensors. In this framework, usual
Euclidean statistics can be performed on diffeomorphisms via their logarithms,
whith excellent mathematical properties like inversion-invariance.

In [1], our contributions are presented as follows. We first present the Log-
Euclidean framework for diffeomorphisms, which is closely linked to the notion of
one-parameter subgroups. Then, we present two efficient algorithms to compute
the exponential of a vector field and the logarithm of a diffeomorphism, which
are exemplified on synthetic data. Finally, we apply our framework to non-linear
registration results to compute a Log-Euclidean mean deformation between a 3D
atlas and a dataset of 9 T1 MR images of human brains.
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3. M. F. Beg, M. I. Miller, A. Trouvé, and L. Younes. Computing large deformation
metric mappings via geodesic flows of diffeomorphisms. Int. Jour. Comp. Vis.,
61(2):139–157, 2005.

4. V. Camion and L. Younes. Geodesic interpolating splines. In M. Figuiredo, J. Zeru-
bia, and A. Jain, editors, Proc. of Energy Minimization Methods in Comp. Vis. and
Pat. Rec. (EMMCVPR;01), LNCS 2134, pages 513–527, 2001.

5. C. Chefd’hotel, G. Hermosillo, and O. Faugeras. Flows of diffeomorphisms for mul-
timodal image registration. In Proc. of ISBI, 2002.

6. O. Commowick, R. Stefanescu, P. Fillard, V. Arsigny, N. Ayache, X. Pennec, and
G. Malandain. Incorporating statistical measures of anatomical variability in atlas-
to-subject registration for conformal brain radiotherapy. In Proc. of MICCAI’2005
(II), LNCS, pages 927–934, 2005.

7. S. Marsland and C. J. Twining. Constructing diffeomorphic representations for the
groupwise analysis of nonrigid registrations of medical images. IEEE Trans. Med.
Imaging, 23(8):1006–1020, 2004.
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ABSTRACT

Tensor-based morphometry (TBM) is widely used in computational anatomy as
a means to understand shape variation between structural brain images. A 3D
nonlinear registration technique is typically used to align all brain images to
a common neuroanatomical template, and the deformation fields are analyzed
statistically to identify group differences in anatomy. However, the differences
are usually computed solely from the determinants of the Jacobian matrices J
that are associated with the deformation fields computed by the registration
procedure. Thus, much of the information contained within those matrices gets
thrown out in the process. Only the magnitude of the expansions or contractions
is examined, while the anisotropy and directional components of the changes are
ignored. Here we remedy this problem by computing multivariate shape change
statistics using the strain matrices, defined as (JT J)1/2. As the strain matrices
belong to the space of positive-definite matrices, we first transform them into a
vector space using the ’Log-Euclidean metric’ [1]. We study the brain morphology
of 26 HIV/AIDS patients and 14 matched healthy control subjects using our
method. The goal of the work was to find out whether multivariate statistics on
the strain tensor afforded additional power in detecting anatomical differences
between patients and controls.

The images are registered using a high-dimensional 3D fluid registration algo-
rithm, which optimizes the Jensen-Rényi divergence [2], an information-theoretic
measure of image correspondence. A pixelwise Hotelling T 2 test is used as a mea-
sure of variation between patients and controls. To assess the difference between

† This research was supported by the National Institute on Aging (AG021431 and
AG016570), the National Library of Medicine, the National Institute for Biomedical
Imaging and Bioengineering, the National Center for Research Resources (LM05639,
EB01651, RR019771), and a Research Scientist Development Award - Level II
(MH01077)
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our results and the ones found from the determinant of the Jacobian, these re-
sults are compared to the one-dimensional Student’s t test on the determinant
of the Jacobian matrices. Patterns of detected white matter atrophy were of
greater spatial extent and the corresponding effect size was greater in the case
of Hotelling’s T 2 test, indicating its better sensitivity. Group differences in brain
structure between AIDS patients and healthy subjects are visible throughout the
brain, with the greatest effect sizes in the corpus callosum and the basal gan-
glia. The cortical region is noisier, perhaps because the registration method is
intensity-based and does not perform as well in that area. The anatomical profile
of group differences is in line with studies using traditional volumetric methods,
as the HIV virus is known to cause widespread neuronal loss and corresponding
atrophy of the gray and white matter, especially in subcortical regions. Mul-
tivariate statistics on matrix-valued measures derived from deformation fields
may therefore provide greater power to detect structural differences in the brain
than more conventional methods that use the Jacobian determinant alone.

References

1. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast
and simple calculus on diffusion tensors. Magnetic Resonance in Medicine (2006).
To appear. Preprint: INRIA RR 5584, 2005.

2. Chiang, M.C., Dutton, R.A., Hayashi, K.M., Lopez, O.L., Aizenstein, H.J., Toga,
A.W., Becker, J.T., Thompson, P.M.: 3D pattern of brain atrophy in HIV/AIDS
visualized using tensor-based morphometry. NeuroImage submitted (2006)

Mathematical Foundations of Computational Anatomy (MFCA'06) 17



Singular solutions, momentum maps and
computational anatomy

Colin J. Cotter1 and Darryl D. Holm1,2

1 Department of Mathematics, Imperial College London, SW7 2AZ, UK
colin.cotter@imperial.ac.uk

2 Los Alamos National Laboratory, Los Alamos, NM 87545 USA
d.holm@imperial.ac.uk, dholm@lanl.gov

Abstract. This paper describes the variational formulation of tem-
plate matching problems of computational anatomy (CA); introduces
the EPDiff evolution equation in the context of an analogy between CA
and fluid dynamics; discusses the singular solutions for the EPDiff equa-
tion and explains why these singular solutions exist (singular momentum
map). Then it draws the consequences of EPDiff for outline matching
problem in CA and gives numerical examples.

“I shall speak of things . . . so singular in their oddity as in some manner
to instruct, or at least entertain, without wearying.” – Lorenzo da Ponte

1 Introduction

Computational Anatomy (CA) must measure and analyze a range of variations
in shape, or appearance, of highly deformable structures. The problem statement
for CA was formulated long ago [1]

In a very large part of morphology, our essential task lies in the compar-
ison of related forms rather than in the precise definition of each. . . .
This process of comparison, of recognizing in one form a definite permu-
tation or deformation of another, . . . lies within the immediate province
of mathematics and finds its solution in . . . the Theory of Transforma-
tions. – D’Arcy Thompson, On Growth and Form (1917)

The pioneering work of Bookstein, Grenander and Bajscy [2–4] first took up this
challenge by introducing a method called template matching. The past several
years have seen an explosion in the use of template matching methods in com-
puter vision and medical imaging that is fulfilling D’Arcy Thompson’s expecta-
tion [5–19]. These methods enable the systematic measurement and comparison
of anatomical shapes and structures in medical imagery. The mathematical the-
ory of Grenander’s deformable template models, when applied to these problems,
involves smooth invertible maps (diffeomorphisms), as presented in this context
in [9, 10, 18–21]. In particular, the template matching approach involves Rieman-
nian metrics on the diffeomorphism group and employs their projections onto
specific landmark shapes, or image spaces.
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The problem for CA then becomes to minimize the distance between two
images as specified in a certain representation space, V . Metrics are written
so that the optimal path in V satisfies an evolution equation, which was first
discovered in abstract form [22] and later called EPDiff when it arose in the
Euler-Poincaré theory of optimal motion on smooth invertible mappings called
diffeomorphisms, [23].

The EPDiff equation coincides with the Euler equation for ideal fluids in the
case that the Riemannian metric for the distance between two images is the L2

norm. Another type of norm on V (called theH1 norm) arises in the theory of the
fascinating nonlinear coherent solutions of shallow water waves called solitons.
Solitons interact with each other elastically, so they re-emerge unscathed from
fully nonlinear collisions. EPDiff with the H1 norm on V describes the peaked
soliton solutions of the Camassa-Holm shallow water wave equation. As we shall
see, the Camassa-Holm peakons arise from a general property of Hamiltonian
systems called their momentum map. A discussion of EPDiff and peakons in
the particular case of template matching appears in [24].

In this paper, we shall draw parallels between the two endeavors of fluid
dynamics and template matching for computational anatomy, by showing how
the Euler-Poincaré theory of ideal fluids can be used to develop new perspectives
in CA. In particular, we discover that CA may be informed by the concept of
weak solutions, solitons and momentum maps for geodesic flows [24–26].

1.1 Problem & Approach for Computational Anatomy

Computational Anatomy (CA) compares shapes (graphical structures) by mak-
ing a geodesic deformation from one shape to the another. Among these
graphical structures, landmarks and image outlines in CA are found to be sin-
gular solutions of the geodesic EPDiff equation. A momentum map for sin-
gular solutions of EPDiff yields their canonical Hamiltonian formulation, which
provides a complete parameterization of the landmarks and image outlines
by their canonical positions and momenta. The momentum map provides
an isomorphism between landmarks (and outlines) for images and singular
(weak) solutions of EPDiff. (These solutions are solitons in 1D.) This isomor-
phism provides for CA: (1) a complete and non-redundant data representa-
tion; (2) a dynamical paradigm in which image outlines interact by exchange
of momentum; (3) methods for numerical simulation & data assimilation. Euler-
Poincaré theory also provides a framework for unifying and extending the various
approaches in CA.

Thus, the concept of momentum becomes important for CA, because mo-
mentum:
− Completes the representation of images (momentum of cartoons);
− Informs template matching of the possibility of soliton-like collisions and mo-
mentum exchange in image outline interactions;
− Encodes the subsequent deformation into the initial locus and momentum
of an image outline;
− Provides numerical simulation methods using the momentum map for
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right action as a data structure; and
− Accomplishes matching and data assimilation via the adjoint linear prob-
lem for template matching, using the initial momentum as a control vari-
able.
All of these momentum properties flow from the EPDiff equation.
Outline of the paper. Section 2 describes the template matching variational
problems of computational anatomy, explains the analogy with fluid dynamics
and introduces the fundamental EPDiff evolution equation. The singular solu-
tions for the EPDiff equation (2.1) with diffeomorphism group G are discussed
in section 3. They are, in particular, related to the outline matching problem in
computer vision, examples of which are given in section 4.

2 Mathematical formulation of template matching for CA

2.1 Cost

Most problems in CA can be formulated as: Find the deformation path
(flow) with minimal cost, under the constraint that it carries the tem-
plate to the target. Such problems have a remarkable analogy with fluid dy-
namics. The cost assigned in template matching for comparing images I0 & I1

is specified as a functional

Cost(t 7→ ϕt) =
∫ 1

0

`(ut) dt

defined on curves ϕt in a Lie group with tangents dϕt

dt = ut ◦ϕt and It = ϕt · I0.
In what follows, the function ut 7→ `(ut) = ‖ut‖2 will be taken as a squared
functional norm on the space of velocity vectors along the flow. The Lie group
property specifies the representation space for template matching as a manifold
of smooth mappings, which may be differentiated, composed and inverted. The
vector space of right invariant instantaneous velocities, ut = (dϕt/dt) ◦ ϕ−1

t

forms the tangent space at the identity of the considered Lie group, and may be
identified as the group’s Lie algebra, denoted g.

2.2 Mathematical analogy between template matching and fluid
dynamics

(I) The frameworks of CA and fluid dynamics both involve a right-invariant
stationary principle with action, or cost function. The main differences are that
template matching is formulated as an optimal control problem whose cost func-
tion is designed for the application, while fluid dynamics is formulated as an
initial value problem whose cost function is the fluid’s kinetic energy.
(II) The geodesic evolution for both template matching and fluid dynamics is
governed by the EPDiff equation [27, 21],( ∂

∂t
+ u · ∇

)
m + (∇u)T ·m + m(div u) = 0 . (2.1)
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Here u = G ∗ m, where G∗ denotes convolution with the Green’s kernel G for
the operator Qop, where

m =
δ`

δu
=: Qopu

The operator Qop is symmetric and positive definite for the cost defined by

Cost(t 7→ ϕt) =
∫ 1

0

`(ut) dt =
1
2

∫ 1

0

‖ut‖2 dt =
1
2

∫ 1

0

〈ut , Qoput 〉 dt

with L2 pairing 〈 · , · 〉 whenever ‖ut‖2 is a norm.
(III) The flows in CA and fluid dynamics both evolve under a left group action
on a linear representation space, It = ϕt · I0. They differ in the roles of their
advected quantities, at = a0 ◦ϕ−1

t . The main difference is that image properties
are passive and affect the template matching as a constraint in the cost function,
while advected quantities may affect fluid flows directly, for example through the
pressure, so as to produce waves.

2.3 How EPDiff emerges in CA

Choose the cost function for continuously morphing I0 into I1 as

Cost(t 7→ ϕt) =
∫ 1

0

`(ut) dt =
∫ 1

0

‖ut‖2 dt ,

where ut is the velocity of the fluid deformation at time t and

‖ut‖2 = 〈ut , Qoput 〉 ,

and Qop is our positive symmetric linear operator. Then, the momentum gov-
erning the process, mt = Qoput with Green’s function G : ut = G ∗mt satisfies
the EPDiff equation, (2.1). This equation arises in both template matching and
fluid dynamics, and it informs both fields of endeavor.

2.4 Deriving EPDiff from Euler-Poincaré Reduction of Hamilton’s
principle

.
Euler-Poincaré Reduction starts with a right (or left) G−invariant La-

grangian L : TG→ R on the tangent bundle of a Lie groupG. Right invariance
of the Lagrangian may be written as

L(g(t), ġ(t)) = L(g(t)h, ġ(t)h) , for all h ∈ G

A G−invariant Lagrangian defined on TG possesses a symmetry-reduced Hamil-
ton’s principle defined on the Lie algebra TG/G ' g. Stationarity of the
symmetry-reduced Hamilton’s principle yields the Euler-Poincaré equations
on the dual Lie algebra g∗. For G = Diff, this equation is EPDiff (2.1).
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3 Outline matching & momentum measures

Problem statement for outline matching:
Given two collections of curves c1, . . . , cN and C1, . . . , CN in Ω, find a time-
dependent diffeomorphic process (t 7→ ϕt) of minimal action (or cost) such that
ϕ0 = id and ϕ1(ci) = Ci for i = 1, . . . , N . The matching problem for the image
outlines seeks singular momentum solutions which naturally emerge in the
computation of geodesics.

3.1 Image outlines as Singular Momentum Solutions of EPDiff

For example, in the 2D plane, EPDiff has weak singular momentum solu-
tions that are expressed as [25, 23, 26]

m(x, t) =
N∑

a=1

∫
s

Pa(t, s)δ
(
x−Qa(t, s)

)
ds , (3.1)

where s is a Lagrangian coordinate defined along a set of N curves in the
plane moving with the flow by the equations x = Qa(t, s) and supported on the
delta functions in the EPDiff solution (3.1). Thus, the singular momentum so-
lutions of EPDiff represent evolving “wavefronts” supported on delta functions
defined along curves Qa(t, s) with arclength coordinate s and carrying momen-
tum Pa(t, s) at each point along the curve as specified by (3.1). These solutions
exist in any dimension and they provide a means of performing CA matching
for points (landmarks), curves and surfaces, in any combination.

3.2 Here is the Geometry – Leading to the Numerics

The basic observation that ties everything together in n−dimensions is the fol-
lowing:
Theorem (Holm and Marsden, [23]): EPDiff singular momentum so-
lutions T ∗Emb(S,Rn) → g∗ : (P,Q) → m define a momentum map.

It is beyond our scope here to explain either the proof of this theorem or
the mathematics underlying momentum maps for diffeomorphisms. However, we
summarize the main results for template matching, as follows:
− The embedded manifold S is the support set of the P ’s and Q’s.
− The momentum map is for left action of the diffeomorphisms on S.
− The whole system is right invariant.
− Consequently, its momentum map for right action is conserved.
− These constructions persist for a certain class of numerical schemes.
− They apply in template matching for every choice of norm.

3.3 A familiar example of a momentum map

A momentum map J : T ∗Q 7→ g∗ is a Hamiltonian for the canonical action
of a Lie group G on phase space T ∗Q. It is expressed in terms of the pairing
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〈 · , · 〉 : g∗ × g 7→ R as

〈J , ξ 〉 = 〈 p , £ξq 〉 =: 〈 q � p , ξ 〉 ,

where (q, p) ∈ T ∗q Q and the Lie derivative £ξq is the infinitesimal generator of
the action of the Lie algebra element ξ ∈ g on q in the manifold Q.

The standard example is £ξq = ξ × q for R3 × R3 7→ R3, with pairing 〈 · , · 〉
given by scalar product of vectors. The momentum map is then

J · ξ = p · ξ × q = q × p · ξ ⇒ J = q × p

This is angular momentum, the Hamiltonian for phase-space rotations. The
outlines of images may be parameterized as curves whose dynamics must be
invariant under reparameterizing the arclengths that label those curves. This
symmetry leads to a conserved momentum map, called the circulation along
the curves. The analog of this conservation law for fluids is the classical Kelvin
circulation theorem.

3.4 EPDiff dynamics informs optimal control for CA

CA must compare two geometric objects, and thus it is concerned with an op-
timal control problem. However, the initial value problem for EPDiff also
has important consequences for CA applications.

– When matching two geometric structures, the momentum at time t=0
contains all required information for reconstructing the target
from the template. This is done via Hamiltonian geodesic flow.

– Being canonically conjugate, the momentum has exactly the same dimension
as the matched structures, so there is no redundancy.

– Right invariance mods out the relabeling motions from the optimal solution.
This symmetry also yields a conserved momentum map.

– Besides being one-to-one, the momentum representation is defined on a lin-
ear space, being dual to the velocity vectors.
This means one may, for example,:
• study linear instability of CA processes,
• take averages and
• apply statistics to the space of image contours.

The advantage is the ease of building, sampling and estimating statistical
models on a linear space.

3.5 Summary

We have identified momentum as a key concept in the representation of im-
age data for CA and discussed analogies with fluid dynamics. The fundamental
idea transferring from fluid dynamics to CA is the idea of momentum maps
corresponding to group actions.
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4 Numerical examples of outline matching

In this section we describe our new technique applying particle-mesh methods to
the problem of matching outlines. First we describe the approach to calculating
geodesics in the space of outlines.

Let Q0 and Q1 be two embeddings of S1 in R2 which represent two shapes,
each a closed planar curve. We seek a 1-parameter family of embeddings Q(t) :
S1 × [0, 1] → R2 so that Q(0) = Q0 and Q(1) matches Q1 (up to relabeling).
Q(t) is found by minimizing the constrained norm of its velocity. To find the
equation for Q we require extremal values of the action

A =
∫ 1

0

1
2
L(u) d t+

∫ 1

0

∫
S1

P (s, t) · (Q̇(s, t)− u(Q(s, t))) d t, L = ‖u(t)‖2
g,

i.e. we seek time-series of vector fields u(t) which are minimized in some norm
subject to the constraint that Q is advected by the flow using the Lagrange
multipliers P (which we call momentum). The minimizing solutions are

δL

δu
=
∫

S1
P (s, t)δ(x−Q(s, t)) d s, (4.1)

Ṗ (s, t) = −P (s, t) · ∇u(Q(s, t), t), (4.2)
Q̇(s, t) = u(Q(s, t), t), (4.3)

subject to Q(s, 0) = Q0(s).
We note that equation (4.1) is the momentum map corresponding to the

cotangent-lift of the action of vector fields u on embedded curves given by

Q 7→ u(Q).

For a suitable test function w, we obtain

d

dt
〈w,m〉 − 〈∇w,um〉+ 〈w, (∇u)T ·m〉 = 0, m =

δL

δu
,

which is the weak form of the EPDiff equation.
Now one must seek initial momentum P (s, 0) which takes shape Q0(s) to

shape Q1(s). To do this, we choose some functional J of the advected shape
Q(1, s) which is minimized when Q(1, s) matches Q1(s). Following [28], we de-
scribe the curves by singular densities:

µ =
∫

S1

µ̂(s)δ(x−Q(1, s) d sdV (x), (4.4)

η =
∫

S1

η̂(s)δ(x−Q1(s) d sdV (x), (4.5)

and write J = ‖µ− η‖2
G where ‖ · ‖2

G is a norm for a densities in a reproducing
kernel Hilbert space with kernel G. This approach means that we do not need
to force particular points to be matched to each other on the shapes. This last
problem can be solved by using a gradient algorithm, where the gradient of the
residual error with respect to P (s, 0) is calculated using the adjoint equation
[29].
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4.1 Numerical discretization

We use the Variational Particle-Mesh (VPM) method [30, 31] to discretize the
equations (4.1-4.3), as follows: discretize the velocity on an Eulerian grid with
ng points and approximate ‖u‖ there; replace S1 by representing the shape by
a finite set of np Lagrangian particles {Qβ}

np

β=1, and interpolate from the grid
to the particles using basis functions

u(Qβ) =
ng∑

k=1

ukψk(Qβ) , with
ng∑

k=1

ψk(x) = 1 , ∀ x.

The action for the continuous time motion on the grid then becomes

A =
∫ 1

0

1
2
‖u(t)‖2

grid +
∑

β

P β ·

(
Q̇β −

∑
k

ukψk(Qβ)

)
d t,

and one can obtain a fully discrete method by discretizing the action in time.
For example, we can obtain a first-order method by extremizing

A = ∆t
N∑

n=1

1
2
‖un‖2

grid +
∑

β

P n
β ·

(
Qn

β −Qn−1
β

∆t
−
∑

k

un
kψk(Qn−1

β )

) .

The resulting time-stepping method is the (first-order) symplectic Euler-A
method for the time-continuous Hamiltonian system for the Lagrangian par-
ticles. In general, the method will always be symplectic since it arises from a
discrete variational principle (see [32] for a broad introduction to symplectic nu-
merical methods and their conservation properties). The conservation properties
of VPM are discussed in [31].

We approximate the densities µ and η on the grid using the standard particle-
mesh approach (see [33]):

µk =
∑

β

µ̂βψk(QN
β ), ηk =

∑
β

η̂βψk(Q1,β),

where Q1,β are the positions of particles on the target shape. This amounts to
“pixellating” the singular densities (4.4-4.5) on the grid. For a given kernel G,
we approximate J with

J =
∑
kl

G(xk − xl)(µk − ηk)(µl − ηl).

The discrete adjoint is then applied in computing the inversion for the initial
conditions for P β which generate the flow. A numerical example calculated using
this method is given in figure 1.
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Fig. 1. Results from a VPM calculation to calculate the minimal path between a two
simple shapes. On the left, the initial and final shapes are shown, and on the right, the
deformation of the initial shape into the final shape is depicted together with a grid
which shows how the flow map deforms the space around the shape. We used the H1

norm for velocity on a 2π × 2π periodic domain on a 128× 128 grid, discretized using
FFT, and the corresponding kernel was used to calculate J . Cubic B-splines were used
as basis functions.

Conclusion

We have presented the formulation and numerical implementation of D’Arcy
Thompson’s vision of how transformation theory would provide a natural means
of anatomical comparison, of recognizing shape and form. For this, we have
identified momentum as a key concept in the representation of image data for CA
and have discussed the analogies of CA with fluid dynamics. The fundamental
idea that transfers from fluid dynamics to CA is the idea of momentum maps
corresponding to group actions. The analogy of CA with fluid dynamics also
suggests that much remains to be gained by understanding modern methods in
fluid dynamics and seeking ways to transfer these ideas to CA.

In addition, we have illustrated the power of this method by solving a simple
but challenging problem of exact matching of two closed contours in the plane.
This example is deceptively simple looking, in fact the computation of exact
matching had never been done before and is still a challenging problem for
computational anatomy.
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Abstract. A central notion in Computational Anatomy is the gener-
ation of registration maps,mapping a large set of anatomical data to
a common coordinate system to study intra-population variability and
inter-population differences. In previous work [1, 2] methods for estimat-
ing the common coordinate system or the template given a collection
imaging data were presented based on the notion of Fréchet mean esti-
mation using a metric on the space of diffeomorphisms. In this paper we
extend the methodology to the estimation of a template given a collection
of unlabeled point sets and surfaces. Using a representation of points and
surfaces as currents a Reproducing Kernel Hilbert Space (RKHS) norm
is induced on the space of Borel measures. Using this norm and a met-
ric on the space of diffeomorphisms the template estimation problem is
possed as a minimum mean squared error estimation problem. An ef-
ficient alternating conjugate gradient decent algorithm is derived and
results exemplifying the methodology are presented.

1 Introduction

A major focus of computational anatomy has been the development of image
mapping algorithms [3] that can map and transform a single brain atlas on to
a population. Most digital brain atlases currently being used in computational
anatomy are based on a single subjects anatomy. Although these atlases provide
a standard coordinate system, and form the template in deformable template
setting, they are limited because a single anatomy cannot faithfully represent
the complex structural variability evident in a population.

Construction of atlases is a key procedure in population based medical im-
age analysis. In the paradigm of computational anatomy the atlas serves as
a deformable template[4]. The deformable template can project detailed atlas
data such as structural, biochemical, functional as well as vascular information
on to the individual or an entire population of brain images. The transforma-
tions encode the variability of the population under study. Statistical analysis
of the transformations can be used to characterize different populations [5]. For
a detailed review of deformable atlas mapping and the general framework for
computational anatomy see [3].
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1.1 Unbiased Large Deformation Atlas Estimation via minimum
mean squared error estimation.

For representations in which the underlying geometry is parameterized as a
Euclidean vector space, training data can be represented as a set of vectors
x1, · · · , xN in a vector space V . In a vector space, with addition and scalar
multiplication well defined, an average representation of the training set can be
computed as the linear average µ = 1

N

∑N
i xi. When studying statistical geo-

metric properties of anatomy, the transformations representing the variability of
a population are parameterized via diffeomorphic transformations of the ambi-
ent space. In the group of diffeomorphisms, the addition of two diffeomorphisms
is not generally a diffeomorphism and, hence, a template based on linear averag-
ing of transformations is not well defined. Fréchet [6] extended the notation of
averaging to general metric spaces via minimum mean squared error estimation.
For a general metric space M , with a distance d : M × M → R, the intrinsic
mean for a collection of data points xi ∈ M can be defined as the minimizer of
the sum-of-squared distances to each of the data points. That is

µ = arg min
x

1
N

N∑
i

d(x, xi)2 .

This approach, combined with the mathematical metric theory of diffeomor-
phisms developed in [7, 8] , represents the core of the atlas estimation methodol-
ogy. This approach has been applied previously to a sets of images, and can be
stated as the following estimation problem. Given a metric, D : S × S → R on
a group of transformations, along with an image dissimilarity metric E(I1, I2),
we wish to find the image Î such that

{ϕ̂i, Î} = arg min
ϕi,I

,
1
N

N∑
i

E(Ii ◦ ϕi, I)2 + D(e, ϕi)2

where e is the identity transformation. In this paper we follow the same basic
paradigm for unlabeled point sets and surfaces.

Previous work on diffeomorphic construction of atlases from unlabeled point
sets presented in [9, 10] take a clustering approach. In this paper rather than
explicitly clustering point sets, geometric measure theory is used to directly
define a dissimilarity metrics for unlabel point sets following [11].

The paper is organized as follows: In section 2, geometric measure theory
is used to define dissimilarity metrics for unlabel point sets and surfaces. For
completeness in section 4 the metric on the space of deffiomorphisims is reviewed.
In section 5 the template estimation problem given a collection of unlabeled point
sets and surfaces is formulated. Finally in sections ?? 7 implementation details
and results are presented.
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2 Hilbert norms for dissimilarity metric for point set and
surface data.

2.1 Dissimilarity metric for unlabeled point sets.

We follow the novel framework proposed in [11] for measuring dissimilarities
between unlabeled point sets. Given a set of unlabeled landmark points {xp}n

p=1

in Rd, a vector space structure is induced on the space of all such unlabeled point
sets by modeling them as a weighted sum of Dirac measures centered at each of
the points that is:

∑n
p=1 apδxp

. The weights ap ∈ R, such that
∑

p ap = 1, are
user-defined and capture the relative confidence associated with each landmark
(without such information, one should simply set ap = 1

n for each index p). The
space of Dirac measures forms a vector space where point sets can be added and
subtracted. A Dissimilarity metric is induced by a Reproducing Kernel Hilbert
norm based on a user-defined kernel K : Rd × Rd → R. The scalar product of
two Dirac measures δx, δy is defined by the rule 〈δx, δy〉K = K(x, y), which leads
to the following expression for the norm of the sum of Diracs:∥∥∥∥∥

n∑
p=1

apδxp

∥∥∥∥∥
2

K

=
n∑

p=1

n∑
p′=1

apap′K(xp, xp′). (1)

Dissimilarity between two points sets is given by the norm of the difference of
the corresponding sums of Diracs:

∥∥∥∥∥
n∑

p=1

apδxp
−

m∑
q=1

bqδyq

∥∥∥∥∥
2

K

=
n∑

p=1

n∑
p′=1

apap′K(xp, xp′)

− 2
n∑

p=1

m∑
q=1

apbqK(xp, yq) +
m∑

q=1

m∑
q′=1

bqbq′K(yq, yq′). (2)

These formulas arise naturally as the expression of the dual norm of the func-
tional Hilbert space corresponding to the reproducing kernel K. We refer to [11]
for all the mathematical details. In this setting, this dual norm is also defined,
by mathematical completion with respect to the norm defined by Eqn. 1, for
a larger class which include all signed Borel measures of Rd. The K-norm of a
measure µ is given by

‖µ‖2
K =

∫∫
K(x, y)dµ(x)dµ(y). (3)

The action of a deformation map ϕ : Rd → Rd on a Borel measure µ satisfies
ϕµ(A) = µ(ϕ−1(A)) for any subset A ⊂ Rd. When µ is a sum of Dirac masses,
it consists in moving all positions of points by ϕ, leaving the weights unchanged:
ϕ
(∑n

p=1 apδxp

)
=
∑n

p=1 apδϕ(xp).
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3 Hilbert norms for dissimilarity metric between surfaces

In [12], an extension of the above described method has been proposed to mea-
sure dissimilarities between oriented surfaces embedded in R3. We recall its main
point here. A convenient mathematical model of oriented m-dimensional sub-
manifolds in Rd with m < d, is the concept of ”current”, which comes from Geo-
metric Measure Theory [13, 14]. Currents are generalizations of Schwartz distri-
butions, where smooth test functions are replaced by smooth m-differential forms
in Rd, i.e. smooth maps ω that associate to each point x ∈ Rd a skew-symmetric
m-multilinear form, or m-covector, ω(x). Hence currents can be viewed as gen-
eralized m-forms, or as linear functionals acting on m-forms. The current as-
sociated to an oriented m-submanifold S is the linear functional [S] defined by
[S](ω) =

∫
S

ω. When S is an oriented surface in R3, [S] is nothing but the vector
valued Borel measure corresponding to the collection of unit-normal vectors to
S, distributed with density equal to the element of surface area ds and can be
written as η(y)ds(y), where η(y) is the normal and ds(y) is the surface measure
at point y ∈ S.

In this setting, similarly to what was described above for scalar measures,
one can introduce a matrix-valued kernel K(x, y) and define the K-norm of [S]
by ∥∥∥[S]

∥∥∥2

K
=
∫

S

∫
S

η(y)∗K(x, y)η(x) ds(x)ds(y). (4)

In practice we use kernels of the type k(x, y)I where I is a 3× 3 identity metrix
and k(x, y) a scalar kernal of the Gaussian or the Cauchy type. Then the inte-
grand in Eqn. 4 becomes K(x, y) 〈η(x), η(y)〉. When S is a triangular mesh, a
good approximation of this formula can be computed by replacing [S] by a sum
of vector-valued Dirac masses:∥∥∥∥∥∥

nf∑
f=1

η(f)δc(f)

∥∥∥∥∥∥
2

K

=
nf∑

f=1

nf∑
f ′=1

η(f ′)∗ K(c(f), c(f ′)) η(f), (5)

where nf is the number of faces of the triangulation, and for any face f with
vertices x, y, z, c(f) is its center and η(f) its non-normalized normal vector with
the length capturing the area of each triangular patch:

c(f) =
1
3
(x + y + z), η(f) =

1
2
(y − x)× (z − x). (6)

The sum
∑nf

f=1 η(f)δc(f) does not correspond to a surface, but it is close to [S]
in the space of currents.

One can mathematically define an action of deformation maps ϕ : R3 → R3

on currents, called push-forward, which is consistent to the intuitive action on
subset of R3. This means that for a surface S, the push-forward ϕ[S] is exactly
the current associated to the deformed surface: ϕ[S] = [ϕ(S)]. For a sum of
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Diracs, the push-forward action becomes:

ϕ

 nf∑
f=1

η(f)δc(f)

 =
nf∑

f=1

|dϕ|−1(dϕ∗)−1η(f)δϕ(c(f)), (7)

where dϕ is the Jacobian matrix of ϕ and |dϕ| its determinant, evaluated at
c(f).

4 Diffeomorphic metric mapping

Having defined metrics between two unlabeled point sets and surfaces for com-
pleteness we briefly review metric on the space of Diffeomorphic transformations.
To generate dense deformation maps in Rd we use the large deformation frame-
work [8] which consist of integrating time-dependent velocity fields in Rd. The
corresponding flow equation is given by

∂ϕv(t, x)
∂t

= v(t, ϕv(t, x)), (8)

with ϕ(0, x) = x, and we define ϕ(x) := ϕv(1, x), which is a one-to-one map in
Rd (diffeomorphism). To ensure regularity of these maps, an energy functional
is defined on velocity fields:

‖v(t, ·)‖2
V =

∫
Rd

〈Lv(t, x), Lv(t, x〉 dx, (9)

where L is a differential operator acting on vector fields. Minimality constraints
on this energy are included in the matching variational problems. Moreover, this
energy also defines a distance in the group of diffeomorphisms:

D2(e, ϕ) = inf
v,ϕv(1,·)=ϕ

∫ 1

0

‖Lv(t)‖2
V dt. (10)

As was noticed in [15, 11, 12], the practical use of such models is simplified, in
the context of point-based matching methods, by the fact that optimal vector
fields take the form:

v(t, x) =
n∑

p=1

G(xp(t), x)αp(t), (11)

where xp(t) = ϕv(t, xp) are the trajectories of the control points xp, G(x, y)
is the Green kernel of operator L∗L, and αp(t) ∈ Rd are unknown variables
called momentum vectors. From 8 and 11, one derives the equations which link
trajectories and momentum vectors:

dxp

dt
(t) =

n∑
p1=1

G(xp1(t), xp(t))αp1(t). (12)
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Hence computing momentum vectors from trajectories requires to solve T linear
systems, where T is the number of time discretization steps, while computing
trajectories from momentum vectors requires to solve a first order ODE, which
can be preformed at a lower cost. Therefore, the choice of momentum vectors
as variables of minimization is preferred in practice. The reformulation of the
energy functional in terms of xp(t) and αp(t) becomes:

‖v(t, ·)‖2
V =

n∑
p=1

〈
dxp

dt
(t), αp(t)

〉
. (13)

5 Atlas construction for points sets and surfaces

Having defined the metrics on unlabeled point sets, surfaces and diffeomorphic
transformations we are ready to apply the recipe of minimum mean squared
estimation to the atlas construction problem.

5.1 Formulation for point sets

Let {xip}, 1 ≤ i ≤ N , 1 ≤ p ≤ ni be N unlabeled point sets in Rd, and
aip ∈ R the associated weights (e.g. aip = 1

ni
). Let µi =

∑ni

p=1 aipδxip be the
borel measure representation of each of the point sets. The template estimation
is now defined as the following minimum mean squared estimation problem:

{ϕ̂i, µ̂} = arg min
ϕi,µ

N∑
i=1

{∥∥∥µ− ϕiµi

∥∥∥2

K
+ D2(e, ϕi)

}
, (14)

where D(e, ϕi) is the metric on the space of diffeomorphic mappings ϕi, described
in section 4. This problem is simplified by the following remark: for fixed ϕi, the
Borel measure µ̂ which minimizes 14 is the average of ϕiµi:

µ̂ =
1
N

N∑
i=1

ϕiµi =
1
N

N∑
i=1

ni∑
p=1

aipδϕi(xip). (15)

It is a sum of Dirac masses associated to the union of all points ϕi(xip). Conse-
quently, minimization of 14 can be done with respect to deformation maps ϕi(t)
only:

{ϕ̂i} = arg min
ϕi

N∑
i=1


∥∥∥∥∥
(

1
N

N∑
i=1

ϕiµi

)
− ϕiµi

∥∥∥∥∥
2

K

+ D2(e, ϕi)

 . (16)

5.2 Formulation for surfaces

Let Si be N surfaces in R3. Let [Si] denote either the current corresponding
to Si, or its approximation by a finite sum of vectorial Diracs. Note again that
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this sum is itself a current, and therefore the following is well defined for the
continuous problem or its discretization. Using the metric defined on currents
and diffeomorphic mappings in sections 2 and 4, the minimum mean squared
error template estimation problem can now be formulated as:

{ϕ̂i, ˆ[S]} = arg min
ϕi,[S]

N∑
i=1

{∥∥∥[S]− ϕi[Si]
∥∥∥2

K
+ D2(e, ϕi)

}
. (17)

For fixed ϕi, the minimizer [S] of 17 is the average of ϕi[Si]: ˆ[S] = 1
N

∑N
i=1 ϕi[Si].

