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Abstract

We present recent work at INRIA on registering
medical images using Geometric Hashing. Here, reg-
istering means determining the rigid displacement
that aligns two images to obtain the best overlap of
anatomical structures represented inside the images.

We analyze two methods that perform hashing on
geometric invariants and use a voting procedure, in-
side a six dimensional accumulator implemented us-
ing a one dimensional hash table, to determine the
best candidate rigid displacements. The first method
uses mostly unary geometric invariants, with an op-
tion to use binary invariants, while the second method
uses binary invariants exclusively. The first method
uses characteristic ridge curves extracted on the sur-
face of objects for registration purposes, while the
second method uses characteristic extremal points.

We present registration results using both meth-
ods, and report experimental registration accuracy
data. We also analyze the computational complexity
of the registration and compare with the complexity
of alternate registration methods. Using data from a
joint study with an industrial partner we show that
Geometric Hashing can provide a practical, fast, and
accurate method for registering CAT scan images of
the same patient.

1 Introduction

1.1 Registration of Three Dimen-
sional Medical Images

This article develops methods for registering 3D med-
ical images. By registering, we mean determining the
rigid displacement (combined rotation and transla-

tion) that aligns two images to obtain the best over-
lap of anatomical structures from the two images.

Image registration is recognized as a fundamental
problem in Medical Imaging. Fusing and comparing
medical images is very useful, and sometimes neces-
sary, for diagnosis, patient follow up, treatment plan-
ning and surgical planning. Today a great variety
of medical image modalities are available, such as
conventional X-ray, X-ray Fluoroscopy, X-ray Com-
puted Tomography (CT), Magnetic Resonance Im-
agery (MRI), Positron Emission Tomography (PET),
Ultrasound (resulting images are sometimes called
Sonograms), Single Photon Emission Computed To-
mography (SPECT). Without an accurate geometric
superimposition, it is hazardous to compare or fuse
images corresponding to the same anatomy.

The registration can be performed for a single pa-
tient, or across patients (for instance for building a
digital anatomical atlas), using a single image modal-
ity or multiple modalities. The registration can be
rigid, as studied in the present article, or non-rigid,
whereby various deformations can be applied to im-
ages in order to superimpose them. In general terms,
the techniques that have been proposed fall into the
following two broad categories: (1) intensity or pixel
(voxel) based techniques, and (2) feature based tech-
niques. Intensity based techniques define a pixel sim-
ilarity measure between different images ("mutual in-
formation", entropy, or simply cross-correlation) and
attempt to optimize registration parameters in or-
der to maximize this measure. There is a priori no
need to segment the image data, i.e. extract regions,
surfaces, curves or points of particular interest. Al-
though the first intensity based algorithms were gen-
erally slow, ineffective at optimizing the registration
parameters, and used an objective function of limited
relevance, there has been much progress recently in
these three respects. Feature based techniques rely on
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a pre-processing step to identify various anatomical
structures in both images. Such structures are then
registered, and the transformation that was found to
best superimpose the structures is applied to the un-
derlying images.

1.2 Our approach

The approach we developed in the Epidaure project
at INRIA (France) consists of extracting character-
istic curves, called "Crest Lines" on the surface of
anatomical structures inside each image, and of reg-
istering such lines using Geometric Hashing. In sec-
tion 2 we develop the method of Guéziec and Ayache
for registering surfaces (and three dimensional im-
ages) using characteristic curves [1]. In section 3, we
expose the method of Pennec and Ayache [2] that was

developed later and builds upon the first method.

One of Guéziec and Ayache’s original contributions
was to exploit curve Frénet frames to directly com-
pute a rotation and translation for each matching pair
of curve sample points (instead of using three pairs
of matching points as was traditionally done). Also,
geometric invariants are computed on curve sample
points, and are used for indexing the samples. Such
invariants are unary they only need one sample point
and its neighborhood to be computed. Instead, Pen-
nec must specify a basis feature with respect to which
binary invariants are computed. This increases the
computational complexity of the method but makes
it more robust. The methods also differ in the way
they quantize the invariant space (the accumulator)
and determine the contribution of a particular trans-
formation to various accumulator cells. Both pre-
sentations are accompanied with experimental results
and analyzes of computational complexity.

