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Abstract. Tensor-based morphometry (TBM) studies anatomical dif-
ferences between brain images statistically, to identify regions that differ
between groups, over time, or correlate with cognitive or clinical mea-
sures. Using a nonlinear registration algorithm, all images are mapped
to a common space, and statistics are most commonly performed on the
Jacobian determinant (local expansion factor) of the deformation fields.
In [14], it was shown that the detection sensitivity of the standard TBM
approach could be increased by using the full deformation tensors in a
multivariate statistical analysis. Here we set out to improve the common
space itself, by choosing the shape that minimizes a natural metric on
the deformation tensors from that space to the population of control
subjects. This method avoids statistical bias and should ease nonlinear
registration of new subjects data to a template that is ’closest’ to all sub-
jects’ anatomies. As deformation tensors are symmetric positive-definite
matrices and do not form a vector space, all computations are performed
in the log-Euclidean framework [1]. The control brain B that is already
the closest to ’average’ is found. A gradient descent algorithm is then
used to perform the minimization that iteratively deforms this template
and obtains the mean shape.
We apply our method to map the profile of anatomical differences in a
dataset of 26 HIV/AIDS patients and 14 controls, via a log-Euclidean
Hotelling’s T 2 test on the deformation tensors. These results are com-
pared to the ones found using the ’best’ control, B. Statistics on both
shapes are evaluated using cumulative distribution functions of the p-
values in maps of inter-group differences.

1 Introduction

Tensor-based morphometry (TBM) is an increasingly popular method to study
differences in brain anatomy statistically [23],[5], [22]. In TBM, a non-linear reg-
istration algorithm is used to align a set of images to a common space, and a
statistical analysis is typically performed on the Jacobian determinants (local



expansion factors) of the deformation fields generating the transformation. Most
commonly, one of the control subjects’ images, or a high-resolution single sub-
ject MRI atlas [10], is selected as the reference to which all the other images
are mapped. To avoid biases induced by the choosing a single individual as a
template, methods for creating an average image using the entire set of controls
have also been developed. For instance in [11], a mean template is defined by
transforming one of the control images using the average of the displacement
fields resulting from its registration to all other controls. A similar approach
was also adopted in [9], where the average was taken with respect to both the
deformation and the intensities of the reference images.

Other investigators have advocated a more computationally intensive ’tar-
getless’ normalization approach, in which all images in a group are matched to
each other pairwise, and each image’s mean vector field so obtained is applied to
it before averaging the deformed images across subjects [24], [22], [28], [27], [12].
Groupwise registration is increasingly common to avoid systematic confounding
effects and bias associated with aligning images to a specific individual brain,
which can arise when the geometry and intensities of the target image resemble
some members of the population more than others.

In [14], the deformation tensors
√

J tJ were used to perform statistics in
TBM, where J is the local Jacobian matrix of the transformation. This method
outperformed detJ , the most commonly used scalar measure of deformation,
for mapping the profile of brain atrophy associated with HIV/AIDS. Specifi-
cally, multivariate analysis of the local tensor, using a manifold version of the
Hotelling T 2 test, was much more sensitive to group differences than detJ . The
determinants represent local volume differences across subjects, while the defor-
mation tensors reflect local differences in shape, orientation, and volume.

When statistics are performed on the deformation tensors in TBM, a consis-
tent way to define the average image is as one that minimizes and appropriate
norm on the deformation tensors generated using that image as a registration
target. For example, when a set of control subjects’ images is mapped to a tem-
plate, it is reasonable to expect the mean deformation tensor to be identically
zero everywhere after log transformation, or, if that is not possible, at least hav-
ing minimum mean-squared error in a relevant tensor norm. Here we develop an
approach to achieve this, by using a log-Euclidean metric on the space of tensors;
the regularizer then has a form that is consistent with the tensor statistics used
ultimately for mapping systematic effects on anatomy.

In related work on geodesic shooting [17] and large-deformation diffeomorphic
metric mapping (LDDMM) [2], mean templates are defined that minimize the
geodesic distance to a population of anatomies. These geodesic distances are
Riemannian metrics formulated in terms of integrals of ||Lv||, where L is a
self-adjoint (elliptic) differential operator regularizing the deformation, v is its
velocity field, and ||.|| is a norm, such as the simple L2 norm or the H1

α norm used
in the Camassa-Holm equation for modeling solitons [29]. Lorenzen et al. [15]
[16] generated a representative common template from a multimodality image
set using large-deformation mappings and registration with the Kullback-Leibler



divergence. Gerig et al.[7] generalized the mean anatomical template estimation
to accommodate repeated measures data, e.g. images collected longitudinally
from a pediatric population.