This average [S] is a current corresponding not to a single surface, but to the
union of the deformed surfaces ϕi(Si), each weighted by 1

N . One can think about
this as a sort of fuzzy surface and the exact interpretation of this is beyond the
scope of this paper. However since it is a well defined current, the registration
process of all the surfaces to the average current is well defined. The reformula-
tion of 17, in terms of minimization with respect to the diffeomorphisms ϕi only,
becomes:

{ϕ̂i} = arg min
ϕi

N∑
i=1


∥∥∥∥∥
(

1
N

N∑
i=1

ϕi[Si]

)
− ϕi[Si]

∥∥∥∥∥
2

K

+ D2(e, ϕi)

 . (18)

6 Implementation

We now describe in detail an implementation for performing minimizations of
16 and 18 using an alternating algorithm which estimates, on a per iteration
basis, each ϕi in turn, analogous to the method described in [2] for images.
At each step, minimization is performed with respect to ϕi alone, the other
deformation maps ϕj , j 6= i, being fixed, which transforms the whole averaging
process into a sequence of source-to-target matchings, for which the algorithms
described in [11] and [12] can be directly applied. More precisely, at each step of
this sequence of matchings, we perform minimization of a functional involving
an energy term and an end-point matching term:

J
(
{αip(t)}t∈[0,1]

1≤p≤ni

)
=
∫ 1

0

ni∑
p=1

〈
dxip

dt
(t), αip(t)

〉
dt + A({xip(1)}). (19)

Assuming that G is a function of the squared distance: G(x, y) = G(|x − y|2),
the gradient becomes

∇Jip(t) = 2αip(t) + βip(t), (20)

where βip(t) is solution to the following ODE:

dβip

dt
(t) = −2

n∑
p1=1

G′(|xip1(t)− xip(t)|2)
{
〈αip(t), βip1(t)〉+

〈αip1(t), βip(t)〉 + 2 〈αip(t), αip1(t)〉
}

(xip(t)− xip1(t)), (21)
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with βip(1) = ∇xip(1)A.
The matching term A, in the case of point sets, is given by:

A({xip(1)}) = ‖ϕiµi − µ̂‖2
K =

ni∑
p=1

ni∑
p′=1

aipaip′K(xip(1), xip′(1))

− 2
ni∑

p=1

m∑
q=1

aipbqK(xip(1), yq) +
m∑

q=1

m∑
q′=1

bqbq′K(yq, yq′), (22)

where points yq and weights bq denote the average template µ̂ as follows:

m∑
q=1

bqδyq := µ̂ =
1
N

N∑
j=1

nj∑
p=1

ajpδϕj(xjp). (23)

The gradient of this term, required for the computation of Eqn. 20, becomes:

∇xip(1)A = 2aip

 n∑
p′=1

aip′∇xip(1)K(xip(1), xip′(1))−

m∑
q=1

bq∇xip(1)K(xip(1), yq)

)
. (24)

We now follow the same recipe in the case of surfaces. Denote
∑nfi

fi=1 η(fi)δc(fi)

the sum of vectorial Diracs approximating each of the triangular meshs given by
moving all vertices xip of Si under the deformation map ϕi, and

m∑
g=1

η(g)δc(g) :=
1
N

N∑
i=1

nfi∑
fi=1

η(fi)δc(fi) (25)

the averaged template. The matching term becomes:

A({xip(1)}) =
nfi∑

fi=1

nfi∑
f ′

i=1

η(fi)∗K(c(fi), c(f ′i))η(f ′i)

− 2
nfi∑

fi=1

m∑
g=1

η(fi)∗K(c(fi), c(g))η(g) +
m∑

g=1

m∑
g′=1

η(g)∗K(c(g), c(g′))η(g′). (26)

We recall that xip(1) = ϕi(xip) where xip are the vertices of the triangular mesh
Si. Centers and normal vectors are computed from the vertices using formulas
in Eqn. 6. Finally, we derive the gradient of term A in this case. If xip(1) is a
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vertex of face fi, the contribution of fi to the gradient at xip(1) is given by

ni∑
f ′

i=1

e(fi)×K(c(f ′i), c(fi))η(f ′i)−
m∑

g=1

e(fi)×K(c(g), c(fi))η(g)

+
2
3

ni∑
f ′

i=1

∂K(c(fi), c(f ′i))
∂c(fi)

η(fi)−
2
3

m∑
g=1

∂K(c(fi), c(g))
∂c(fi)

η(fi), (27)

and gradient ∇xip(1)A is obtained by summing all contributions of faces fi which
share xip(1) as a vertex.

Having computed the gradients, a conjugate gradient method is used to per-
form minimization of functional J on variables αp(t) evaluated on finite number
of time steps regularly spaced between 0 and 1, and a centered corrector scheme
is applied to solve ODE 21, required for each computation of gradient 20. To
speed up computations when a large number of control points is involved, we
use multipole[16] methods for convolutions with kernels G and K.

7 Results

We now present results form applying the algorithms described previously. Fig-
ure 1 shows a synthetic experiment of averaging two point sets in R2, which are
drawn from a circle and another oblong closed curve(shown in the left collum).
Shown in the middle collum are the results of applying the estimated deforma-
tion to the two data sets. Shown in the right collum is the average estimated
template.

Figure 2 shows a example of averaging three segmented surfaces of hippocam-
pus in R3. Shown in the top row are three surfaces of hippocampi from three
different subjects. The middle row shows the estimated deformation applied to
each of the surfaces. Shown at the bottom is the estimated template.

8 Discussion
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Fig. 2. Experiment with hippocampus surface data. Top row shows the three segmented
surfaces of hippocampus, middle row shows the three deformations of the surfaces, and
bottom is the averaged template which is composed by these three deformed surfaces.
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Abstract

An H2 type metric on the space of planar curves is proposed and
equation of the geodesic is derived. A numerical example is given to
illustrate the differneces between H1 and H2 metrics.

1 Introduction

Riemannian geometry has by now become a well-established tool for studying
variations in shapes. A general differential geometric framework for studying
deformations of plane curves has been set up by Mumford and Michor in [3,4]
and by Younes et al in [7,8]. The simplest of Riemannian metrics, namely the
H0 metrics, have been studied in [3,10,13,14]. H1 metrics have been proposed
in [2,9,11] and recently, Michor el al have derived a formula for computing the
geodesic distances between curves in this metric [6]. The purpose of the present
paper is to extend the H2 metric proposed in [2] for inelastic curves to elastic
curves and derive the equation of its geodesic (§3). It is compared with the H1

metric by means of a numerical example in §4. A scale-invariant version of the
H1 metric given in [9] is described in §2. Extension of the techniques described
in this paper to 3D shapes is nontrivial and beyond the scope of this paper;
however, see Michor and Mumford [5] for a general framework.

2 H1 metric

2.1 Definition

Let S denote the unit circle parametrized by the polar angle ω. Let c(ω) :
S → R2 be a smooth immersion of degree 1. For a function f on S, let f ′

denote its derivative du/dω. Identify R2 with the complex plane so that c(ω) =
x(ω) + iy(ω)by . Then, c′ may be written as ez(ω) where z(ω) = λ(ω) + iθ(ω).

∗This work was supported by NIH Grant I-R01-NS34189-08
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We will denote z also by the notation (λ, θ). Since θ is determined only modulo
2π, we normalize it a proper choice of coordinates in R2 such that

1
2π

∫

S

θeλdω = π (1)

The infinitesimal arclength ds = eλdω. Since the image of c is a closed curve, z
satisfies the closure condition

∫

S

ezdω =
∫

S

c′dω = c(2π)− c(0) = 0 (2)

Conversely, given z(ω) satisfying conditions (1) and (2), the immersion may
be recovered modulo translation in R2 by setting

x(ω) + iy(ω) =
∫ ω

0

ez($)d$ (3)

Let Θ be the set of complex smooth functions of ω such that if λ(ω)+iθ(ω)εΘ,
then, λ is 2π-periodic and θ(ω + 2π) = θ(ω). Let

Γ = (Γ0, Γ1, Γ2) : Θ→ R3 (4)

be defined by setting

Γ0 =
1
2π

∫

S

θeλdω − π, Γ1 =
∫

cos θeλdω, Γ2 =
∫

sin θeλdω (5)

Then E = Γ−1(0) is the space of smooth immersions and the orbit space B of E
under the action of diffeomorphisms of S is the space of ”smooth” planar curves
with crossings, modulo translations.

The tangent space TΘz at a point zεΘ is isomorphic to Θ itself. A tangent
vector at z is just a pair of functions µ and ϕ on S. The function µ specifies
the stretching of the curve while ϕ specifies the rotation of the tangent vectors
of the curve. Given tangent vectors u1 = (µ1 + iφ1) and u2 = (µ2 + iφ2)εTΘz,
define a Riemannian metric << ., . >> on Θ and, by restriction also on E, by
setting

< u1,u2 >=
1
`

∫

S

(A2µ1µ2 + ϕ1ϕ2)eλdω where ` =
∫

S

eλdω (6)

Here A is a constant. The energy of infinitesimal deformation of z by a vector
u is given by 1

2 << u, u >> . The larger the value of A, the larger the penalty
for stretching. This metric is the same as that defined by Younes and Trouvé in
[11] where A is equal to 1. The metric is invariant under the action of Diff(S)
and hence defines a metric on B.
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2.2 Closure of open curves in H1 metric

A generic zεΘ defines an open curve by means of Equation (3). It may be closed
by minimizing 1

2 |Γ|2α = αΓ2
0 + Γ2

1 + Γ2
2 where α is a weight. The equation of

gradient descent is
(

∂λ

∂t
,
∂µ

∂t

)
= β (αΓ0∇Γ0 + Γ1∇Γ1 + Γ2∇Γ2) (7)

where

∇Γ0 =
`

2π

(
θ

A2
, 1

)
∇Γ1 = `

(
cos θ

A2
,− sin θ

)
∇Γ2 = `

(
sin θ

A2
, cos θ

)
(8)

The vectors ∇Γ0,∇Γ1,∇Γ2 span the space normal to the level set Γ−1(Γ(z)).

2.3 Geodesic equations in Θ and E
Let t → z(t) = (λ(t), θ(t)) be a path in Θ. Let subscript t denote the partial
derivative with respect to t. If f is function on S, let f denote its average at a
point zεΘ defined as 1

`

∫
S

feλdω. Then the path is a geodesic in Θ if and only
if satisfies the equations

κλ = `(λt/`)t +
1
2

(
λ2

t + λ2
t

)
− 1

2A

(
θ2

t − θ2
t

)
= 0

κθ = (θt/`)t + λtθt = 0 (9)

which are scale-invariant version of the equations given in [9]. If the path is in
E, then it is a geodesic if and only if the projection PTE(κ) of κ onto the tangent
space TE is zero. Let J be the matrix whose (i, j)th entry is << ∇Γi,∇Γj >>,
i, j = 0, 1, 2. Let ∇Γ denote the matrix whose rows are ∇Γ0, ∇Γ1 and ∇Γ2.
Then,

PTE(κ) = κ− (∇Γ)T J−1




<< ∇Γ0, κ >>
<< ∇Γ1, κ >>
<< ∇Γ2, κ >>


 (10)

(See [9] for details.) If the path t → z(t) = (λ(t), θ(t)) in E is not a geodesic,
we can apply gradient descent to it to find a geodesic path:

∂z

∂τ
= βPTE(κ) (11)

The constant β should be sufficiently small to ensure numerical stability of the
equation.

3 H2 metric

A straightforward way to define an H2 metric on Θ is to introduce derivatives
in the metric and set

<< u1,u2 >>= `

∫

S

(A2µ′1µ
′
2 + ϕ′1ϕ

′
2)e

−λdω (12)
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However, a simpler alternative is to replace the parameter θ by curvature [9].
An embedding c(ω) : S → R2 defines a function k(ω) on S where k(ω) is the
curvature of the curve at c(ω). Since k = dθ/ds = e−λdθ/dω, the curvature
function k(ω) satisfies the relation

∫

S

keλdω = 2π (13)

The immersion c(ω) may be recovered modulo rotation and translation by set-
ting θ(ω) =

∫ ω

0
keλd$ and using Equation (3).

Let Ξ now be the set of vector valued functions ς = (λ, k) on S. Define

Γ = (Γ0, Γ1, Γ2) : Ξ→ R3 (14)

by setting

Γ0 =
∫

S

keλdω − 2π, Γ1 =
∫

cos θeλdω, Γ2 =
∫

sin θeλdω (15)

Then F = Γ−1(0) is the space of smooth immersions modulo translations and
rotations in R2. The orbit space D of F under the action of diffeomorphisms of
S is now the space of smooth planar curves with crossings, modulo translations
and rotations.

The tangent space TΞς at a point ςεΞ is again isomorphic to Ξ itself. Given
tangent vectors u1 = (µ1 + ih1) and u2 = (µ2 + ih2) εTΞς , define a Riemannian
metric << ., . >> on Ξ and, by restriction also on F, by setting

< u1,u2 >=
∫

S

(
A2

`
µ1µ2 + `h1h2)eλdω where ` =

∫

S

eλdω (16)

The energy of deformation now the stretching and bending energy of an elastica.
The metric physically makes more sense than the H1 metric which attaches cost
to absolute rotation of the tangent vectors rather than their rotation relative
to their immediate neighbors. The new metric is invariant under the action of
Diff(S) and hence defines a metric on D.

3.1 Closure of open curves in H2 metric

As before, an open curve corresponding to a generic ςεΞ may be closed by
minimizing 1

2 |Γ|2α = αΓ2
0 + Γ2

1 + Γ2
2. The equation of gradient descent is

(
∂λ

∂t
,
∂h

∂t

)
= β (αΓ0∇Γ0 + Γ1∇Γ1 + Γ2∇Γ2) (17)

where

∇Γ0 =
(

`k

A2
,
1
`

)
∇Γ1 =

(
`

A2
{cos θ − kγ2},−γ2

`

)

∇Γ2 =
(

`

A2
{sin θ + kγ1}, γ1

`

)
(18)

γi(ω) = xi(2π)− xi(ω), i = 1, 2 and x = (x1, x2).
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3.2 Geodesic equations in Ξ and M

A straighforward calculation shows that a path t → ς(t) = (λ(t), k(t)) in Ξ is a
geodesic if and only if it satisfies the equations

κλ = `(λt/`)t +
1
2

(
λ2

t + λ2
t

)
− `2

2A2

(
k2

t + k2
t

)
= 0

κk =
1
`
(`kt)t + λtkt = 0 (19)

A path in F is a geodesic if and only if the projection PTF(κ) = 0. The matrix J
and the projection PTF(κ) are given by the same formulae as in the case of H1

metric. If the path t → ς(t) = (λ(t), k(t)) in F is not a geodesic, apply gradient
descent to it to find a geodesic path:

∂ς

∂τ
= βPTF(κ) (20)

4 A numerical Example

The distance between two unparametrized curves may be found in two steps:
Step 1: Pick parametrizations for the two curves and find the geodesic dis-

tance between the two by constructing a minimal geodesic path between the two.
Picking the two parametrizations essentially amounts to fixing a point-to-point
correspondence between the two curves.

Step 2: Minimize the distance in Step 1 over the set of parametrizations of
the second curve, keeping the parametrization of the first curve fixed. Note that
if correspondence between a set of landmarks on the two curves is given a priori,
it may be incorporated as a constraint on permissible reparametrizations.

The numerical example below finds a geodesic between two parametrized
curves with no guarantee that the geodesic found in this way is minimal. One
may employ dynamic programming to carry out the second step as described in
[11].

There is also the question of choosing the value of the parameter A. It is easy
to see that the metrics become degenerate if A = 0. For example, in the case of
the H2 metric, if A = 0, we can pick λ(t) which, in the limit, blows up a point
on S where the curvature equals the average curvature and shrinks the rest to
a point, thus deforming the given curve into a circle with path length equal to
zero. In the same way, in the case of the H1 metric with A = 0, we can deform
the curve into an equilateral triangle at no cost. Therefore, we should expect
numerical difficulties if the value of A is too small. In fact, for small values of
A, the length of the path continued to decrease during gradient descent while
the value of κ blew up.

The results of our numerical experiment are shown in the following figure
where each column shows a geodesic path constructed from bottom to top.
After each step of gradient descent, the curve-closing algorithm was applied to
prevent a slow drift away from the manifold of closed curves. The parameter
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space S was divided into 250 equal parts and a path between the two curves was
constructed by interpolating 49 curves between the initial curve and final curve.
In the figure, the first two columns show the numerical geodesics in the H1

metric with values of A equal to 1 (first column) and 10 (second column). The
last two columns show the numerical geodesics in the H2 metric using A = 40
(third column) and A = 100 (last column). In both cases, some protrusions of
the fish are fashioned into horse’s legs, head and the tail while the rest of the
protrusions are smoothed out. In the case of the H2 metric, there is a noticeable
tendency for the curve to become circular, especially for the lower value of A.
In the case of H1 metric, the curve tends to remain polygonal.
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Figure 1: Geodesic paths. H1, A=1,10, H2, A=40,200.
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Abstract. We present a new framework for multidimensional shape
analysis. The proposed framework represents solid objects as points on
an infinite-dimensional Riemannian manifold and distances between ob-
jects as minimal length geodesic paths. Intershape distance forms the
foundation for shape-based statistical analysis. The proposed method
incorporates a metric that naturally prevents self-intersections of ob-
ject boundaries and thus produces a well-defined interior and exterior
along every geodesic path. This paper presents an implementation of
the geodesic computations for 2D shapes and gives examples of geodesic
paths that demonstrate the advantages of enforcing well-defined bound-
aries. This compares favorably with equivalent paths under a linear L2

metric, which do not prevent self-intersection of the boundary, and thus
do not produce valid solid objects.

1 Introduction

Shape analysis plays an important role in the understanding of anatomical vari-
ability from medical images. Statistics of shape is vital to applications ranging
from disease diagnosis, treatment planning, and quantification of the effects of
disease. While anatomy consists entirely of solid objects, many shape represen-
tations, such as landmarks, boundary curves, or harmonics, do not account for
the solid nature of objects. In this paper we present a new shape metric that is
well-suited to quantify shape changes in solid objects. We also show that rep-
resenting shapes as solids results in a shape space that conforms qualitatively
with some of our most natural intuitions about shape variabilities.

Quantitative study of shape begins with the formulation of a shape space,
in which each shape is represented as a point. A distance metric on this shape
space gives a measure of shape similarity between any two objects. When the
shape space has the structure of a Riemannian manifold, this distance is given
by minimal geodesics, or shortest length curve segments, between two shapes.
The ability to compute distances between shapes is the foundation for statisti-
cal analysis. The first formulations of shape spaces, and the use of metrics to
define shape statistics, were developed in the seminal works of Kendall [1] and
Bookstein [2]. In their work a 2D object is represented as a discrete set of land-
mark points. By removing the effects of translations, rotations, and scalings of
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these landmarks, the shape space is given the structure of a curved Riemannian
manifold. The structure of this space can then be used to define probability dis-
tributions as in Mardia and Dryden [3]. The theory of landmark-based shape
spaces is reviewed in several books [4], [5].

A typical strategy in shape analysis applications is to apply a linear metric
on the parameters of the shape representation. The Active Shape Model (ASM)
of Cootes and Taylor [6] represents objects as a dense sampling of their bound-
aries. They align objects using a Procrustes algorithm and perform principal
components analysis (PCA) to capture the shape variability. Kelemen et al. [7]
represent 3D objects by spherical harmonic (SPHARM) decompositions of their
boundaries and quantify shape variation using PCA with a linear metric on the
SPHARM coefficients. Shape variations under these metrics are characterized
by straight line paths of object boundaries. Such deformations do not respect
the solid properties of objects, and can create intersecting boundaries. Fletcher
et al. [8] introduce a generalization of PCA to nonlinear manifolds and use it
to compute shape statistics based on medial representations of objects. While
nonlinear variations of shape provide a richer set of deformations, there is still
no guarantee that shape boundaries will not intersect.

Recent work has focused on representing shape variations of continuous pla-
nar curves, where the shape spaces are infinite-dimensional manifolds. Klassen
et al. [9] develop elastic curves based on an angle function of the tangent vec-
tor. Sharon and Mumford [10] design a metric based on conformal mappings
between 2D objects. Michor and Mumford [11] investigate metrics on the space
of smooth curves modulo reparameterizations. While this work lays a rigorous
mathematical framework for comparing smooth curves, again there is no con-
straint that the curves not intersect. One method of shape analysis that does
indeed constrain solid objects to be free of self-intersections is the diffeomorphic
approach, first proposed by Grenander [12]. In this framework shape variations
are represented as the actions of diffeomorphisms on a template. Miller and
Younes [13] take this approach and define metrics on spaces of diffeomorphism
groups, which are infinite-dimensional. While the diffeomorphism approach does
preserve solid shapes, the metric is not defined directly on the shapes themselves.
Rather, the metric is defined on the diffeomorphism group, which is combined
with a matching term to deform one object into another.

In this paper we present a new shape representation which directly models
solid objects. The shape space is an infinite-dimensional Riemannian manifold,
with a metric designed to preserve non-intersecting boundaries of solid objects.
Our framework is valid for objects in both 2D and 3D. The rest of this paper
is organized as follows. In Section 2 we formulate the space of solid objects. We
develop a Riemannian metric on this space in Section 3 and give a procedure to
compute geodesics in Section 4. We present examples of these geodesics for 2D
objects in Section 5 and demonstrate that they preserve non-intersecting object
boundaries. We compare these geodesics to the equivalent minimal paths under
a linear metric, which result in intersecting boundaries.
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∂Ω (∂Ω)v

Fig. 1. A pictorial representation of the infinite-dimensional space of solid objects,
E(∂Ω, Rn) (top left). A point f in this space is an embedding representing a solid
object (top right). A path c(t) in this space is a smooth deformation of shapes (bottom
left). A tangent vector v at the point f is a vector field on the image f(∂Ω) that
represents an infinitesimal deformation of f (bottom right).

2 The Space of Solid Objects

The proposed formulation of the space of solid objects relies on a fixed template
object, which is a compact region Ω ⊂ Rn. We require that Ω be a smooth
n-dimensional manifold with boundary. The boundary of Ω will be denoted ∂Ω.
The compactness of Ω means that it is a closed and bounded set of Rn. The fact
that Ω is a manifold with boundary ensures that ∂Ω is a smooth, non-intersecting
manifold that separates Rn into a distinct interior and exterior. These properties
are designed to capture the essence of what it means for an object to be solid.
As an example, Ω could be the closed unit ball Bn = {x ∈ Rn | ‖x‖ ≤ 1}. The
boundary of the Bn is the unit sphere, i.e., ∂Bn = Sn−1 = {x ∈ Rn | ‖x‖ = 1}.

We define a solid object to be an embedding of ∂Ω into Rn (Fig. 1). Recall
that a mapping f : ∂Ω → Rn is an embedding if it is a diffeomorphism of ∂Ω onto
its image f(∂Ω). The space of all such embeddings forms an infinite-dimensional
manifold, which is denoted E(∂Ω, Rn). Since each object f is defined to be an
embedding of ∂Ω, the image f(∂Ω) is also a smooth, non-intersecting compact
manifold that separate Rn into a distinct interior and exterior. In other words,
f preserves our notion of what it means to be solid. Notice that the choice of Ω
will determine a fixed topology for the possible objects in the space. However,
if Ω and Ω′ are two diffeomorphic template objects, then the resulting object
spaces E(∂Ω, Rn) and E(∂Ω′, Rn) are equivalent. In other words, the definition
of our object space is independent of the template object up to diffeomorphism.

A path in E(∂Ω, Rn) is a one-parameter family of embeddings, c : (a, b) ×
∂Ω → Rn (Fig. 1). For each real number t ∈ (a, b), the point c(t) ∈ E(∂Ω, Rn)
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Fig. 2. The possible forms of self-intersections of an object’s boundary: local singularity
(left), global interior crossing (middle), and global exterior crossing (right).

is an object, and the path c is a smooth deformation of objects parameterized
by t. For each x ∈ ∂Ω the path c generates a curve in Rn: t 7→ c(t)(x). The t
derivative of this curve, ct(t)(x), is a vector in Tc(t)(x)Rn, the tangent space of
Rn at the point c(t)(x). Thus, the tangent vector ct(t) is a mapping that assigns
to each x ∈ ∂Ω the vector ct(t)(x) ∈ Tc(t)(x)Rn (Fig. 1). Intuitively, the tangent
vector ct(t) can be thought of as an infinitesimal deformation of the object c(t).
The space of all tangent vectors to an object f ∈ E(∂Ω, Rn) forms the vector
space TfE(∂Ω, Rn) = C∞(∂Ω, f∗TΩf ), where f∗ denotes the pull-back via f ,
and Ωf = f(Ω) is the current shape.

Notice that the parameterization of the object boundary is included in our
definition of a solid shape. This is in contrast to recent work on planar curves,
e.g., [9], [10], [11], where shape is defined modulo reparameterizations. Glaunes
et al. [14] and Michor and Mumford [15] also show that metrics on the diffeo-
morphism group can be used to induce metrics on the space of unparameterized
shapes, which they define as the quotient space Diff (Rn)/Diff (Rn, Sn−1), where
Diff (Rn) is the space of diffeomorphisms on Rn and Diff (Rn, Sn−1) are the dif-
feomorphisms that map the sphere Sn−1 to itself. By including the parameteriza-
tion of the boundary, our framework allows correspondences to be made between
the boundaries of different objects. This is desirable in medical image applica-
tions, where it is typically necessary that corresponding anatomical features be
compared across subjects.

3 Riemannian Metrics on E(∂Ω, Rn)

We now define a new class of Riemannian metrics on the space of solid objects,
E(∂Ω, Rn), that are particularly well-suited for solid shape analysis as they pre-
vent self-intersections of shapes. A Riemannian metric on E(∂Ω, Rn) assigns a
smoothly-varying inner product on each tangent space TfE(∂Ω, Rn). We denote
the inner product of two tangent vectors v, w ∈ TfE(∂Ω, Rn) by 〈v, w〉f . The
length of a tangent vector v is given by ‖v‖f =

√
〈v, v〉f . A geodesic is a path γ

that minimizes the energy E(γ) =
∫ b

a
‖γt(t)‖2

γ(t) dt.

3.1 Preventing Boundary Intersections

Intersections of the boundary result when the object mapping f : ∂Ω → Rn

fails to be an embedding, that is, it falls outside of the space E(∂Ω, Rn). There
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Fig. 3. Projection from the space of full embeddings to the space of boundary embed-
dings (left). Projection of a tangent vector (right).

are essentially three types of self-intersections of the object boundary that can
occur (Fig. 2): local singularities, global interior crossings, and global exterior
crossings. Local singularities happen when the derivatives of the object mapping
become singular. Global interior crossings occur when the interior of the object
collapses and the boundary touches itself. Global exterior crossings occur when
the object boundary penetrates itself from the outside. Notice that the local
singularities can be detected using only local information of the boundary, i.e.,
derivatives. However, the boundary of an object with a global intersection may
still be smooth, and there is no way to detect these crossings with local infor-
mation. In the next section we define a Riemannian metric on E(∂Ω, Rn) that is
capable of preventing local singularities and global interior crossings by involving
the interior of the object. The exterior global crossings, which are not prevented
in our framework, present a unique difficulty in that they involve events that
happen external to the object.

3.2 Metrics via Projection

If we are to keep objects from collapsing, it is only natural that velocities of
interior points in the object should play a role in the metric. The challenge is
to accomplish this while defining a metric that is determined uniquely by the
boundary velocities. We do this by defining a metric on the space E(Ω, Rn) of
embeddings of Ω in such a way that a vector field on the boundary of the object
can be extended to a vector field on the interior with minimal norm. This will
allow us to compute geodesics in E(Ω, Rn) that take into account the interior of
the object, and then project them back down to geodesics on the solid object
space E(∂Ω, Rn).

There is a natural projection π : E(Ω, Rn) → E(∂Ω, Rn) given by the restric-
tion to ∂Ω. That is, for an embedding f ∈ E(Ω, Rn), we have π(f) = f |∂Ω . The
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derivative map of this projection, Dπ : TE(Ω, Rn) → E(∂Ω, Rn), is also given
by a restriction. Given a tangent vector v ∈ TfE(Ω, Rn), we have Dπ(v) = v|∂Ω .
These projections are illustrated in Fig. 3. We define a metric on E(Ω, Rn) such
that the projection π induces a unique metric on the space E(∂Ω, Rn).

If f ∈ E(Ω, Rn) is an embedding, then at each point x ∈ Ω the Jacobian
matrix Df(x) has positive determinant. Thus, Df(x) is an element of GL+(n, R),
the Lie group of all positive-determinant matrices. We now define the metric on
E(Ω, Rn) at the point f as

〈v, w〉f =
∫

Ω

〈Dv, Dw〉Df dx, (1)

where the inner product inside the integral is a right-invariant Lie group metric
on GL+(n, R). There are several possible right-invariant metrics on GL+(n, R),
which lead to an entire class of metrics on E(Ω, Rn) of the form (1). In this paper
we use the metric

〈Dv, Dw〉Df = tr
(
DvDf−1

(
DwDf−1

)T
)

. (2)

Notice that the value of (2) approaches infinity if Df approaches a zero deter-
minant matrix. This property of the metric means that geodesic paths generate
shape mappings with positive Jacobians, and thus do not generate local singu-
larities or interior self-intersections.

We now use the metric (1) on E(Ω, Rn) and the projection mapping π to
induce a metric on the solid object space E(∂Ω, Rn). Given a tangent vector
v ∈ TfE(∂Ω, Rn), we define an extension of v to the interior of Ω. An extension
of v is a tangent vector ṽ ∈ Tf̃E(Ω, Rn) such that π(f̃) = f and Dπ(ṽ) = v. The
vector ṽ is chosen as the extension of v with minimal length in the metric (1),
that is, ṽ is an extremal of the norm

‖ṽ‖f̃ =
∫

Ω

tr
(
DṽADṽT

)
dx, A = Df̃−1Df̃−1T . (3)

This is a variational problem that leads to the Euler-Lagrange equation

div(A∇ṽ) = 0. (4)

This equation is an elliptic PDE since the matrix A is symmetric, positive-
definite. The constraint that ṽ|∂Ω = v provides the boundary conditions. Since
it is an elliptic PDE with smooth boundary conditions, it has a unique solution.
In other words, the vector v lifts to a unique vector ṽ with minimal norm.
Therefore, we can define the metric on E(∂Ω, Rn) to be 〈v, w〉f = 〈ṽ, w̃〉f̃ .

The metric defined in (1) is dependent on the choice of the template object
Ω and the mapping f from that template to the current shape. This dependence
can be removed by including the Jacobian of f in the integral to give the metric

〈v, w〉 =
∫

Ω

〈Dv, Dw〉Df |Df |dx,
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where |Df | denotes the absolute value of the determinant of Df . This metric is
right-invariant, meaning that it is left unchanged by a diffeomorphism of Ω. In
other words, the metric is independent of the choice of the mapping f or of the
choice of Ω, up to a diffeomorphism. Another possibility is to keep the metric
(1), but restrict to only volume-preserving maps, i.e., |Df | = 1. A right-invariant
metric also has the desirable property that the projection mapping π becomes
a Riemannian submersion [16]. This has the consequence that any geodesic γ in
the space E(Ω, Rn) has projection π(γ) that is also a geodesic in E(∂Ω, Rn). In
this paper we focus on the metric given in (1), while the preferred right-invariant
metrics are a current area of research.

4 Computing Geodesics

In this section we describe how to compute geodesics in E(∂Ω, Rn) equipped
with the metric induced by (1). We lift the geodesic computations to the space
E(Ω, Rn) and then project these geodesics back to E(∂Ω, Rn) via the mapping
π. A geodesic path γ on E(Ω, Rn) is an extremal of the energy functional E(γ) =∫ b

a

∫
Ω
‖Dγt‖2

Dγ dx dt, where the metric is defined as in (1), and we are given
initial conditions γ(0)|∂Ω = f0 and γt(0)|∂Ω = v0. The first step is to lift these
initial conditions to extensions f̃0 and ṽ0 defined on all of Ω. Any extension of
f0 may be chosen, and the extension of v0 is computed via (4).

4.1 Geodesics of Matrix Fields

Rather than solve the above variational problem directly for γ, we instead solve
for the Jacobian matrix Dγ. Then, at each time point t, we integrate Dγ(t) with
respect to the spatial variable x to arrive at the final geodesic γ. Consider a time-
varying matrix field, M : (a, b)×Ω → GL(n, R), which represents the Jacobian
field for the geodesic γ, i.e., M = Dγ. The energy functional now becomes

E(M) =
∫ b

a

∫
Ω

‖Mt‖2
M dx dt, (5)

with initial conditions M(0) = Df0 and Mt(0) = Dv0. However, solving for
extremals M of the energy (5) is not equivalent to solving for extremals Dγ of
the energy E(γ). To make them equivalent, M must be constrained to be the
Jacobian field of a mapping, that is, M must be kept integrable. The integrability
condition is curl(M) = 0, where we define the curl of a matrix field as the
component-wise curl of each of its row vectors.1

If we first consider the unconstrained variational problem in (5), the ex-
tremals are given by pointwise geodesics on GL+(n, R), that is, for each x ∈ Ω
the curve t 7→ M(t)(x) is a geodesic on GL+(n, R) under the right-invariant

1 For our purposes the curl of a 2D vector field v is the scalar field curl(v) = ∂v2/∂x−
∂v1/∂y. The curl of a 3D vector field v is the vector field curl(v) = ∇× v.
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metric. These geodesics can be computed as the following system of first-order
ODEs (see [17] and also [18] p. 277)

Mt = XM, (6)

Xt = XXT −XT X, (7)

where the initial conditions are given in the form M(0) = M0 and X(0) = X0.
Actually, there is a closed-form solution to these equations. It is given by

M(t) = exp(t(X0 + XT
0 )) exp(−tXT

0 )M0. (8)

Notice that if M is constant in x, that is, if the shape deformation is an affine
transformation, then the integrability constraint is satisfied automatically. This
results in an important property of this metric: affine transformations of objects
can be computed as closed form geodesics using (8).

4.2 Projection

We now describe the projection step used to solve the integrability constraint .
We only consider the 2D case here, although the 3D case is similar. We are given
a matrix field Mt, and we want to project it onto the space of integrable matrix
fields on Ω, denoted I(Ω). Again, a matrix field X is in I(Ω) if curl(X) = 0.
The projection needs to be orthogonal under the metric (1). The orthogonal
subspace to I(Ω) under this metric, denoted I⊥(Ω), consists of all matrix fields

of the form DwJA−1, where w is a smooth vector field, J =
(

0 −1
1 0

)
, and A is

given in (3). This is similar to the Helmholtz decomposition of a vector field into
curl-free and divergence-free components. The difference is that the Helmholtz
decomposition is orthogonal under the L2 metric.

We now formulate the projection as a variational problem. Given a matrix
field X that we want to project to I(Ω), we find the nearest matrix field in
I⊥(Ω) and subtract it from X. This is given by the matrix field DwJA−1,
where w minimizes the energy E(w) =

∫
Ω
‖DwJA−1 −X‖2

Df dx. An extremal
for this energy satisfies the Euler-Lagrange equation

div
(
JA−1JT DwT

)
= div

(
JXT

)
. (9)

This is a second-order elliptic PDE, and the orthogonality dictates that Dirichlet
boundary conditions should be used. We solve this equation using a successive
over-relaxation (SOR) method [19].

5 Results

In this section we give examples of the geodesic paths in the space of 2D solid
objects, using the framework developed in this paper. To illustrate the power of
our approach to prevent self-intersections, we compare our results to minimal
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Fig. 4. Minimal paths of the pinching deformation for both the solid metric (top right)
and the L2 metric (bottom right). The initial velocity for both is shown on the left.

paths under a linear metric, i.e., the L2 metric. The starting object for each
example was an ellipse defined as c(θ) = ((1/6) cos θ, sin θ). This object was
embedded in a uniformly-spaced 50 × 300 grid. The geodesic equations (6)-(7)
were solved on a fixed grid using a second-order Runge-Kutta method [19].In
each example we give an initial velocity vector on the boundary of the ellipse as
the initial condition to the geodesic problem.

We first give an example of an affine transformation for which the solid
shape geodesics can be computed in closed form using (8). The deformation
is a stretching along the y-axis. The initial velocity vector (u, v) is given by
u(x, y) = −x, v(x, y) = y. The geodesic for the solid object metric is given by
a path of embeddings γ(t)(x) = M(t)x, where M is the diagonal matrix with
diagonal entries {e−t, et}. It is clear that the matrix M has positive determinant
for all t, and thus produces only valid, non-intersecting objects. In contrast, the
minimal path under the L2 metric for the same initial conditions is given by
c(t)(θ) = ((1− t)(1/6) cos θ, (1 + t) sin θ). This results in the ellipse collapsing to
a vertical line at t = 1.

The second example is a pinch deformation (Fig. 4). The initial velocity
vector (u, v) is given by u(x, y) = −x3 + 3xy2 − x, v(x, y) = −3x2y + y3. The
geodesic from the solid object metric nicely prevents the interior of the object
from collapsing. Much like in the stretching example, the boundary slows down
the closer it gets to itself. Under the L2 metric the pinch eventually collapses
into an interior global crossing.

The final example is a bending deformation (Fig. 5). The initial velocity
vector (u, v) is given by u(x, y) = (5/4)(x2 − y2) − x, v(x, y) = (5/4)xy − y.
The resulting geodesic under the solid object metric produces qualitatively what
we expect from a bending deformation. The minimal path under the L2 metric
starts out like a bending, but eventually begins to cross itself. This example
shows how nonlinear deformations such as bending are not readily captured by
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Fig. 5. Minimal paths of the bending deformation for both the solid metric (top right)
and the L2 metric (bottom right). The initial velocity for both is shown on the left.

linear metrics. The geodesics developed in this paper, on the other hand, are
able to naturally model such nonlinear deformations.

6 Conclusion

We presented a new framework for shape analysis that directly models solid
objects. Our method is based on representing the space of solid objects as an
infinite-dimensional Riemannian manifold. We showed that the formulated met-
ric possesses several desirable properties, including that it is valid for repre-
senting both 2D and 3D objects and that it can prevent certain types of self-
intersections of object boundaries. We intend to pursue the use of this shape
metric as a basis for statistical analysis of shape in computer vision and medical
image analysis applications.
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Abstract. Based on the notion of Minimizing Lipschitz Extensions and its connection with the infinity
Laplacian, a theoretical and computational framework for geometric nonrigid surface warping, and in
particular the nonlinear registration of brain imaging data, is presented in this paper. The basic concept
is to compute a map between surfaces that minimizes a distortion measure based on geodesic distances
while respecting the provided boundary conditions. In particular, the global Lipschitz constant of the
map is minimized. This framework allows generic boundary conditions to be applied and direct surface-
to-surface warping. It avoids the need for intermediate maps that flatten the surface onto the plane or
sphere, as is commonly done in the literature on surface-based non-rigid registration. The presentation
of the framework is complemented with examples on synthetic geometric phantoms and cortical surfaces
extracted from human brain MRI scans.

1 Introduction

Nonrigid surface warping is one of the most fundamental problems in geometric surface processing. This is
particularly relevant for problems such as shape comparison, motion and deformation analysis, and shape
morphing and interpolation. A particular important example is when the surface represents a brain, for
example, the boundary between white matter and gray matter or between gray matter and CSF. Brain
warping, which is a form of brain image registration and geometric pattern matching that will be used as test
case in this work, is one of the most fundamental and thereby most studied problems in computational brain
imaging [44]. Brain images are commonly warped, using 3-dimensional deformation fields, onto a common
neuroanatomic template prior to cross-subject comparison and integration of functional and anatomical
data. Images of the same subject may be warped into correspondence over time, to help analyze shape
changes during development or degenerative diseases. Almost all the active research groups in this area have
developed and/or have their favorite brain warping technique.4 A few representative works can be found
at [9, 11, 12, 17, 18, 21, 36, 41, 43, 44, 47, 48], this list being far from complete. In spite of this, the problem is
still open and widely studied, since there is not a “ground truth” method to obtain a map between brains.
The same is true for generic nonrigid surface matching. The criteria for matching different features (e.g.,
geometry or intensity) may also depend on the application, which range from recovering intraoperative brain
change to mapping brain growth, or reducing cross-subject anatomical differences in group functional MRI
studies.