The main reason for preferring Geometric Hash-
ing over other matching methods is its advantageous
computational complexity. This is an important issue
in Medical Imaging because of the size and intricacy
of structures of interest embedded inside three dimen-
sional images. In section 2.3 we study in detail the
complexities of various matching methods for the par-
ticular problem of matching curves and motivate our
choices: Geometric Hashing is more efficient in gen-
eral and particularly efficient when one object covers
a small portion of the object(s) in the database. Geo-
metric Hashing is very well adapted when one wishes
to register a shape against a database of shapes, as
the complexity of the algorithm is largely unaffected
by the size of the database. This capability is used
in section 2, as individual curves can be recognized
and labeled, as well as in section 3. We believe that
the problem of registering against a database is likely
to become important in future medical imaging ap-
plications using digital anatomical atlases or digital
databases of diagnosis images, that are currently be-
ing developed as pilot projects.

2 Registering 3D Medical Im-
ages Using Geometric Hash-
ing On Characteristic Curves

This section presents a method for registering 3D
medical images using characteristic curves. Details of
this method and various experimental results can be
consulted in Ayache and Guéziec’s publications [1, 3].



Figure 1: Example of crest lines on the brain surface
(front view). Lines in red roughly correspond to sulci
whereas blue lines could be interpreted as gyri (Courtesy
of G. Subsol).

2.1 Extraction of Crest Lines

Crest Lines (also referred to as Ridges or Ridge
Curves) are, according to our practical definition, lo-
cations of the surface where the maximum surface
principal curvature in absolute value reaches a local
maximum in the principal direction of maximum cur-
vature. Definitions can vary slightly, but intuitively,
such lines correspond to the surface’s most salient
features. Sample Crest Lines are shown in Fig. 1.

Prior to the late 1980s and early 1990s, the interest
in Ridges (Crest Lines) was mostly theoretical, in ar-
eas of mathematics related to Catastrophe Theory.
Practical applications were then discovered by re-
searchers in Computer Vision, Graphics and Medical
Imaging together with the specification of algorithms
for extracting ridges. Several algorithms were used
to extract Crest Lines from medical images. Fully
automatic methods were developed by Monga et al
and by Thirion and Gourdon. Cutting et ol devel-
oped a method using a template of Ridges to assist
in their extraction from image data. This method
was extended by Dean et al (see side-bar).

The approach investigated by Guéziec was to build
a differentiable representation of the surface using a
B-spline surface: by decoupling surface v and v vari-
ables, by varying the surface resolution, by imposing
constraints on the image gradient, and by using sur-
face regularization parameters compatible with de-
coupling variables, Guéziec was able to build sur-
faces with sufficient detail and to generate meaningful
Ridges.

Aside from the location of the Ridges, we can com-
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pute a series of intrinsic surface properties: principal
curvatures and principal directions for a point that
is not umbilic. Once Ridges have been extracted and
their properties recorded, we can design a very effi-
cient registration algorithm based on the idea of Geo-
metric Hashing. Generally, there has been much more
research on the registration of surfaces than on the
registration of curves. Although the same techniques
could potentially be applied, developing a special pur-
pose algorithm for curves can result in increased effi-
ciency and speed. This is what our method does.

2.2 Description of the Curve Regis-
tration Algorithm

We are given a set of model curves {M;} and a scene
curve S. We wish to identify a curve M; which has
the largest subset of points in common with S after
a rigid transformation (matching); and specify that
rigid transformation that minimizes a measure of the
deviation between the points that were associated in
the two curves (registration). Let m denote the num-
ber of model curves, and n the maximum number of
sample points in a model or scene curve.

Figs. 2 and 3 illustrate our curve matching algo-
rithm. In the preprocessing stage, we process each
model curve in turn. For each sample point, we com-
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Figure 2: Preprocessing: after the computation of three intrinsic parameters (we have used five for the experiments
of Section 2.5), each curve point falls in a cell of an imaginary three dimensional accumulator. The accumulator
is implemented with a one dimensional hash table: the mapping from three dimensions to one is performed using
a hash function. At recognition time, the same point, although in a different position and orientation, will fall in

the same accumulator cell.

pute invariant parameters (discussion in section 2.4)
and store the sample point inside an accumulator cell
according to the parameter values. The principle of
the method is the same independently of the number
of parameters, or dimensionality of the accumulator.
In Fig.2 three parameters are represented; this should
not be construed as meaning that the number of pa-
rameters must always be equal to three. In most of
our experiments, we have used five parameters.

At this point, it is important to note that ac-
cumulators are always implemented using a one-
dimensional hash table with our approach. In a first
pass, the parameter values are transformed to inte-
gers corresponding to a bin number for each dimen-
sion (quantization of the invariant space). Rather
than constructing a high dimension table that would
have space allocated for each potential cell, we use a
hash function that maps a tuple of integers (bin num-
bers) to a single integer code. Typically the function
uses a combination of binary “shift” and “xor” opera-
tions, to attempt covering the full range of the com-
puter representation of an integer (role of the shift)
and to distribute entries as much as possible (role of
the xor). Such a hash function is represented with a
pictograph using language “C” notation for the binary
operators in Fig (2). An ideal hash function would
distribute entries evenly over the entire integer range.