In this work, we set out to find a transformation ΦBA from an initial brain
B selected from a set of control subjects, to an average brain A. The average
brain image intensity is defined as IA = IB ◦ ΦBA. B is taken as the reference
image, and we seek the transformation of its geometry that minimizes the bias
on the deformation tensors:

argminΦBA
E(ΦBA) (1)

where E(ΦBA) is the total size of the deformation tensors

E =
∑

i

∫
d(Si, Id)2 (2)

Here the Si represent the square of the deformation tensors from image i, d(., .)
is the distance, and Id is the identity. In practice, to make calculations easier, we
actually compute the inverse transformation, ΦAB. (Note that this formulation
could be extended to consider intensity matching as well, as in [15] [16] where the
sum of an intensity matching energy and a deformation energy is minimized).

The deformation tensors are constrained to be positive-definite matrices, and
form a conical submanifold of the space of square matrices. An intrinsic definition
of d(., .) is needed for (2). Recently, Arsigny et al. [1] presented a log-Euclidean
framework to perform computations in this space. Distances are computed after
applying the matrix logarithm transformation, which transports the deformation
tensors to the tangent space at the origin, where simple matrix operations can be
used. When log transforms are used, even on the scalar Jacobian determinant,
several sources of bias are avoided in the resulting statistics (which can lead to
skewness and non-zero mean even under the null hypothesis [13]).

This method was used in [14] to compute statistics on the deformation tensors
in TBM. In the log-Euclidean framework, the distance between two elements of
the space S1 and S2 is given by

d(S1, S2) = || log S1 − log S2||,

where ||.|| denotes a norm, and log is the matrix logarithm. Here we will use [1]

d(S1, S2) = (Trace(log S1 − log S2)
2)1/2. (3)

Taking into account (3), (2) becomes

E =
∑

i

∫
|| log Si||2d2x =

∑
i

∫
Tr(log Si)

2d2x (4)

that is, the size of the Si given a transformation of the chosen image ΦAB .
We used a fluid registration algorithm [6] to register the images. The code

was accelerated using a convolution filter derived from the Green’s function of



the differential operator in the fluid equation [3] [8]. ΦAB was then computed
using gradient descent. As our initial brain B, we selected the control subject
for which (4) was minimal.

In the next section, we describe our gradient descent algorithm. Our method
is then applied to perform a TBM analysis of the corpus callosum in a group of
26 AIDS patients and 14 matched controls.

2 Method

A gradient descent method in the log-Euclidean framework was outlined in [19]
and [20] for the log-Euclidean elasticity. Here we use the general philosophy
described in those references. However, a major added complication is that our
method requires two consecutive registrations, from A to B and from B to i.

The transformation ΦAi(rA) from A to image i at point rA is given as a
function of the deformation fields D by [11]

ΦAi(rA) = ΦBi ◦ ΦAB(rA) = rA + DAB(rA) + DBi(rA + DAB(rA))

The value of Si from A to image i is thus given by

Si(ΦAB) =
∑
α

∂α(ΦBi ◦ ΦAB)∂α(ΦBi ◦ ΦAB)t.

Using

Si(ΦAB + εu) =
∑
α

∂α(ΦBi ◦ (ΦAB + εu))∂α(ΦBi ◦ (ΦAB + εu))t

=
∑
α

∂α(ΦBi ◦ ΦAB + ε
∑

k

uk(∂kΦBi) ◦ ΦAB + ...)

∂α(ΦBi ◦ ΦAB + ε
∑

k

uk(∂kΦBi) ◦ ΦAB + ...)t,

we find the directional derivative of Si in the direction of the vector field u

∂uSi(ΦAB) =
∑
α

[∂α(ΦBi ◦ ΦAB)][∂α(
∑

k

uk(∂kΦBi) ◦ ΦAB)]t

+[∂α(
∑

k

uk(∂kΦBi) ◦ ΦAB)][∂α(ΦBi ◦ ΦAB)]t

The directional derivative of the energy gradient for image i is then:

∂u

∫
Tr(log Si)

2 = 2

∫
Tr(log(Si)S

−1

i ∂uSi)