The way the brain warping problem is addressed is critical for studies of brain diseases that are based
on population comparisons. Examples of this application can be found at [18, 41], although these are a very
non-exhaustive account of the rich literature on the subject. The interested reader may also check [42] for
numerous applications of brain warping and population studies. As detailed in [44], shape and brain warping
approaches can be divided into two classes, those based on volume-to-volume matching and those based on
surface-to-surface matching. Our work belongs to the latter of the categories. Surface matching has recently
received increasing attention as most functional brain imaging studies focus on the cortex, which varies
widely in geometry across subjects. The power of these studies depends on the degree to which the functional
anatomy of the cortex can be aligned across subjects, so improved cortical surface registration has become
? This work is partially supported by DARPA, the Office of Naval Research, the National Science Foundation, the

National Institutes of Health, and the National Geospatial-Intelligence Agency.
4 This includes groups at JHU, UCLA, U. Penn., INRIA, MGH, GATECH, Harvard-BW, and the University of

Florida, to name just a few.
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a major goal. In contrast with flow based works such as those in [9, 36, 41], our motivation is as in [1, 21–23,
26, 45, 46, 49]. That is, we aim to compute a map that preserves certain pre-defined geometric characteristics
of the surfaces. While the literature has mainly attempted to preserve angles (e.g., [1, 21]), and areas (e.g.,
[11, 17]), we work with geodesic distances (see also [39]). Our work is inspired by the mathematically rich
literature on Lipschitz minimizing maps and in its connection to the infinite Laplacian. The motivation for
using these frameworks will be presented after some brief mathematical introduction below.

1.1 Key contributions

Let us conclude this section by explicitly formulating key contributions that make our work stand out from
the rich literature in the area of surface, and in particular brain, warping:

– We introduce the theoretical and computational framework of Lipschitz minimizing maps into the area
of nonrigid surface and brain mapping. This is the only map, following basic axioms [7, 8], that can
simultaneously handle diverse boundary conditions, for example, a mixture of points and curves (see
also [20]).

– We propose to preserve geodesic distances, being this the first time this is explicitly done for surface
warping without intermediate projections.5 Prior work has concentrated on preserving areas, angles, or
Euclidean distances. It is indicated by our preliminary results shown in this paper, the vast literature on
geometric surface matching, and the general knowledge in the brain imaging community, that geodesics
and intrinsic brain measurements are critical.

– All the computations are done intrinsically on the surface, avoiding the distortions commonly introduced
by arbitrary parametrizations or projections onto the plane or sphere.

Although the framework as here described is limited to matching natural geodesics distances, additional
feature-matching terms could be easily added for example in the form of extra energy terms in the overall
cost to be minimized, for which minimizations techniques different than the efficient one here suggested
might need to be developed. Also, see for example concluding remarks, additional matching conditions can
be simply considered as metric changes, thereby being included in the proposed framework and in the here
suggested numerical implementation. To keep the exposition simpler, we do not include these terms in the
current presentation.

2 Formal statement of the problem

Let B1 and B2 be two cortical surfaces (2D surfaces in the three dimensional Euclidean space) which we
consider smooth and endowed with the metric inherited from IR3, so that dB1 and dB2 are the geodesic
distances measured on B1 and B2, respectively.6 Let Γ1 ⊂ B1 and Γ2 ⊂ B2 be subsets which represent
features for which a correspondence is already known (these sets could be empty). In general, the sets Γi

are the union of smooth curves traced on the surfaces, e.g., sulcal beds lying between gyri, and/or a union
of isolated points. A set of anatomical landmarks that occur consistently in all subjects can be reliably
identified using standardized anatomical protocols or automated sulcal labeling techniques (see for example
Brain VISA [4] by Mangin and Riviere and SEAL [40] by Le Goualher). The overall goal is to extend the
given map between Γ1 ⊂ B1 and Γ2 ⊂ B2 to the whole surface B1 and B2, minimizing as much as possible
the (geodesic) distortion.

Functional anatomy also varies with respect to sulcal landmarks, but sulci typically lie at the interfaces of
functionally different cortical regions so aligning them improves the registration of functionally homologous

5 After the original version of this paper from March 2005, http://www.ima.umn.edu/preprints/jan2006/jan2006.html,
and motivated in part by our work on Gromov-Hausdorff for isometric shape comparison, [34], and by their
work on multidimensional scaling (MDS), the authors of [5, 6] proposed a gradient descent technique to solve the
classical STRESS function from MDS, where the attributes they select are geodesic distances.

6 The work developed below applies to any desired intrinsic distances, where we could for example use non-uniform
metrics on the surface as in [3, 33]. For simplicity of the presentation, we restrict the discussion to the usual geodesic
distance.
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areas. As commonly done in brain warping [44], we assume that a correspondence between Γ1 and Γ2 is pre-
specified to the map (boundary conditions of the map). In this correspondence, internal point correspondences
may be allowed to relax along landmark curves in the final mappings, e.g., [31].7

To fix ideas let’s assume that Γ1 = ∪N
k=1xi and Γ2 = ∪N

k=1yi, and that the correspondence is given by
xi 7→ yi for 1 ≤ i ≤ N . The xi and yi are elements on the surface, such as points or curves. We want to
find a (at least continuous) map φ : B1 → B2 such that φ(xi) = yi for 1 ≤ i ≤ N and such that φ produces
minimal distortion according to some functional J. One possible way of interpreting this problem is that we
are trying to extrapolate or extend the correspondence from Γ1 to the whole of B1 in such a way that we
achieve small distortion.

A common way to measure the distortion produced by a map φ is by computing the functionals (1 ≤ p <
∞)

Jp(φ) =
(

1
µ(B1)

∫

B1

‖DB1φ‖p
2 µ(dx)

)1/p

(1)

where DB1 denotes differentiation intrinsic to the surface B1 and µ is the area measure on B1. One immediate
idea is then to consider, for a fixed p ∈ (1,∞), the following variational problem:

Problem 1 (minimize Jp). Find φ ∈ S such that Jp(φ) = infψ∈S Jp(ψ), where S is a certain smoothness class
of maps φ from B1 to B2 such that they respect the given boundary conditions φ(xi) = yi for all xi ∈ Γ1.

The case p = 2 corresponds to the Dirichlet functional and has connections with the theory of (standard)
Harmonic Maps. In more generality, it is customary to call the solutions to Problem 1 p-Harmonic Maps,
see for example [14, 15, 25]. It is easy to show, under mild regularity assumptions, that for a fixed φ, Jp(φ)
is nondecreasing as a function of p, and that [19]

J∞(φ) := lim
p↑∞

Jp(φ) = essupx∈B1
‖DB1φ(x)‖2, (2)

which is the Lipschitz constant of φ.
In this paper we propose to use the functional J∞ as a measure of distortion for maps between surfaces

and to solve the associated variational problem in order to find a candidate mapping between the surfaces
(constrained by the provided boundary conditions). Once again, although our working example are brain
surfaces, the here proposed framework is general for non-rigid surface matching.

Let L denote the space of all Lipschitz continuous maps ψ : B1 → B2 such that ψ(xi) = yi for 1 ≤ i ≤ N .
We then propose to solve the following problem:

Problem 2 (minimize J∞). Find φ ∈ L such that J∞(φ) = infψ∈L J∞(ψ).

We now argue in favor of this functional.

2.1 Why use J∞ ?

Our first argument is that J∞ measures distortion in a more global way than any of the Jp for p ∈ (1,∞),
since instead of computing an averaged integral quantity, we are looking at the supremum of the local
distortions, ‖DB1φ(x)‖2. Note also that Jp is bounded above by J∞under mild regularity assumptions for
all p ∈ (1,∞).

Another element to consider is that this problem is well posed for the kind of general boundary data we
want to respect, provided both at curves and isolated points on the surfaces. At least for the case p ≤ 2, this
is not true in general, see [7].

We are then looking for a Lipschitz extension of the map given at Γ1 whose Lipschitz constant is as small
as possible. Let L(Γ1, Γ2) := maxxi,xj∈Γ1

dB2 (yi,yj)

dB1 (xi,xj)
, that is, the Lipschitz constant of the boundary data. In

general, we have infψ∈L J∞ ≥ L(Γ1, Γ2) (we cannot get lower distortion than the one already introduced by
the pre-specified boundary conditions). This is related to Kirszbraun’s Theorem, which in one of its many
guises states that a Lipschitz map f : S → IRD, S ⊂ IRd, has an extension f̄ : IRd → IRD with the same
7 Extending the framework here introduced, in particular the matching of metric measurements, to handle flexibility

in the boundary conditions, e.g., [20], is an interesting direction to pursue.
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Lipschitz constant as f , see [16]. In the same vein, one has Whitney and McShane extensions which apply
to the case when the domain is any metric space X and the target is IR. These extensions provide functions
that agree with f where boundary conditions are given and preserve the Lipschitz constant throughout X,
see for example [2, 27]. The more general problem of extending f : S → Y (S ⊂ X, X and Y any metric
spaces) to all X with the same Lipschitz constant is not so well understood and only partial results are
known, see for example [28–30].

The idea then is to keep the distortion at the same order as that of the provided boundary conditions.
In general there might be many solutions for the Problem (2). One particular class of minimizers which
has recently received a lot of attention is that of absolute minimizers, or absolutely minimizing Lipschitz
extensions (AMLE). Roughly speaking, the idea here is to single out those solutions of Problem (2) that also
possess minimal local Lipschitz constant, again, see [2] for a general exposition, and [27] for a treatment of
the case when the domain is any reasonable metric space and the target is the real line. This is the direction
we pursue with the computational approach detailed in the next section.8

3 Proposed computational approach

If we take for example the case of p-Harmonic maps, one way of dealing with the computation of the
optimal map φp is by implementing the geometric p-heat flow associated with the Euler-Lagrange equation
of the functional Jp, starting from a certain initial condition. As was explained in [35], using an implicit
representation for both B1 and B2, we could obtain the partial differential equation PDEp we need to solve
in order to find φp. By taking the formal limit as p ↑ ∞ we would find PDE∞, the PDE that characterizes
the solution φ∞ of the (variational) Problem (2).9 All of this might work if we had a notion of solution
for the resulting PDEs. Whereas this is feasible in the case of PDEp for 1 < p < ∞, to the best of our
knowledge, there is no such notion of a solution for PDE∞. One could of course still persist and try to solve
these equations without the necessary theoretical foundations and call these plausible solutions ∞-Harmonic
Maps. Nonetheless, this is certainly an interesting line of research.

A different direction is considered in this work. As a guiding example, we first concentrate on the case
where B1 is any closed smooth manifold and B2 is replaced by IR, as considered in [8] (for scalar data
interpolation on surfaces), and in [38]. In [8], the authors propose to follow a similar path to the one we
have just described, and they do not obtain a convergent numerical discretization for the resulting PDE.
Meanwhile, in [38], the author proposes a convergent discretization of the PDE, basing his construction on
the original variational problem. We choose to follow this idea as our guiding principle, and extend it to the
case where both B1 and B2 are surfaces.

We now explain this alternative approach. The basic idea is simple, instead of first obtaining the Euler-
Lagrange equations for the energy J∞ and then discretizing them, we first discretize the energy J∞ and
then proceed to solve the resulting discrete problem. Consider that the domain B1 is given discretely as
a set of (different) points B1 = {x1, . . . , xm} together with a neighborhood relation (i.e., a graph). To fix
ideas let’s assume the neighborhood relation is a k-nearest neighbors one. Denote, for each 1 ≤ i ≤ m, by
Ni = {xj1 , . . . , xjk

} ∈ B1 the set of k neighbors of the point xi. We consider the discrete local Lipschitz
constant of the map φ at xi:

Li(φ) := max
xj∈Ni

dB2(φ(xi), φ(xj))
dB1(xi, xj)

(3)

Upon noting that Li(φ), which measures the local geodesic deformation for the Ni neighborhood of the
point xi, serves as a discrete approximation to ‖DB1φ(xi)‖2, we see that a possible discretization of the
functional J∞(φ) is given by the discrete global Lipschitz constant of φ given by max1≤i≤m Li(φ). The
author of [38] proposed, in the case when B2 is replaced by IR, solving the discrete version of Problem (2)
by the following iterative procedure (here extended for B2 a surface as in our problem):

– Let φ0 be an initial guess of the map (see below for details on this for our case).

8 As commonly happens in the surface and brain warping literature, the map cannot be guaranteed to be invertible.
We have not experienced any problems with this in our experiments.

9 The case when the domain is a subset of IRd and the target is the real line leads to the so called infinity Laplacian,
see [2, 13, 24].
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– For each n ≥ 1, if xi /∈ Γ1, let

φn(xi) = arg min
y∈B2

max
j∈Ni

dB2(y, φn−1(xj))
dB1(xi, xj)

(4)

– φn(xi) = yi for all n ≥ 0 for xi ∈ Γ1.

With computational efficiency related modifications described below, this is the approach we follow in
general. The intuition behind this iterative procedure is that, at each point of the domain, we are changing
the value of the map in order to minimize the local Lipschitz constant, that is, the local (geodesic) distortion
produced by the map. This is in agreement with the notion of AMLEs explained in §2.1. We should remark
that since we are using intrinsic distances for the matching, we can let Li(φ) play the role of (the norm of)
the displacement field for analyzing the deformation,10 see §5 ahead.

4 Implementation details

In addition to discretizing the domain B1, we also use a discretization B2 = {y1, . . . , ym′} of the target space
B2 for our implementation. We endow B2 with a neighborhood relation given by the k-nearest neighbors of
each point. For computational efficiency, we work at all times with two different scales in the discrete domain
B1. For large data sets, additional scales can be used. We choose a subset F1 of B1 such that #F1 ¿ m but
still F1 is an efficient (well separated) covering of B1 with small covering radius. We do this by using the well
known (geodesic) Farthest Point Sampling (FPS) procedure, see [34, 37], which can be efficiently constructed
based on optimal computational techniques. Roughly speaking, we apply the iterative procedure on this
subset of points only and then extend the map to the rest of the points in the domain B1. We now show how
to obtain a reasonable initial condition φ0 and then discuss additional details regarding the implementation
of the iterative procedure described in the previous section.

Building the initial condition: We compute, for all xr ∈ F1\Γ1, φ0(xr) = arg miny∈B2
maxxi∈Γ1

dB2 (y,yi)

dB1 (xr,xi)
.

For this step we use the classical Dijkstra’s algorithm for approximating the geodesic distances dB1 and dB2

since they might be evaluated at faraway points. This is of course run on the graphs obtained from connecting
each point to its k-nearest neighbors.
The iterative procedure: After φ0 is computed for all points in the set F1, we run the iterative procedure
from the previous section on this set of points. The main modification here is that whereas we still use
Dijkstra’s algorithm for approximating dB2 in the target surface, since in the domain we must compute
dB1 only for neighboring points (F1 was chosen to be dense enough), for computational efficiency we can
approximate dB1(xi, xj) ' ‖xi − xj‖ for xj ∈ Ni. We should also point out that for points in F1, the
neighborhood relation is defined to be that of k-nearest neighbors with respect to the metric on B1 defined
by the adjacency matrix of B1. Let φ∗ : F1 → B2 denote the map obtained as the output of this stage.
Extension to the whole domain: After we have iterated over points in F1 until convergence, we extend the
map φ∗ to all points xi in B1\{F1∪Γ1}. This is done by computing φ∗(xi) = arg miny∈B2

maxx∈F1∪Γ1

dB2 (y,φ∗(x))

dB1 (xi,x) .
For this step, and since we have already obtained the map for a relatively dense subset, we approximate both
dB1 and dB2 by the Euclidean distance. Once again, the motivation for this is just computational efficiency.

5 Examples

In this section we present some computational examples of the ideas presented in previous sections. First,
in Figure 1, top, the domain B1 is a cube (m = 10086) and the target B2 is a sphere (m′ = 17982). For
the purposes of visualizing the map, we assigned the clown texture (which can be thought of as a function
I : B2 → IR) to the sphere, which can be seen on the bottom-right corner of the figure. The sphere and the
cube were concentric and of approximately the same size. We selected F1 on the cube consisting of 1000 well
10 One can imagine a situation in which two isometric surfaces are matched by our algorithm such that Li(φ) = 1

for all i, but the displacement field ‖xi − φ(xi)‖ is large since there may be no rigid motion that aligns the two
surfaces. One simple example is a flat sheet of paper and the same sheet slightly bent.
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separated points using the FPS procedure alluded to in §4. Also, we set k = 6 (number of neighbors). We
then chose Γ1 to be the first 100 points of the set and then projected them onto the sphere, obtaining in this
way, the corresponding set Γ2 to use as boundary conditions. We then followed the computational procedure
detailed before. The top-left figure shows the composition I ◦ φ∗ : cube → IR as a texture on the cube.
Finally, the top-right and the bottom-left images show the histogram of Li(φ∗) and its spatial distribution
in the domain (we paint the cube at each point xi with the color corresponding to Li(φ∗)), respectively.
Ideally, we would like to obtain a δ-type histogram, meaning that the distances have been constantly scaled.
Of course, this is not possible (unless one of the surfaces is isometric to a scaled version of the other), and
we attempt to obtain histograms as concentrated as possible. This is quite nicely obtained for this and the
additional examples in this paper.

Figure 1, bottom left and right, shows the construction of a map from the unit sphere S2 into a cortical
hemisphere B (B). The boundary conditions consisted of 6 pairs of points. We first took the following 6
points on the sphere Γ1 = {(±1, 0, 0), (0,±1, 0), (0, 0,±1)}. We then constructed the intrinsic distance matrix
[dS2(pi, pj)] for all pi, pj ∈ Γ1. Finally, we chose 6 points {q1, . . . , q6} = Γ2 in B such that maxi6=j

dB(qi,qj)
dS2 (pi,pj)

was as close as possible to 1
π diam(B). We painted B with a texture IH depending on its mean curvature

so as to more easily visualize the sulci/crests: If H(x) stands for mean curvature of B at x, then IH(x) =
(H(x)−minx H(x))2. See the caption for more details.

The example in Figure 2 is about computing a map Φ from a subject’s left hemisphere B1 to another
subject’s left hemisphere B2. The boundary conditions were constructed in a way similar to the one used for
the previous example, but in this case, 300 points were chosen. Note that, if available, hand traced curves
could be used as commonly done in the literature (in other words, more anatomical/functional oriented
boundary conditions). In the first two rows we show 4 different views of each cortical surface, and in the
third row we show B1 colored with the values of Li(Φ) which we interpret as a measure of the local deformation
of the map needed to match B1 to B2. See the caption for more details.

6 Concluding remarks

In this paper we have introduced the notions of minimizing Lipschitz extensions into the area of surface and
brain warping. These maps provide a more global constraint than ordinary p-harmonic ones, and allow for
more general boundary conditions. The proposed computational framework leads to an efficient surface-to-
surface warping algorithm that avoids distorting intermediate steps that are common in the brain warping
literature. We are currently investigating the use of this new warping technique for creating population
averages and applying it to disease and growth studies. In earlier work, the Jacobian of a deformation mapping
over time has been used to map the profile of brain tissue growth and loss in a subject scanned serially
(tensor-based morphometry [10, 41]). The discrete local Lipschitz constants of our computed mappings also
provide a useful index of deformation that can be analyzed statistically across subjects. The framework here
introduced can also be applied in 3D for volumetric warping and with weighted geodesic distances instead of
natural ones, or different metrics in general, to include additional geometric characteristics in the matching.
As recently shown in [32], the use of pairwise distances is of importance of other matching and computer
vision tasks beyond the ones discussed in this paper. Results in these directions will be reported elsewhere.

Finally, a further validation and possible different application of the framework here proposed is presented
in Figure 3. Here, the 3D shape on the left is mapped onto its given isometric 3D shape on the right. We
used 2000 points per shape, with 20 pointwise boundary conditions. The bottom-left shows the shape on
the top-left, colored according to the corresponding local Lipschitz constant. The bottom-right shows the
histogram of the local Lipschitz constant, centered around one (average is 1.1917). The small deviation from
the ideal case for isometric shapes, an histogram with all the points exactly at one, is expected due to the
sampling (the shapes were first bended and then sampled), the algorithmic discretization, perturbations
in the boundary conditions matches, and the extrapolation from a limited number of points. The detailed
exploitation of this framework for metric-invariant shape warping and recognition, with side information in
the form of boundary conditions, will be reported elsewhere.
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Fig. 1. Top: Artificial example of the proposed warping algorithm. From top to bottom and left to right: The domain
surface, with a picture painted on it to help in visualizing the computed map; histogram of the Lipschitz constant (note
how it is concentrated around a single value); color coded distribution of the Lipschitz constant for the computed map;
and mapped texture following the computed map. Bottom, left and right: Example of mapping between the cortex
and a sphere. The order is the same as in the previous figure, but now the domain and target surface are colored
with a curvature-based color code. Note once again the concentration of the Lipschitz constant for the computed map.
On the middle, the texture map corresponding to IH(x) as described in the text is used. On the right, the texture is
max(IH(x), δ) for a user selected value of the threshold δ, which highlights the gyral crests.
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Fig. 2. Warping between the cortical surfaces of two brains. In the first row, we show 4 views of B1: posterior, medial,
lateral and directly viewing the occipital cortex. The corresponding 4 views of B2 are shown on second row. In the
third row, we show B1 with texture I(xi) = Li(Φ) which can interpreted as a measure of local deformation needed to
match xi ∈ B1 to Φ(xi) ∈ B2. Relatively little deformation (blue colors) is required to match features across subjects
on the flat interhemispheric surface (second image in the second row). This is consistent with the lower variability
of the gyral pattern in the cingulate and medial frontal cortices. By contrast, there is significant expansion required
to match the posterior occipital cortices of these two subjects, especially in the occipital poles which are the target of
many functional imaging studies of vision. The final panel in the figure shows the corresponding histogram for Li(φ),
the local Lipschitz constants of the map.
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Fig. 3. Mapping results for isometric invariant 3D shapes.
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Intrinsic and Extrinsic Analysis on
Computational Anatomy

Anqi Qiu1, Laurent Younes1, Michael I. Miller1

Center for Imaging Science, The Johns Hopkins University

Abstract. We present intrinsic and extrinsic methods for studying anatom-
ical coordinates in order to perform statistical inference on random phys-
iological signals F across clinical populations. To do so, we introduce
generalized partition functions of the coordinates, ψ(x), x ∈ M, which
are used to construct a random field model of F on M. In the intrinsic
analysis, such partition functions are defined intrinsically for individual
anatomical coordinate based on Courant’s theorem on nodal analysis via
self adjoint operators. On the contrary to the intrinsic method, the ex-
trinsic method needs only one set of partition functions for a template co-
ordinate system, and then applied to each anatomical coordinate system
via transformation. For illustration, we give clinical studies on cortical
thickness for each of these methods.

1 Introduction

Computational Anatomy (CA) [1] is a discipline which is evolving rapidly world-
wide. The three major areas in CA (i) construction of anatomical manifolds,
(ii) metric comparison of anatomical manifolds, and (iii) large deviation testing
and statistic inference are proceeding in many groups concurrently. This pa-
per discusses two approaches to statistical inference in disease populations on
anatomical manifolds, what we shall term intrinsic and extrinsic methods.

The specificity of the statistical analysis on anatomical manifolds comes from
the fact that each observation consists of a physiological signal, F , defined on
a manifold, M, which is subject dependent. We refer to the observed signal ,
F (x), x ∈M as the signal in anatomical coordinates. There are numerous exam-
ples, like functional activity, or cortical depth on brain surfaces, fiber orientation
from DTI images etc.

To accommodate a statistical analysis, the most general approach is to con-
sider that the observations arise from an infinite dimensional random process
(M, F ) that includes the manifold and the physiological observation that is car-
ried by it. The anatomical part of the process (M) can have important clinical
implications, and its variations have been showed to be related to pathologi-
cal states (e.g. [2, 3]). However, our focus is on the analysis of the variations of
the physiological signal, F , independently from the anatomical variation that
is considered as a nuisance component of the process. The question is how to
characterize group differences in F that subsist disregarding variation in the
anatomy.
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A natural construction for the distribution of (M, F ) is to first model the
anatomical part, M, then the physiological part conditional to M. The latter
distribution therefore models a random field onM. In this paper, we will consider
representations of this random field by a possibly infinite number of random
variables given by

Fi =
∫
M
F (x)ψi(x)ds(x) (1)

where s is the volume form and ψi is a function on M. The functions ψ1, ψ2, . . .
obviously depend onM, but we will assume that they are completely specified by
it (they are deterministic for the conditional distribution givenM). We shall refer
to them as generalized partition functions of the manifold of M. A simple case
can be associated to the decomposition model F (x) =

∑
i Fiψi(x) where the ψi

form an orthonormal basis of L2(M). They can also be a simple set of indicator
functions, leading to a real decomposition of F on a partition. We do not assume
here that the representation F1, F2, . . . is exact (i.e., that F can be reconstructed
from it), but we expect that it will conserve the necessary information to perform
statistical analysis, that will amount to performing inference on the random
physiological measurements reduced to the coefficients Fi, i = 1, 2, . . . . The real
challenge here is of course the construction of the generalized partition ψ in
anatomical coordinates (i.e., defining ψ1, ψ2, . . . from M), and to ensure that
the construction is done so that the features Fi retain comparable qualitative
interpretation across multiple individuals M(1), . . . ,M(n). Such an approach
will be called an intrinsic analysis, because it relied on computation that only
depend on the observation (M, F ).

Fig. 1. Intrinsic vs. Extrinsic Analysis. In the intrinsic analysis, partition functions
ψ(j) are constructed independently for individual anatomical coordinates shown in
panels (a-c). In extrinsic analysis, only one partition function is needed for template
coordinates shown in panel (d) and partition functions of other anatomical coordinates
are carried onto the template coordinate through mapping φ.

We shall develop an example of intrinsic analysis, and also compare it to
template based methods that we and many groups (e.g. [4–6]) have been fol-
lowing in the past 10 years. As shown in Figure 1, for each anatomical config-
uration M there is a correspondence φ which carries the template coordinates
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to the anatomy. The implicit statistical model in this framework is that M is
a (random) deformation of the template Matlas. In the approach we have used
extensively, this deformation is modeled as a diffeomorphism φ of the ambient
space (an open subset of R3), such that M = φ(Matlas). The random process F
is then pulled back to Matlas by the transformation F → F ◦ φ (the later being
defined on the template). It is the pulled-back version that is modeled as a ran-
dom field on the fixed set Matlas, making its statistical analysis much easier. To
define the generalized partition model, one starts with defining ψ1, ψ2, . . . once
for all on Matlas, and, given an observation (M, F ), compute the coefficient Fi

by first estimating the registration φ such that M = φ(Matlas), then setting

Fi =
∫
Matlas

F ◦ φ(x)ψi(x)ds(x). (2)

The power of this approach is of course that only one partition needs to be
created, indexed over the template. We call this approach extrinsic analysis,
since it depends on the relation between the observation and the template. The
issues that can be raised on such an approach are that the resulting features
depend on the choice of the template, and on the computed correspondences φ.
The difficulty with this strategy is that for many anatomical configurations the
correspondence may not be well defined. For highly curved surfaces in the cortex,
the additional transformation required by the mappings may itself introduce
errors which can directly influence the statistics being inferred. The results of
the analysis may therefore depend on the algorithm that is used for estimating
φ.

For this reason, it is attractive if possible to be able to study variations in the
structure and function associated with anatomical coordinates without having
to generate these bijective correspondences, that is, to use the intrinsic analysis.
We provide such an approach in section 3, based on a classical theorem from
Courant on nodal analysis and the partition of domains based on self adjoint
operators.

An intrinsic approach should address several principles that sustain its well-
foundness and efficiency.

1. Intrinsicality: the generalized partition functions ψj must be obtained di-
rectly from the anatomical coordinates as shown in Figure 1 (a-c), without
the availability of the common extrinsic template coordinates and correspon-
dence.

2. Reliability: the functions ψj computed from similar manifolds must also be
similar.

3. Locality: to be able to obtain statistical conclusions that concern specific
regions of the manifold, the functions ψj must be supported by a subregion
of M.

2 Intrinsic and Extrinsic Random Field Models

An interesting illustration of the difference between the intrinsic and extrinsic
approaches comes from the two random field models they respectively lead to.
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Intrinsic Model. Denote L2(M) for the set of square integrable functions on
M. Let ψM = (ψ1, ψ2, . . .) form an orthonormal basis of L2(M). Then, the
conditional distribution of F given M can be defined via the decomposition

F = F0 +
∞∑

k=1

Fkψk,

F0 being a given, average function, and F1, F2, . . . being uncorrelated Gaussian
variables of respective variances σ2

1 , σ
2
2 , . . .. Such models have been considered

in [7], with the ψi being the eigenfunctions of the Laplace-Beltrami operator on
M.

Extrinsic Model. In the extrinsic approach, modeling focuses on the template.
Defining ψatlas = (ψ1, ψ2, . . .) to be an orthonormal basis of L2(Matlas), one can
model a function F defined on M = φ(Matlas) by

F = F0 ◦ φ−1 +
∞∑

k=1

Fkψki ◦ φ−1

with independent Fk. Equivalently, the model is that the registered physiological
measure, F ◦ φ follows a distribution (as a random field on Matlas) similar to
the intrinsic distribution we have discussed above.

It is a powerful tool for analyzing brain function, and has successfully been
used by several groups including ours (e.g. [2, 3]). It is robust, since the choice
of the basis ψ is done once for the atlas, and then transported to the observed
manifolds. As we have already noticed, however, one important drawback is
that the model depends on the registration φ which is not observed. It therefore
depends on the implemented registration algorithm: different algorithms yield
different models and possibly different conclusions.

This last drawback is, by construction, absent from the intrinsic approach.
The issue there is that, since the ψi are computed independently for each man-
ifold, it is not sure that they can be given a universal interpretation on a given
class of observations (on cingulates, or planum temporale, for example). Even if
the distribution of F can be assumed to be robust as a whole (by letting, in the
case of a decomposition of the Laplace-Beltrami operator, the variance of Fi be
a fixed function of the eigenvalue associated to ψi), it is not always the case for
the computed values of Fi. This robustness depends on fact on the considered
class of manifolds, as will be illustrated later.

Both the intrinsic and extrinsic constructions above are unsatisfactory, how-
ever, because they do not address the locality constraint that is desirable for the
interpretability of the results. We now describe how the eigenfunctions of the
Laplacian can be used to define intrinsic regions on the manifolds, through the
notion of nodal decomposition. Nodal decomposition based on the Laplacian has
been used in other areas, such as image segmentation, graph decomposition, et
al. [8–10]. Moreover, the Laplace-Beltrami operator has been used in the brain
studies, such as surface and function smoothing, conformal mapping [7, 11–13]
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3 Intrinsic Study of Anatomical Coordinates

To generate an intrinsic partition, we start with a classical result from Courant
on the partition of coordinates based on nodal domains. The nodal (or zero-
crossing) lines of the eigenfunctions of a self-adjoint operator defined on the
manifold separates it in a partition with a predictable number of connected
components. We are particularly interested in cortical surfaces for our partition.

Courant’s nodal theorem [14]: Let L be a self adjoint differential oper-
ator and consider the differential equation Lψ + λψ = 0, for a domain M with
arbitrary homogeneous boundary conditions; if its eigenfunctions are ordered ac-
cording to increasing eigenvalues, then the nodes of the ith eigenfunction ψi

divide the domain into no more than i subdomains. No assumptions are made
about the number of independent variables.

Such subdomains are called nodal domains. Lines where ψi changes sign are
defined as nodal lines. On a triangulated mesh, ψi is defined on each vertex
of the mesh. It may change from positive to negative without passing through
zero. The discrete analogue of a nodal domain is a connected set of vertices on
which the eigenfunction has the same, strict or loose, sign. For our partition we

Fig. 2. Eigenfunctions for cingulate, planum temporale, and central sulcus are shown
from top to bottom. The second, third, and fourth eigenfunctions are shown from left
to right.

follow our previous work [7] deriving them as an orthonormal basis constructed
from the Laplace-Beltrami (LB) operator, which is the extension of the Laplace
operator from a regular grid to an arbitrary surface. The LB incorporates the
intrinsic geometric properties of a surface, such as angle between two curves on
the surface, length of a curve, and area, so that subregions of the cortical surface
defined by the LB eigenfunctions are based on the geometric information of the
cortex itself.
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The LB spectral problem with Neumann boundary conditions for surface M
is posed as

∆ψ(u) + λψ(u) = 0, in M,∫
M
|ψ(u)|2dM = 1, (3)

< ∇ψ(u),n >|∂M = 0,

where ∆ is the LB operator; u is the local coordinates with entries u1 and u2 on
M. n is the normal vector on the boundary of M. A numerical solution, using
a finite element implementation, of this eigenvalue problem is provided in [7].

Fig. 3. Cingulate partitions are defined by the second, third, and fourth eigenfunctions.
Each row gives cingulate partitions for one subject.

Eigenfunctions are ordered according to increasing eigenvalues. The first
eigenfunction is a constant function, corresponding to the zero eigenvalue. Shown
in Figure 2 are examples of eigenfunctions generated via the LB operator on
three different cortical gyri. The automated partition on the cortical surface
subregions is obtain via the nodal domains of the LB eigenfunctions. For in-
stance, the top row in Figure 2 shows examples of the second, third and fourth
eigenfunctions on cingulate. The region in red has positive values, while the
region in blue has negative values. As one goes to the higher order of eigen-
functions, red and blue regions alternate rapidly. The number of nodal domains
is bounded by Courant’s nodal theorem and each nodal domain has at least
Dj vertices. Such nodal domains are labeled as index j, 1, 2, · · · , from ante-
rior to posterior of cingulate. The nodal lines are sets of vertices as the form
L(φi) = {vn : emn ∈ M, φi(vm)φi(vn) < 0 and lm > ln}, where lm and ln
are labels of the nodal domains that vertices vm and vn belong to. emn is an
edge between vm and vn on surface M . Figure 3 below illustrates the nodal do-
mains in cingulate gyri generated from the multiple eigenfunctions. The intrinsic
methodology associates to each surface a triangular sequence of domains of the
form N11, N21, N22, N31, N32, N33, . . . , Nn1, . . . , Nnn, . . . where Nn1, . . . , Nnn is
the nodal partictions associated to the nth eigenfunction of the Laplacian. Then
the partition functions are characteristic functions of these domains, namely
ψnk(x) = 1Nnk

(x).
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4 Extrinsic Study of Anatomical Coordinates

The previous definition clearly addresses the intrinsicality and locality principle.
Like for the random field model, the reliability issue is not as straightforward and
can fail to be true for some surfaces. This can be related to possible multiplicity
of eigenvalues (see Figure 4) for the Laplacian, which is often associated to
symmetries within the manifold.

The extrinsic version of the nodal analysis simply involves carrying the gen-
eralized partition from the template onto each of the individual anatomical con-
figurations, according to equation (2).

The correspondences (φ) are constructed using Large Deformation Diffeo-
morphic Metric Mapping methods with landmark data. Landmark data is one
among several instances of modalities that can be aligned with LDDMM, to-
gether with images, tensors (DTI), unlabelled points and measures, courants
and surfaces . . . [15–18].

Fig. 4. Panels (a-c) show the first 5 eigenvalues of cingulate, planum temporale, and
central sulcus that are shown in Figure 2. Panel (b) shows that the second and third
eigenvalues of the planum temporale are close to each other. This evidence is also
observed on the second row of Figure 2.

Fig. 5. Probability maps of each region as a function of cortical location.

In this experiment, we work with a database of 113 landmarked cingulates,
each of them provided with its own collection of (intrinsic) nodal functions, that
will be denoted ψ(j)

nk , n ≥ 2, k ≤ n, j indexing the cingulates.
For the extrinsic representation, we selected the cingulate of one healthy sub-

ject as template, then used the landmark matching procedure[15, 19] to register
the dataset on the template. Letting φ(j) be the deformation carrying the left (or
right) template to the left (or right) cingulate of subject j, the intrinsic nodal
functions ψ(j)

nk were remapped as ψ(j)
nk ◦ φ(j) to the cingulate template. We then

measured how each class of remapped domains overlaps by computing, for all
points x in each the template.

Pnk(x) =
1
J

J∑
j=1

ψ
(j)
nk ◦ φ

(j)(x) , k = 1, . . . , n .
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Figure 5 shows the probability maps for each nodal domain determined by
the fourth LB eigenfunction in the case n = 4, k = 1, 2, 3, 4. For instance, the left
top panel shows that the region in red certainly belongs to the first nodal domain
N41 while the region in blue is not in this domain and the region colored from
red, yellow, green to blue is the transition region between two nodal domains
due to the variation of the brain anatomy across subjects.

5 Statistics in Nodal Domains

When trying to characterize the neuroanatomical and functional abnormalities
associated with a specific neuropsychiatric disorder, certain fundamental ques-
tions always arise. The most important one is asked to detect group difference
in anatomical structure and function of a particular brain region. This can be
quite challenging due to highly variable brain structure across subjects and high
dimensionality of data (e.g. thickness function defined on the cortical surface)
compared to the small number of individuals in each group. Partitioning the cor-
tex into different domains seems a way to overcome these issues by reducing the
complexity of brain structure into domains and reducing dimensionality of data.
Below we define a statistic corresponding to each nodal domain for detecting
group differences.

For a scalar function F (j)(x) defined on cortical surface j, such as cortical
thickness, curvature, or functional response, we define the normalized scalar
measurement F

(j)

nk within nodal domain N (j)
nk by

F
(j)

nk =

∫
M(j) F

(j)(x)ψ(j)
nk (x)ds(x)∫

M(j) ψ
(j)
nk (x)ds(x)

, k = 1, 2, · · · , n , (4)

where ψ
(j)
nk is as before the indicator function of domain Nnk. Again, ψ(j)

nk is
computed from individual cortical surface in the intrinsic analysis, while only
one set of partition functions ψ(atlas)

nk is used in the extrinsic analysis and then
transported to the other surfaces via diffeomorphic regsitration. Group difference
of F

(j)

nk within each nodal domain is detected to perform statistical analysis, such
as t-test, rank sum test.

5.1 Clinical Studies

Extrinsic Study. Our first example discusses the use of the extrinsic random
field model (section 2) to characterize group differences of structural or func-
tional measurement on the cortical surface. We give an example of the clinical
study in schizophrenia for the subcortical structure – left planum temporale
(lPT), which is the associate auditory system located on the left superior tem-
poral gyrus. We have assessed the lPT thickness in 10 healthy subjects, 10 sub-
jects with schizophrenia, matched with age and gender. We first chose one lPT
of a healthy subject as template and all others were deformed into the tem-
plate space using the diffeomorphic surface matching approach [16]. The cortical
thickness maps on the other lPTs were then remapped to the template. The
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average thickness maps within the healthy and schizophrenic groups are shown
in Figure 7(a,b), respectively. These two panels suggest that there are similar
patterns in both groups, that is, the lPT is thin at the bottom of Heschl’s sul-
cus (HS), then progressively thicker away from HS, and finally thinner towards
the posterior ramus. Figure 7(c) shows pairwise differences in the average thick-
ness maps between the two groups. Red denotes the region where the lPT is
thicker in the healthy control group than in the schizophrenic group while blue
represents the region where the lPT is thinner in the healthy group than in
the schizophrenic group. To demonstrate the group difference, each thickness
map was expanded as a linear combination of eigenfunctions shown in Figure 6
with a coefficient vector f (i,j), where i is the index of groups and j is the in-
dex of subjects in group i. The Hotelling’s T 2 test was incrementally performed
on F 1 = {f (1,j), j = 1, 2, · · · , N} and F 2 = {f (2,j), j = 1, 2, · · · , N} when
N = 1, 2, 3, · · · . We found that the group difference in thickness occurs in the
second, third, and fourth eigenfunctions shown in Figure 6(a,b,c), respectively.
The significant group difference reconstructed by these eigenfunctions is shown in
panel (d) of Figure 7. Several previous studies have shown that reduced superior
temporal gyrus volume is associated with hallucinations/delusions or positive
formal thought disorder [20]. This with our thickness results thus implies that
the region showing thickness decrease relative to healthy comparison controls is
associated with these dysfunctions (hallucinations/delusions or positive formal
thought disorder).