In the recognition stage, we process each sample

point of each scene curve: we compute the set of
chosen invariant parameters for each sample point
and store (a pointer to) the point inside an accu-
mulator cell corresponding to the parameter values.
Next, pairs of points (M, S) from a scene and a model
curves inside the same accumulator cell are tested
as potentially corresponding points. A rotation and
translation is then computed between the two points
and associated frames and entered in a second accu-
mulator, of dimension six. Specifically, if we are given
the Frénet frames (t,n, b) and (t',n’, b’) correspond-
ing to the points M and S, the rotation R which
brings the two frames into correspondence is given
simply by the outer product: R = (t',n’,b’)(t,n, b)*.
The translational component is then easily obtained.

Although in the particular implementation that is
discussed, the quantization of the six dimensional
transformation accumulator is determined empiri-
cally, we can use statistics or methods for propagating
uncertainty measurements to determine an optimal
quantization. It is important to note that there is a
notion of error zone in the vicinity of a transforma-
tion. The error zone is defined as an ellipsoid, whose
six axes lengths correspond to uncertainty measure-
ments. To avoid omitting votes because a particular
transformation falls near the boundary of an accu-
mulator cell, if the error zone of that transforma-
tion intersects other cells, then a vote is added to
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Figure 3: Recognition: each time a point of the scene
curves is matched with a model point in the accumula-
tor, the Frénet frames allow to compute the six param-
eters of a rigid displacement. This displacement falls in
an imaginary six dimensional accumulator, which is rep-
resented using a second hash table. Buckets of the hash
table corresponding to the most populated cells provide
hypotheses for the registration parameters.

such cells as well. In this implementation, the er-
ror zone is the same for each transformation. In the
implementation of section 3, the size and shape of un-
certainty zones varies with the transformation. For
practical purposes, once uncertainty values are deter-
mined, the cell width is chosen to be a small multiple
of the uncertainty, say three times the uncertainty.
This guarantees that a vote is added to at most 2°
cells for each transformation. It is a good idea to en-
force a bound on the number of cells affected by a
given transformation: because of the dimensionality
(6) of the accumulator, very large hash tables could
be required.

Densely populated cells of this second accumula-
tor are detected as hash table buckets that receive a
high number of votes. For each such cell, we com-
pute a refined rotation and translation, by retrieving
the pairs of points that hash to the cell and by deter-
mining a new transformation that best registers such
points. This can be done by solving a standard least

squares problem, or by using robust least squares, or
better by using a Kalman filter. The refined trans-
formation that registers the largest number of points
for a pre-specified maximum mean squared error is
retained. For better stability, it is possible to com-
bine the Geometric Hashing method with methods
based on finding closest points. This is essentially
what is done in the verification step of the algorithm
described in the second part of this article.

The complexity of the recognition stage is be-
tween O(n) and O(mn?), depending on the level of
quantization of the parameter space. The length
of a bucket’s entry parameter space is at the worst
O(mn); the method depends on the existence of pa-
rameter variations along the model. The complexity
of the pre-processing phase is O(mn). However, this
complexity number should be amortized because the
hash table that was built can be re-used for a number
of registration queries.

2.3 Comparison of Approaches to

Curve Model Matching

The following approaches have been proposed for reg-
istering curves: Schwartz and Sharir’s method [4]
comprises a linear search step for the best offset be-
tween portions of curves. They also provide an in-
novative and powerful method for curve smoothing
with bounded error. Ayache and Faugeras [5] hypoth-
esize and then verify matching hypotheses. Their
prediction-verification (or alignment) method is re-
viewed next. Zhang [6] identifies the closest pairs of
points between two curves, computes a transforma-
tion using such pairs, and recomputes closest point
pairs once the transformation has been applied. His
method is similar to Besl and McKay’s Iterative Clos-
est Point method [7].

Our method is related to the method of Kishon et
al [8] who compute the curvature and torsion of the
curves and use such parameters for hashing. They use
a polygonal representation of the curves, and thus
vote for a model and a displacement length, repre-
senting a difference between the arc-length locations
of the point s; and the candidate matching point m; ;
measured relative to some reference point along each
curve’s representation. Since our representation of
the curves includes a differentiable structure and thus
Frénet frames, we may explicitly compute the rigid
transformation as part of the matching process.