= 4

∫
Tr(Z

∑
α

[∂α(ΦBi ◦ ΦAB)][∂α(
∑

k

uk(∂kΦBi) ◦ ΦAB)]t)

+ 4

∫
Tr(Z

∑
α

[∂α(
∑

k

uk(∂kΦBi) ◦ ΦAB)][∂α(ΦBi ◦ ΦAB)]t)



where Z ≡ log(Si)S
−1

i . Integrating by parts, we finally obtain

∂u

∫
Tr(log Si)

2 = −4

∫
Tr([

∑
α

∂α(Z∂α(ΦBi ◦ ΦAB))][
∑

k

uk(∂kΦBi) ◦ ΦAB]t)

− 4

∫
Tr([

∑
k

uk(∂kΦBi) ◦ ΦAB][
∑
α

∂α(Z∂α(ΦBi ◦ ΦAB))]t)

The total derivative term cancels as the image intensity and thus ΦAB is zero
near enough to the boundary. This can be guaranteed in the general case by
padding the image with zeros.

Finally, we obtain the gradient of the energy for image i as

∇Ei = −4 <
∑
α

∂α(Z∂α(ΦBi ◦ ΦAB)) | (∇ΦBi) ◦ ΦAB > . (5)

where < .|. > denotes the usual scalar product in R3.

2.1 Numerical implementation

As an initial condition for the gradient descent, we moved the chosen template
B to the location of the average deformation field from B to all other controls.
This definition of a ‘vector mean’ template has been adopted by others [11], but
here we optimize it using a further deformation to yield a template with minimal
energy in the multivariate log-Euclidean space.

Using a finite difference scheme in the computation of the gradient yields
poor results, as a small number of voxels with large gradient values can end up
driving the computation, and in such cases most of the image will change very
slowly. We remedied this problem using a multi-resolution scheme, for which all
derivatives in (5) were computed through convolution with a Gaussian filter, for
which the variance was reduced at each resolution step. To improve the speed
of convergence, the positions were updated after the computation of the descent
direction for each i.

2.2 Data

Twenty-six HIV/AIDS patients (age: 47.2 ± 9.8 years; 25M/1F; CD4+ T-cell
count: 299.5 ± 175.7 per µl; log10 viral load: 2.57 ± 1.28 RNA copies per ml of
blood plasma) and 14 HIV-seronegative controls (age: 37.6±12.2 years; 8M/6F)
underwent 3D T1-weighted MRI scanning; subjects and scans were the same
as those analyzed in the cortical thickness study in [25], where more detailed
neuropsychiatric data from the subjects is presented. All patients met Center
for Disease Control criteria for AIDS, stage C and/or 3 (Center for Disease
Control and Prevention, 1992), and none had HIV-associated dementia. All AIDS
patients were eligible to participate, but those with a history of recent traumatic
brain injury, CNS opportunistic infections, lymphoma, or stroke were excluded.



All patients underwent a detailed neurobehavioral assessment within the 4
weeks before their MRI scan, involving a neurological examination, psychosocial
interview, and neuropsychological testing, and were designated as having no,
mild, or moderate (coded as 0, 1, and 2 respectively) neuropsychological impair-
ment based on a factor analysis of a broad inventory of motor and cognitive tests
performed by a neuropsychologist [25].

All subjects received 3D spoiled gradient echo (SPGR) anatomical brain MRI
scans (256x256x124 matrix, TR = 25 ms, TE = 5ms; 24-cm field of view; 1.5-mm
slices, zero gap; flip angle = 40o) as part of a comprehensive neurobehavioral
evaluation. The MRI brain scan of each subject was co-registered with a 9-
parameter transformation to the ICBM53 average brain template, after removal
of extracerebral tissues (e.g., scalp, meninges, brainstem and cerebellum).

The corpus callosum of each subject was hand-traced [26], using an interac-
tive segmentation software. The traces were treated as binary objects (1 within
the CC, 0 outside), as we wished to evaluate anatomical differences in a setting
where intensity was held constant (see Lorenzen et al. [15] [16], where a radiomet-
ric term based on information theory was included in the template estimation
equations, but tensor statistics were not evaluated).