Fig. 6. Three eigenfunctions of the LB operator defined on the left planum temporale.

Intrinsic study. We study the thickness variation of cingulate in schizophrenia
using the approach described in Section 5 in the intrinsic analysis. The cingulate
gyrus is the part of the cerebrum that lies closest to the limbic system, above the
corpus callosum. It provides a pathway from the thalamus to the hippocampus,
is responsible for focusing attention on emotionally significant events, and for
associating memories to smells and to pain. It has been considered as prominent
brain structure related to schizophrenic symptoms. The cortical thickness of the
cingulate gyrus estimated from MRI is one of quantitative morphometric mea-
surements, which indirectly implies cellular changes in density as well as soma
size and directly indicates the change in gray matter volume and anatomical
shape that may be associated with schizophrenia. Figure 8 gives examples of
thickness maps of a control and schizophrenic patient. The interesting questions
arising are how to detect group difference on the cingulate surface and (if there
is one) how to localize such a change on the cingulate surface. To answer these
questions, we applied the intrinsic method. Two-sided rank sum tests were per-
formed on the coefficients Fnk to detect and quantify nonuniform abnormalities
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of the cortical thickness on cingulate surfaces in 20 subjects with schizophre-
nia as compared to 20 healthy subjects matched for gender and age. We found
distinct pattern of thickness on the left cingulate gyrus. In terms of power of
statistical testing, the most significant change in thickness between healthy and
schizophrenic groups is on the region colored in blue shown in the last column of
Figure 3. As for the right side of the cingulate gyrus, distinct pattern of thickness
is shown in both anterior and posterior segments of the cingulate gyrus as well.

Fig. 7. Panels (a,b) show the average thickness maps over the control and schizophrenic
groups on the left planum temporale. Panel (c) shows the difference in thickness be-
tween the control and schizophrenic groups. Panel (d) illustrate the significantly differ-
ent pattern in thickness between these two groups, which is constructed using eigen-
functions shown in Figure 6.

Fig. 8. Panel (a) shows cortical thickness maps on the left and right cingulates of one
healthy control subject. Panel (b) shows thickness maps for one schizophrenic patient.

6 Conclusion

This paper presents the intrinsic and extrinsic methods both of which are pow-
erful tools to study statistical inference on physiological random signals F in
anatomical coordinates. The extrinsic method has been used to study the anatom-
ical variability in the last decade. An advantage of the extrinsic analysis is that
only one set of partition functions is needed for the template coordinate. But
this requires to find the correspondence between anatomies that carries these
partition functions to each anatomical coordinate. The intrinsic method may
become an alternative way to study statistical inference on F across populations
if such a correspondence between anatomies is not well defined. The tradeoff
of this method is that the set of partition functions has to be found for every
anatomical coordinate, which is solved based on Courant’s theorem on nodal
analysis via the LB operator in this paper.
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Abstract. We present a new, continuously defined three-dimensional
medial shape representation based on subdivision surfaces. The shape is
modeled via its medial axis, and the associated boundary is computed
directly from this axis at every point. Our model is parameterized over a
fixed domain, so comparison among different shapes is possible. It is the
first such model to support branch curves, which allows it to represent
complex medial axes with more than one medial sheet.

1 Introduction

Medial shape models are powerful tools for shape analysis since they can rep-
resent complex biological shapes using a relatively small number of parameters.
Defined as the locus of the centers and radii of the maximally inscribed balls of
an object, they also have a natural connection with the cognitive processes of
the human visual system [1]. They were originally introduced by Blum for 2-D
shape analysis, where they can be organized into a tree structure with a finite
number of singular points [2]. They are also well-suited for 2-D shape synthesis,
as they can be modeled by a series of continuous curves with a finite number
of constraints at their end-points [3]. A model of the centers and radii of the
inscribed balls is sufficient to reconstruct the complete boundary of the shape.

The singular structure of the medial axis has been thoroughly analyzed in
three dimensions [4], and the differential geometry of its associated boundary has
undergone rigorous mathematical treatment in arbitrary dimension [5]. However,
its adaptation to shape synthesis in three dimensions has proven difficult.

The primary challenge is that in 3-D, unlike in 2-D, the medial axis contains
infinitely many singular points, e.g., along its edge. Each of these points requires
a boundary condition to be satisfied in order for the associated boundary of
the object to be closed. However, without a shape model designed explicitly to
enforce these boundary conditions, a straightforward model design will only have
a finite number of parameters to adjust to satisfy them.

Yushkevich introduced the first three-dimensional continuous medial model,
which was based on B-spline curves, and supported only a single medial sheet [6].
Instead of trying to adjust control-point values to force the boundary conditions
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to be true on the edge of the spline domain, he adjusted the radius function on
the edge to force the boundary conditions to be true somewhere in the interior.
Yushkevich then implicitly solved for the curve where this occurred, and defined
this to be the edge of the axis.

Unfortunately, this meant that the edge of every shape model had a different
location in the domain, and due to the unconstrained, irregular shape, there was
no straightforward mapping between the interiors of different models. This makes
the representation unsuitable for comparing different shapes or performing shape
statistics across a population. It also makes it impossible to join multiple sheets,
as there is no way to make the sheets intersect along a specific curve without
solving high degree polynomial equations, much less obey boundary conditions.

Yushkevich et al. later describe an approach that produces an explicit domain
by interpolating a potential function ρ across the medial axis instead of the
radius [7]. The radius is recovered by numerically solving a differential equation
with boundary conditions via finite element methods up to sufficient accuracy
to get a finely sampled shape model. However, when connecting multiple sheets,
using a potential function instead of an explicit representation of the radius does
not leave enough free parameters to ensure both that the necessary boundary
conditions are satisfied and that the radii are equal where the sheets meet. We
are unaware of an existing solution to this problem.

We take a different approach. We use Catmull-Clark subdivision surfaces
with what we shall term an ordinary, corner-free boundary to model the medial
sheets. The boundary conditions are then enforced by modifying the patches at
the edges of the sheet to use an interpolating spline. This allows us to reduce
the degree of the polynomial equations for the boundary conditions from 12 to
2, yielding an explicit and efficient solution. The solutions of these equations
are then used to construct a “control curve” which replaces the outer layer
of control points, effectively providing the infinite number of free parameters
needed to enforce the condition everywhere. These two key ideas—interpolating
splines and control curves—are what makes this approach possible. We begin by
giving a mathematical description of the medial axis and the necessary boundary
conditions, and then outline our method of enforcing them.

2 Geometry of the Medial Axis

Damon formally describes the medial axis as a special kind of Whitney stratified
set [5], a stratification into smooth manifold pieces of codimension one, with their
boundaries and corners classified into different smooth strata of higher codimen-
sion. An associated radius function can be used to compute a multivalued radial
vector field, S, over the axis. These radial vectors, also called spokes, point from
a point on the axis to the corresponding points on the associated boundary, and
are normal to the boundary at these points. The medial axis and its associated
radial vector field are a special type of what Damon terms a skeletal structure [5].

For a generic genus zero object, the medial axis is composed of smooth,
two-dimensional manifolds called medial sheets, whose boundaries form one-
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dimensional curves called edge curves. Three sheets may be connected via a
smooth one-dimensional curve called a branch curve. Branch curves end when
they intersect an edge curve of one of the three sheets, at a fin creation point. Fi-
nally, four branch curves joining six medial sheets may intersect at a six-junction
point. These are all of the singularities that may occur in three dimensions [4].
We will address them all in this work, except for six-junction points.

On a medial sheet’s interior, there are exactly two values of the radial vector
field, one pointing out from each side. Denoting the field S in terms of the radius
and a unit radial vector field, S = rU , the two values of U at each smooth point
and the corresponding points on the associated boundary are given by

U± = −∇r ±
√

1− ‖∇r‖2 · N . B = m + rU (1)

Here N is the unit normal vector for the medial sheet, and ∇r is the Riemannian
gradient defined on the manifold. Let m(u, v) be a local parameterization of the
manifold and Im its first fundamental form. Then ∇r is given by

∇r ,
[
mu mv

]
I−1
m

[
ru

rv

]
, Im ,

[
Em Fm

Fm Gm

]
,

[
mu ·mu mu ·mv

mv ·mu mv ·mv

]
. (2)

These radial vectors are arranged symmetrically about the tangent plane.
One can see that the vector U+ + U− points in the −∇r direction, which is
tangent to the medial sheet, and U+ − U− points in the normal direction.

The values at singular points are obtained by smooth extension from the
locally neighboring medial sheets. Along the edge of a medial sheet, the top
spokes must meet the bottom spokes, or the surface will not be closed. As can
be seen from the coefficient of N in (1), this occurs precisely when

‖∇r‖ = 1 . (3)

This “edge constraint” makes the normal component zero and the tangential
components equal. Everywhere else on the medial axis, ‖∇r‖ < 1 must hold.

Along a branch curve, if one has three medial sheets m(i) oriented so that the
bottom of one is adjacent to the top of the next, then the restriction becomes [3]

∇r(i⊕2) −∇r(i⊕1) = N (i) ·
√

1− ‖∇r(i)‖2 , (4)

where ⊕ denotes addition modulo 3. At fin creation points, ‖∇r(i)‖ goes to 1 for
one of the sheets, causing the constraint in (4) to disappear.

A medial axis (m, r) which satisfies these boundary conditions will be closed,
but there may be singularities on the reconstructed boundary itself, causing kinks
and overfoldings. These occur in areas of concave curvature, where the radius
extends “too far” into the concavity. Damon outlines a set of conditions to check
which ensure no such illegalities occur [5]. They are based on the radial shape
operator, Srad, and a related edge shape operator, SE , which measure the change
in U for an infinitesimal step along a medial sheet. The radial shape operator is
not a shape operator in the traditional differential geometric sense, but it is a
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linear operator on the tangent space of m, although not necessarily self-adjoint.
A matrix representation can be computed from second derivatives of m and r,
and its eigenvalues, called the principal radial curvatures, can be used to check
for overfolding of the boundary. When combined with a measure defined on the
medial axis, it can also be used to compute skeletal integrals over the boundary
or interior of the object in medial coordinates [8]. One of the advantages of a
continuous representation is that this Srad can be computed analytically.

3 Catmull-Clark Subdivision on the Medial Axis

Catmull-Clark subdivision surfaces are a generalization of B-spline knot insertion
to meshes of arbitrary topology [9]. They were initially created as a graphics
primitive to represent the boundary of closed objects. A continuous surface,
called the limit surface, is created from an initial, discrete mesh by recursive
subdivision. After the first level of subdivision, all of the faces are quadrilaterals,
and every new vertex will have valence four.

Any vertex of valence four is thus called an ordinary vertex, while the re-
maining vertices are extraordinary. After the second level of subdivision, every
face has at most one extraordinary vertex. Away from an extraordinary vertex,
the limit surface behaves exactly like a B-spline patch, and thus the surface and
its derivatives can be evaluated efficiently at arbitrary points. Stam showed how,
with some one-time setup, the limit surface could also be efficiently evaluated
near an extraordinary vertex [10].

Catmull-Clark surfaces are everywhere C2 continuous, except at extraordi-
nary vertices, where they are C1 continuous. C1 continuity ensures that ∇r, and
thus the spoke field, are continuous everywhere. Since the spoke field is normal to
the boundary, a continuous spoke field will generate a G1 continuous boundary.
C2 continuity everywhere except on a set of measure zero ensures that we can
compute Srad almost everywhere, and thus can check for illegalities and compute
medial integrals. Subdivision surfaces are also appealing because they offer local
control. That is, a control point only influences a small local region of the surface
surrounding it, instead of the whole surface. This becomes advantageous when
trying to fit a model to an image, since the derivative of most points on the
boundary with respect to one of the parameters is zero.

Originally restricted to closed surfaces, there have been several strategies
for handling meshes with edges and creases. Initially, Hoppe et al. proposed a
set of rules for triangular subdivision surfaces [11], which have a straightfor-
ward adaptation to quadrilateral subdivision surfaces—including Catmull-Clark
surfaces—as described by, e.g., DeRose et al. [12] and Warren and Schaeffer [13].
The latter also describe a simple method of implementing these rules, however
neither proved that the rules produced C1 limit surfaces. A set of rules that are
provably C1 everywhere were proposed by Biermann et al., addressing problems
with extraordinary edge vertices and convex and concave corners [14].

For simplicity, we require that the edge of the mesh contain only ordinary
vertices (which will be valence three, not four). For reasons that will become
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clear in the next section, we also disallow corners, i.e., no two adjacent edges
on a crease or edge curve can belong to the same face. Besides being a practical
requirement, eliminating corners is also desirable for many of the objects we
wish to model. Under these restrictions, all of the previous rules for handling
edges and creases are identical. They effectively cause the edge of the mesh to
be interpolated as a one-dimensional B-spline curve, unaffected by other control
points in the interior of the mesh. This makes joining three medial sheets along
a branch curve straightforward. At a fin creation point, the fin still ends in a
corner and a dart vertex is used to merge the crease smoothly into the surface.

(a) (b)

Fig. 1. A continuous medial model defined on a mesh with ordinary, corner-free bound-
ary, depicting a healthy left lateral ventricle. (a) The mesh, medial axis, and radial
vector field. (b) The enclosing boundary.

We call the result a mesh with ordinary, corner-free boundary. We perform
two levels of subdivision, and then construct B-spline patches, except near ex-
traordinary vertices, which are handled via Stam’s evaluation method. The next
two sections address patches adjacent to an edge or branch curve.

4 Edge Patches

First, we address patches along the edge of a medial sheet. Without loss of gen-
erality, we assume the edge lies along the line u = 0, as illustrated in Figure 2(a).

A full 4 × 4 matrix of B-spline control points P that interpolate the limit
surface M , (m, r) of this patch for both m and r can be constructed by adding
P0,j points out past the boundary, where3 P0,j , 2P1,j − P2,j . Then the local
portion of the medial locus is defined by the equation

M(u, v) ,
[
1 u u2 u3

]
BPBT

[
1 v v2 v3

]T
, B ,

1
6


1 4 1 0
−3 0 3 0
3 −6 3 0
−1 3 −3 1

 . (5)

The medial sheet m is interpolated as usual, but in order to enforce the edge
condition (3) along this edge, we interpolate r using a control curve r0(v) instead

3 Using P0,j , 1
2
(P1,j + P2,j) and replacing P1,j with P̃1,j , 11

8
P1,j − 3

8
P2,j helps

prevent the right side of the patch from overfolding, at the cost of a small modification
to the neighboring patch, while interpolating the same u = 0 edge.
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(a)

u

v

u = 0

r0(v) P1,0

P1,1
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P1,3
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P2,1

P2,2

P2,3

P3,0

P3,1

P3,2

P3,3

(b)

Fig. 2. (a) The control curve, r0(v), on an edge patch. (b) An example of interpolated
edge patches and their associated boundary.

of a few isolated control points. This lets us ensure the condition holds at every
point on the edge, which would not be possible with only a finite number of
control point values as free parameters. It is important to emphasize that this
curve does not represent a set of parameters explicitly defined by the modeler,
but is implicitly defined by the boundary condition.

Unfortunately, the use of such a curve makes the interpolation fundamentally
asymmetric with respect to the two variables u and v. We must first interpolate
in the v direction, obtaining new control points for a spline in u. Then, we use a
change of basis to convert the spline in u to an interpolating spline, which passes
through its control points. Finally, we replace the control point on the left with
the point from our control curve, and perform interpolation in the u direction.
Because of this asymmetry, we cannot, for example, add a control curve to both
the u = 0 and v = 0 edges of the same patch, which is why we disallow corners
on the edge of the mesh.

The particular interpolating spline we use is the C1 Catmull-Rom spline. We
perform the change of basis by modifying the spline defined above. Replacing
BP in equation (5) by CP′, we use a new set of control points, P′, given by

P′ , C−1BP , C ,
1
2


0 2 0 0
−1 0 1 0
2 −5 4 −1
−1 3 −3 1

 . (6)

Now, we can replace the row P ′
0,j with our control curve, and the result

will still pass through the limit surface at either end of the patch. Furthermore,
note that P ′

0,j has no influence on the derivative with respect to u on the right
edge of the patch. Hence, whatever we use for a control curve, we will retain C1

continuity along the right edge. We now derive an equation for the control curve,
and show that we also retain C1 continuity along the top and bottom edges.
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4.1 Solving for ru(0, v)

In order to ensure that the top and bottom spokes meet, we proceed to enforce
the constraint in (3). With some algebra, we can decompose∇r into a component
in the mv direction and a component in the mv × (mu ×mv) direction:

∇(v)
r =

rv√
Gm

, ∇(⊥v)
r =

ruGm − rvFm√
Gm(EmGm − F 2

m)
. (7)

Now, we hold mu(0, v), mv(0, v), and rv(0, v) fixed, and solve for ru(0, v).
The key observation is that using a spline interpolative in u means that r(0, v),
and hence rv(0, v), is completely determined by the control points P ′

1,j along the
edge. In particular, they do not depend on the values of our unknown control
curve. Then substituting (7) into (3) and solving for ru produces

ru =
1

Gm

(
rvFm ±

√
(Gm − r2

v)(EmGm − F 2
m)

)
. (8)

There are two possible solutions, one of which corresponds to spokes along the
crest pointing outward from the medial sheet, and the other corresponding to
spokes pointing inwards. The latter is clearly illegal for a Blum medial axis, but as
we can see by substituting (8) into (7), the sign of the component perpendicular
to mv is determined entirely by the sign of the square root term. The plus
solution always corresponds to outward-pointing spokes.

4.2 The Complete Control Curve

Now, given ru(0, v), it is a simple matter to solve for the value of the control
curve r0(v) that produces this derivative. Let r1(v), r2(v), and r3(v) be the
interpolation of the three lines of ordinary control points in the v direction:

ri(v) ,
[
P ′

i,0 P ′
i,1 P ′

i,2 P ′
i,3

]
BT

[
1 v v2 v3

]T
, i = 1 . . . 3 . (9)

Then solving for r0(v) in terms of ri(v) yields

r0(v) =
1

C1,0
(ru(0, v)− C1,1r1(v)− C1,2r2(v)− C1,3r3(v)) , (10)

where Ci,j is the (0-indexed) i, jth element of C. It is important to emphasize
that this formulation only works for interpolating splines, since otherwise ru(0, v)
would not be independent of r0(v) in the right-hand side of (10).

Note that r0(v) is a function of mu(0, v), mv(0, v), and rv(0, v) only. As these
are all first derivatives of functions obtained from B-spline interpolation, they
are C1 across patches, and hence so is r0(v). This ensures that r(u, v) is C1 with
neighboring patches along the top and bottom edges, as well as the right edge.
In practice, we can regain C2 continuity on the right by using a fourth-order
C2 interpolating cubic spline (omitted for brevity). Such a spline even contains
enough free parameters to enforce a second boundary condition on the same
edge, although we do not make use of that in this work.
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5 Branch Curve Patches

Although (4) is a succinct expression of the boundary conditions along a branch
curve, it is not obvious how they should be enforced. We motivate the solution
with a geometric approach. Without loss of generality, we assume our three
patches are oriented so that they meet at the u = 0 curve in each. Then rv and
Gm are the same in each patch, and hence so is ∇r(v).

Now, since all three N (i)s are perpendicular to mv, they lie in the same plane,
and hence so do the endpoints of ∇r(i) and U (i)±. We project everything into
this plane, as illustrated in Figure 3(a). As one can see, the sums of the angles
θ(i) must be π, and the in-plane components of the tangent vectors m

(i)
u must

bisect these angles. This provides a full set of geometric constraints.

(a)
θ(0) θ(0)

θ(1)

θ(1)

θ(2)

θ(2)

φ(0)

φ(1)

φ(2)

m
(0)
u

m
(1)
u

m
(2)
u

U (0)+ = U (2)−

U (1)+ = U (0)−

U (1)− = U (2)+

(b)

Fig. 3. (a) The cross-section of a branch curve, with mv pointing out of the page. (b)
An example of the interpolated patches near a fin creation point.

5.1 Away From Fin Creation Points

Away from a fin creation point, we can enforce these constraints by noting that
∇r(⊥v,i) ∝ cos θ(i). Let φ(i) be the counter-clockwise angle between the in-plane
components of the tangent vectors m

(i)
u and m

(i+1)
u , so φ(i) = θ(i) + θ(i+1). Then

solving for θ(i) and ∇r(⊥v,i) gives

θ(i) =
1
2
(φ(i) + φ(i⊕2) − φ(i⊕1)) , ∇r(⊥v,i) = −

√
1− r2

v

Gm
cos θ(i) . (11)

These constraints can be enforced with a control curve exactly as in Section 4.
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5.2 At a Fin Creation Point

Catmull-Clark subdivision does not produce B-spline patches around a dart
vertex, but after the first two levels of subdivision, we approximate the medial
surface with B-spline patches that interpolate the same branch curve. Without
loss of generality, we will assume m(0) is the fin patch. At the fin point itself, we
adjust r

(0)
u (0, 0) while holding r(0)(0, v) fixed so that ‖∇r(0)‖ = 1 at (0, 0). Since

this is a constraint at just one point, this is easily done by adjusting control
points. We also note that we can rotate m

(i)
u around mv arbitrarily without

affecting ‖∇r(i)‖. Thus, we rotate m
(0)
u (0, 0) around mv until U (0)− and U (1)+

coincide. This can also be done without affecting m(0)(0, v) by adjusting control
points. We now enforce the ‖∇r(0)‖ = 1 condition on the entire v = 0 edge as
normal. However, this prevents us from using a control curve along the other
edge. Hence, we hold the values of r

(0)
u (0, v) and m

(0)
u (0, v) fixed.

This fixes θ(0), so we adjust θ(1) and θ(2). Let θ(1) = φ(0) − θ(0) − α and
θ(2) = φ(2)−θ(0)−β. We require θ(0)+θ(1)+θ(2) = π and for a second constraint
choose αφ(2) = βφ(0), yielding

α = φ(0) · φ(0) + φ(2) − π − θ(0)

φ(0) + φ(2)
, β = φ(2) · φ(0) + φ(2) − π − θ(0)

φ(0) + φ(2)
. (12)

To make the tangent planes form the correct angles between them, we rotate
m

(1)
u by α and m

(2)
u by −β around mv. This can be accomplished with a control

curve in a way exactly analogous to the procedure in Section 4.2 for ru.
At the fin creation point, φ(0)(0) + φ(2)(0) = π and θ(0)(0) = 0, so α(0) =

β(0) = 0. However, to ensure C1 continuity, we require αv(0) = βv(0) = 0. This
occurs precisely when φ

(0)
v (0)+φ

(2)
v (0)+θ

(0)
v (0) = 0. Since φ(0)+φ(2) = π past the

fin creation point, and these are functions of the unrotated m(i)s, which join the
rest of the surface with C2 continuity at v = 0, this implies φ

(0)
v (0)+φ

(2)
v (0) = 0,

and hence θ
(0)
v (0) = 0 must hold. This can be enforced by adjusting control

points to modify r
(0)
uu (0, 0) so that ∂‖∇r‖2

∂v = 0 at the fin creation point, while
holding r

(0)
u (0, 0) and r(0)(0, v) fixed.

To transition between the procedure at a fin creation point and the procedure
elsewhere on the branch curve, we smoothly blend between the two strategies
in an adjacent patch using the weight function ω(v) = 1− 3v2 + 2v3. Note that
ω(0) = 1, ω(1) = 0, and ωv(0) = ωv(1) = 0. Then in the transition region we use

θ(i) = ω · θ(i)
fin + (1− ω) · θ(i)

branch , α = ω · αfin , β = ω · βfin . (13)

6 Conclusion

We have presented a generative shape model using the medial axis in three
dimensions. It is based on cubic splines defined on subdivision surfaces, and so
can be implemented efficiently. It is the first such model to support branching.
In future work, we also plan to incorporate six-junction points.
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Abstract. This paper presents a new method for constructing statisti-
cal representations of ensembles of similar shapes. The proposed method
relies on an optimal distribution of a large set of surface point correspon-
dences, rather than the manipulation of a specific surface parameteriza-
tion. The optimal configuration is defined as one in which the entropy
or information content of each shape is balanced against the entropy
of the ensemble of shapes. The correspondences are modeled as sets of
dynamic particles that are manipulated using a gradient descent on the
entropies of the shapes and the ensemble, but constrained to lie on a
set of implicit surfaces. The proposed, particle-based method for finding
correspondences requires very little preprocessing of data or parameter
tuning, and therefore makes the problem of shape analysis more practical
for a wider range of problems. This paper presents the formulation and
several synthetic and real shape examples in two and three dimensions.

1 Introduction

Computing statistics on sets of shapes requires quantification of shape differ-
ences, which is a fundamentally difficult problem. A widely-used strategy for
computing shape differences is to compare the positions of corresponding points
among sets of shapes. Medical or biological shapes, however, are typically de-
rived from the interfaces between organs or tissue types. Such surfaces are usually
defined implicitly in the form of segmented volumes, rather than from explicit
parameterizations or surface point samples. Thus, no defined, a priori relation-
ship between points across surfaces exists. Correspondences must therefore be
inferred from the shapes themselves, giving rise to the difficult, yet very impor-
tant, correspondence problem.

Until recently, correspondences for shape statistics were established man-
ually by choosing small sets of anatomically significant landmarks on organs
or regions of interest, which would then serve as the basis for shape analysis.
The demand for more detailed analyses on ever larger populations of subjects
has rendered this approach unsatisfactory. Recently, Davies et al. [1] present
methods for automatically establishing relatively dense sets of correspondences
based on the information content of the set of points needed to describe an en-
semble of similar shapes. These methods, however, rely on mappings between
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fixed parameterizations, and because most shapes in medicine or biology are not
derived parametrically, this reliance on a parameterization presents some sig-
nificant drawbacks. Automatic selection of correspondences for nonparametric,
point-based shape models has been explored in the context of surface registra-
tion [2], but such methods are not sufficient for shape analysis because they
are typically concerned only with pairwise correspondences, and not correspon-
dences across populations of points. Furthermore, these methods also assume a
fixed set of samples on surfaces, whereas, in the context of this paper, we are
given implicit surfaces (volume segmentations) and dynamically resample them
as part of the correspondence selection process.

This paper presents a new method for extracting dense sets of correspon-
dences that describe ensembles of similar shapes. The method is nonparametric
and borrows technology from the computer graphics literature for representing
surfaces as discrete point sets. The proposed method iteratively modifies a sys-
tem of dynamic particles so that they follow trajectories across the surfaces to
find positions that optimize the information content of the system. This strategy
is motivated by a recognition of the inherent tradeoff between geometric accuracy
and statistical simplicity. Our assertion is that each unit of complexity, or infor-
mation, across the ensemble should be balanced against a unit of information on
the surface. This approach provides a natural equivalence of information content
and reduces the dependency on ad-hoc regularization strategies and free param-
eters. Since the points are not tied to a specific parameterization, the method
operates directly on volumetric data, extends easily to higher dimensions or ar-
bitrary shapes, and provides a more homogeneous geometric sampling as well as
more compact statistical representations. The method draws a clear distinction
between the objective function and the minimization process, and thus can more
readily incorporate additional information such as adaptive surface sampling and
high-order geometric information.

2 Related Work

The strategy of finding of parameterizations that minimize information content
across an ensemble was first proposed by Kotcheff and Taylor [3]. They represent
each two-dimensional contour as a set of N samples taken at equal intervals from
a parameterization. Each shape is treated as a point sample in a 2N -dimensional
space, with associated covariance Σ and cost function,

∑
k log(λk +α), where λk

are the eigenvalues of Σ, and α is a regularization parameter that prevents the
very thinnest modes (smallest eigenvalues) from dominating the process. This
is the same as minimizing log |Σ + αI|, where I is the identity matrix, and | · |
denotes the matrix determinant.

Davies et al. [1] propose minimum description length (MDL) as a cost func-
tion. In that work they use arguments regarding quantization to limit the effects
of thin modes and to determine the optimal number of components that should
influence the process. They propose a piecewise linear reparameterization and a
hierarchical minimization scheme. Monotonicity in the reparameterizations en-
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sures that those composite mappings are diffeomorphic. Davies et al. [4] propose
a 3D extension to the MDL method, which relies on spherical parameteriza-
tions and subdivisions of an octahedral base shape, and smoothed updates, rep-
resented as Cauchy kernels. The parameterization must be obtained through
another process such as [5], which relaxes a spherical parameterization onto
an input mesh. The overall procedure is empirically satisfactory, but requires
significant data preprocessing, including a sequence of optimizations—first to
establish the parameterization and then on the correspondences—each of which
entails a set of free parameters or inputs in addition to the segmented volumes.
A significant concern with the basic MDL formulation is that the optimal solu-
tion is often one in which the correspondences all collapse to points where all
the shapes in the ensemble happen to be near (e.g., crossings of many shapes).
Several solutions have been proposed [4, 6], but they entail free parameters and
assumptions about the quality of the initial parameterizations.

The MDL formulation is mathematically related to the min-log |Σ + αI|
approach, as noted by Thodberg [6]. Styner et al. [7] describe an empirical study
that shows ensemble-based statistics improve correspondences relative to pure
geometric regularization, and that MDL performance is virtually the same as
that of min-log |Σ +αI|. This last observation is consistent with the well-known
result from information theory that MDL is, in general, equivalent to minimum
entropy [8].

Another body of relevant work is the recent trend in computer graphics
towards representing surfaces as scattered collections of points. The advantage of
so-called point-set surfaces is that they do not require a specific parameterization
and do not impose topological limations; surfaces can be locally reconstructed or
subdivided as needed [9]. A related technology in the graphics literature is the
work on particle systems, which can be used to manipulate or sample [10] implicit
surfaces. A particle system manipulates large sets of particles constrained to a
surface using a gradient descent on radial energies that typically fall off with
distance. The proposed method uses a set of interacting particle systems, one for
each shape in the ensemble, to produce optimal sets of surface correspondences.

3 Methods

3.1 Entropy-Based Surface Sampling

We treat a surface as a subset of <d, where d = 2 or d = 3 depending whether
we are processing curves in the plane or surfaces in a volume, respectively. The
method we describe here is limited to smooth, closed manifolds of codimen-
sion one, and we will refer to such manifolds as surfaces. We sample a sur-
face S ⊂ <d using a discrete set of N points that are considered random vari-
ables Z = (X1, X2, . . . , XN ) drawn from a probability density function (PDF),
p(X). We denote a realization of this PDF with lower case, and thus we have
z = (x1, x2, . . . , xN ), where z ∈ SN . The probability of a realization x is
p(X = x), which we denote simply as p(x).
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The amount of information contained in such as random sampling is, in the
limit, the differential entropy of the PDF, which is H[X] = −

∫
S

p(x) log p(x)dx =
−E{log p(X)}, where E{·} is the expectation. When we have a sufficient num-
ber of samples from p, we can approximate the expectation by the sample mean
[8], which gives H[X] ≈ −(1/N)

∑
i log p(xi). We must also estimate p(xi). Den-

sity functions on surfaces can be quite complex, and so we use a nonparametric,
Parzen windowing estimation of this density using the samples themselves. Thus
we have

p(xi) ≈
1

N(N − 1)

N∑
j=1
j 6=i

G(xi − xj , σ) (1)

where G(xi − xj , σ) is a d-dimensional, isotropic Gaussian with standard devia-
tion σ. The cost function C, is therefore an approximation of (negative) entropy:
H[X] ≈ −C(x1, . . . , xN ) =

∑
i log 1

N(N−1)

∑
j 6=i G(xi − xj , σ),

In this paper, we use a gradient-descent optimization strategy to manipulate
particle positions. The optimization problem is given by:

ẑ = arg min
z

E(z) s.t. x1, . . . , xN ∈ S. (2)

The negated gradient of E is

− ∂E

∂xi
=

1
σ2

∑N
j=1
j 6=i

(xi − xj)G(xi − xj , σ)∑N
j=1
j 6=i

G(xi − xj , σ)
= σ−2

N∑
j=1
j 6=i

(xi − xj)wij , (3)

where
∑

j wij = 1. Thus to minimize C, the samples (which we will call particles)
must move away from each other, and we have a set of particles moving under a
repulsive force and constrained to lie on the surface. The motion of each particle
is away from all of the other particles, but the forces are weighted by a Gaussian
function of inter-particle distance. Interactions are therefore local for sufficiently
small σ. We use a Jacobi update with forward differences, and thus each particle
moves with a time parameter and positional update xi ← xi − γ ∂C

∂xi
, where γ is

a time step and γ < σ2 for stability.
The surface constraint is specified by the zero set of a scalar function F (x).

This constraint is maintained, as described in several papers [10], by first project-
ing the gradient of the cost function onto the tangent plane of the surface (as pre-
scribed by the method of Lagrange multipliers), and then by iterative reprojec-
tion of the particle onto the nearest root of F by the method of Newton-Raphson.
Another aspect of this particle formulation is that it computes Euclidean distance
between particles (in the ambient space), rather than the geodesic distance on
the surface. Thus, we assume sufficiently dense samples so that nearby particles
lie in the tangent planes of the zero sets of F . This is an important consideration;
in cases where this assumption is not valid, such as highly convoluted surfaces,
the distribution of particles may be affected by neighbors that are outside of
the true manifold neighborhood. The question of particle interactions with more
general distance measures remains for future work.
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Finally, we must choose a σ for each particle, which we do automatically, be-
fore the positional update, using the same optimality criterion described above.
The contribution to C of the ith particle is simply the probability of that par-
ticle position, and optimizing that quantity with respect to σ gives a maximum
likelihood estimate of σ for the current particle configuration. We use Newton-
Raphson to find σ such that ∂p(xi, σ)/∂σ = 0, which typically converges to
machine precision in several iterations.

There are a few important numer-

Fig. 1. A system of 100 particles (right)
produced by successive splitting of a sin-
gle particle (left).

ical considerations. We must truncate
the Gaussian kernels, and so we use
G(x, σ) = 0 for |x| > 3σ. This means
that each particle has a finite radius
of influence, and we can use a spatial
binning structure to reduce the com-

putational burden associated with particle interactions. If σ for a particle is too
small, a particle will not interact with its neighbors at all, and we cannot com-
pute updates of σ or position. In this latter case, we update the kernel size using
σ ← 2σ, until σ is large enough for the particle to interact with its neighbors.
Another numerical consideration is that the system must include bounds σmin

and σmax to account for anomalies such as bad initial conditions, too few parti-
cles, etc. These are not critical parameters, so as long as they are set to include
the minimum and maximum resolutions the system operates reliably.

The mechanism described in this section is, therefore, a self contained, self
tuning system of particles that distribute themselves using repulsive forces to
achieve optimal distributions. For this paper we initialize the system with a
single particle that finds the nearest zero of F , which then splits (producing a
new, nearby particle) at regular intervals until a specific number of particles are
produced and they reach a steady state. Figure 1 shows this process for a sphere.

3.2 The Entropy of The Ensemble

An ensemble E is a collection of M surfaces, each with their own set of parti-
cles, i.e. E = z1, . . . , zM . The ordering of the particles on each shape implies a
correspondence among shapes, and thus we have a matrix of particle positions
P = xk

j , with point samples along the rows and shapes across the columns. We
model zk ∈ <Nd as an instance of a random variable Z, and propose to minimize
the combined ensemble and shape cost function

Q = H(Z)−
∑

k

H(P k), (4)

which favors a compact ensemble representation, balanced against a uniform dis-
tribution of particles on each surface. The different entropies are commensurate
so there is no need for ad-hoc weighting of the two function terms.

For this discussion we assume that the complexity of each shape is greater
than the number of examples, and so we would normally choose N > M . Given
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the low number of examples relative to the dimensionality of the space, we must
impose some conditions in order to perform the density estimation. For this
work we assume a normal distribution and model p(Z) parametrically using a
Gaussian with covariance Σ. The entropy is then given by

H(Z) ≈ 1
2

log |Σ| = 1
2

Nd∑
j=1

log λj , (5)

where λ1, ..., λNd are the eigenvalues of Σ.
In practice, Σ will not have full rank, in which case the entropy is not finite.

We must therefore regularize the problem with the addition of a diagonal matrix
αI to introduce a lower bound on the eigenvalues. We estimate the covariance
from the data, letting Y denote the matrix of points minus the sample mean
for the ensemble, which gives Σ = (1/(M − 1))Y Y T . Because N > M , we
perform the computations on the dual space (dimension M), knowing that the
determinant is the same up to a constant factor of α. Thus, we have the cost
function G associated with the ensemble entropy:

log |Σ| ≈ G(P ) = log
∣∣∣∣ 1
M − 1

Y T Y,

∣∣∣∣ and − ∂G

∂P
= Y (Y T Y + αI)−1. (6)

We now see that α is a regularization on the inverse of Y T Y to account for the
possibility of a diminishing determinant. The negative gradient −∂G/∂P gives
a vector of updates for the entire system, which is recomputed once per system
update. This term is added to the shape-based updates described in the previous
section to give the update of each particle:

xk
j ← γ

[
−∂G/∂xk

j + ∂Ek/∂xk
j

]
. (7)

The stability of this update places an additional restriction on the time steps,
requiring γ to be less than the reciprocal of the maximum eigenvalue of (Y T Y +
αI)−1, which is bounded by α. Thus, we have γ < α, and note that α has the
practical effect of preventing the system from slowing too much as it tries to
reduce the thinnest dimensions of the ensemble distribution. This also suggests
an annealing approach for computational efficiency (which we have used in this
paper) in which α starts off somewhat large (e.g., the size of the shapes) and is
incrementally reduced as the system iterates.

The choice of a Gaussian model for p(Z = z) is not critical for the proposed
method. The framework easily incorporates either nonparametric, or alternate
parametric models. In this case, the Gaussian model allows us to make direct
comparisons with the MDL method, which contains the same assumptions. Re-
search into alternative models for Z is outside the scope of this paper and remains
of interest for future work.

The method outlined above assumes a population of surfaces that are in
alignment with one another. For medical image datasets, this is often not the
case, and some surface registration technique must be applied as a part of the
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algorithm for finding correspondences. Goodall [11], for example, suggests the
point-based Procrustes method. For the results given in the following section,
we assume the surface data is in alignment and leave the analysis of the stability
and interplay between the proposed method and any surface registration tech-
niques for future work. Preliminary results do suggest, however, that Procrustes
alignment may be effectively applied at intervals in the proposed correspondence
optimization.