We now study the complexity of four methods for
curve matching. Our study is related to the com-
parative study reported in Lamdan and Wolfson [9],
with the following differences: each method, except



Complexity / Method || Alignment | Accumulation | Geometric Hashing ICP
lower bound O(min) O(mnlogn) O(n) O(mnlogn)
upper bound O(mlin?) O(mn?) O(mn?) O(imn?)

Table 1: Lower and upper complexity bounds for the four different methods of curve recognition: Alignment,

Accumulation, Geometric Hashing and ICP.

the Tterative Closest Point method, uses unary invari-
ant parameter values to select pairs of corresponding
points, and computes a rigid transformation for each
pair of points using Frénet frames.

In the Alignment method, [ significant points of
the curve S are selected. In the prediction stage, we
match each point with a model M; and a point along
M; having a similar set of invariant parameters. Each
such matching constitutes a hypothesis for which we
can compute a rigid transformation. This transfor-
mation is used to superimpose the model onto the
scene and verify the number of correspondences. One
can stop as soon as a sufficiently good hypothesis is
found or explore all hypotheses and keep the best
ones. The computational complexity of the predic-
tion stage is between O(mllogn) and O(mlin), de-
pending upon the level of discrimination of the in-
variant parameters. The complexity of the verifica-
tion stage is O(n). Since the number of hypotheses
generated is between O(ml) and O(mlin), the overall
complexity is between O(min) and O(min?).

In the Accumulation Method, for each point on the
curve S and every point on a model M; having similar
invariant parameters, we compute the rigid transfor-
mation that registers them using the corresponding
Frénet frames. We register a vote in a quantized six-
dimensional rigid transformation accumulator. We
then locate the buckets in the accumulator receiving
a lot of votes. For each model, the complexity is be-
tween O(nlogn) and O(n?), depending on the degree
of discrimination introduced by the invariant param-
eters. The difference with Geometric Hashing is that
a binary search is used in parameter space as opposed
to hashing into buckets.

In the Iterative Closest Point method (ICP), for
each n points on the scene curve, the closest point on
a particular model is determined in O(logn) time in
average and in O(n) in the worst case. Once closest
points are determined, a transformation is computed
in O(n) that registers the corresponding points. The
entire operation is then repeated a suitable number
of times i. The complexity is between O(mnlogn)
and O(imn?). It is also proportional to the number
of initial positions.

The complexity results are summarized in table 1.

In conclusion, the Geometric Hashing method offers
computational advantages, especially in terms of its
sub-linear complexity growth in the number of mod-
els.

2.4 Choice of Invariant Parameters

We first considered curvature and torsion as only
invariant parameters. Curvature and torsion mea-
sured on a smooth curve are invariant to rigid dis-
placements. Then the method was extended to semi-
differential invariants, combining distance and angles
measured with respect to a reference point. Statis-
tical studies indicated that such semi-differential in-
variants could be more stable than curvature and tor-
sion alone. This approach was later exploited by Pa-
jdla and van Gool [10].

A few points on the curves called basis points must
be selected and used to compute the parameters of
the other curve points. For instance, we can com-
pute angles, a Euclidean distance or an arc-length
measure between any given curve point and a basis
point. Choosing such basis points can be difficult;
an interesting possibility is to use maxima of curva-
ture. Also, since the parameters that are used for
recognition involve pairs of points, the complexity of
the algorithm is increased, and is in principle O(n?)
or higher, where n is the number of points in the
curves.

Exploiting the property that our curves are em-
bedded on surfaces, we discovered additional intrin-
sic parameters, different than curvature and torsion.
The algorithm extracting Ridges computes the sur-
face normal N, the maximum and minimum surface
principal curvatures k; and k, as well as the asso-
ciated directions e and es (or their opposite). For
each point of a curve that we consider, two frames
are available (Fig.4), (1) a surface frame (e, ez, N)
and a curve Frénet frame (t, n, b) where t is the curve
tangent, n the curve normal and b the binormal. A
review of these notions can be found in a good text-
book on Differential Geometry. We expect that n and
N will be different as well as t and e;. Otherwise,
the ridge would be a line of curvature, which is not
expected in general.



Figure 4: Surface ribbon centered around a space curve.
For each curve point we can compute the Frénet frame
(t,n,b) where t is the curve tangent, n the curve nor-
mal and b the binormal and the local surface frame
(e1,e2,N), where e; and ez are the principal direc-
tions of curvature in the surface tangent plane and N
is the surface normal.