3 Results

The total energy was found to be much lower in the case of the mean template
(EA = 3.027×103

vs EB = 3.794×103). T 2 statistics identifying group differences
in our dataset are shown in Fig. 1a. The cumulative distribution function of the
p-values is plotted in Fig. 1b against the p-values that would be expected under
the null hypothesis, for both templates. For null distributions (i.e. no group
difference detected), these are expected to fall along the x = y line, and larger
deviations from that curve represent larger effect sizes. The registration to the
average brain gives statistics similar to the one to one individual. Thus we do
not sacrifice any of the signal by using our averaging procedure. Furthermore,
the average template can be used to remove potential interaction between the
registration accuracy and diagnosis that can occur when using an individual
brain as a registration target.

4 Conclusion

In this paper, we derive a new way to compute mean anatomical templates by
minimizing a distance in the space of deformation tensors. The resulting tem-
plates may be used for TBM, in which statistical analyses are performed on the
deformation tensors mapping individual brains to the target image [14]. Because
the deformation distance to the template is smaller with a tensor-based mean
template, there is a greater chance that intensity-based registrations of individ-
ual datasets will not settle in nonglobal minima that are far from the desired
correspondence field. In neuroscientific studies, this could be helpful in detecting
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Fig. 1. Left: Voxelwise p-values computed from the Hotelling’s T 2 test on the defor-
mation tensors for the average template. The scale shows values of log

10
(p). Right:

Cumulative distribution of p-values vs the corresponding cumulative p-value that would
be expected from a null distribution for the average shape and the best brain. Pink
curve: average brain, blue curve: best individual brain. Dotted line: x = y curve (null
distribution).

anatomical differences, for instance in groups of individuals with neurodegener-
ative diseases, or in designs where the power of treatment to counteract degen-
eration is evaluated. Two caveats are necessary regarding the interpretation of
this data. First, strictly speaking we do not have ground truth regarding the
extent and degree of atrophy or neurodegeneration in HIV/AIDS. So, although
an approach that finds greater disease effect sizes is likely to be more accurate
than one that fails to detect disease, it would be better to compare these models
in a predictive design where ground truth regarding the dependent measure is
known (i.e., morphometry predicting cognitive scores or future atrophic change).
Second, it may be more appropriate to use the mean shape anatomical template
derived here in conjunction with registration algorithms whose cost functions are
explicitly based on the log-transformed deformation tensors, such as those found
for instance in [4] and [19]. To do this, we are working on a unified registration
and statistical analysis framework in which the regularizer, mean template, and
voxel-based statistical analysis are all based on the same log-Euclidean metric.

References

1. Arsigny V et al., Log-Euclidean metrics for fast and simple calculus on diffusion
tensors, Mag. Res. in Med. 56, (2006) 411–421.

2. Beg MF et al., Computing large deformation metric mappings via geodesic flow on
diffeomorphisms, Int. J. of Comp. Vision 61, (2005) 139–157

3. Bro-Nielsen M, Gramkow C, Fast fluid registration of medical images, Visualization
in Biomedical Computing, (1996) 267–276.

4. Brun C et al., Comparison of Standard and Riemannian Elasticity for Tensor-Based
Morphometry in HIV/AIDS, submitted, MICCAI workshop on Statistical Registra-
tion: Pair-wise and Group-wise Alignment and Atlas Formation (2007).

5. Chiang MC et al., 3D pattern of brain atrophy in HIV/AIDS visualized using tensor-
based morphometry, Neuroimage 34, (2007) 44–60.



6. Christensen GE et al., Deformable templates using large deformation kinematics,
IEEE-TIP 5, (1996) 1435–1447.

7. Gerig G et al., Computational anatomy to assess longitudinal trajectory of the brain,
3DPVT, (2006) 1041–1047.

8. Gramkow C, Registration of 2D and 3D medical images, Master’s thesis, Danish
Technical University, Copenhagen, Denmark (1996).

9. Guimond et al. Average brain models: a convergence study, Comp. Vis. and Im.
Understanding 77, (1999) 192–210.

10. Kochunov P et al. An optimized individual target brain in the Talairach coordinate
system, Neuroimage 17, (2003) 922–927.

11. Kochunov P et al., Regional spatial normalization: toward an optimal target, J.
Comp. Assist. Tomogr. 25, (2001) 805–816.

12. Kochunov P et al., Mapping structural differences of the corpus callosum in indi-
viduals with 18q deletions using targetless regional spatial normalization, Hum. Brain
Map. 24, (2005) 325–331.

13. Leow AD et al., Statistical properties of Jacobian maps and inverse-consistent de-
formations in non- linear image registration, IEEE-TMI 26, (2007) 822-832
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