4 Results and Conclusions

We begin with two experiments

-3 +3-1.5 +1.5mean

PROP.

MDL

Fig. 2. A comparison of the mean and
three standard deviations of the box-
bump experiment.

on closed curves in a 2D plane and a
comparison with the 2D open-source
Matlab MDL implementation given
by Thodberg [6]. In the first exper-
iment, we used the proposed, particle
method to optimize 100 particles per
shape on 24 box-bump shapes, similar
to those described in [6]. Each shape was constructed from a set of point samples
using cubic b-splines with the same rectangle of control, but with a bump added
at a random location along the top of its curve. Distance transforms from these
shapes were constructed using the fast-marching algorithm [12], which forms
implicit contours suitable for input to the proposed algorithm. MDL correspon-
dences were computed using 128 nodes and mode 2 of the Matlab software, with
all other parameters set to their defaults (see [6] for details). Both methods iden-
tified a single dominant mode of variation, but with different degrees of leakage
into orthogonal modes. MDL lost 0.34% of the total variation from the single
mode, while the proposed method lost only 0.0015%. Figure 2 illustrates the
mean and three standard deviations of the first mode of the two different mod-
els. Shapes from the particle method remain more faithful to those described by
the original training set, even out to three standard deviations where the MDL
description breaks down. A striking observation from this experiment is how the
relatively small amount of variation left in the minor modes of the MDL case
produce such a significant effect on the results of shape deformations.

The second experiment was conducted on the set of 18 hand shape con-
tours described in [1], again applying both the particle method and MDL using
the same parameters as described above. As with the box-bump data, distance
transforms were generated from the spline-based contour models for input to
the correspondence algorithm. In this case, we also compared results with a set
of ideal, manually selected correspondences, which introduce anatomical knowl-
edge of the digits. Figure 3 compares the three resulting models in the top three
modes of variation to ±3 standard deviations. A detailed analysis of the prin-
ciple components showed that the proposed particle method and the manually
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Fig. 3. The mean and three standard deviations of the top three modes of the hand
models.

selected points both produce very similar models, while MDL differed signifi-
cantly, particularly in first three modes.

Existing 3D MDL implementations rely on spherical parameterizations, and
are therefore only capable of analyzing shapes topologically equivalent to a
sphere. The particle-based method does not have this limitation. We applied the
proposed method to a set of randomly chosen tori, drawn from a 2D distribution
that is parameterized by the small radius r and the large radius R. Samples were
chosen from a distribution with mean r = 1, R = 2 and σr = 0.15, σR = 0.30,
with a rejection policy that excluded invalid tori (e.g., r > R). Figure 4 shows
the particle system distribution across two of the torus shapes in the sample
set with 250 correspondences. An analysis of the correspondences showed that
the particle system discovered the two pure modes of variation, with only 0.08%
leakage into smaller modes.

We applied the proposed method to a set

Fig. 4. Particle correspon-
dences in two tori (left)
and two hippocampus (right)
shapes. Corresponding inter-
shape particles have matching
colors.

of 20, volumetric hippocampus segmentations
chosen at random from a larger data set de-
scribed in Styner, et al. [13]. Using the fast-
marching algorithm, this time in 3D, we gener-
ated distance transforms from the boundaries
of these segmentations for input to the method.
Fig. 4 shows the particle system distributed across
two of the shapes after optimizing 300 particles
per shape. We used the modes from the result-
ing Gaussian model to construct a set of sur-
face reconstructions for the three largest princi-
ple components. These modes are illustrated in
Fig. 5 to three standard deviations, with per-
centage of total variation of 38.78%, 26.31%,
and 12.29% for the modes, respectively. The
surface meshes shown were generated by the tight cocone algorithm for sur-
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face reconstruction from point clouds [14], using the implementation provided
by the authors of that work.

Because the proposed method is completely generalizable to higher dimen-
sions, we were able to perform both the 2D and 3D experiments using the same
C++ software implementation, which is templated by dimension. All experi-
ments were run on a 2Ghz processor with run times of approximately 20 minutes
for 2D cases and 45 minutes the 3D cases. In each case, the numerical parameter
σmin was set to machine precision and σmax was set to the size of the domain.
For the annealing parameter α, we used a starting value roughly equal to the
diameter of an average shape and reduced it to machine precision over several
hundred iterations. The results presented in this section are typical of reliably
similar results produced during several experimental runs, suggesting that the
proposed method is fairly robust to the initialization.

-3! +3!mean
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3
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e

Fig. 5. The mean and three standard deviations of the top three modes of the hip-
pocampus model.

The proposed nonparametric method for shape correspondences produces
results that compare favorably with the state of the art. The method works di-
rectly on volumes, requires very little parameter tuning, and generalizes easily.
The particle-based shape correspondence offers a practical solution for a wider
range of shape analysis problems relative to the work in the literature. Although
the energy functions push the system toward consistent configurations of parti-
cles, the approach does not guarantee diffeomorphic mappings between shapes.
The system might be extended to include neighborhood configurations as a part
of the model, but this remains a topic of further investigation.
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A New Closed-Form Information Metric for Shape
Analysis

Adrian Peter1 and Anand Rangarajan2
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Abstract. Recently, a unifying framework was introduced for shape matching
that uses mixture-models and the Fisher-Rao metric to couple both the shape rep-
resentation and deformation. A fundamental drawback of the Fisher-Rao metric
is that it is NOT available in closed-form for the mixture models making shape
comparisons computationally very expensive. Here, we propose a new Rieman-
nian metric based on generalizedφ- entropy measures. In sharp contrast to the
Fisher-Rao metric, our new metric is available in closed-form.

1 Introduction
Shape analysis is a key ingredient to many medical imaging applications that seek to
study the intimate relationship between the form and function of medical and biological
structures. In recent work [1], it was shown that shape representation and deformation
can be unified within a probabilistic framework – using a mixture of densities to repre-
sent landmark shapes and then directly using the Fisher information matrix to establish
an intrinsic, Riemannian metric and subsequently a shape distance measure.

To address many of the computational inefficiencies that arise when using the stan-
dard Fisher-Rao information metric, the current work introduces a new Riemannian
metric based on the generalized notion of aφ-entropy functional.

2 Differential Metrics for Parametric Distributions
The parametric, GMM representation for 2-D shapes is given by

p(x|θ) =
1

2πσ2K

K∑
a=1

exp{−‖x− φa‖2
2σ2

} (1)

whereθ is our set of landmarks,φa = [θ(2a−1), θ(2a)]T , x = [x(1), x(2)]T ∈ R2 and
equal weight priors are assigned to all components, i.e1

K . Basically, a shape withK
landmarks is represented as aK-component GMM where the landmarks are the means
of each component.

Burbea and Rao demonstrated that the notion of distances between parametric mod-
els can be extended to a large class of generalized metrics [2] using theφ-entropy func-
tional

Hφ(p) = −
∫

χ

φ(p)dx (2)

whereχ is the measurable space (for our purposesR2), andφ is aC2-convex function
defined onR+ ≡ [0,∞). The metric on the parameter space is obtained by finding the
Hessian of (2) along a direction in its tangent space. This directly leads to the following
differential metric satisfying Riemannian metric properties

ds2
φ(θ) = −∆θHφ(p) =

n∑

i,j=1

gφ
i,jdθidθj , (3)
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where

gφ
i,j =

∫

χ

φ′′(p)(
∂p

∂θi
)(

∂p

∂θj
)dx . (4)

The metric tensor in (4) is called theφ-entropy matrix.We can define distances be-
tween probability densities by finding a geodesic between their parameter values as
determined by (3).

The new metric can be obtained by selecting aφ such thatφ′′ becomes a constant
in (4). In [3], Havrda and Charvát introduced the notion of aα-order entropy using the
convex function

φ(p) = (α− 1)−1(pα − p), α 6= 1 . (5)

We setα = 2 which results in1
2φ′′ = 1. The one-half scaling factor does not impact

the metric properties. The new metric is defined as

gα
i,j =

∫

χ

(
∂p

∂θi
)(

∂p

∂θj
)dx (6)

and we refer to it as theα-order entropy metric tensor.
The new metric can be used to find the distance between two shapes represented as

p(x|θ1) andp(x|θ2). The geodesic can be obtained by solving

gα
kiθ̈

i + Γk,ij θ̇
iθ̇j = 0. (7)

Using this new metric, we now have closed-form solutions togα
i,j and

∂gα
kj

∂θi .

3 Experimental Results and Analysis
For applications in medical imaging, we have evaluated both metrics and compared
to the standard thin-plate spline (TPS) bending energy on real data consisting of nine
corpora callosa with 63-landmarks each. (Please see the conference paper for test results
and analysis.)

The newφ-entropy metric avoids anO(N2) computational hit on the metric tensor
computation and gains anotherO(N2) savings when computing the derivative of the
metric tensor.

4 Conclusion
In this paper, we introduced a new Riemannian metric for landmark-based shape match-
ing that combines both shape representation and deformation. This improved on the
previous work of [1] where the Fisher-Rao metric was used to establish an intrinsic
metric between landmark shapes. The newα-order entropy metric enables us to obtain
closed-form solutions to the metric tensor and its derivatives. Our new approach also
illustrated the possibilities of using information metrics besides Fisher-Rao and their
benefits.
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Statistical linear models in Procrustes shape
space
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Abstract. The configuration matrix of a set of labeled landmarks is one
the most used shape representations. However, it is well-known that the
configuration matrix is not invariant under translation, scaling and rota-
tion. This problem is revisited in this work where a local tangent shape
space characterization at a reference shape is obtained as the null space
of the subspace spanned by the reference shape and the set of transla-
tion and rotation generators. This local linear description of the shape
space allows us to compute mean and variance of shapes as well as apply
classical mutivariate statistical techniques such as Principal Component
Analysis. Our proposal is compared with previous approaches, such as
the seminal work [1] and more recents works [2] and [3].

1 Introduction

Shape analysis is concerned with the study of the geometrical descriptors that
are invariant to position, size and orientation. Shape analysis has proven to
be very useful in several tasks of computer vision and medical imaging, such
as segmentation of anatomical structures or detecting and quantifying shape
differences driven by pathology.

Several shape descriptors have been proposed in the literature. Many authors
use a set of landmarks on the shape boundary as relevant geometric features [1,
2]. A recent comprehensive survey on shape analysis with landmarks can be found
in [4]. However it is well known that the configuration matrix is not invariant
under translation, scaling and rotation.

When using a set of labeled landmarks, one way to achieve a shape description
invariant to position, size and orientation is by means of Procrustes alignment.
A complete analysis of Procrustes shape space was done in [5, 6], where a deep
understanding of the topology of Riemannian manifolds is used.

In this work we propose a procedure to obtain a local shape characterization,
by using a tangent space projection and a Riemannian exponential mapping.
This shape description allows us to apply classical multivariate statistical tools
in shape space with accuracy. For example we applied Principal Component
? This work was funded by grants TEC2005-07801-C03:02 from CICYT, PI04/1795

and PI05/2006 from FIS, and PIP113/05 from DGA. The work of M. Bossa is
supported by DGA under the FPI grant B097/2004.
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Analysis (PCA) on several characterizations of shape space and compared their
performance.

2 Shape characterization and distances

Shape is usually defined as the geometrical information of an object that is
invariant under a similarity transformation, i.e. location, translation and scale
[7]. In this work we will focus on a particular shape description, that is the set
of k labeled points in Rm. The coordinates of these points can be arranged in a
k×m configuration matrix X, or equivalently on a km× 1 configuration vector
x = vec(X). We will use the notation zi to denote the k × 1 vector containing
the ith column of any k×m matrix Z, and zj to denote different km×1 vectors
indexed by j.

A configuration matrix X is not a proper shape descriptor, because it is not
pose invariant. For any similarity transformation, i.e. s ∈ R+, R ∈ SO(m) (the
special orthogonal group) and t ∈ Rm, the configuration given by sXR + 1ktT

describes the same shape than X, where 1k is the k × 1 vector [1 1 . . . 1]T.
In order to get a shape descriptor invariant under scale and translation several

constraints on X can be used. For example, if X is forced to be a unity norm
matrix ‖X‖2 = tr(XXT) = 1 (or equivalently xTx = 1), and to have null
centroid 1T

k X = 0T
m, then scaling and translation effects are removed from X.1

As the set of unitary vectors xTx = 1 corresponds to the unit sphere Smk−1, the
condition of having null centroid is equivalent to intersect Smk−1 with the null
space of the matrix [(1T

k 0T
k . . . 0T

k )T, (0T
k 1T

k . . . 0T
k )T, . . . , (0T

k 0T
k . . . 1T

k )T].
The intersection corresponds again to a unit sphere, Sm(k−1)−1, named pre-shape
space Sk

m.
The shape space Σk

m is the set of equivalence classes of Sk
m under the action

of SO(m). The mapping that takes a configuration vector x ∈ Sk
m to shape

space is x = π(x) : Sk
m → Σk

m. All the elements in the equivalence class of x,
also called fiber, are the set {π−1 (π(x))}.

The distance between shapes can be defined in several ways, depending on
the problem at hand. The Riemannian distance in pre-shape space ρ(x,y) is
the length of the shortest curve segment in Sm(k−1)−1 that connects x and y
(great-circle): ρ(x,y) = 2 arcsin( 1

2‖x − y‖). However, in this work we are in-
terested in the Procrustes distance, i.e. the distance in shape space, defined as
d(π(x), π(y)) = inf

R∈SO(m)
ρ(x,Ry), with x,y ∈ Sk

m.

2.1 Local tangent parametrisation of shape space

Given a reference configuration vector µ ∈ Sk
m and π(µ) ∈ Σk

m its correspond-
ing shape, shapes in a finite neighbourhood of π(µ) can be characterized by
variations in Sk

m from µ.

1 Another way to remove translation can be obtained by multiplying X by the (k −
1)× k Helmert sub-matrix [2].
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The tangent space at µ of pre-shape space, TµSk
m, is a linear space that can

be used as a linear approximation, as well as a parametrization of Sk
m, via the

exponential-logarithm mapping. We will see that a linear subspace of TµSk
m can

be found that is also the tangent space at π(µ) of Σk
m.

Any vector x ∈ Sk
m close to the reference shape µ ∈ Sk

m, can be written as

x = cos(θ)µ + sin(θ)v (1)

with xTx = µTµ = vTv = 1, and µTv = 0. As µ and x are centered, xTti =
µTti = 0, where the pure translation vectors {ti}m

i=1 are given by ti
i = 1k and

ti
j = 0k for i 6= j. It can be checked that also vTti = 0.

The tangent space at µ, TµSk
m, is formed by the set of vectors u = θv. In

order to extend classical statistics on the shape space a mapping between the
manifold and its tangent space that preserves distances and angles is required.
The exponential map

expµ(u) = cos(u)µ + sin(u)û (2)

with u = ‖u‖ and û = u/u, generates geodesics with initial velocity u, and
accomplishes that u is the Riemannian distance between µ = expµ(0) and
expµ(u), i.e. ρ(expµ(0), expµ(u)) = u. The angle between geodesics is the angle
between their corresponding initial velocities. The logarithm map is the inverse
of the exponential map: logµ(x) = u, where û = x − µ(µT x)/‖x − µ(µT x)‖
and ‖u‖ = 2arcsin(1/2‖x− µ‖), therefore:

ρ(µ,x) = ‖ logµ(x)‖ (3)

In order to get rid of rotations, the variations from µ should be orthogonal to
the fibers π−1(µ). Let Ωi,j(θ) ∈ SO(m), i < j ≤ m, be a rotation matrix in the
plane {i, j} with rotation angle θ. It can be seen that the fiber Ri,j(θ)µ, with
Ri,j(θ) = (Ik ⊗Ωi,j(θ)), is a curve in Sk

m but not a geodesic for m > 2. It was
shown in [5, 8, 9] that if one moves away from µ along geodesics orthogonally
to fibers (no matters fibers are not geodesics), a Riemannian submersion from
Sk

m onto Σk
m is obtained. Roughly, this means that identifying parts of Σk

m with
submanifolds of Sk

m orthogonal to fibers, is a smooth mapping with the same
metric. This allows us to work in Sk

m as if it were Σk
m, in a neighbourhood of

µ. The tangent directions to fibers Ri,j(θ)µ at µ are given by their derivatives
ri,j : with ri,j

i = µj , ri,j
j = −µi, and ri,j

l = 0k for i, j 6= l. The same result
can be found in [6], from a more theoretical point of view. Any configuration x
Procrustes aligned to µ, fulfils the following linear constraints: xTri,j = 0. This
is also true for µ, then vTri,j = 0.

Fig. 1 shows schematically the pre-shape space Sk
m as a 2-sphere. The fiber

Ri,j(θ)µ is a small circle labeled as Rµ, and its tangent direction as r. The
shape space Σk

m is obtained by intersecting the pre-shape sphere with a plane
orthogonal to r.

Summing up all the constraints on v can be written as vTN = 0km, with
N = (µ, t1, t2, . . . , tm, r1,2, r1,3, . . . , r(m−1),m). The intersection of the pre-shape
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Fig. 1. Schematic representation of pre-shape space Sk
m. Shape space Σk

m is identified
with the submanifold orthogonal to fiber R� in a neighbourhood of reference shape �.

sphere Sm(k−1)−1 and the hyperplane defined by the null space of {ri,j} is again
a smaller dimension sphere, in this case Sm(k−1−(m−1)/2)−1. Therefore, shape
space, although being a manifold with singularities for m > 2, it behaves like a
sphere in a finite neighbourhood of any nonsingular reference shape µ, with the
metric defined in (3), i.e. d(π(x), π(y)) = ρ(x,y).

We have explicitly removed the m degrees of freedom of translation, the
m(m − 1)/2 ones of rotation and the one of size. If M denotes the matrix con-
taining a basis of the null space of N, any shape can be written as

x = cos(b)µ + sin(b)Mb̂, (4)

with b̂ = b/b, b = ‖b‖ and b an arbitrary vector of Rm(k−1−(m−1)/2)−1. The
parameter vector b is a linear, non-redundant representation of shape space,
that preserve distances to the reference shape µ and angles between geodesics.
Therefore it can be used as an approximate and nice characterization of the
shape space. Note that M only depends on µ, and it is not required a training
set to compute M.

The above conditions are valid at least within a ball around µ with radius
smaller than the distance from µ to the closest singularity, which is usually far
away enough in real problems. The singularities (labeled as s in Fig. 1) arise when
rank(X) < m−1, . For m = 3, this means that all the landmarks are located over
a line, and for m = 2 there are no singularities. Fig. 2 shows a simple example
of a geodesic passing through a singularity. It can be seen on bottom left panel
that shapes further away than a singularity accomplish d(π(x), π(y)) 6= ρ(x,y).
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Fig. 2. Up: The reference shape (a tetrahedron) is denoted as � and its closest singular
shape as s (vertical line). The Procrustes distance between � and s is about 1. The
vertexes ABC collapse at A’B’C’. Geodesics from � towards s are illustrated with
dotted lines. On the left upper panel, θ runs in the interval (-0.5,0.5), and on the right
(-1.5,1.5). Note that the configuration obtained for θ = 1.5 corresponds to an inverted
tetrahedron, which is not Procrustes aligned to �. Bottom left: Values of the pre-shape
Riemannian distance ρ (solid line) and Procrustes distance d (dashed line) from � for
running values of θ. Bottom right: schematic view of the tangent space T�Sk

m.

3 Multivariate statistics on shape space

Classical multivariate statistical techniques such as PCA have been applied to
some linear approximations of shape space. PCA involves estimating the mean
and the modes of variation from a training set.

The mean µE of a set of vectors xn∈Sk
m is computed as an iterative process

including averaging and alignment. At each iteration, classical averaging is per-
formed on landmark coordinates and the vectors are aligned to the normalized
average. The final result µE is the normalized average after convergence. µE

provides the shape that minimizes the Euclidean distance
∑

n ‖µ − xn‖2, but
not the Procrustes distance

∑
n d2(µ,xn) that we are interested in.
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An alternative procedure to compute the mean of a set of elements in Riem-
manian manifolds was proposed in [10]. The method consists on iteratively esti-
mating the mean as µj+1 = exp(1/nΣn logµj (xn)). We used this method with
µE as initialization. This iterative procedure has a fast convergence.

Modes of variation are computed in the tangent space at µ, by means of
SVD of the residues un = logµ(xn). The principal geodesic directions are
given by the singular vectors pk. Singular vectors are collected in the matrix
P. The singular values σk account for their relative importance. The procedure
of computing PCA in the tangent space of a Riemannian manifold is called
Principal Geodesic Analysis (PGA) [10, 11]. Principal geodesics are yk(bk) =
expµ(pkbk) = cos(bk)µ + sin(bk)pk, where bk measures the deviation from the
mean. An arbitrary vector of the PGA model is:

y(b) = expµ(Pb) = cos(b)µ + sin(b)Pb̂, (5)

where b̂ = b/b, and b = ‖b‖.

3.1 Discussion of previous approaches

Previous approaches proposed for PCA on shape space failed on finding the best
linear approximation of the shape space. Cootes’ proposal [1] is one of the most
referenced approaches. Shape was modeled as

yC(b) = µ + PCb, (6)

where PC is the matrix with the principal components of the residues x̃n
C =

xn−µ, and b is a parameter vector. However, the spherical topology of the shape
space was disregarded. Shape model in (6), labeled as PCAC in this work, has
two drawbacks: firstly, shape instances yC don’t have unity norm. Secondly, the
shape Procrustes distance between an instance and µ is neither proportional to
‖b‖, nor symmetric under a sign change of b, i.e. d(µ,yC(b)) 6= d(µ,yC(−b)).
The reason is that ‖PT

Cµ‖ 6= 0 because the residues are not orthogonal to the
mean. Accordingly the maximum number of degrees of freedom is m(k−1−(m−
1)/2) (i.e. one dimension larger than actual Procrustes shape space). Splitting
b into two orthogonal parts, b = bµ + b⊥µ, such that µT(PCb⊥µ) = 0, the
asymmetry in norm can be shown as

‖yC(b)‖ = ‖µ(1 + bµ) + PCb⊥µ‖ =
√

(1 + bµ)2 + b2
⊥µ 6=

6=
√

(1− bµ)2 + b2
⊥µ = ‖µ(1− bµ)−PCb⊥µ‖ = ‖yC(−b)‖, (7)

with bµ = ‖bµ‖ and b⊥µ = ‖b⊥µ‖. Similarly the Procrustes distance accom-
plishes

d(µ,yC(b)) = 2 arcsin
(

1
2

∥∥∥∥µ

(
1− 1 + bµ

‖yC(b)‖
)
− PCb⊥µ

‖yC(b)‖

∥∥∥∥
)
6=

6= 2 arcsin
(

1
2

∥∥∥∥µ

(
1− 1− bµ

‖yC(−b)‖
)

+
PCb⊥µ

‖yC(−b)‖

∥∥∥∥
)

= d(µ,yC(−b)). (8)
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Later works, even realizing the spherical topology of shape space, made use
of a linear projection instead of using the log mapping to project data on the
tangent space.Therefore a distortion in the metric was introduced.

In [3] data is projected into tangent space by scaling xn in such a way that
the residue is perpendicular to µ, x̃n

A = xn(xnTµ)−1 − µ. In [2] the tangent
coordinates were defined as the linear projection on the plane perpendicular to
the mean, x̃n

B = xn−µ(µTxn). The approximation done is θ ≈ tan θ in the first
case, while in the second is θ ≈ sin θ, being θ the Procrustes distance from µ to
x. The corresponding shape models are

yA(b) =
µ√

1 + b2
+

PAb√
1 + b2

(9)

yB(b) = µ
√

1− b2 + PBb (10)

labeled as PCAA and PCAB respectively.
The space spanned by the principal vector is one dimension smaller than

PC as PT
{A,B}µ = 0 and so bµ = 0. Therefore, unlike the model in (6), these

approaches are symmetric under a change of sign of the parameter b. The Pro-
crustes distance from the mean is

d(µ,yA(b)) = ‖ arctan (b) ‖ = d(µ,yA(−b)) (11)
d(µ,yB(b)) = ‖ arcsin (b) ‖ = d(µ,yB(−b)). (12)

Left panel of Fig. 3 illustrates the Procrustes distance from the mean shape
versus signed b. A value of bµ/b of 0.5 was used in the PCAC model. PGA
is the only model for which a linear change of the model parameters implies a
linear variation of the Procrustes distance. On one hand PCAA model generates
instances closer to the mean than PGA, especially for large values of b, which
means that PCAA is more sensitive to outliers. PCAC model has a similar
behaviour for bµ/b small. On the other hand, PCAB generates instances further
away of the mean than PGA in the valid running interval b ∈ [−1, 1].
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Fig. 3. Left: Procrustes distance versus signed b. Right: Model scaling terms versus b.
Solid lines for mean terms and dashed lines for modes of variation terms.
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There is a similarity between PGA, PCAA and PCAB model equations (5),
(9) and (10). Mean and variation modes are orthogonal vectors multiplied by
nonlinear scalar functions. The corresponding Taylor expansions of the mode of
variation term differ at the 3rd order on b, being b− 1/6b3 for PGA, b− 1/2b3

for PCAA and b for PCAB . The model PCAA underestimates the variation
term compared to PGA, while the model PCAB overestimates it, which is in
agreement with the behaviour explained before on the Procrustes distance. The
Taylor expansions of the mean term are different at the 4th order: 1− 1/2x2 +
1/24x4 for PGA, 1−1/2x2 +3/8x4 for PCAA and 1−1/2x2−1/8x4 for PGAB .
Right panel in Fig. 3 illustrates both terms for these models.

The Procrustes distance is always smaller than or equal to π/2, but it is
much smaller in most of the real cases. Differences between PGA, PCAA and
PGAB are then very small for this range of distances.

4 Illustrative example

In order to provide a simple illustrative example of the differences between pre-
vious approaches, 100 instances were randomly generated by adding noise to a
reference shape (a cube in this simulation with k = 8). The standard deviation
of the noise was set to 30% of the edge length.

Statistical shape models considered before were computed from the simulated
instances. Mean shape µ as well as the first two variation modes are illustrated
in Fig. 4. There were no visible differences in the mean shape, but significant
differences were found in the variation modes. The second mode of variation of
PCAC (upper right panel in Fig. 4) has a very different direction compared to
PGA because this mode includes a significant part of the mean shape, introduc-
ing a relevant radial component. In contrast, PGA and PCA{A,B} do not suffer
this drawback.

It can be seen in Fig. 4 that the length of PCAA trajectories as well as PCAC

after normalization , are shorter than PGA, while PCAB trajectories are longer.
This is in agreement with the results shown in the left panel of Fig. 3. It is worthy
to note that a large value of b was required to obtain visible differences.

The Procrustes distance between instances and mean shape µ were computed
for several values of the model parameters and are shown in Fig. 5. The profile
of the curves in Fig. 5 resembles the theoretical ones in Fig. 3. The Procrustes
distance in the second mode of variation of PCAC is highly asymmetric due to
the presence of the mean shape in that mode.

PGA is the only approach where a linear change of the model parameters
involves a linear variation of the Procrustes distance from the mean. This prop-
erty is really crucial for any statistical analysis performed on the linear space of
the parameters, such as hypothesis testing, clustering, classification.
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Fig. 4. Mean shape � (solid line) and the first/second (left/right), modes of variation.
PGA model is illustrated with dotted trajectories of geodesics. Top: Model parameter
b{1,2} runs in the interval (−3σ{1,2}, 3σ{1,2}). Circles denote PCAC straight line trajec-
tories and crosses their corresponding normalized instances. Bottom: Model parameter
b{1,2} runs in the interval (−4σ{1,2}, 4σ{1,2}). Circles denote PCAA and crosses PCAB

trajectories.

5 Conclusions

The problem of shape description by means of a set of landmarks was revis-
ited in this work. A local tangent shape characterization was obtained in earlier
works by removing the degrees of freedom corresponding to scaling, translation
and rotation. The main added value of this work is twofold: firstly, to propose
a simple and intuitive way to understand this shape characterization; secondly,
to apply classical multivariate statistics, such as PCA, on the shape space. The
obtained shape representation is linear, non-redundant and preserves the Pro-
crustes distance between instances and the reference shape, and also preserves
angles between geodesics. Some of these properties do not hold in alternative
models previously proposed in the literature. Additionally, these benefits are ob-
tained with a minimum extra modelling effort and the formulation of the model
resembles the classical ones.
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Extended Abstract

Continuous M-Reps. In earlier work [4], we developed a deformable modeling
framework called the continuous medial representation (cm-rep), which, in sim-
plest terms, is a continuous analog of the m-rep approach by Pizer et al . [3].
Cm-reps are deformable templates that have a special property that the skele-
ton (medial axis) of the template preserves its branching topology (number and
configuration of its branches) during deformation. Furthermore, the skeleton of
the deforming template is modeled explicitly as a continuous manifold and the
exact geometric relationship between the skeleton and the template’s boundary
is captured. The skeleton-boundary relationship makes it possible to define a
special shape-based coordinate system on the interior of the template. One of
the coordinate axes connects points on the skeleton to the corresponding (near-
est) points on the boundary, while the other two axes parameterize the skeleton
as well as the boundary. As argued in [5], this coordinate system is a natural way
to parameterize the interiors of anatomical structures to which cm-rep templates
have been fitted. It allows us to analyze the distribution of appearance features
(intensity, fMRI, DTI) within the structures more or less independently of the
differences in the shape of the structures. In this paper, we illustrate the applica-
tion of such analysis to functional MRI data associated with the hippocampus.

fMRI Study. We designed an fMRI study in which hippocampal activation was
highly anticipated. Healthy volunteers (n=18) performed a complex scene en-
coding task in the scanner. The study followed the block design paradigm. In
addition to EPI functional imaging, T1 anatomical scans were acquired. Stan-
dard techniques (SPM, [2]) were used to align functional images to the anatomy,
to correct for motion artifacts, to smooth the data temporally and spatially and
to compute subject-level statistical maps using the general linear model.

Structure-Specific Group Analysis of fMRI. Whole-brain fMRI group analysis
methods such as SPM [2] rely on deformable image registration to normalize
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data between subjects. Registration does not always align the hippocampus ac-
curately [1] and such misalignment will, in theory, reduce the statistical sig-
nificance of intersubject statistical maps. To improve intersubject alignment in
the hippocampus, we fit cm-rep templates to manual segmentations of the hip-
pocampus (Fig. 1) and use the cm-rep coordinate system to project subject-level
fMRI statistics to a common reference space3. We then perform random effects
analysis to compute a hippocampus-specific groupwise statistical map.

Results: Improved Sensitivity and Specificity. We compared whole-brain and
hippocampus-specific maps generated by SPM and our technique, respectively
(Fig. 2). The peaks in the hippocampus-specific map had higher raw t-values and
lower corrected p-values than the peaks located near the right hippocampus in
the whole-brain map (Table 1). This indicates that our approach is more sensitive
and that, in general, the accuracy of intersubject normalization does weigh in
on the sensitivity of group analysis, despite the influence of many other sources
of error. Furthermore, in most studies, peaks and clusters in the whole-brain
activation map are assigned anatomical labels by looking up their coordinates
in the Talairach space. Due to normalization errors, peaks resulting from con-
sistent hippocampal activation across subjects may be mislabeled as activation
in nearby structures. By restricting its analysis to the hippocampus, our ap-
proach aims to increase the likelihood that activation labeled as hippocampal
is indeed originating in the hippocampus of each subject. However, specificity
is confounded by the fact that spatial smoothing and EPI/T1 alignment are
performed for each subject. In part, our future work will focus on developing
structure-focused EPI smoothing algorithms.
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Fig. 1. A cm-rep template fitted to the hippocampus. On the left, the thickness function
is plotted in color over the template’s skeleton. In the middle, the target segmentation
is shown in blue. The shape-based coordinate system is illustrated on the right.

Fig. 2. Examples of sagittal slices through whole-brain (left) and hippocampus-specific
(right) group analysis maps. Peaks are identified by circles.

Table 1. Peaks near the right hippocampus in the whole-brain group activation map
compared to the peaks in the right hippocampus-specific group analysis map. Abbr.:
right cerebrum (RC), parahippocampal gyrus (PHG), right hippocampus (RH). The
column Phippo indicates the fraction of hippocampus segmentations, warped into the
space of the whole-brain template, that overlap each peak’s location.

Peaks in Whole-Brain RFX Map

Tal. Coord. Talairach Labels t-Stat pcorr Phippo

16, -31, -2 RC, limbic lobe, sub-gyral, *, * 7.69 0.033 0

20, -29, 8 RC, sub-lobar, thalamus, gray matter,
pulvinar

6.89 0.14 0

31, -22, -9 RC, temporal lobe, sub-gyral, gray matter,
hippocampus

6.67 0.21 0.94

33, -6, 27 RC, limbic lobe, uncus, white matter, * 6.47 0.30 0

31, -20, -13 RC, limbic lobe, PHG, gray matter,
hippocampus

6.43 0.33 0.82

27, -21, -13 RC, limbic lobe, PHG, gray matter,
Brodmann area 6

6.12 0.60 0.94

24, -17, -17 RC, limbic lobe, PHG, white matter, * 6.01 0.74 0.94

Peaks in the Hippocampus-Specific RFX Map

Loc. in RH t-Stat pcorr Loc. in RH t-Stat pcorr

Head, Lateral 9.99 0.00016 Tail, Lateral 8.04 0.0035

Tail, Medial 7.55 0.0082 Body, Lateral 6.45 0.062
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Abstract. In clinical applications where structural asymmetries between
homologous shapes have been correlated with pathology, the questions
of definition and quantification of ‘asymmetry’ arise naturally. When not
only the degree but the position of deformity is thought relevant, asym-
metry localization must also be addressed. Asymmetries between paired
shapes can and have been formulated in the literature in terms of (non-
rigid) diffeomorphisms between the shapes. For the infinity of such maps
possible for a given pair, we define optimality as the minimization of
total distortion, where ‘distortion’ is in turn defined as deviation from
isometry. We thus propose a novel variational formulation for segmenting
asymmetric regions from surface pairs based on the minimization of a
functional of both the deformation map and the segmentation boundary,
which controls gradient discontinuity of the map. This minimization is
achieved via a quasi-simultaneous evolution of the map and curve. Our
formulation is inherently intrinsic and parameterization-independent. We
present examples using both synthetic data and pairs of left and right
hippocampal structures, hippocampus malformation being linked with
such neurological disorders as epilepsy and schizophrenia.

1 Introduction

Many neurological disorders have been clinically correlated with shape abnormal-
ities in specific brain structures. For example, hippocampal shrinkage is associ-
ated with epilepsy and schizophrenia, among other conditions. A precise analysis
of such abnormalities, which are usually considered to be failures of symmetry
of the left and right halves of the structure in question, could unlock the abil-
ity not only to track the progression of existent disease, but to identify at-risk
individuals for preventative treatment. However, devising a framework in which
to conduct the necessary shape comparison is a nontrivial matter. The short-
comings of raw volumetric comparison are obvious. Landmark-based methods
? This research was supported in part by the grant NIH R01-NS046812 to BCV and the

UF Alumni Fellowship to NAL. Data sets were partially provided by Dr. Christiana
Leonard of the UF McKnight Brain Institute.
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are inapplicable to problems involving many anatomical structures (including
the hippocampus), because many biological structures do not exhibit the sorts
of readily and consistently identifiable local features on which such methods de-
pend. The medial surface representation of Gerig et al. [1][2] represents a more
sophisticated take on volumetric analysis that includes some localization of vol-
ume disparity, but the economy of the method leads both to noise sensitivity and
an acknowledged inability to distinguish between different sorts of deformation
(e.g. certain forms of elongation vs. bending). This is due to the expression of
complicated behaviors in terms of simple distances which discard some amount
of directionality.

More recently, Wang et al.[3][4][5] presented a technique involving the align-
ment of surfaces based on the formation of a 2D (parametric) diffeomorphic map
from Riemannian surface structure information, with this map representing the
non-rigid registration between the surfaces. This approach arguably makes use
of what surface feature information is there to be had from relatively nonde-
script shapes, without imposing an ill-defined demand for landmark identifica-
tion. However, in forming the correspondence by maximizing the mutual infor-
mation of the chosen surface characteristics over the entirety of both surfaces,
these methods ignore key considerations. For one, while the conceptual division
of the body into anatomical structures is hardly arbitrary in a general sense, for
the purpose of deformation analysis, it may very well be. That is to say, we may
wish to identify a selected portion of the hippocampus as structurally abnormal
relative to its correspondent, rather than regarding the entire hippocampus as
deformed. Furthermore, the MI of the domain and target surface features does
not in and of itself restrict the differential properties of the map, only what prop-
erties should be found at given locations on the target surface. Therefore two
regions of the target surface that exhibit the same Riemannian characteristics
cannot be differentiated between, despite the fact that one choice may be phys-
ically unreasonable as a map target. Thus this framework demands a separate
regularizing constraint on the map evolution.

To address these concerns, we present a novel approach to the non-rigid reg-
istration of anatomically correspondent surfaces which rests on the fundamental
assumptions that (a) the relative deformity of anatomical structures for which
symmetry is expected can be intuitively and precisely quantified as the devia-
tion from isometry of the deformation map between their surfaces, and (b) since
deformities may well be locally confined to certain regions of the given surfaces,
the evolution of the global correspondence must allow for a partial disconnect
between normal and abnormal regions, as these are by definition not expected
to exhibit the same deformation patterns. As such, surface segmentation rests
at the heart of our approach, which can be viewed not only as a registration
tool but also as an asymmetry localizer and quantifier. Our definition of system
energy in terms of isometry inherently balances the consideration that the map
should accurately match Riemannian surface characteristics with the idea that
the map should incur as little deformation as possible in doing so. This gives
way to a simple, elegant formulation relatively free of heuristics. Since we here
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restrict our consideration to surfaces that are topologically cylindrical (appro-
priate for hippocampi among many other structures, once we exclude a pair of
“poles” from the topology), we are able to parameterize with a single patch (pe-
riodic at a pair of ends) for each surface in the pair, and as the formulation is
intrinsic, we can confine evolution to these 2D parametric domains, retaining el-
egance. The evolution is driven quasi-simultaneously by the energies of both the
segmenting curve and the deformation field, in the spirit of the works of Yezzi et
al. and Unal et al.[6][7], where the former group restricted its work to rigid im-
age registration and the latter generalized the idea to the non-rigid deformation
case. In [8], Vemuri et al. presented a registration-assisted image segmentation
technique. Of the many proposals in the literature which followed, however, none
addressed the issue of joint manifold segmentation and registration, which is our
focus. Our work differs notably in that we evolve the segmenting curve and the
registration map on a general 2D manifold (rather than a flat image plane), and
rather than registering and segmenting image data, we register and segment the
shape characteristics of the very surface on which the processes are operating.

The rest of the paper is organized as follows: Section 2 contains the mathe-
matical formulation and numerical algorithm used to solve it. Section 3 contains
experimental results on both synthetic and real data sets. In section 4, we draw
conclusions.

2 Simultaneous Segmentation and Registration
Algorithm

Let S1 and S2 be two surfaces in IR3. The Euclidean metric in IR3 induces Rie-
mannian metrics g1 and g2 on S1 and S2, respectively. The goal of the algorithm
is to segment regions in S1 and their corresponding regions in S2 such that the
metric structures of the corresponding regions match optimally. More specifi-
cally, the algorithm computes a homeomorphism f between S1 and S2 and a
set of closed curves γ1 on S1. Let γ2 denote the closed curve in S2 that is the
image of γ1 under f . The restriction of f to the complement S1\γ1 is a diffeo-
morphism between S1\γ1 and S2\γ2. If U1, · · · , Un and V1, · · · , Vn denote the
collections of open components of S1\γ1 and S2\γ2, respectively, then f maps
Ui diffeomorphically onto Vi for each i and f matches the Riemannian structures
between that of Ui and of Vi = f(Ui). See Figure 1. We solve the simultaneous
segmentation and registration problem outlined above using a variational frame-
work. The energy functional E is defined as a functional of a pair (f, γ1), where
γ1 is a set of closed curves on S1 and f : S1 → S2 is a homeomorphism which is
C∞ on S1\γ1. Let f∗g2 denote the pull-back metric (the first fundamental form)
on g1, and E(f, γ1) is defined as

E(f, γ1) =
∫
S1\γ1

|f∗g2 − g1|2dA +
∫
|df(γ1(t))/dt|g2dt. (1)

The second integral computes the length of the segmenting curve γ2 on S2, while
the first integral computes the matching (registration) cost between the two Rie-
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Fig. 1. Left: The two given surfaces, S1 and S2. Right: The desired result of simul-
taneous segmentation and registration of these two surfaces. The map f is a homeo-
morphism between S1 and S2. f maps the segmenting curve γ1 on S1 to a curve γ2

on S2, and f establishes correspondences between connected components of S1\γ1 and
S2\γ2. U1 and U2 are two disjoint open sets in S1\γ1, and V1 and V2 are two disjoint
open sets in S2\γ2. f maps Ui diffeomorphically onto Vi for each i. The restriction of
f to Ui optimally matches the Riemannian structures of Ui and Vi.

mannian structures on the complement, S1\γ1. By computing the length of the
segmenting curve on S2 instead of S1, the energy functional tightly couples the
two somewhat disparate processes, segmentation and registration. The integrand
of the first term above, |f∗g2 − g1|2, is the usual L2-norm between the two ten-
sors g1 and f∗g2. In local coordinates, it is given as the usual L2-norm between
the two matrices G1 and J tG2J :

|J tG2J −G1|2g1
, (2)

where J is the Jacobian of f expressed in the local coordinates system, and G1

and G2 are the usual 2×2 positive definite matrices expressing the metric tensors
g1 and g2 in the given local coordinates on S1 and the induced one (using f) on
S2.

At this point, a comparison between our approach and the usual Mumford-
Shah framework [9] is called for. Given an image I, the energy functional for
Mumford-Shah is

MS(I ′ γ) =
∫
D
|I − I ′|2dA +

∫
D\γ

|∇I ′|2dA +
∫
|γ′(t)|dt.

In the above, D denotes the image and γ the segmenting curve on D. The third
term, which measures the length of γ, corresponds directly to the second term
of E in 1. The first two terms of Mumford-Shah, representing data fidelity and
smoothness, respectively, may seem to lack analogous entries in E . However,
we argue below that the first integral in the definition of E serves both as the
fidelity and smoothing term for E , and we can thus consider E as a generalization
of the usual Mumford-Shah functional to the problem of simultaneous shape
registration and segmentation.
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For our problem, we want to compare two surfaces B1 and B2 via their
respective Riemannian structures g1 and g2, and to extract a meaningful seg-
mentation from the comparison. Instead of an image I ′ as in the usual Mumford-
Shah framework, our variable is the map f between S1 and S2. In our case, the
data fidelity requirement appears as the penalization of f for failure to match
the Riemannian structures of the surfaces, while the smoothing term appears
as the penalization of f for large first-order derivative magnitudes. A close ex-
amination of Equation 1 reveals that the first integral indeed contains both
requirements. First, the norm between the two tensors f∗g2 and g1 as defined
in Equation 2 clearly measures the quality of match between the two metric
tensors. Second, the Jacobian J contains all of the first-order derivatives of f ,
and the squared-norm in Equation 2 indirectly measures the magnitudes of the
first-order derivatives of f using both metrics g1 and g2. In sum, we can interpret
the first term in Equation 1 as the integration of the first two terms in the usual
Mumford-Shah functional MS. In MS, these two terms are necessarily separate
because there is no natural connection between matching pixel intensities and
restricting the gradient ∇I. In our problem, the connection between matching
and smoothing is natural: since we are matching Riemannian structures, which
are tensors defined on tangent spaces, any matching between these two struc-
tures has to involve some kind of (implicit) matching between tangent spaces,
and the appearance of derivatives in defining the matching is then unavoidable.

2.1 Minimizing the Energy Functional E

In implementing the energy minimization as defined above, we rely on alter-
nating iterations between a Chan-Vese level set curve segmenter [10], extended
to the general 2D manifold domain, which produces a step towards the best
estimate of the segmentation of the energy field given the current map, and a
sparse Hessian-exploiting quasi-Newton optimization scheme acting on the non-
rigid map between the parametric domains, which provides a step towards the
minimum-energy map between the surfaces as constrained by the current posi-
tion of the segmenting curve.

The manner in which the curve separates the evolution occurring on its exte-
rior from that occurring on its interior relates to a Neumann condition imposed
across the boundary, akin to what is suggested in the Mumford-Shah curve evo-
lution implementation in [11]. The curve length minimizing term implementation
is straightforward, though curvature computation must take nonuniform surface
length elements into account.

Hippocampus surface data used in this investigation was brought into rigid
alignment by ICP in a preprocessing step, then 2D sliced and manually seg-
mented by a trained neuro-anatomist into a 40x21 grid periodic in one direction.
This grid in effect forms a parametric domain for the corresponding surface, and
the Riemannian surface characteristics are thus calculated by numerical meth-
ods and stored in said domain. Note that it is precisely the gridded structure of
the domain that makes the Chan-Vese implementation as straightforward as it is
(save adjustment for the surface length elements). Also, it is appropriate, if one
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wishes, to view Chan-Vese as a regularized thresholder: it is for the regularization
that we use it.

Fig. 2. Illustration of framework. Note that the map f between the parametric
domains can be visualized as the deformation of a regular grid representing the left
parametric domain P1.

3 Results

We here present examples of the algorithm in action, validating its behavior on
synthetic cases and demonstrating results obtained on real hippocampus pairs.
As a starting point, we consider the trivial case of a pair of cylinders, where
one member of the pair has had its surface distorted according to an outward
normal vector field of magnitude dictated by a Gaussian distribution. That is
to say, its surface has been bumped. In Fig. 3, we see a comparative case in-
volving a cylinder with two such distortions versus its unaltered counterpart.
The intuition behind our method asserts that we should “blame” the applied
bumps for observed differences between the Riemannian surface characteristics
of the two shapes. Obviously, then, the desired result is the segmentation of the
two clearly visible bumps on the left cylinder, which is what we observe. (Red
“hot spots”, the curve interiors, represent regions of highest deformation energy
under the current map and segmentation. The curve itself is found at the border
between the red and blue regions.) Note the textured quality of the surfaces,
which occurs as a result of the addition of a SD=0.02 zero-mean Gaussian noise
field to the (X,Y,Z) coordinates of the (unit radius) cylinders prior to output,
for demonstration of robustness in the face of noise in surface scanning.

As indicated previously, the case of the cylinder is a trivial one in this context
in that there exists a natural parameterization of the surface which results in a
constant metric tensor field over the parametric domain. Thus, we further vali-
date using synthetic alterations to real data exhibiting arbitrary shape, within
the confines of cylindrical topology. Since the hippocampus meets these criteria
and forms part of our clinical motivation, it seems a natural choice. Selecting
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Fig. 3. Left column: Segmentation of prominent distortions (bumps) from cylindrical
surface, based on comparison to homologous cylinder lacking bumps. Surfaces are both
distorted with distinct random noise fields (seen as textured effect). In this and all
following examples, we show the segmented region only on the left surface of the pair. A
corresponding region exists on each right surface, with the correspondence maintained
through the (unseen) deformation map. Top: naive initialization; Middle: 3 iterations;
Bottom: 10 iterations. Right column: Segmentation of synthetic bump from surface
of real hippocampus, based on comparison to same hippocampus without bump. The
two hippocampi are under different parameterizations. Top: naive initialization; Middle:
5 iterations; Bottom: 20 iterations.
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a single hippocampal horn, we again apply a small outward normal Gaussian
deformation to its surface, whose location we hope to see the segmenter recover.
However, rather than illustrating invariance to surface point cloud noise, we now
seek to additionally validate invariance of the solution to reparameterizations of
the given surfaces. To pause for conceptual refreshment, recall that in compar-
ing surfaces we are in fact comparing two parametric domains based on the two
tensor-valued functions corresponding to each of those domains, those functions
being the Riemannian surface structure information of each parameterized sur-
face. But just as two surfaces (or their parametric domains, as we do in our
implementation) can be mapped to one another nonrigidly in infinitely many
ways, so too can each parametric domain map to its topologically-equivalent pa-
rameterized surface in infinitely many ways. The Riemannian structure tensor
fields themselves depend upon which of these infinitely many parameterizations
are chosen. When synthetically producing one surface from another, we pos-
sess a trivial alignment between the domains under which the two tensor fields
are identical, excepting the patch corresponding to the synthetic bump. In real
cases, of course, data will not have this sort of property. The validation is thus
incomplete until we can show that under a suitably deformed reparameteriza-
tion of one of the surfaces being compared, a result comparable to the above is
achieved. We can reparameterize simply by randomly generating a distortion of
the parametric domain’s regular grid, then interpolating a new point cloud from
the given data based on the new locations of the gridpoints. It is completely
appropriate to confine said distortion to the order of a pixel in each direction:
after all, we have assumed close rigid alignment and sensibly spaced data points
from our preprocessing, and if these constraints are violated, they can always
be reinstated by repeating the algorithms that enforced them in the first place.
The purpose of the nonrigid registration evolution is to further refine the surface
correspondence following bulk rigid alignment of the shapes based on the sur-
face characteristics observed locally, not to register raw point clouds. We cannot
show the parameterization warp used due to space constraints: it is of 0.1 SD in
each coordinate.

It is visually evident that the segmentation succeeds despite the change of
parameterization of one of the surfaces being compared. The deformation map
between the parametric domains (not shown) undergoes considerable evolution
through this process. This evolution can be best understood as the method’s
attempt to invert the reparameterization, to achieve the optimal alignment of the
identical surface patches external to the segmented bump, while at the same time
trying to find the minimum energy description of the acknowledged deformation
of the patch on the curve’s interior.

In presenting the following real example, we issue the caveat that the method’s
success lies in the eye of the beholder, because there is of course no ground truth
associated with this sort of problem. For this reason we have selected a case with
an answer which can easily be agreed upon. Fig. 4 shows the left and right hip-
pocampi clinically segmented from an MRI scan of an epilepsy patient. We take
it as self-evident that there exists a localizable region of high distortion between
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the left and right shapes, and assume that one will agree that our method has in
fact converged to a segmentation of that region. Illustrations of the segmented
energy field and parametric warp evolutions have been withheld due to space
limitations.

Fig. 4. Segmentation of distortion between real hippocampi of epileptic. Top left: naive
initialization; Top right: 1 iteration; Bottom left: 5 iterations; Bottom right: 20 itera-
tions.

4 Conclusion

We have presented a novel scheme for simultaneous nonrigid registration and seg-
mentation of homologous shapes, wherein the interdependent registration and
segmentation processes are driven by intrinsic geometric characteristics of the
shapes themselves. As such, we are able not only to identify surface pairs rep-
resenting large deformations, but also to specify which subregions of the shapes
appear most likely to be involved in the deformation, to produce an estimate
of the implicit deformation field, and to quantify the deformation energy of the
segmented subregions separately from that of the remaining surface patches.
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Given the number of considerations interplaying, the variational principle driv-
ing the evolution is notably compact. We have seen that the method’s results
are reasonably invariant to local parameterization changes and added surface
noise, and results on real data (while inherently lacking in ground truth for
comparison) appear promising. Future efforts could include the application of
the method to extensive real datasets that have been clinically preclassified ac-
cording to the presence or absence of pathology, as well as an attempt to correlate
the locations and intensities of the segmented deformed regions with the given
pathology classifications. It should also be noted that the two-region Chan-Vese
segmentation method (which is often used for its strong balance of effective-
ness and relative simplicity of implementation) is merely a good “first draft” of
a segmentation scheme for this sort of problem. A more robust segmentation
method, such as the general Mumford-Shah functional extended to arbitrary
surfaces, would doubtless prove beneficial, as our energy fields will not always
neatly obey the two-mean framework. Finally, it goes without saying that all
evolution/optimization-based methods (apart from the most trivial cases) suffer
from some amount of initialization-dependence. Intelligent initialization schemes
could be expected to further boost performance.
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Abstract. Quantitative, deformable mappings between images are in-
creasingly important as measurement tools in biology and medicine. The
theory of diffeomorphisms (smooth differentiable bijections with differen-
tiable inverse) provides a mathematical foundation for the computation
and interpretation of these maps. Miller, in particular, has used this the-
ory to develop image normalization techniques that rely on a distance
measurement as a regularizer. Here, we use this metric within a gen-
eral transformation framework that explicitly parameterizes the image
to image mapping as a symmetric geodesic path in the space of diffeo-
morphisms. The key difference between our approach and Miller’s is that
ours does not choose a single end-point (or template image) from which
to measure the map. Rather, we search for the shortest diffeomorphism
(smallest deformation) between images by optimizing the transformation
with respect to both of its end-points. This algorithm, geodesic normal-
ization, provides solutions that are invariant to which of the input coor-
dinate systems (images) is chosen as a reference. This allows the method
to compute metric distances, have truly symmetric performance and to
give full space-time solutions that are invertible and diffeomorphic in the
discrete domain. Finally, our algorithm guarantees that our solutions and
their inverses are consistent to a sub-pixel level.

1 Introduction

Computational anatomy (CA) uses imaging to make quantitative measurements
of the natural world. One may view CA as the science of biological shape and its
variation, with roots in the work of Charles Darwin and D’Arcy Thompson [1, 2].
The wide availability of high resolution in vivo functional and structural imag-
ing has caused a rapid increase in CA’s relevance and prominence. Currently,
this developing science’s primary tools are the topology preserving diffeomorphic
transformations. These transformations are used to map an individual image J
into the space of a template image, Ī, which serves as a common coordinate
system. When a population of images is mapped together by these transforma-
tions, each voxel in individual space corresponds smoothly with a single voxel in
the reference space. This process creates a continuous spatial map of population
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information detailing, for example, the relative volume, functional activation or
diffusion at a given anatomical position, such as the anterior hippocampus or
occipital lobe gray matter. Topology preserving transformation (TPT) are of
special interest for this technology as they will introduce neither folds nor tears
in this map and will preserve the continuity of curves and surfaces.

Topology preserving normalization permits comparisons to be made across
time points in an individual’s disease process or to study development patterns
across a large population [3–6]. Miller, et al. showed that Large Deformation
Diffeomorphic Metric Matching (LDDMM) is able to localize hippocampal acti-
vation to provide increased statistical significance in functional imaging studies
[7]. Avants et al used a Lagrangian diffeomorphic normalization technique to
map and statistically differentiate functionally homologous structures between
species [8]. Furthermore, large deformation mappings are better able to separate
structural and signal (intensity) differences in population studies, particularly
in the presence of atrophy or high shape variation. Diffeomorphic methods may
also be extended to normalize vector or tensor images [9].

The CA studies cited above were enabled by recently developed, theoretically
well-founded methods for studying topology preserving variation. The major
advancement in this aspect of CA technology is to base the work in the space
of diffeomorphisms. The diffeomorphic space is the broadest smooth, topology
preserving space and allows one to very accurately capture both large and small
deformation differences in shape. The collection of these transformations forms a
mathematical group. Grenander [10], Mumford [11], Miller [12], Trouve [13] and
Younes [14] have studied this group space in the context of computer vision and
deformable image transformation and have derived Euler-Lagrange equations for
CA [15].

Our approach to image normalization is based upon Arnol’d’s definition of a
symmetric, time-parameterized shortest path (geodesic) between two diffeomor-
phic configurations of a domain [16]. We argue that this view is fundamental
to the theoretical foundation of diffeomorphic normalization, essential for com-
puting true metric distances and desirable for its symmetry properties. Our
algorithm will satisfy desirable continuity, anonymity and unanimity conditions
[17] as well as the metric measurement properties needed for geodesics. This
yields a new algorithm, geodesic normalization (GN), that parameterizes the
deformation between an image pair with respect both ends of a geodesic path.

2 Mathematical Background on Diffeomorphisms

We now discuss some basic facts from the theory of diffeomorphisms, the math-
ematical underpinnings of GN. This section is derived from Arnol’d [18] and
Marsden and Ratiu [19]. In this section, we will refer to φ as a geodesic in the
space of diffeomorphisms and φ1 and φ2 as the components of φ, as described
below. We also assume that the images and velocity fields referred to below are
sufficiently differentiable and that we are only interested in transformations that
visibly change the image. For example, a diffeomorphism of a constant image will
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Fig. 1. A diffeomorphism is used to map image I into image J (left to center) via
coordinate transformation. Composing two diffeomorphisms φ1 and the inverse
of φ2 enables us to use the maps from K to J and from I to J to make a
coordinate transformation from I to K.

Fig. 2. An illustration of the geodesic path taken, in time, by the particle at
position x in domain Ω. The path is geodesic if the diffeomorphism associated
with the domain minimizes the distance metric in equation 2. The geodesic, φ
is the whole path. Its points are traversed via φ1 and φ2.

be reduced to the identity. Image differentiability is required for the derivative
computations necessary in the normalization method. Velocity field regularity
guarantees the integrability necessary for generating diffeomorphisms. Typically,
convolution with a Gaussian ensures image differentiability while a linear oper-
ator, L, induces sufficient smoothness on the velocity field. See Dupuis [20] for a
discussion of regularity requirements on images and velocity field and the well-
posedness given by diffeomorphic regularization.

Recall that a diffeomorphism is a smooth one-to-one and onto map with
a smooth inverse. We always index diffeomorphisms with a spatial coordinate
(x, y or z) and, if necessary, a time variable, t. However, we drop the spatial
and temporal indexes for brevity where the meaning is clear. We define the
diffeomorphic operations that we need as,

1. Coordinate transformation: this operation changes the coordinate system
in which an object (image, vector field) is represented. The operation φI
transforms the image I(x) into the deformed image Ĩ(y) = I(φ(x, t)) where
the intensity I(x) is equivalent to the intensity Ĩ(y). We may also apply this
operation to vector (or velocity) fields.

2. Transformation composition: this operation links diffeomorphisms together,
generating a new map via φ2(φ1(x, t1), t2).

Understanding these operations are essential in image normalization. We illus-
trate them in figure 1.
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Families of diffeomorphisms can be generated by integrating time-dependent
velocity (vector) fields through an ordinary differential equation [18],

dφ(x, t)
dt

= V (x, t). (1)

This differential equation defines the change of the map, φ, by the value of a
velocity field which is a smooth vector field. Velocities tell us how particles are
moving through space: V assigns motion to a specific material point while v
defines motion in a fixed coordinate system. The V in equation 1 is a material
velocity in the Lagrangian frame. The spatial velocity is computed at the tangent
space to the diffeomorphism at time, t, such that v(y, t) = V (x, t) where the
change in coordinates is indicated by the use of x in V and y in v. We may also
explicitly indicate the change in coordinates by using the map between the two
coordinate systems, denoted by φ(x, t) = y, with inverse φ−1(y, t) = x. Then,
V (x, t) = v(φ(x), t).

Deformable diffeomorphisms commonly used in image registration map do-
main Ω to itself. The map at the boundary, ∂Ω, may also be defined as the
identity, φ(∂Ω) = ∂Ω. This boundary constraint assumes that rigid motion has
been factored out of the transformation between images. It also guarantees the
transformation is everywhere one-to-one and onto and restricts the solution space
to the diffeomorphic subgroup, G0.

G0 is a Frechet Lie group [21] when G0 is C∞. The length of a diffeomorphic
path between elements in this space is similar to the length of a curve, C, con-
necting two points in Euclidean space, l(C) =

∫ 1

0
‖dC/dt‖dt, where the Euclidean

length of the curve’s tangent vector is integrated over its parameterization. Dis-
tances in the space of diffeomorphisms are infinite-dimensional analogies of curve
length, where the infinitesimal increment in distance is given by a Sobolev norm,
‖·‖, operating on the tangent to the diffeomorphism (the spatial velocity) [20]. A
geodesic between ψ1 and ψ2, two elements of G0, is defined by taking the infimum
over all such paths [15],

D(φ(0), φ(1)) = inf
φ

∫ 1

0

‖v(φ(x, t))‖Ldt, (2)

φ(0) = ψ1 and φ(1) = ψ2,

where ‖ · ‖L is the Sobolev norm with respect to linear operator, L. Taking the
infimum guarantees that we have a geodesic between the elements in G0. The
length of the geodesic gives a metric distance, does not depend on the origin
of its measurement (it has right invariance) and is the basis for GN as well as
Miller, Trouve and Younes’s work.

A geodesic in the space of diffeomorphisms thus defines the shortest route be-
tween two diffeomorphic transformations. Each transformation defines a single,
unique configuration of the coordinate system. The length of the path itself is
(trivially) symmetric, that is, D(φ(0), φ(1)) = D(φ(1), φ(0) and satisfies metric
properties. Furthermore, for all time t ∈ [0, 1], we have φ−1

2 (φ1(x, t), 1 − t) =
φ1(x, 1) = z. Rearranging this equation, we gain intermediate points along the
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geodesic from φ2(z, 1 − t) = φ2(φ1(x, 1), 1 − t) = φ1(x, t). In this way, we see
that points along the geodesic are parameterized equivalently from coordinates at
either end-point. We will now introduce this coordinate system invariant param-
eterization into our normalization technology.

3 Geodesic Image Normalization

The goal of image registration, in general, is to find, for each x in I, the z
in J that gives I(x) = J(z) or, alternatively, f(J(z)) where f is an intensity-
space transformation. If f is the identity, then the intensity at x in I should be
equivalent to the intensity from coordinate z in J . The mapping from x to z
may be written φ(x) = z, from image I to image J such that points in I are in
one-to-one correspondence with points in J .

When such maps are diffeomorphisms, we include a time parameter, t, that
indexes the temporal evolution of φ. We refer to coordinates x in the time zero
I domain, z in the time zero J domain and y in a common coordinate system
that moves along the curve connecting I(x) and J(z). If this curve is a geodesic,
then it is symmetric and will follow the same path whether starting from I or J .
This symmetry means our time parameterized maps may be viewed from either
endpoint at I or J such that φ1(x, t) = y = φ2(z, 1− t). This formulation allows
us to deform I and J such that, for any t ∈ [0, 1] I(φ1(x, t)) = J(φ2(z, 1 −
t)). Such a motion gives a dense map in both space and time and is shown in
figure 2 for one point in the image domain. The total mapping between the
images is gained through the composition of these two components, φ(x, 1) =
φ−1

2 (φ1(x, t), 1 − t). GN will exploit this geodesic view to gain symmetry. The
algorithm will thus be able to compute the distance between two images, whereas
previous algorithms computed asymmetric distance (not symmetric, therefore
not a metric distance), due to a biased gradient descent approach that originates
in a parameterization of the geodesic with respect to only one endpoint.

Let us now consider the case when we are given two images, I and J , of the
same class, known to be (approximately) diffeomorphic. Here, we know neither
the path in time nor which image should be considered as the template or ref-
erence image. We make the identification of I(0) with I and I(1) with J . We
now seek to find the shortest diffeomorphism between these images such that
φ1(t)I = φ2(1− t)J .

We now translate this example into a variational optimization problem. The
variational energy for geodesic normalization therefore seeks φ1 and φ2 in order
to locate the geodesic connecting I and J . Then, φ1(x, t)I = φ2(z, 1− t)J, gives
the similarity term, |φ1(t)I − φ2(1− t)J |2. The forward and backward energy is
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then, using t as a parameter and solving to time t = t̄,

EGN (I, J) = inf
φ1

inf
φ2

∫ t̄

t=0

ω{ ‖v1‖2
L + ‖v2‖2

L}dt+∫
Ω

|φ1(t̄)I − φ2(1− t̄)J |2dΩ. (3)

Subject to:
each φi ∈ G0 the solution of:

dφi/dt = vi(φi(t)) with φi(0) = Id. (4)

Minimization with respect to φ1 and φ2, upholding the arc length constraint,
provides the geodesic normalization. Landmarks may also be included in this
energy, as in our previous work [8], by dividing the similarity term, as done with
the image match terms above. A similar image matching equation appeared in
[22] and [23] as part of a derivation for template generation.

Once this problem is solved, the total symmetric normalization transforma-
tion from I to J is φ1(x, 1) = φ−1

2 (φ1(x, 0.5), 0.5) and from J to I, φ2(z, 1) =
φ−1

1 (φ2(z, 0.5), 0.5). This is distinct from inverse consistent image registration
[24] in which a variational term is used to estimate “inverse consistency” and
symmetry and invertibility are not guaranteed. The inverse consistency is in-
herent to our method and is shown for synthetic data in figure 3 and for real
data in figure 4. The algorithm is useful for generating shape means as well as
symmetric geodesic image interpolation, formulated in [25].

We will show below that the maps computed by this algorithm satisfy Eck-
mann’s continuity, symmetry (anonymity) and unanimity conditions. Eckmann
and Weinberger discuss the existence of such maps [17, 26] and note the connec-
tion with the generalized mean. Denote a symmetric map, φ, connecting I and
J . Eckmann’s properties, adapted for image normalization, are then

1. Continuity: the map should vary continuously with the inputs I, J .
2. Symmetry / Anonymity: φ does not depend on permutations of I, J . This is

verified if A(I, J) = φ then A(J, I) = φ−1.
3. Unanimity [17]: the map should output φ = Id if I = J .

A map that violates anonymity (2 above) is labeled asymmetric. We now argue
that GN satisfies the three conditions given above.

Theorem 1. The solutions, φ1(x, t) and φ2(y, s), found by GN satisfy the three
generalized mean axioms above.

Continuity. Continuity was shown in Dupuis’s proof of well-posedness for the
diffeomorphic variational image matching problem [20]. As our problem is, in a
global sense, identical, continuity is inherited.
Unanimity. The unanimity condition is also satisfied as all velocities will be 0 if
all images are identical.
Anonymity. We prove anonymity by simply checking that permuting the labels
in the variational energy produces an identical optimization problem, which
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visual inspection confirms. Furthermore, the Euler-Lagrange equations depend
symmetrically on gradients of both I and J . �.
Geodesic Normalization Implementation: Algorithm 1 states the locally optimal
GN algorithm without landmarks, as described in previous sections. A similar
approach can be used for landmark matching. The input to the algorithm is a pair
of images and a user set number of time interpolation points, {ti}, where t0 = 0
and tn = 0.5 and n is even. The output is φ1, φ2 defined on Ω× [0, 0.5] and their
inverses. These define the full φi mappings and their inverses at (deformation)
time 1.

Algorithm 1 : Geodesic Normalization (GN)
The algorithm notation is the same as in the body of the paper. We compute
φ−1

1 and φ−1
2 with the inversion method used in our Lagrangian Push Forward

(LPF) method [8].
1: ∀ti Initialize φ1(ti) = φ2(ti) = Id.
2: while ∆EGN > ε1 do
3: Set Eold = Enew.
4: Compute φ1(x, 0.5)I and φ2(x, 0.5)J .
5: Compute velocities from the symmetric Euler-Lagrange equations of 3.
6: Set ‖v1‖ = ‖v2‖ = min(‖v1‖, ‖v2‖).
7: Update φ1(0.5) and φ2(0.5) by gradient descent such that, for i = 1, 2,

φi(x, 0.5) = φi(x, 0.5) + λV i(x, 0.5) where V (x, 0.5) = v(φi(x, 0.5)) and
λ is a gradient step length.

8: Starting at time 0.5 and going backwards toward 0, for all time points, ti
where 0 < ti < 0.5, update φ1, φ2 by gradient descent on the length of φ1

and φ2. Note that φi(0) = Id and φi(0.5) does not change in this step.
9: Use the inversion method (below) to find φ−1

1 and φ−1
2 over all time.

10: Compute Enew from equation 3.
11: ∆EGN = Eold − Enew.
12: end while

Symmetry (guaranteed sub-pixel invertibility and algorithmic independence
to input permutations) is built into GN and allows us to symmetrically match
images to the degree that discrete diffeomorphisms are invertible. An example
of a symmetric image registration when large deformations are present is shown
in figure 3. Here, we use GN to find spatial correspondences by deforming a half
C to a full C. We also illustrate GN for normalizing severely atrophied brains,
some of which also suffer from the presence of lesions, in figure 4.

4 Discussion

A common problem with image normalization algorithms, in general, is asym-
metry. Registering image I to J may not produce the same correspondences as
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(a) (b) (c)

(d) (e) (f)

Fig. 3. The 1
2C (a) is registered to the full C (d). The grid of the deformation

from (a) to (d) is shown in figure (b). The Jacobian of the transformation from
C to 1

2C is in (c) while its histogram is in (f). The 1
2C to C result is in (e).

registering J to I. This problem has been addressed by methods that compute
mappings in both directions. Thirion developed such an approach for Demons im-
age registration [27]. Christensen’s inverse consistent image registration (ICIR)
[28] uses a similar idea. Both algorithms rely upon estimating a measure of
“consistency”, defined as the difference between the mapping from I to J and
the mapping from J to I. Define x in image I, its displacement u(x) and their
sum as y = x + u(x). Similarly, define z in image J and its displacement w(z).
Consistency at x is C(x) = ‖y + w(y)− x‖ = ‖u(x) + w(y)‖. Both algorithms
attempt to minimize C(x) and, similarly, C(z). However, neither method guar-
antees the inverse’s existence nor gives a well-defined numerical method for its
computation.

Geodesic image normalization subsumes the above approaches by formulat-
ing the normalization process in space and time with a diffeomorphic parame-
terization. We do not have to “check” the consistency as (via Theorem 1) the
consistency is guaranteed by the sub-pixel invertibility of φ1 and φ2 and the fact
that these transformations may be composed together. Furthermore, our meth-
ods explicitly optimize these transformations in the large deformation space.

5 Conclusion

We explicitly optimize the length of φ, parameterized symmetrically by its com-
ponents, φ1, φ2. Optimizing the length of a diffeomorphism is an alternative to
finding a geodesic by solving the Euler equations [29]. Our method is shown
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to satisfy the axioms of continuity, symmetry and unanimity. Satisfying these
properties eliminates problems of algorithmic asymmetry. Finally, GN gives a
robust estimate to geodesic distance that is invariant to which image, of a pair,
is selected as template. Future work will focus on empirically demonstrating im-
proved performance due to symmetrically parameterizing the large deformation
image normalization problem.
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Fig. 4. We volumetrically map an average image template to a set of lesioned
and/or atrophied brains using GN. The left column shows a slice of the original
subject image. The second column shows the template mapped to the subject
space. The center column shows the subject mapped to template space. The
second to last column shows the grid deformation from template to subject.
The final column shows the original template slice. Asymmetric methods do
not perform as well for normalizing this dataset, particularly in the presence of
difficult and unpredictable lesions.
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Statistics on Anatomic Objects Reflecting
Inter-Object Relations
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Abstract. Describing the probability densities of multi-object complexes
by describing individual objects and their inter-object relationships leads
to desirable locality without ignoring the context of an object. We de-
scribe a means of decomposing object variations into self effects and
neighbor effects. We describe an approach for estimating the self and
neighbor effect probability densities for each object in the complex using
augmentation and prediction, supported by PGA on m-reps. We apply
this method to the inter-day variation of m-reps of male pelvic organs
within an individual patient.

1 Introduction

Statistical shape models have been proven to be very effective in a number
of applications, including image segmentation [1] and characterization of the
anatomic differences between the classes of normal and diseased patients [2]. In
segmentation, prior shape statistics restrict the deformation of the shape model
within the variations learned from training data in this optimization process. In
characterization of anatomic differences these statistics provide the basis for a
test of a null hypothesis that the probability densities for the two classes are the
same. Obtaining accurate shape statistics is thus essential.

Shape statistics are likely to be more sensitive measures when multiple ob-
jects in a given anatomic region are considered since frequently the intensity
information does not fully provide the boundary of a target object without con-
sidering the neighbors that provide its context.

Following the approach that others have taken, we have calculated both
global statistics on combined shape models of the multiple objects and statistics
on each object separately. We found that the former approach fails to capture
the local variation of an object itself and sometimes gives misleading information
about inter-relation between objects. The latter approach gives too local infor-
mation while ignoring the interaction between objects. The weakness of both
approaches has led us to borrow the idea of the mixed model [3] approach to
handle the inter-object relation. In this work we decompose the shape variation
of each of the objects into three components: the mean of the variation from
some base state, self effects, and neighbor effects. The neighbor effects term are
described as a function of neighbors’ geometric descriptors since shape varia-
tions of an object closely surrounded by other objects are caused not only by
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internal changes within the object but also by its neighboring objects. The self
term describes the variation of the object itself, not affected by its neighboring
objects. We present in this paper an approach to estimate probability densities
on each of these components individually.

We use a single-figure m-rep model [1] for each object as the shape represen-
tation. M-reps consist of sheets of medial atoms. Medial atoms capture not only
local position but also the local orientation and local magnification of a section
of an object. M-reps also provide correspondences across cases of the object de-
rived from the local coordinate system for object interiors that m-rep provides.
Therefore, m-reps are powerful representation to characterize the neighbor re-
lationship, allowing medial atoms in neighboring objects to be understood in
terms of atom transformations of each other.

For both the self and neighbor terms we estimate probability densities on
the nonlinear manifold by a method called principal geodesic analysis (PGA)
developed in our previous work [4]. The approach for the neighbor term is an
extension of our earlier work [5], [6] in which an augmentation and prediction
method is introduced to estimate the relation among multiple objects.

Section 2 describes other approaches in estimating multi-object geometric
statistics and basic ideas of residues, augmentation, and prediction. The dif-
ference and addition operations through which residues are obtained are also
explained in that section. Section 3 presents our new iterative method to esti-
mate self and neighbor effects of multi-objects with mathematical detail. Section
4 explains the process to estimate these probability densities for the male-pelvis
data to which we applied our new method, and it gives the results of the esti-
mation. Section 5 discusses the results as well as the work yet to be done.

2 Background

Multi-object shape statistics in deformable template models has been mostly
dealt with by doing global statistics on all objects taken together. This approach
has been applied on a variety of shape representations: point distribution models
[7], diffeomorphisms from atlases [8], distance functions or their levels sets [9],
and m-reps [1]. This global statistics lacks appropriate locality of the objects.

Other approaches in doing shape statistics have handled locality, addressing
the issue of scale. They compute shape statistics hierarchically from the object
complex to the individual objects [10], [11], and one of these even analyzes
residues from a larger scale [12]. However, few attempts have been made to
describe the inter-object relation statistically. Pohl et al. [13] describes inter-
relationships by representing via the distance function to objects’ boundaries.
This approach however does not explicitly separate out inherent variation of
object from the effects from its neighbor.

In this work we do not consider a global stage since our target problem
appears to have only single object effects and inter-object effects. However, we
do decompose the objects’ variation into self and neighbor effects, which must
sum to the overall difference of the object from its base state. Thus the self

Mathematical Foundations of Computational Anatomy (MFCA'06) 137



effect must be the residue describing overall change from the base state after the
neighbor effect is removed, and the neighbor effect must be the residue describing
overall change from the base state after the self effect is removed. This explicit
separation between self and neighbor variation is the main improvement that we
have made on our earlier method [5]. We rely on the difference operation 	 on
m-reps to obtain the residue. The difference operation and its complementary
addition operation are described briefly in the next.

A medial atom m = (x, r, u,v) is defined as an element of the symmetric
space G = R3 ×R+ × S2 × S2 where the hub position x ∈ R3, the spoke length
r ∈ R+, and the two unit spoke directions u,v ∈ the unit sphere S2. Let Rw

represent the rotation along the geodesics in S2 that moves a point w ∈ S2 to
the north pole p = (0, 0, 1) ∈ S2. For given any two medial atoms m1,m2 ∈ G
where mi = (xi, ri, ui,vi), i = 1, 2, the difference between them can be described
as follows:

m1 	m2 := (x1 − x2,
r1
r2

, Ru2(u1), Rv2(v1)) . (1)

Its corresponding addition operator ⊕ is thus defined as

m⊕∆m := (x + ∆x, r ·∆r, R−1
u (∆u), R−1

v (∆v)) (2)

for a given m = (x, r, u,v) and difference ∆m = (∆x, ∆r, ∆u,∆v). For two
m-reps M1,M2 that consist of medial atoms, the difference M1	M2 relative to
M2 coordinate is thus defined as the collection of the differences of correspond-
ing individual atoms in two m-reps. These operations and their properties are
explained in detail in [6].

We also extend the augmentation and prediction methods described in [5].
We make use of augmentation to deal with a target object’s inter-relation with
other objects. Based on the evidence that atoms in a target object are highly
correlated with abutting atoms in the neighboring objects, we choose a set of
atoms A in the target object that are located near its neighboring objects and a
set of atoms N in neighboring objects that are close to A. We then produce the
augmented set of atoms by putting atoms in N and A together into one set of
atoms U. This augmentation allows us predict the changes brought on a target
object by the change of the neighboring objects, namely as the mean of its A
conditioned on its neighbor atoms N. Then we can statistically analyze variations
from this prediction. This prediction method helps to extract the deterministic
effect from its neighbor on the object and concentrate on the variable part in
the neighbor effects. A major improvement on our earlier method is that we
consider the neighbor relation mutually, allowing each object to have any of the
others as neighbors. This mutual neighbor relation is more realistic and is clearly
suggested in the male-pelvis data to which we apply our new method.

3 Method in detail

Let ∆Mi := Mi 	 Mb where Mb is a base model such as the mean or some
reference model, where i indexes the training cases and M represents an m-rep.
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All figures in Mi are aligned to figures in the base model. {∆Mi} are variations
of m-reps from the base m-rep model. We decompose the variations into two
parts, self and neighbor, as follows:

∆M := ∆Mself ⊕∆Mngbr (3)

where ∆Mself measures self variation and ∆Mngbr measures neighbor effects.
∆Mngbr is further subdivided as the prediction from N Pred(∆Mngbr), and the
neighbor residue, ∆Mngbr 	 Pred(∆Mngbr).

We make two assumptions in our approach. First, within each object, the
self variations {∆Mself} and the residues from the predictions {∆Mngbr 	
Pred(∆Mngbr)} are considered to be statistically uncorrelated. Second, we as-
sume that the effect of the neighboring objects is local. Based on the second
assumption we define the sets N, A, and hence U. We currently choose atoms
in the two sets based on Euclidean distance between atoms in nearby objects.
∆N, ∆A, and ∆U denote the m-rep variations in the sets N, A, and U respec-
tively.

3.1 Iterative steps

In calculating the geometric statistics, we begin with a simple assumption on
the separation of each object’s ∆M into self and neighbor components and then
refine that separation by repeating the following steps over all figures in the
multi-object m-reps.

In the following description of the estimation of the statistics for an object,
the index over the objects and the index over the training cases is skipped.

Self step. We do PGA on ∆M 	 ∆̂M
ngbr

which gives the shape space and

estimate of the self part of each training case ∆̂M
self

. The hat (̂·) indicates the
best estimate of either neighbor or self components up to the previous iteration.

Neighbor step.

1) Augmentation. We first subtract the estimate of the self part from each
training case because we do not want to corrupt the effect from the neighbor
by the effect to other neighboring objects from the object, i.e.,

∆Angbr := ∆A	 ∆̂A
self

. (4)

Then, because we need to predict ∆Angbr based on ∆̂N
self

, we form an
augmented set of differences:

∆U := ∆Angbr ∪ ∆̂N
self

. (5)

We use ∆Nself rather than ∆N because our initial assumption of local effect
leads to ∆Angbr of the object and ∆Nngbr of its neighbors being statistically
independent.
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2) Prediction. (1) Predictor function: We perform PGA on ∆U to find the
shape space of the augmented atoms ∆U. The shape space is used to find
the deterministic effect from the neighbors as follows.

Proj(∆Angbr) = expµ

(∑
l=1

〈logµ(∆̂N
self

), vl〉 · vl

)
, (6)

Pred(∆Angbr) := Proj(∆Angbr) (7)

where {vl}l=1 are principal directions in the tangent space of ∆U at its mean

µ. Note that ∆̂N
self

means µ|A∪∆̂N
self

implicitly when logµ(·) is applied.1

(2) Updated augmented set: We now form a newly updated augmented
set after removing the prediction from the residue from the self estimate.

∆Armdr = ∆Angbr 	 Pred(∆Angbr), (8)

∆U′ := ∆Armdr ∪ ∆̂N
self

. (9)

We then do PGA on the new augmented set ∆U′ to obtain the shape space

and the estimate ∆̂A
ngbr

of the neighbor part of each training case. As a
result, the estimate of the neighbor part comprises the two components:
prediction and the estimate of the variation from the prediction.

∆̂A
ngbr

= Pred(∆Angbr)⊕ expµ

(∑
k=1

〈logµ(∆Armdr), vk〉 · vk

)
. (10)

3.2 Joint probability of interaction among objects

Using the joint probability on this decomposition of self and neighbor effects
of multiple objects, we can interpret the prediction as the conditional mean
assuming a Gaussian probability distribution. This interpretation is valid as long
as we can show that the following conditions hold: the self effect and neighbor
effect within each object, neighbor effects among objects, and self effects among
objects are independent.

To show this, we decompose the joint probability of multiple objects using
conditional probability:

p({Mk}) = p(Mk | {Mj |j 6= k}) p({Mj |j 6= k}), (11)

where k goes over the number of objects. Moreover,

p(Mk | {Mj |j 6= k}) = p(Mself
k ,Mngbr

k | {Mself
j ,Mngbr

j |j 6= k}). (12)

1 Refer to [4] for detailed explanation of the log map and the exponential map.
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Since we have assumed the locality of the effect of the neighboring objects and
we choose N as a set of medial atoms in neighboring objects that has influence
on the variation of the shape of an object, we can replace the set of atoms in
{Mself

j ,Mngbr
j |j 6= k} with N. If the independence conditions stated above hold,

then we can further simplify the joint probability distribution as follows:

p(Mself
k ,Mngbr

k | Nself
k ) = p(Mself

k ) p(Mngbr
k | Nself

k ). (13)

4 Application on male-pelvis model and results

4.1 Materials

The training models were obtained from male-pelvis CT images of real patients
taken over a series of days who underwent radiotherapy treatment. Three organs,
namely the bladder, prostate, and a section of the rectum that is adjacent to the
prostate are modelled. Both ends of the rectum model are arbitrary. A clinician
contoured each organ slice by slice to generate binary images for all three organs.
A single-figure m-rep was then fit to bladder, prostate, and rectum separately in
binary images: 5×6 grids of medial atoms for the bladder, 7×4 grids of medial
atoms for the prostate, and 15×3 grids of medial atoms for the rectum are
used. We have software developed to fit a single figure m-rep to binary image
that prevents penetration among fitted m-reps, prevents folding of the interior
of the object represented, and maintains regularity of grid across the cases for
correspondence of medial atoms [14]. We aligned the fitted three m-reps for
bladder, prostate, and rectum of each patient by a similarity transformation that
is computed from two landmarks, at the apex and base of the prostate landmark.
Then those aligned m-reps for bladder, prostate, and rectum are combined into
one ensemble m-rep. The total number of medial atoms are 103, and the number
of parameters in the ensemble m-rep is 927.

4.2 Application of probability density estimation to male-pelvis
model

We have applied our approach to male-pelvis models of five patients m-rep fits of
which were obtained as described in the previous section. Patients are numbered
as 3101, 3106, 3108, 3109, and B163. We have 14 m-rep fits for 3101, 17 for 3106,
18 for 3108, 18 for 3109, and 15 for B163. Models fitted to the first treatment
image are used as the reference model from which the variation of the rest of
models are taken.

In the first iteration, since we know that the self part of the bladder and
rectum changes dominate the neighbor parts, we assume that the neighbor parts
in variations of the bladder and rectum are zero. Similarly, we set the self part
in the prostate to zero, for the shape of prostate changes little except as affected
by the bladder and rectum.

Starting with ∆Mb, ∆Ub, ∆Mp, ∆Up, ∆Mr, ∆Ur where subscript b, p,
r represent bladder, prostate, and rectum respectively, the order we compute
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total variation per object

patient bladder bladder rectum rectum prostate prostate
no. self neighbor self neighbor neighbor self

3101 0.379383 0.014782 0.360542 0.004983 0.179949 0.006880
3106 0.082828 0.002576 0.102897 0.001188 0.031047 0.003648
3108 0.391689 0.010346 0.181145 0.012492 0.135748 0.009021
3109 0.080293 0.006388 0.132851 0.003501 0.043438 0.005439
B163 0.067945 0.002470 0.137690 0.002819 0.053831 0.003205

Table 1. Total variations of two effects, self, and neighbor per organ that are estimated
after 2nd iteration

the estimate of neighbor and self effect in each organ in the first iteration is as
follows.

1. Self effect on bladder, and rectum differences ∆Mb, ∆Mr, assuming ∆Mngbr
b ,

∆Mngbr
r are zero

2. Neighbor effect on prostate differences ∆Up, assuming ∆Aself
p are zero. Note

that we use for prediction the estimate of the self variations of bladder and
rectum from step 1.

3. Self effect on prostate residue from the estimate of the neighbor effect. The

residue is ∆Mself
p := ∆Mp 	 ∆̂M

ngbr

p .
4. Neighbor effect on bladder and rectum residue from the estimate of the self

effect ∆Ub, ∆Ur where ∆Ab := ∆Ab	∆̂A
self

b and ∆Ar := ∆Ar	∆̂A
self

r .

We again use the estimate of the self part of the prostate ∆̂M
self

p from step
3 to compute the prediction of bladder and rectum from change of their
neighboring object prostate.

For the later iterations, we repeat the steps described in section 3.1 with the
updated estimates of self and neighbor effects from the previous iteration.

4.3 Result

Table 1 compares the estimates of total variations of the two effects for each organ
after the 2nd iteration. They are the sum of eigenvalues that are estimated in
each step described in the previous section. Figure 1 shows the primary mode
of self variation of the bladder and the associated prediction of the deformation
of the prostate in the patient B163. We can see a dent formed in the bladder in
which the prostate fits as the bladder fills.

5 Discussion and conclusion

The results are consistent with what we know about the anatomy and see in the
data. The self terms for the bladder and rectum dominate the neighbor terms,
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Fig. 1. These 4 figures show the prediction of the deformation on the prostate brought
by the change of the patient B163. The two objects in the left 2 panels are the bladder
(cyan) and the prostate (green) in wire frame and the right 2 panels show separately
the bladder of the left 2 panels in solid. The bladder in the right 2 panels is in 2
standard deviations from the mean for a principal modes of the self effect estimated
in the bladder. The left 2 panels show the predicted prostate corresponding to the two
positions of the bladder shown in the right 2 panels.

reflecting the fact that these organs’ variations are principally due to changes in
their contents. On the other hand, the neighbor term for the prostate dominates
the self term, reflecting the fact that the prostate is a rather hard organ that is
pushed upon by the rectum and bladder.

Moreover, the predictions of the prostate from the bladder and the rectum
seem realistic. Also, the prostate changes from its prediction are smaller than
the self changes in the bladder and rectum, which are known to be larger.

The bladder self changes include modes corresponding to lengthening, widen-
ing, and lapping around the prostate, all anatomically observed processes. Also
encouraging is that the prostate predictions of the bladder self modes have the
prostate following the change in the indentations of the bladder while keeping the
prostate almost entirely nonintersecting. Furthermore, the prostate self modes
also make consistent predictions on the bladder indentation.

While this experiment is limited, it suggests that our new approach to sep-
arate out inherent variation of an object itself and effects from its neighboring
objects is fruitful.

We still need to do further analysis to verify that our estimates truly reflects
the self and neighbor effects of multi-objects. We plan to determine what are self
and neighbor effects by simulating the obvious neighbor effects and self effects
independent from neighbor effects on an ensemble of multiple ellipsoids m-reps
and apply our approach on the the simulated ensembles.

We will also incorporate the new geometric statistics of the male pelvic organs
as the prior within our segmentation method’s posterior objective function and
evaluate this prior by the effectiveness of the segmentation of these organs.

An open issue is how to choose augmented atoms. Clearly, that choice affects
our estimate of self and neighbor effects. We believe that we should choose the
most highly correlated atoms with those in the target object. In separate research
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we are measuring this correlation, and the results of that research will provide
us a firmer basis for our choice than the distance criterion presently used.

In the nonlinear manifold on which m-reps are situated, addition opera-
tions is not commutative. The separation of ∆M into ∆Mself ⊕ ∆Mngbr is
thus not equivalent to ∆Mngbr ⊕ ∆Mself . In our iterative algorithm, this non-
commutativity is ignored and ∆Mself , ∆Mngbr are treated as if they are in-
terchangeable. We must test whether the effect of our method’s assumption of
commutativity is significant.

We also need to test the four conditions stated in 3.2 to show our interpre-
tation on joint probability holds.
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Abstract. In some neuroscience applications it is critical that the rep-
resentation of anatomical structures is topologically faithful. This is es-
pecially important when the topology is known to be equivalent to a
sphere. We propose a new approach to repair a voxel-based quadrangu-
lar mesh so that it becomes topologically equivalent to a sphere. The
approach is graph-based and results in practice in an amount of change
that is generally minimal. The algorithm was successfully applied to a
database of 977 hand-segmented hippocampi from a study of ageing;
spherical topology was achieved for all data sets.

1 Introduction

In medicine and neuroscience, the faithful recovery of anatomical structures from
3D voxel-based image data is an important goal. Some of these structures are
known to be topologically equivalent to a sphere, that is, they can be mapped
onto a sphere by continuous deformation. This is the case for the cortical sur-
face [1, 2], the hippocampus [3, 4], and the lateral ventricle [5].

A spherical topology guarantees the existence of an invertible one-to-one map
between such structures. This facilitates analysis between subjects using surface
warping [6] and it simplifies registration. However, artifacts may be introduced in
the recovery of these structures by hand-tracing or automatic recovery processes.
In the case of both hippocampus and cortical surface, for normal neuroanatomy,
artifacts such as handles and isolated voxels do not reflect the true neuroanatom-
ical structure. This may cause problems for some applications such as warping,
registration, and some forms of mathematical modelling (e.g., spherical har-
monic mapping [3, 7, 4, 5]). In this case, it is important for the voxel-based data
to reflect the spherical topology.

In this paper we present an algorithm for topological repair, focusing on
the detection of handles and how to repair them. The traditional approach to
topological repair is human intervention (e.g. [8]). Common recent approaches
involve isosurface reconstruction with topological control using fast marching
methods ([9, 10]), watersheds ([11]), morphological operators ([12]). Others focus
on repairing the surface tessellation itself ([13]). Yet other approaches are graph-
based and they also operate directly on the digital volume ([1, 2]). The aim of
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all these methods (except [13]) is to repair the volume so that after applying
a topologically consistent isosurface algorithm, Marching Cubes tessellation for
example, one obtains a triangulation with spherical topology.

However, triangulation is less suitable if further analysis is required, such as
shape analysis, or if the aim is to generate a model where we require precise
correspondence with the original grey-level data (e.g. [3]). Correspondences are
trivially preserved by a voxel-based mesh, but this is not obvious in the case
of Marching Cubes tessellation. Further, a voxel-based mesh may be uniformly
mapped on the sphere, thus enabling the computation of the shape’s spherical
harmonics ([7]). Finally, hand-tracings are generally performed as precisely as
possible, so it is preferable to stay close to the hand-segmented data as a general
principle.

Other approaches have also corrected the topology within a voxel-based rep-
resentation, for example [14]. However in this case it is not clear if defects can
be detected automatically. A method described by [15] applies smoothing and
level-set filters on the surface. However, such operations are not guaranteed to
find all handles, and may change a large number of voxels.

Our approach is graph-based, operates on the digital volume and produces
a voxel-based quadrangulation as the resulting surface mesh. We apply a funda-
mental result from algebraic topology to detect handles directly in the surface
mesh. We are then able to correct all well-behaved small handles, usually in a
minimal way.

The paper is divided as follows. The next section outlines the major steps of
our approach while Sections 3 to 6 explore each step in detail. In Section 7 we
discuss the algorithm’s performance as applied to a database of 977 hand-traced
hippocampi and in Section 8 we examine the strengths and shortcomings of our
approach.

2 Approach

Three-dimensional segmented digital data is a binary image that distinguishes
the interior (foreground) voxels from the exterior (background) voxels. The sur-
face mesh consists of the voxel corners, edges, and faces lying on the boundary
between interior and exterior. A voxel corner, edge, or face on the surface mesh
is called a vertex, an edge or a face respectively.

A vertex v is adjacent to vertex u if there is an edge between u and v. We
say that v is a neighbour of u and conversely. The surface mesh is a description
of the surface which, for each vertex v, lists the neighbours of v in an orderly
way (see Section 4). Since every face is bordered by four edges, the surface mesh
is said to be a quadrangulation.

Our method to produce a topologically correct surface from the
hand-segmented data can be described as follows:

1. At each vertex on the surface, apply a correction filter on the original binary
volume data to ensure that the surface at this vertex is non-self-intersecting
(Figure 1(a)).
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(a) (b) (c)

Fig. 1. A partial view of a surface mesh for a hand-segmented hippocampus. (a) After
application of the correction filter, the dark voxels have been added; (b) The surface
mesh; (c) Topological repair: the light voxels are marked for removal to open the handle.

2. From the non-self-intersecting surface, construct the surface mesh (Fig-
ure 1(b)).

3. Use the surface mesh to locate any handles.
4. Convert the handle into sets of voxels to be either removed or added.
5. Repair the topology by either filling the tunnel or opening the handle (Fig-

ure 1(c)).

Each of these points is addressed in the subsequent sections.

3 The Correction Filter

In order for a surface to be topologically equivalent to a sphere it must be non-
self-intersecting. This is equivalent to saying that it is locally homeomorphic to a
disk. Figure 2 shows the three fundamental obstructions for the surface to being
locally homeomorphic to a disk. See [16] for a proof.

Fig. 2. The forbidden configurations

At each vertex, we determine if any configuration in Figure 2 is present; this
is achieved by a simple case by case examination. The forbidden configuration
is removed by either adding and removing the minimum number of voxels that
renders the surface non-self-intersecting at this vertex.

This correction filter is applied to each vertex in order, where the vertices are
ordered lexicographically on their coordinates. While applying the filter at some
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Fig. 3. Neighbours of v in anti-clockwise order. (a): u1, u2, u3; (b): u1, u2, u3, u4, u5, u6

vertex v, one has to be careful not to introduce new forbidden configurations
which did not originally exist. This is achieved by recursively examining all
vertices whose neighbourhood has been affected and who are less than or equal
to v (in the sense of the order described above). It is easy to see that this process
must terminate.

It is possible that the application of the filter results in the formation of
topological defects; they will be corrected as explained in Sections 5 and 6.

Note also that the application of the correction filter to all vertices of the
hand-segmented data results in a 6-connected 3D digital image. A digital image
is said to be 6-connected when two voxels are neighbours if and only if they
share a common face.

4 Mesh Creation

Once the surface is non-self-intersecting we construct the surface mesh consisting
of the surface vertices and edges. As mentioned in Section 2 the list of neighbours
of a given vertex is given in an orderly way.

Choose a direction, say, anti-clockwise. Given a vertex v, the ordered list of
neighbours of v is u1, u2, . . . , un where the sequence of vertices is given by the
direction of traversal of the neighbours of v. See Figure 3 for an example. Note
that the starting vertex of the list is irrelevant.

To construct the surface mesh, for each vertex v on the surface, we perform
an anti-clockwise walk starting at v and visiting all the neighbours of v. Two
steps are necessary to ensure that we traverse the list of neighbours of v in a
consistent fashion (e.g. always anti-clockwise). First we assign a normal to each
face in a consistent manner (e.g. pointing towards the exterior of the object).
Secondly, we ensure that the cross-products of the vectors that describe the walk
have the same direction relative to the assigned face normal.

Let u1 and u2 be neighbours of v such that the path of vertices v, u1, v0, u2

describes a anti-clockwise walk around the face f incident to v, u1 and u2 (see
Figure 4 (a) for an example). The vertex v0 is the vertex of this face which is not
adjacent to v, i.e. there is no edge between v and v0. Then the cross-products
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Fig. 4. Anti-clockwise walk around vertex v starting at u1. Normals are indicated by
the thick dashed arrows.

−−−−−→
(u1 − v)×−−−−−−→(v0 − u1),

−−−−−−→
(v0 − u1)×

−−−−−−→
(u2 − v0), and

−−−−−−→
(u2 − v0)×

−−−−−→
(v − u2) all have the

same direction as the normal of the face f . This is depicted in Figure 4.

5 Locating Handles

At this point, the surface of the object is fully described by its surface mesh,
enumerating the vertices and the sequence of their neighbours. We may always
assume that the mesh is connected. The aim is to obtain a mesh which is topo-
logically equivalent to a sphere.

Given a connected surface mesh with n vertices, m edges and l faces, the
genus g of the surface is given by Euler’s formula ([17])

g =
1
2
(2− n + m− l).

The genus measures the number of handles of the surface. For example, a
sphere has no handles, while a torus has one handle. We name the hole sur-
rounded by a handle a tunnel, see Figure 5(c).

A fundamental result of algebraic topology ([17]) states that there is a handle
in the surface mesh if and only if

1. there are two cycles A and B in the mesh such that A and B intersect at v;
2. and, walking along B to cross A at v results in moving from the “left” to the

“right” of A without encountering any other vertex of A (“left” and “right”
of A are relative to an arbitrary direction assigned to A).

This is shown in Figure 5.
Let us call cycles that have the property pictured in Figure 5 (b) and (c)

interlocking cycles or interlocking cycles at v. We also say that B is the transverse
of A and conversely.

We locate the handles by finding interlocking cycles in the surface mesh.
In order to achieve a minimum amount of change we must find the smallest
interlocking cycles. This is easily done by performing a breath-first-search on
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Fig. 5. In (a) A and B are intersecting and B is entirely on one “side” of A; this is not
a handle. In (b) and (c) A and B are intersecting but B starts and ends at opposite
sides of A; this is a handle.

the mesh. The fact that the neighbours of each vertex are given in an orderly
fashion (Section 4) enables us to determine if cycles are interlocking.

6 Converting Handles to Sets of Voxels

Once interlocking cycles are found they are converted into sets of voxels that
describe the handle to be opened or the tunnel to be filled in order to correct
the topological defect. Henceforth we only discuss handles since tunnels are dealt
with in a similar way, but with background voxels replacing foreground voxels.
The equivalence between handles and tunnels arises from the fact that the surface
is non-self-intersecting.

Let [A,B] be a pair of interlocking cycles at v. Let C be one of A or B and
assume that C is a cycle of vertices v1, v2, . . . , vn where v1 and vn are actually
the same vertex v. Along C construct a set P of voxels u1, u2, . . . , um such that:
u1 = um; uj has a common face with some uk with 1 ≤ k < j, 1 < j ≤ m; each
edge (vi, vi+1) in C, 1 ≤ i < n, is adjacent to a voxel uj in P ; and, each voxel
uj in P is adjacent to an edge in C.

Now, in order for the set P to properly open a handle, it must also have
genus zero. If C is small then P is likely to have genus zero (see Figure 6), but
it is not difficult to see that when C is large, then P itself may possess handles.
One remedy to this situation is to fill the handles of P by examining each pair
of consecutive voxels uj and uj+1 in P and deduce from it which voxel should
be added. Once P is obtained from C and P has genus zero then one decides
if removing the voxels in P (in case of a handle) or adding them (in case of a
tunnel) properly corrects the topology (see Figure 6). This is easily verified by
counting the vertices, edges and faces of the corresponding digital image and
applying Euler’s formula. After repair we need to run the correction filter on
the vertices incident to these voxels to ensure that the newly obtained surface is
non-self-intersecting.

Figure 7 shows the result of applying the algorithm to a segmented hip-
pocampus. Dark voxels are those added and light voxels are those removed as a
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result of applying the correction filter and the topological repair routine. Notice
how the handle has been broken up.

Finding the initial set P along C is easy but may be expensive as there may
be many different solutions. We always choose the smallest. Filling the handles
of P , if P is not already topologically equivalent to a sphere, is harder and may
not succeed in rendering P topologically correct. Similarly, we may not succeed
in finding a set P such that P corrects the topology. In this case we reject P
and try another path of voxels P along cycle C. If no appropriate set P can
be found for either cycle A or B in the [A,B] pair, we examine another pair of
interlocking cycles at v. All the cycles belonging to pairs of interlocking cycles
at v are considered in non-increasing order of size, thus ensuring that, at a given
vertex v, we find the minimal set P that repairs the topological defect. If there
is a handle in the neighbourhood of a given vertex v, there are many cycles
passing through v, and given a cycle C through v, there are many transverses
of C through v. Figure 6 shows how different transverses are found for the same
cycle.

(a) (b)

Fig. 6. The cycle in (a) does not succeed in finding an appropriate set of voxels to
break the handle, while the one in (b) does.

7 Experiment

We have used the algorithm to successfully compute a topologically correct voxel-
based surface mesh on all valid 977 hand-segmented hippocampi in the database
resulting from a longitudinal study on ageing, The PATH Through Life Project,
conducted by the Centre for Mental Health Research at the Australian National
University, Canberra. One hippocampus among the data set of 977 is shown in
Figure 7.

As can be seen from Section 3 and especially from Section 6 the proposed al-
gorithm is potentially exponential in time with respect to the number of vertices
on the surface. However for all practical purposes the algorithm corrects the sur-
face in a reasonable time. Over the whole data set and on a 3.2GHz Pentium 4
processor, it spends on average 40.77 seconds processing 2977 voxels.
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Of the 977 hand-segmented hippocampi, 271 present a non-zero genus surface
with 378 handles in total. It takes on average 82.24 seconds to correct each data
set processing an average volume of 2932 voxels, and it takes 2.57 voxels to
correct each handle. When considering the total number of modified voxels (that
is, including those modified as a result of the correction filter) on average 23.47
voxels are changed over all the 977 data sets.

Fig. 7. Left: A segmented hippocampus: original digital data. Right: The hippocampus
with spherical topology realised; Dark voxels are those added and light voxels are those
removed. Notice how the handle has been broken up.

8 Discussion

One issue raised in Section 6 is the possibility of the algorithm not being able
to find a set of voxels that correctly repairs the topology. Our experiment shows
that we can successfully deal with anatomical data with small defects. This is
consistent with our approach where difficulties may arise only when the size of
the topological defect becomes significantly large. Figure 8 lists the size of the
corrections effected together with their frequencies.

Size of handle 1 2 3 4 5 6 7 8 9 10 11
corrections

Frequencies 100 131 69 37 19 12 3 1 3 2 1 378

Fig. 8. Size of handle corrections and their frequencies.
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There is also the difficulty of effecting topological repair by modifying a
minimum number of voxels. As can be seen from the order in which we examine
interlocking cycles we may not necessarily guarantee a minimal amount of change
since a handle may be described by cycles interlocking at more than one vertex.
Our strategy is principally guided by considerations of time and space efficiency
and by the assumption that topological defects remain small.

The strengths of the proposed algorithm are its simplicity and the fact that
it makes no assumption about the digital data, except that the object input is
connected. In particular, as opposed to [2], one does not require that the input
data be 6-connected.

The simplicity of the algorithm lies in the way handles are located. Finding
interlocking cycles at a given vertex v is linear in the size of the handle present
in the vicinity of v. When no handle is present the search is quadratic in s, the
size of the largest handle in the surface. In practice, one terminates the search
after a preset value s has been reached.

Finally, an important feature of the proposed algorithm is that it produces
a voxel-based quadrangulation, as opposed to a Marching Cubes tessellation [9–
11, 13, 1, 2]. This is necessary when intending to compute the shape’s spherical
harmonics, as the quadrangulation’s vertices can be uniformly mapped onto the
sphere, ensuring a faithful reconstruction using from harmonic series.

Our algorithm could be improved in at least two ways. Firstly we need to find
a more robust means of converting a cycle of edges in the surface into a minimal
set of voxels that repairs the topology. In this regard it might be helpful to
investigate some of the ideas in [14]. These ideas may also help in reducing the
algorithm’s complexity, which principally arises from the attempt at repairing
the discovered defects. Secondly and lastly, we may think of a different strategy
for choosing interlocking cycles to ensure minimum change.

In the future we wish to test our algorithm on cortical surfaces; they are
known to be topologically equivalent to a sphere and their reconstructed sur-
face usually shows many topological defects ([1, 2, 18]). The defects are typically
small so one would expect our algorithm to perform well. Of interest will be
to investigate how the changes in volume resulting from the application of the
correction filter and the repair routine compare with techniques described in [1,
2].
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Abstract. We introduce a novel approach for non-parametric non-rigid
image registration using generalized elastic nets. The concept behind the
algorithm is to adapt an elastic net in spatial-intensity space of one image
to fit the second image. The resulting configuration of the net, when it
achieves its minimum energy state, directly represents correspondence
between images in a probabilistic sense and recovers underlying image
deformation, which can be arbitrary. Representation of elastic net in the
spatial-intensity space with specific priors that enforce natural elastic
deformation is introduced. Efficient algorithm for optimization of elastic
net energy is developed. The accuracy and effectiveness of the method
is demonstrated on different medical image registration examples with
locally non-linear underlying deformations.

1 Introduction

Image registration is an important component in medical image analysis. It is
a process of determining a geometric transform that relates the contents of two
images in a meaningful way and establishes the correspondence between them.
Applications of image registration include combining images of the same subject
from different modalities, aligning temporal sequences of images to compensate
for motion of the subject between scans, image guidance during interventions
and aligning images from multiple subjects in cohort studies [1].

Non-rigid image registration is the most interesting and challenging work in
registration today. Many non-rigid registration techniques have been proposed
during last 20 years [2]. Most of them build a parameterized model that con-
strains the form of allowed deformations and then optimize a similarity func-
tion to find an approximation of a real underlying deformation. Study of non-
parametric registration has focused on variational approaches [3]. In this paper
we introduce a non-parametric registration method that can deal with non-rigid
deformation of arbitrary complexity, using a probabilistic model known as the
elastic net (EN). The elastic net is a net of connected points which jointly and
smoothly move in a high-dimensional space to model a data set. An energy func-
tion can be defined to trade off accuracy of the net fitting the data (fitness term)
vs net continuity (tension term). The elastic net was originally introduced as a

156 Mathematical Foundations of Computational Anatomy (MFCA'06)



I1 I2

EN1 EN2

g

F f
xs x′

s

x = (xs, xi)

11 22 33

mm

M M

Fig. 1. Illustration of the alignment method (for 1D images). I1 represents a 1D in-
tensity image in spatial (x-axis) and intensity (y-axis) space (each pixel is marked as
a small �). I2 represents the same image with local, nonlinear spatial distortion and
intensity noise. EN1 is an elastic net fitted to I1 (in spatial-intensity space, with cen-
troids marked •) and EN2 is adapted from EN1 to fit I2. Since the centroids in EN1 and
EN2 correspond one-to-one (1 ↔ 1, etc.), and the elastic net allows to define mappings
between image points and centroids (see section 2), we can map any spatial location
xs in I1 to a spatial location x′

s in I2 through the elastic nets, thus aligning I1 to I2.

continuous optimization method for the traveling salesman problem [4, 5] and
has also been successfully applied to modeling maps of primary visual cortex.
However it has had a limited use in computer vision. A generalization of elastic
nets to arbitrary quadratic tension terms was investigated in [6]. Here we adapt
the generalized elastic net to represent image deformations. The intuition is to
position a net according to the first image and then deform it to align with
the second image. The deformation produced by elastic net, when its energy is
minimized, directly represents the deformation field between the images.

This is illustrated more specifically in Fig. 1. We consider an image as a
noisy 2D manifold in the spatial-intensity space, i.e., each pixel is represented
by a point x = (xs,xi) ∈ R

3 of spatial location xs ∈ R
2 and intensity xi ∈ R. We

model this manifold in a probabilistic way with an elastic net EN1, which allows
to map any image point onto the net, and vice versa. We then adapt EN1 for a
given image I1 to a new image I2 in the spatial-intensity space; again this allows
to map a net point onto image space and vice versa. The alignment mapping
which maps a spatial location in I1 to another spatial location in I2 is obtained
through the deformed elastic net. We describe the method of generalized elastic
net and its adaptation to image registration problem in detail in section 2, give
experimental results in section 3 and discuss them in section 4.

2 Image Registration with Generalized Elastic Nets

Generalized elastic nets (GEN) The elastic net is a Gaussian mixture
with a quadratic prior on its centroids [4–6]. The centroids implicitly repre-
sent a nonlinear, low-dimensional manifold that probabilistically models a high-
dimensional data set X = (x1, . . . ,xN ) (expressed as a D × N matrix). Specif-
ically, given a collection of M D-dimensional centroids Y = (y1, . . . ,yM ) (ex-

Mathematical Foundations of Computational Anatomy (MFCA'06) 157



pressed as a D×M matrix) and a scale parameter σ ∈ R
+, consider a Gaussian-

mixture density p(x) =
∑M

m=1
1
M

p(x|m) with x|m ∼ N (ym, σ2ID). A smooth-
ing or neighborhood-preserving prior on the centroids is defined as p(Y;β) ∝
exp (−β

2

∑

m ‖ym+1 − ym‖2
) where β is a regularization hyperparameter. With-

out the prior, the centroids could be permuted at will with no change in the
model, since the variable m is just an index. The elastic net minimizes the en-
ergy function

E(Y, σ) = −
∑N

n=1
log

∑M

m=1
e−

1

2‖
xn−ym

σ ‖2

+
β

2

∑

m
‖ym+1 − ym‖2

(1)

which is derived from the log posterior log p(Y|X, σ) of the full model (i.e.,
maximum-a-posteriori estimation). We call the first term the fitness term, aris-
ing from the Gaussian mixture p(X|Y, σ), and the second term the tension term,
arising from the prior p(Y). The elastic net was generalized in [6, 7] to accommo-
date general quadratic priors. The prior can be used to convey the topological
(dimension and boundary conditions) and geometric (e.g. curvature) structure of
a manifold implicitly defined by the centroids. The generalized elastic net (GEN)
minimizes the energy function

E(Y, σ) = −
∑N

n=1
log

∑M

m=1
e−

1

2‖
xn−ym

σ ‖2

+
β

2
tr

(

YT YS
)

. (2)

Quadratic priors are considered of the form S = DT D, so that tr
(

YT YS
)

=
∥

∥DYT
∥

∥

2 in terms of the Frobenius norm. The matrix D represents a discretized
differential operator. For example (for a 1D net for simplicity, and using for-
ward differences [6]), a first-order derivative results in a sum of squared lengths
∥

∥DYT
∥

∥

2 =
∑

m ‖ym+1 − ym‖2
and approximates a penalty

∫

‖∇y‖2
over a con-

tinuous net y (with an infinite number of centroids). This corresponds to a matrix
D where each row is a shifted version of (−1 1 0 0 . . . 0), and it was the tension
term used in the original elastic net (Eq.(1)), penalizing stretching of the net.
A second-order derivative results in

∑

m ‖ym+2 − 2ym+1 + ym‖2
, etc. By choos-

ing S as an appropriate combination of differential operators we can impose a
desired type of smoothness on the GEN (see [7] for a discussion of the effect of
different derivatives on the maps of primary visual cortex). The resulting S has
a sparse, banded structure. We consider open boundary conditions at the image
boundaries. Fig. 1 schematically shows a 1D elastic net.

Adaptation of the GEN Although it is possible to derive an EM algorithm
to estimate Y and σ jointly, the GEN is usually trained with a deterministic
annealing algorithm in order to obtain good local minima. This minimises E

over Y for fixed σ, starting with a large σ and tracking the minimum to a small
value of σ. For constant σ, [6] used a fixed-point iteration to find stationary
points of E:

∂E

∂Y
= −

1

σ2
(XW − YG) + βY

(

S + ST

2

)

= 0 =⇒ YA = XW (3)
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with weight matrix W = (wnm) and invertible diagonal matrix G = diag (gm)

wnm =
e−

1

2‖
xn−ym

σ ‖2

∑M

m′=1 e
−

1

2




xn−y
m′

σ




2
gm =

N
∑

n=1

wnm A = G + σ2β

(

S + ST

2

)

.

The weight wnm is the responsibility p(m|xn) of centroid ym for generating
point xn, gm is the total responsibility of centroid ym, and the matrix XW is
a list of average centroids. We solve for Y in the system of eq. (3) and iterate,
since W and G depend on Y. In [6], the system (3) was solved using Cholesky
factorisation. While this is robust and efficient (since it takes advantage of the
sparsity structure of S), here we use a different method based on linear conjugate
gradients (CG) [8]. Linear CG solves an M×M positive definite linear system in
at most M steps, each costing O(M2) (actually less since A is sparse), and has
two important advantages: (1) we can initialize the linear CG from the previous
Y value (which will be close to the solution) rather than solving each system
anew, as Cholesky does; (2) we can run only a few linear CG steps and obtain
an approximate but good enough solution rather than an exact, costly one.
This considerably accelerates the overall annealing algorithm without sacrificing
accuracy. A further acceleration is obtained by truncating the Gaussian kernel
so that most weights wmn are zero and can be ignored.

Registration We now show how the framework of elastic net can be adapted
for the problem of image registration. First, we represent two images I1 and I2
in the spatial-intensity space. Then we construct an elastic net with as many
centroids as pixels in image I1. This net Y is initialized with each centroid
representing the spatial-intensity value of one pixel in I1 (i.e., Y = X1). The
net is adapted by adjusting the centroids to fit data X2, representing image
I2 in spatial-intensity space. This is done by minimizing the energy in Eq. (2).
The intuition for using the same number of centroids as there are pixels in I1 is
that the final centroid locations, when the energy function is optimized, directly
shows the displacement of each pixel in I1 when it is deformed into I2. As a result,
no interpolation is needed. It also provides the maximum level of deformation
complexity. In general, we can choose to have more or fewer centroids than pixels.
In this case the displacement of a pixel x in I1 can be found by interpolation
using the probabilities p(m|x) and p(x|m) provided by the GEN.

We assume that the deformation between two images is only spatial, not in
intensity. This translates to constraining the intensity components in the cen-
troid vectors to be constant. In other words, the free parameters for centroid
ym = (yms,ymi) are yms only, and the optimization updates only apply to yms.
Doing so is important to produce only spatial deformation for I1 when fitting
it to I2. In general, intensity variations across images can be accommodated by
updating the complete ym = (yms,ymi). We use the following penalty matrix:
S = β1D

T
1 D1 + β2D

T
2 D2, where D1 and D2 are first- and second-order deriva-

tives, and their relative strengths are controlled by hyper-parameters β1 and β2;
practically useful values for them can be obtained manually for a given type of
images.
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 2. (a) Original MR slice; (b) deformed original image according to control points
using thin plate splines; (c) deformation field represented by control point; (d) absolute
value of intensity difference between original and deformed images; (e) registration re-
sult of the algorithm (original image is registered onto the deformed one); (f) deforma-
tion field found by the algorithm (almost equal to the true one); (g) absolute value of
intensity difference between registered and original deformed images (almost zero).

3 Experimental Results

In all experiments, the image intensities are first re-scaled to allow the use of
a single σ for all dimensions, and the images are coarsely aligned using cross-
correlation to eliminate rigid translation. The resulting data sets X1,X2 ⊂ R

3

were used to adapt the elastic net. The resulting, aligned dataset X′

1 (obtained
from the spatial deformation given by the GEN and the original intensity values)
was post-processed with bi-cubic interpolation to produce the aligned image. The
prior parameters β1 and β2 were set manually for each type of image. We ran
10 annealing iterations from σ = 3 to σ = 0.5 pixels.

We show the performance of the algorithm on artificial data with known
non-linear deformations and on two real-life examples. The algorithm was im-
plemented in Matlab with subroutines coded in C, and tested on Pentium4 CPU
3.5GHz with 4Gb RAM. The test images are gray-scale images of size 250 ×
250, and the registration process takes about 20 minutes for each image pair.

Brain MRI 2D images with and without known deformation A slice
of MRI brain image was artificially deformed using known deformation field

160 Mathematical Foundations of Computational Anatomy (MFCA'06)



Table 1. Experimental results for different deformation levels.

Deformation STD Transformation RMSE Intensity RMSE

1.0 0.3135 0.0044

1.5 0.5124 0.0047

2.0 0.9753 0.0053

2.5 1.1152 0.0060

3.0 1.0962 0.0059

(Fig. 3). We define a uniform grid of control points in the original image, ran-
domly move them and use the thin plate spline technique to create a locally
nonlinear deformed image. Our algorithm is applied to align original image (a)
onto deformed one (b). The final absolute image difference (g) is so small it is
hardly visible, demonstrating the high accuracy of the method. Table 1 shows
the value of root mean square error (RMSE) between true and estimated defor-
mation as well as the intensity RMSE between original and registered images, as
a function of spatial distortion level controlled by the standard deviation (STD)
of control points perturbation measured in pixels. The transformation error is
at most of the order of one pixel.

Figure 3 shows the registration of images (a) and (b) from two patients. Image
(b) is registered onto (a) resulting in (d). Panels (c) and (e) are color composite
views of the two images before (c) and after (e) registration, where image (a)
is coded with green and (b) with red color. Visual inspection clearly reveals
much improved alignment, even when the two original images have significantly
different intensity ranges.

Microscopic iris images We stabilize a video sequence of microscopic iris
images through frame-by-frame registration. This is necessary to remove the
severe jitter and deformation across frames in order to be able to track the
leukocyte motion. The deformation between frames is highly nonlinear. Our
algorithm proves to be accurate and effective for these images, as demonstrated
in Fig. 4. Ideal registration in this case should lead to an absolute difference
image after alignment with background intensity close to zero and bright blobs
corresponding to the moving leukocytes, which is exactly the case in Fig.4(e).

4 Conclusion

We have developed a probabilistic approach for non-parametric non-rigid image
registration based on the generalized elastic net (using first- and second-order
differential priors). The method is able to accurately register images even with
highly non-linear local deformations, and we have designed a new, more efficient
optimization algorithm based on linear conjugate gradients. When the elastic net
is initialized with one centroid for each pixel in image I1, the resulting deformed
net will provide directly the displacement for each pixel. When the number
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Fig. 3. (a) First person; (b) second person; (c) their composite view; (d) registration
of (b) onto (a); (e) composite view of (a) and (d).

of centroids goes to infinity in the limit, the mapping approximates continuous
mapping with continuous derivative, however it is still implicitly defined by finite
collection of centroids. In general, the deformation complexity can be controlled
by using an arbitrary number of centroids. In this case, determining the displace-
ment of a pixel in I1 can be interpolated by relating probabilistically the pixel
and the elastic net. With the image deformation represented as the motion of net
centroids, we do not need any image interpolation on each iteration, unlike most
other registration methods. While we have focused on intensity features, the
method easily accommodates arbitrary features (e.g. gradient information and
color components) and images of different spatial resolutions. The generalization
of the method for 3D images is straightforward, however the computational time
is large at present. One possible way to reduce the computational complexity is
to use fewer centroids. The method is also well suited for continuous tracking
of the centroids over consecutive frames in an image sequence, by successively
adapting the net to each image.
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(d) (e)

Fig. 4. Microscopic video of iris: (a) frame 1, (b) frame 37; (c) absolute intensity
difference between the two frames before registration; (c) registration result of the
algorithm: image (b) is aligned with image (a); (e) absolute intensity difference between
the two frames after registration.

Future research includes varying the number of centroids for different defor-
mation complexity, adaptive choice of the regularization hyper-parameter, and
local adaptation of centroid variance σ for different dimensions to deal better
with local image properties and intensity variations.
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6. Carreira-Perpiñán, M.Á., Dayan, P., Goodhill, G.J.: Differential priors for elastic
nets. In Gallagher, M., Hogan, J., Maire, F., eds.: Proc. of the 6th Int. Conf.
Intelligent Data Engineering and Automated Learning (IDEAL’05). Volume 3578
of Lecture Notes in Computer Science., Springer-Verlag (2005) 335–342
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Measurment of folding in surfaces of arbitrary
size in human brain development
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Abstract. This paper describes a novel approach to in-vivo measure-
ment of brain surface folding in clinically acquired neonatal MR image
data. Specifically it addresses the problem of comparing folding of sur-
faces of arbitrary area. Most of the current measures of folding are not in-
dependent of the area of the surface from which they are derived. There-
fore, applying them to whole brains or subregions of different sizes result
in differences which may or may not reflect true differences in folding. In
this paper we describe alternative approaches to deriving area indepen-
dent measures. The measures were applied to twelve premature infants
(age 28-37 weeks) from which cortical gray and white surfaces were ex-
tracted. Experimental results show that previous folding measures are
sensitive to the size of the surface patch, and that the area indepen-
dent measures proposed here provide significant improvements. Such a
system provides a tool to allow the study of structural development in
the neonatal brain within specific functional subregions, which may be
critical in identifying later neurological impairment.

1 Introduction

The percent of infants born preterm, or at less than 37 completed weeks of ges-
tation, has increased significantly in the last two decades. The latest report [6]
in the USA indicates that almost one in every eight births is preterm. There is
growing evidence that premature birth can result in structural and functional al-
terations of the brain, which are related to adverse neurodevelopmental outcome
later in life [7, 8]. Some of the challenges that preterm infants face range from
spastic motor deficits (cerebral palsy) [20], impaired academic achievement [3,5],
and behavioral disorders [9,12]. However, the conditions that cause the cerebral
abnormalities that underlie these common and serious developmental disabilities
are not entirely understood [8]. The wider availability of clinical in vivo mag-
netic resonance imaging of neonatal brain anatomy, provided by systems which
make use of an MRI compatible incubator, creates a new opportunity to quan-
tify brain development. In this work we are particularly interested in the study
of the cortical folding, or gyrification, in preterm infants, because it may reflect
underlying functional organization.
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In our earlier work [16] we applied previously proposed global average mea-
sures of folding to surfaces extracted from neonatal MRI, and showed their use
in tracking global age changes. The main limitation was that the previously
proposed measures were heavily dependent on the size of the surface being ex-
amined. Since brain surface area increases dramatically with brain development,
previous measures cannot probe whether cortical folding is following a normal
pattern, independent of size. Additionally these cannot be calculated on func-
tional sub-regions of the cortex which may have a different surface area in differ-
ent individuals. To address the problem, in this paper we describe and analyze
measures of global folding that are independent of the size of the surface of anal-
ysis. We apply the measures to surfaces extracted from MR images of twelve
premature infants with ages from 28-37 weeks. The folding of whole surfaces, as
well as their left and right hemispheres, was studied.

2 Theory

Several global 3D brain surface measures of gyrification have previously emerged.
Some are based on surface principal curvatures (k1, k2), mean curvature (H =
1
2 (k1 + k2)), or Gaussian curvature (K = k1k2). Examples are folding index
(FI) [4], the intrinsic curvature index (ICI) [4], L2 norm of the mean curva-
ture (MLN) [1], L2 norm of Gaussian curvature (GLN) [1], and average cur-
vature [13]; global shape index (GS) and global curvedness (GC) were defined
in our earlier work [16] based on the local shape descriptors curvedness (c) [10]
and shape index (s) [10]. Examples of non-curvature based measures are the
gyrification index [21], calculated as the ratio of the entire cortical contour of
the brain to the superficially exposed contour, and roundness1 (Rn), based on
surface area (A) and volume (V ). A list of current global 3D measures of folding
is shown on the left column of Table 1. These expressions are normalized to yield
the unit value for a sphere [16].

2.1 Size-independent measures of surface folding

Examination of the form of the current global measures in Table 1 reveals a
critical dependency on surface area, with the exception of global shape index
and gyrification index. This can be better illustrated with the following example,
using MLN to measure folding. Take a whole sphere of radius Ro, half a sphere
of radius Ro, and a whole sphere of half that radius. The three objects have the
same surface complexity, hence a measure of global folding should yield identical
results. By definition, H = 1/R at each point in a sphere. The whole sphere with
radius Ro yields MLN = 1

4π

∑
A H2 = 1

4π × 4πRo2 × (1/Ro)2 = 1, and so does
the whole sphere with radius Ro/2: MLN = 1

4π × (4π Ro
2 )2 × (2/Ro)2 = 1.

On the other hand, MLN for the half sphere of radius Ro is half that value:
MLN = 1

4π × 1
24πRo2× (1/Ro)2 = 1

2 . This demonstrates the dependency of the

1 The terms surface complexity [13] and isoperimetric ratio [1] have also been used.
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measure on the size of the surface of analysis. Normalizing MLN with the surface
area does not alleviate the problem: MLN = 1

A

∑
A H2 = 1

4πRo2 (4πRo2)(1/Ro)2

= 1
Ro2 (whole sphere of radius Ro). We propose two normalization factors: 1) T =

3V/A and 2) |H| = 1
A |

∑
A H|. The resulting T -normalized and H-normalized

expressions (T -measures and H-measures, respectively) are shown in the right
column of Table 1. For a sphere, T = Ro, |H| = 1/Ro, and it can be verified
that MLNT = MLNH = 1 for the three sphere cases. Similarly for the rest of
the newly defined area-independent measures.

Table 1. Measures of surface folding

Current measures New measures
Area-dependent Area-independent

MLN= 1
4π

P
A H2 [1] MLNT =T2

A

P
A H2

GLN= 1
4π

p
A ∗PA K2 [1] GLNT =T 4

q
1
2

P
A K2

ICI= 1
4π

P
A K+ [4] ICIT =T

q
1
A

P
A K+

FI= 1
4π

P
A ak [4] FIT =T

q
1
A

P
A ak

GC= 1√
A4π

P
A c [16] GCT =T

q
1
A

P
A c

U= 1
A

P
A U [13] UT = T

AU

P
A U

V = 1
A

P
A V VT =T

q
1

AV

P
A V

Rn= A
3√

36πV 2
[1] SH2SH=T

P
A H2/

P
A H

SK2SK=T
pP

A K2/
P

A K
Area-independent

GS= 1
A

P
A s [16] MLNH= 1

|H|
pP

A H2/A

Gyrification Index [21] GCH= 1

A|H|
P

A c

AFi=Ai/A, i ∈ {H+, K+}
Notation: c =

q
1
2
(k2

1 + k2
2) (curvedness [10]), s =

2
π

arctan k2+k1
k2−k1

(shape index [10]), ak = |k1|(|k1| − |k2|),
T = 3V

A
, and |H| = 1

A
|PA H|. U ∈ [H+, H−], V ∈ [K+,

K−], and AH+ (or AK+) is the area of the surface with
positive H (or K) curvature.

In addition, we defined three new area-independent folding measures: SH2SH,
SK2SK, and AF{H+,K−}. The first two were based on the rationale that mea-
sures composed of ratios of local curvature factors would intrinsically eliminate
the dependence on area. The latter was based on the idea that a reasonable
characterization of the degree of folding in a brain surface is the fraction of the
surface which contains convex folds (gyri). This can be mathematically char-
acterized by looking at the relative portion of the surface which has positive
mean or Gaussian curvature. For an undeveloped brain, the fraction would be

166 Mathematical Foundations of Computational Anatomy (MFCA'06)



large, and it would progressively decrease as the concave folds (sulci) appear.
The definition of the three expressions is shown in Table 1.

3 Method

The sphere example was useful to identify global folding measures that have
the potential to consistently evaluate surface folding, independent of the size of
surface of analysis. A more formal verification of this area-independence prop-
erty is in progress. In this work we present an experimental comparison of the
measures on two datasets. The first dataset consisted of 15 neonatal brains. The
surfaces of this brains not only increase in size with age, but they also become
more complex. So, folding varies proportionally to size. The second dataset con-
sisted of iso-surfaces for which surface folding varied inversely to size. They were
generated from one neonatal brain at various percentage occupancy thresholds
(see Section 3.3). A larger threshold produces a smaller brain and larger separa-
tion between sulci walls, which translates to increased folding. For both datasets,
gyrification was measured on left and right hemispheres, in addition to the whole
brains. The infants in this study are normal, therefore gyrification is expected to
be similar on both sides. Area-independent measures are expected to yield simi-
lar values for each hemisphere and the full-brain, but not so the area-dependent
measures.

3.1 Data

Human Neonatal Images. High resolution (0.703 × 0.703 × [1.5 − 2.2] mm)
3D T1 weighted SPGR images were acquired on premature infants using a 1.5T
GE MRI scanner with an MRI compatible incubator. The gestational ages (GA)
of the twelve premature infants in this study ranged between 24-31 weeks. The
postmenstrual ages (gestational age + postnatal age) at the time of acquisition
were 28-37 weeks. A subsequent scan for three infants was available, hence a
total of 15 brains were processed.

3.2 Image Segmentation

The outer gray matter and the gray-white matter interface2 surfaces of the pre-
mature brains were extracted semi-automatically as described in [16] using the
rview software package [17]. Cortical gray matter was segmented for fifteen brains
and gray-white matter interface for thirteen brains. A value of 1000 was assigned
to brain voxels and 0 to background voxels.

2 In the remaining of the text we will refer to the gray-white matter interface simply
as white matter.
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3.3 Computation of Brain Surface Folding

Each binary segmented brain was supersampled using voxel replication to pre-
vent loss of fine scale features (2× 2× 4). A voxelwize approach to surface cur-
vature estimation from iso-surfaces, derived from that developed by Rieger [14],
was then employed. It avoids the need of a parametric model. A summary of
the sequence of steps (described in detail in [16]) is as follows: 1) computation
of the image gradient g = ∇f(x, y, z) of the replicated binary volume; 2) com-
putation of the gradient structure tensor (GST) [14] defined as T = ggt; 3)
calculation of the eigenvectors v1, v2, v3 of T and the mapping M(v1) = v1vt

1
||v1|| ;

4) on the 50% occupancy iso-surface, computation of the principal curvatures
from |k1,2| = 1√

2
||∇v2,3M(v1)||F (Fröbenius norm); the sign of k1 and k2 is de-

termined from the Hessian matrix of the image and the eigenvectors v2 and v3.
The curvatures k1 and k2 were then used to compute mean (H) and Gaussian
(K) curvature and the folding measures of Table 1. Each step involves image
smoothing or differentiation. For all images, the 3D filters used at the ith step
had a full-width at half maximum (fi) of: f1 = 2.1mm, f2 = 1mm, f3 = 2mm,
f4 = 1mm. The rationale behind the choice of values was to create a smooth
surface that would yield smooth variations in curvature. Normalized Gaussian
derivatives [11] were used for all computations.

The input to this algorithm is the binary replicated segmented brain, for
which foreground voxels have a value of 1000 and background voxels a value of
0. Near the border of the brain the kernel incorporates brain and background
voxels, hence the raw effect of the convolution on the image is that the resulting
volume has voxel values in the range [0,1000]. The resulting voxel values are
interpreted as the partial occupancy by brain tissue. The larger the number
indicates that more foreground voxels were present in the kernel. For each brain,
the surface on which curvature and the global measures of folding were calculated
was taken to be the iso-surface with at least 50% occupancy (i.e. voxel values of
at least 500) and satisfying 6-connectivity with the background.

3.4 Cortical Partitioning using Spatial normalization

Full-brains and their left and right hemispheres were processed with the algo-
rithm just described. The procedure used to identify the left and right hemi-
spheres in each neonatal brain was the following. A reference neonatal anatomy
was manually partitioned into left and right hemisphere. A multi-resolution B-
Spline based spatial normalization, adapted from that described in [18, 19] and
as used in [2], was then applied to estimate a spatial transformation mapping
from this reference to each subject MRI being studied. This transformation was
then numerically inverted to allow the assignment of the nearest reference la-
bel to a given subject image voxel, which brought the voxelwize partitioning
of the reference anatomy to the same space as the surface extracted from each
infant. The partitioning was then used to constrain the voxelwize evaluation of
the folding measures.
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4 Results

We applied the measures to surfaces from the 15 MRI studies to investigate
their response to folding with age. The relationship between age and folding was
analyzed with regression and for this work a linear model was used. Due to space
limitations results from only seven measures are shown in Figure 1. Top two rows
correspond to gray matter results, and bottom two rows to white matter. The
first observation is that measures with large goodness-of-fit for gray matter, had
very small goodness-of-fit for white matter, and viceversa. This was true for the
whole brain and both hemispheres. The same was observed in our results [15]
on 10 MRI studies. The measures with greater goodness-of-fit for gray matter
were the T -normalized measures: ICIT , FIT , H+, K−, K+; for white matter,
GS (global shape index) and the |H|-normalized measures: MLNH and GCH .
The goodness-of-fit for gray matter and white matter (in that order) on whole
surfaces (depicted as ∗ in the figure) was: CIT (0.85, 0.004), FIT (0.85, 0.19),
GLNT (0.80, 0.21), ICIT (0.83, 0.002), MLNT (0.80, 0.07), GS (0.61, 0.95),
SK2SK (0.67, 0.46), SH2SH (0.77, 0.25), MLNH (0.48, 0.96), GCH (0.52,
0.95), H− (0.73, 0.07), H+ (0.85, 0.12), K− (0.85, 0.27), K+ (same as ICIT ),
AFH+=(0.62, 0.87), AFK+=(0.45, 0.13). The measures had similar goodness-of-
fit scores for the left and right hemispheres. Area, volume, and T varied linearly
in all cases.

Next we analyzed the dataset for which smaller brains were more folded.
The iso-surfaces were created from a single brain (age 28 weeks) at percentage
occupancy thresholds in the range 5-95% (in increments of 5%). An example
of one coronal slice from five iso-surfaces obtained at five different thresholds is
shown in Figure 2. The results for five measures on whole surfaces and their left
and right hemispheres are shown in Figure 3. In contrast with the first dataset,
the folding measures had similar goodness-of-fit for both gray and white matter
(either both large or both small). Another difference was that FIT presented a
small goodness-of-fit. For this iso-surface dataset the area of gray matter varied
in a non-linear fashion (plot not shown). This behavior is explained by the sep-
aration of the gray matter volume into two hemispheres, for larger thresholds
(see Figure 2). The increase in surface area due to this separation is dominant
over the relative decrease in area due to the larger threshold.

It can be observed that in the first dataset (Figure 1) the slopes of T -
normalized measures have different tendencies for gray matter (positive) and
white matter (negative). This difference is explained by the slope of T itself. For
gray matter the rate of change of volume, with age, was faster than that of area,
therefore T = 3V/A had a positive slope. The inverse occurs for white matter.
For the second dataset (Figure 3), the slope of T was negative for both gray and
white matter, therefore the slope of all T -normalized measures is also negative.
Once this slope difference is considered, it is clear that the new measures (T -
and |H|-normalized) change consistently with folding, independent of the size of
the surface.

Results on both datasets for previously defined measures corroborate their
dependency on the size of the surface of analysis. For each hemisphere, the

Mathematical Foundations of Computational Anatomy (MFCA'06) 169



28 30 32 34 36 38
0

70

140

210

280

Age (weeks)
M

LN
28 30 32 34 36 38

3.0

3.5

4.0

4.5

5.0

5.5

Age (weeks)

M
LN

T

28 30 32 34 36 38
0.5

0.6

0.7

Age (weeks)

A
F H

+

28 30 32 34 36 38
2.5

3.0

3.5

4.0

4.5

5.0

Age (weeks)

F
I T

28 30 32 34 36 38
2

4

6

8

10

Age (weeks)

M
LN

H

28 30 32 34 36 38
4

6

8

10

12

14

Age (weeks)

G
C

H

28 30 32 34 36 38
0.0

0.1

0.2

0.3

0.4

0.5

Age (weeks)

G
S

28 30 32 34 36 38
30000

80000

130000

180000

230000

280000

Age (weeks)

V
ol

um
e 

(m
m

3 )

28 30 32 34 36 38
6000

18000

30000

42000

54000

Age (weeks)

A
re

a 
(m

m
2 )

28 30 32 34 36 38
20

30

40

50

60

70

Age (weeks)

N
or

m
al

iz
at

io
n 

fa
ct

or
 T

28 30 32 34 36 38
0

70

140

210

280

Age (weeks)

M
LN

28 30 32 34 36 38
2.0

2.5

3.0

3.5

4.0

4.5

Age (weeks)

M
LN

T

28 30 32 34 36 38
0.5

0.6

0.7

Age (weeks)

A
F H

+

28 30 32 34 36 38
2.5

3.0

3.5

4.0

4.5

5.0

Age (weeks)

F
I T

28 30 32 34 36 38
3

5

7

9

11

Age (weeks)

M
LN

H

28 30 32 34 36 38
4

6

8

10

12

14

Age (weeks)

G
C

H

28 30 32 34 36 38
0.0

0.1

0.2

0.3

0.4

0.5

Age (weeks)

G
S

28 30 32 34 36 38
30000

80000

130000

180000

230000

280000

Age (weeks)

V
ol

um
e 

(m
m

3 )

28 30 32 34 36 38
6000

18000

30000

42000

54000

Age (weeks)

A
re

a 
(m

m
2 )

28 30 32 34 36 38
20

30

40

50

60

70

Age (weeks)

N
or

m
al

iz
at

io
n 

fa
ct

or
 T

Fig. 1. Plots of seven folding measures applied to gray matter (top
two rows) and white matter (bottom two rows). Filled shapes corre-
spond to results for left hemisphere, and empty ones for right hemi-
sphere. Results for the whole surface (?) are also included.

magnitude of previously defined measures was at least half the value than for
the whote-brain. In contrast, for the newly defined measures, their magnitude
for whole-brain was in between that for left hemisphere and right hemisphere.
As an example, results for MLN and GLN are shown in Figures 1 and 3,
respectively.

Assessment of intra-observer segmentation variability (preliminary
stage). The white matter of two brains, from the 15 available, was segmented
and analyzed with an approach similar to the one in [1]. One brain was 29.1
weeks and was segmented four times; the other brain was 32.4 weeks and was
segmented twice. Measures were computed on all the segmented surfaces. Given
a set of segmentations for one brain, the segmentation variability was assessed
as the maximum percentage variation of a measure from the mean value in the
set. This was compared to the percentage change of the mean value of a measure
between the 29.1 week brain and the 32.4 week brain. This number was taken
as an indication of the extent of the variability in segmentations. An example
of the results is given for MLNH , GS, and AFH+ . In that order, the maximum
percentage variation for each measure on the 29.1 week old brain was: 2.81%,
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Fig. 2. A coronal slice each from five gray matter (top)
and white matter (bottom) iso-surfaces extracted at percent-
age occupancy thresholds: 10%,30%,50%,70%,90%. All slices
come from one brain.
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Fig. 3. Plots of five folding measures applied to iso-surfaces of a single
brain at various occupancy thresholds. Top row shows results for gray
matter and bottom row for white matter. Filled shapes correspond to
left hemisphere and empty ones to right hemisphere. Results for the
whole surface (?) are also included.

2.57%, and 0.55%. The percentage difference between the 29.1 week brain and
the 32.4 week brain was: 35.4%, 41.9%, 8.1%.

5 Discussion

An understanding of the cortical folding process in the development of prema-
ture infants may be important in explaining and predicting abnormal neuro-
logical outcome. The use of formal mathematical descriptions provides a more
quantitative tool to study the folding process than is available with simple vi-
sual evaluation of MRI scans. The long term goal of our research is to create
a model to track preterm in vivo neonatal brain cortical development that will
help characterize normal gyrification and departures from it.
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In this work we have shown that most previously proposed folding mea-
sures [1, 4] are dependent of the size of the surface patch on which they are
calculated. To alleviate this problem we examined two approaches to area nor-
malization of the measures and proposed new forms of measure, which satisfy
the requirement of area-independence. These were evaluated on neonatal brain
surfaces. We evaluated the measures ability to detect change in normal develop-
ment by computing the linear regression of each measure with age. Finding the
relationship between folding measures and age is an important part of the goal
of understanding brain development. We will explore higher order models when
more data is available.

In the dataset of 15 neonatal brains, folding varied proportionally to size.
White matter folding tracked best with age, while no single measure rated consis-
tently well for both gray and white matter surfaces. For the iso-surfaces dataset,
where folding varied inversely to size, most measures rated well, and similarly for
both gray and white matter. Despite differences in the behaviour of the normal-
ization factor T and in the linearity of area on both datasets, most newly defined
measures appeared to consistently assess folding. Recommended measures for
gray matter are ICIT , H+, K−; and for white matter GS, MLNH , GCH , and
AFH+ . The proposed normalization factors T and |H| opened the possibility
to adapt previously defined measures to quantify gyrification in subregions of
the brain. The slope of T appears to determine that of the T -normalized mea-
sures. Awareness of this is important for the correct interpretation of results.
Alternative normalization factors need to be explored.

Preliminary results indicate that the effect of segmentation variability on the
measures seems to be minimal: the differences in the measures with segmentation
seems to be at least 10 times smaller than the differences with gestational age.
We need to further investigate the sensitivity and validity of the measures in a
larger cohort, containing both normal and pathological cases. In conclusion, the
proposed new and normalized measures provide area-independent assessment
of folding which provide the ability to study local gyrification. Such measures
will provide a new tool in assessing global and local surface folding which is
independent of the overall surface area, and are hence applicable to developing
a model that tracks development in premature infants
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Realizing Unbiased Deformation: A 
Theoretical Consideration 

 
A.D. Leow, M.C. Chiang, S.C. Huang, A.W. Toga, and P.M. Thompson 

 
 
Abstract— Maps of local tissue compression or expansion are often recovered by 
comparing MRI scans using nonlinear registration techniques. The resulting changes can 
be analyzed using tensor-based morphometry (TBM) to make inferences about anatomical 
differences. Numerous deformation techniques have been developed, although there has 
not been much theoretical development examining the mathematical/statistical validity of 
each technique. In this paper, we propose a basic principle that any registration technique 
should satisfy: realizing unbiased test statistics under null distribution of the displacement. 
In other words, any registration technique should recover zero change in the test statistic 
when comparing two images differing only in noise. Based on this principle, we propose a 
fundamental framework for the construction and analysis of image deformation. 
Moreover, we argue that logarithmic transform is instrumental in the analysis of 
deformation maps. Combined with the proposed framework, this leads to a theoretical 
connection between image registration and other branches of applied mathematics 
including information theory and grid generation.   

  
Index Terms-Mutual information, Image registration, Computational anatomy. 

 
1. Introduction 
 
Non-linear image registration is a well-established field in medical imaging with many 
applications in functional and anatomic brain mapping, image-guided surgery, and 
multimodality image fusion [1-8]. The goal of image registration is to align, or spatially 
normalize, one image to another. In multi-subject studies, this serves to reduce subject-specific 
anatomic differences by deforming individual images onto a population average brain template.  
 
The deformations that map each anatomy onto a common template can be analyzed voxel-wise 
to make inferences about relative volume differences between the individuals and the template 
or statistical differences in anatomy between populations [9-13]. Similarly, in longitudinal 
studies it is possible to visualize structural brain changes that occur over time by deforming 
subjects’ baseline scans onto their subsequent scans, using the deformation map to quantify 
local changes. This area of computational anatomy is known as tensor-based morphometry [11-
15]. As there are numerous techniques for non-linear registration, one may ask whether some 
approaches are better than others in practice and/or in theory. In the following section, we will 
try to answer this fundamental question from a statistical standpoint. 
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2. Criteria for proper image registration 
 
One could not study non-linear registration without closely examining the common practice of 
applying logarithmic transformation to Jacobian maps. Log-transformation of a Jacobian 
determinant field has become standard practice in most tensor-based morphometry (TBM) 
papers [11,12]. The Jacobian determinant of a diffeomorphic (smooth) map is bounded below 
by zero but unbounded above. Thus, at any voxel, its null distribution would be a better fit to a 
symmetric Normal distribution if the Jacobians are logged. Additional arguments that favor log-
transformation of Jacobian maps come from the need to symmetrize the probabilities of 
expansions and shrinkages that are reciprocals of each other. We will discuss two different, yet 
related, concepts of symmetrizing; each supports the use of log transformation. 
 
2.1. Two types of symmetry favor the log transformation of Jacobian maps 
 
The first symmetry operates on a voxel level. The motivation behind this approach is the result 
of voxel-wise statistical tests.  Consider, for example, testing for the presence of voxel-wise 
mean structural change in a multi-subject experiment. One might want to employ classical 
statistical approaches and test the null hypothesis of zero mean change using one-sample 
Student’s t tests. A more general linear model typically relies on the residuals being a good 
approximation to a Gaussian random field. This null model assumes that at each voxel the 
observed rates of change over time (or relative volumes in a cross-sectional study) collected 
from all subjects follow a normal distribution, thus suggesting the use of log-transform – 
otherwise the Jacobian determinants are bounded below by zero but unbounded above. 
 
The second type of symmetry is the symmetry of Jacobian distributions inside a region (in 
contrast, the symmetry previously described deals with multiple observations across subjects, at 
a single voxel). This second, albeit less intuitive, level of symmetry sheds light on how one 
might construct better non-linear image registrations. 
  
In theory, a proper registration algorithm should produce unbiased estimators of the real 
anatomical change. An unbiased algorithm should detect no statistically significant change 
between two serial images if there is no difference other than noise, and statistics quantifying 
change collected from all voxels should ideally have a zero mean value; rates of change 
deviating from zero should be considered as errors. In a classical statistical setting, one might 
expect that rates of change thus follow a Gaussian distribution with zero mean, again justifying 
the use of the logarithmic transform.  
 
These two types of symmetry operate at different levels: one across all voxels when comparing 
two images, and the other across all subjects at one single voxel. Assuming this symmetric log-
normal distribution for the residuals in a statistical model for the Jacobian determinant, one 
symmetrizes the rate of change distribution by considering a halving or doubling of volume to 
be equally likely a priori. A related approach is taken by Pennec et al. [16], where the Cauchy-
Green strain tensor [17, 18] of a deformation mapping is logged and used as a term in a penalty 
functional that is integrated over the image domain to regularize the deformation.  
 
2.2. Detecting no change in the absence of real change as a necessary criterion for proper 
registrations: realizing unbiased test statistics 
 
As noted previously, the logarithmic transform is fundamental in analyzing deformation maps 
through Jacobian maps, and an ideal registration algorithm should yield Jacobian maps and test 
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statistics that imply zero-change, when no difference is present between two registered images. 
We refer to this as the principle of realizing unbiased test statistics under null distribution of the 
displacement. 
 
Before we show how to construct unbiased test statistics, we first define both T and S, on an 
image domain Ω, as the two images to be registered. Let us also assume, without loss of 
generality, that the volume of this domain is 1, i.e., |Ω |=1. We seek to estimate a 
transformation h  such that S is non-linearly registered to T when deformed by h (i.e., S(h(x)) ). 
In this paper, we will restrict this mapping to be differentiable, one-to-one, and onto from the 
image domain onto itself [19] (in practice/implementation, the one-to-one and onto property can 
be approximated by extending the boundary towards infinity). Let us associate three probability 
density functions, defined on this image domain, to the identity mapping (id) as well as the 
deformation h and its inverse: 
 

pdfh (x) = Dh(x) ; pdfh −1 (x) = Dh−1(x) ; pdfid (x) =1. (1) 

 
Here, the Jacobian matrix of a transformation h is denoted Dh. As noted in [19], integrating the 
log of the Jacobian determinant over the image domain simply calculates the Kullback-Leibler 
distance between the identity map and h.  
 

logDh(x) dx
Ω∫ = −KL(pdfid , pdfh ) ≤ 0. (2) 

 
Here KL, the non-negative asymmetric Kullback-Leibler (K-L) distance, between two PDFs p 
and q, is defined as KL( p,q) = p log p

q
dx

Ω∫ ≥ 0; 

Given Eq. (2), one might ask if we could use the negative integral of the logged Jacobian 
determinant − log Dh(x) dx

Ω∫  as a basis for regularization. This integral only evaluates to zero 

when h is volume-preserving everywhere. Minimizing this integral gives us a volume-
preserving map, and thus realizes unbiased statistics. On a global scale, this integral also 
evaluates the overall mean log-Jacobian with respect to the computation domain. Moreover, in 
the field of information theory, the KL distance is geometrically important, providing a means 
to compare probability density functions on general manifolds [20].  
Interestingly, the integral Eq.(2) has skew-symmetry with respect to h and its inverse 
 

KL( pdfid , pdfh ) = −∫ log Dh dx

= KL( pdf
h −1 , pdfid ) = Dh−1 log Dh−1 dx∫

 
(3) 

 
Notably, the idea of integrating the square root of the Jacobian, as proposed in [21], to remove 
the skew-symmetry, is equivalent to calculating the Bhattacharyya distance B, a well-known 
measure in information theory [21,22].  
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B(pdfid , pdfh ) = Dh(x)1/ 2 dx∫
= Dh−1(x)

1/ 2
dx =∫ B(pdf

h −1 , pdfid )
 

(4) 

 
Surprisingly, notice that here the Bhattacharyya distance is symmetrical with respect to its two 
arguments, as well as inverse-consistent. To connect the KL-distance and Bhattacharyya 
distance, one can consider the geodesic linking of the two PDFs: P(.,t), parameterized by time t: 
 

P(x,t) = pdfid (x)t pdfh (x)1− t

N
, N = pdfid

t (x) pdfh (x)1− t dx∫  
(5) 

 
The Bhattacharyya distance corresponds to the arbitrary choice of t=1/2, while a generalization 
of the above leads to the Chernoff distance in information theory [23]. 
  
2.3. Realizing unbiased deformation using symmetrical KL distance 
 
To construct unbiased deformations, we first generalize eq. (2): given any diffeomorphism g 
mapping Region of interests S (with size a) to T (with size b), we have the 
following log | Dg(x) | dx

S∫ ≤ logb /a, while equality holds if and only if the Jacobian of g 

takes the constant value b/a. The implication of this generalization is that, assuming ROI 
mapping from S to T, the Log operation is unbiased if and only if the corresponding Jacobian 
field is evenly distributed. Thus, minimizing the negative integral of logged Jacobian (treated as 
a cost function) as in 2.2 again leads to unbiased statistics. Given this generalization, let us now 
introduce the following by combining Eq.(3), and its counterpart contributed by the inverse 
mapping:  
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In this symmetric form, the integrand Dh −1( )log Dh is always non-negative, compared to the 
integrand in Eq. (3) where locally negative numbers can be obtained (when the Jacobian is 
greater than zero), though globally non-negative. The unbiased property has two layers of 
meaning: the first one being realizing null distribution when comparing identical images 
differing in noise (from Eq. (2)); the second being realizing correct log Jacobian statistics in 
ROI analysis (from the generalization of Eq. (2)).  
Under this framework, constructing deformations can be viewed as quantifying the symmetric 
KL distance between the identity map and the resulting deformation (or the inverse deformation 
due to its symmetry). Moreover, this framework embeds statistical analyses into the 
construction of deformations, penalizing deformations that skew the distribution of test 
statistics. A second interpretation of Eq.(6) is that it simply calculates the mean log Jacobian for 
h and its inverse inside the domain, thus encoding regional volume changes. Let us also point 
out an interesting observation by applying the square root Jacobian integrand as in Eq.(4) to the 
log-transformed Jacobian framework. A simple change of variables verifies the following: 
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log Dh( )∫ Dh 1/ 2 dx + log Dh−1( )∫ Dh−1 1/ 2
dx = 0 (7) 

 
To further link Eq.(6) to other branches of mathematics, optimization problems involving 
Jacobian operator are commonly encountered in grid generation [24] and in continuum 
mechanics, where the Hencky tensor arises as logged tensor parameters in modeling very large 
deformations. However, we believe that the logarithmic transform has not been formally 
introduced in the grid generation literature and may also be useful there.  
 
2.4. Logarithmic transform: a ubiquitous operation  
 
With Eq. (6), realizing unbiased log-Jacobian values can be thought of as equivalent to 
minimizing the KL-distance. Moreover, in this case the concept of inverse-consistency 
translates to the symmetrization of the KL-divergence. The choice of the logarithmic operation 
in defining KL-divergence, though arbitrary at first sight, can now be easily justified by linking 
it to the statistical analyses of deformations in non-linear registration. 
 
 Finally, we comment briefly on how this framework can be implemented. Given an image 
matching cost function C, we seek, among all deformations minimizing this matching cost, the 
deformation with minimal symmetric KL distance as defined in Eq (6). In practice, this often 
means implementing a Lagrange multiplier, resulting in the following combined minimization 
problem 
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Here λ is the multiplier, and H is the solution space, of which a common choice consists of all 
one-to-one, onto, and differentiable maps. Often, the solution is numerically obtained by 
recursive smoothing or regularization applied to the force field. In this paper, we focus on 
constructing a general principle that applies to different numerical approaches, and refrain from 
touching on the issue of regularization. The terms in Eq.(6) may also be viewed as regularizers, 
or deformation priors, as they penalize log-Jacobian values that deviate from zero. However, it 
is well-known in the grid generation field that an integral constraint on the Jacobian alone does 
not generally guarantee a globally smooth grid [24], so the smoothness of the resulting maps 
deserves further study.  
Lastly, to complete our discussions on implementation issues, let us provide the gradient descent 
direction contributed by the symmetric KL distance term in eq(8), via its Euler-Lagrange 
equation. To this end, let us denote Coij, the matrix cofactor for the (i,j) th component of the 
Jacobian matrix Dh, we then obtain its Euler-Lagrange equation, using standard Calculus of 
variations with respect to the i-th coordinate as follows 
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Figure 1 shows a numerical example demonstrating the proposed approach implemented using 
a gradient descent projection method. Here, we matched the sequential MRI images (both of 
size 128 by 128 by 128) from a single subject diagnosed with semantic dementia. The figure 
showed three 2D slices, plotting the source, target, as well as the deformed source images. As in 
other TBM approaches, the technique is valuable as the pattern of atrophy is computed 
automatically, without interactive specification of regions of interest.  
 
3. Conclusion 
 
This paper is the first effort to systemically examine the relationship of image registration, 
information theory, and grid generation. While information-theoretic measures such as mutual 
information [25-28], f-divergence [29] and Jensen-Rényi divergence [13] have been popular 
measures to describe intensity correspondences in nonlinear image registration, it is much less 
common to appeal to statistical divergence measures in analyzing deformation fields. The 
proposed formulation calculates the KL-divergence between the deformation and the identity 
map, treating them as density functions defined on images. Unlike approaches employing 
conventional continuum mechanics (e.g., Lamé coefficients), our formulation is unbiased and 
parameter-free (the only parameter involved is the weight, which may be viewed as a Lagrange 
multiplier). The approach does not therefore make strong assumptions to model the deformation 
process. In contrast, the commonly employed elasticity theory assumes that displacements or 
velocity fields to conform to the law of elasticity, which most likely does not accurately 
describe any real brain deformation process over time.  
 
The proposed framework helps explain the need for log-transformation of Jacobian values in 
TBM studies, which is ubiquitous and essential in analyzing tissue shrinkage/expansion. 
Symmetrization is also fundamental to securing inverse-consistency, an important property in 
image registration. Lastly, this framework is also consistent with a large-deformation approach 
[4,6,7], as any one-to-one and onto diffeomorphism remains in the solution space (since its 
Jacobian is positive and finite everywhere, and thus is theoretically attainable). In the future, we 
intend to further investigate this approach, which we believe provides a new perspective in non-
linear registration and connects it to other fields of mathematics. 
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Fig. 1.  Image registration using the unbiased deformation algorithm, with the sum of the squared 
intensity difference (SSD) as the cost function. 3D scans from a semantic dementia patient imaged 
at two time points were nonlinearly registered to estimate the profile of volumetric change.  The 
later scan (first column) was chosen to be the source image. Progressive brain atrophy is observed 
in these axial slices.  
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