Our assumption is that we can choose curve sample
points that are different from surface umbilic points,
where e; and es would not be defined, and where k;
and ko would be equal. Various angles and param-
eters can be computed using both frames, the curve
curvature and torsion and the surface principal cur-
vatures. Not all the parameters that can be extracted
are independent. We have identified a few combina-
tions of five parameters. One of such combinations
of parameters is the following: (1) curvature of the
curve k, (2) torsion of the curve 7, (3) geodesic tor-
sion of the curve with respect to the surface 7,, and
(4,5) two angles measured between the surface frame
and the curve Frénet frame:

The two invariants k£ and 7, can be substituted with
the principal curvatures k; and &, using the relations:

kcosf = kycos®d+ kysin? o
Ty = (ko — k1) cos ¢sin ¢

thus providing other combinations of invariants.
This raises the interesting question of whether the
invariant parameters that we use are indeed indepen-
dent: we observe that several surfaces can be locally
different and have locally the exact same ridge (ex-
cluding obvious global differences). A very simple
example is given by an ellipsoid E; of axes lengths
(a > b > c>0)and an ellipsoid E> of axes lengths
(a>b>c/2>0). The longest (and sharpest) ridge

will be precisely the same for F; and E5 but the un-
derlying ellipsoids will have quite different principal
curvatures. Armed with this observation, we argue
that in general the surface frame (e1, ez, N) and the
ridge Frénet frame (t, n, b) should not be related, and
that the curvature and torsion of the curve should
not explain the surface curvature entirely. Consider
a surface ridge on an arbitrary smooth surface: while
keeping the ridge in its exact same position, by anal-
ogy with the ellipsoid example, we can start “pinch-
ing” the surface and changing the local curvature and
principal directions for various locations on the ridge.
Since the curvature and torsion of the curve alone
cannot explain the local surface geometry, angles re-
lating the surface and curve frames must be speci-
fied, as well as the portion of the surface curvature
not explained by the curve curvature, providing five
independent invariant parameters.

In all cases, the curve Frénet frame must be com-
puted independently from the algorithm that extracts
ridges, by differentiating the curve. In order to com-
pute the differential parameters of the curve, we build
a differentiable representation using B-splines. This
is a standard procedure for which we have added a few
improvements. In particular, we have constrained the
curve to be embedded in the surface by minimizing
the sum of square products between curve tangent
and surface normal. An additional benefit of this
method is to apply a certain amount of smoothing to
the parameters ki, k» and 7, as well as to the Ridge
position, thereby removing some of the noise. The
details of the curve fitting method can be consulted
in [1].

2.5 Experimental Results

We consider two CT scan images of a skull phantom
at a resolution of 256 by 256. The skull phantom
was scanned in two different positions and orienta-
tions. Such images were processed by the algorithm
of Thirion and Gourdon, resulting in the the sets of
ridges displayed in Fig.5.a. The algorithm described
in this section was then used to register the lines
(Fig.5.b).

We performed registration experiments using two
CT images of a vertebra scanned in two different po-
sitions and orientations. The result of ridge extrac-
tion is shown in Fig.6.a. The result of registering the
ridges using our algorithm is shown in Fig.6.b.

Within the framework of a joint study with G.E.
Medical Systems France, our goal was to assess regis-
tration accuracy for the particular application of sin-
gle modality, single patient registration. This partic-
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Figure 5: (a) Left: Crest lines on two 3D CT images of a skull obtained with the algorithm of Thirion and
Gourdon. (b) Right: Superimposition of the lines of a. with our software in 7.7 seconds CPU on a DEC 5900.
8 curves are matched out of 15 and 32 curves. 53 points are matched out of 666 and 1124. Note that these
experiments were performed before the DEC alpha architecture was available. CPU timings would be significantly

decreased today.
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Figure 6: (a) Left: Crest lines on two 3D CT images of a vertebra. (b) Right: Superimposition of the lines of
a. with our software in 8.9 seconds CPU on a DEC 5900. 12 curves were identified out of 28 and 33. 82 points
were identified among these curves out of 1250 and 1213 points respectively in the two different sets of curves.

ular problem has several important real world appli-
cations. This technology applies for post-operative
or post-treatment assessment and patient follow-up
studies. Another potential application consists of
fusing data-sets acquired in different orientations, to
compensate for the anisotropy of the process of build-
ing 3D volume data by stacking scanned 2D slices.

We used a calibration phantom specifically de-
signed for the study. The phantom was built using a
skull phantom and an affixed pair of “N” shaped tubu-
lar markers. The phantom was imaged (CT scanned)
in two different positions and orientations (256 x 256

x 30 images with 1mm slices). The second position
was registered to the first position using our method
of ridge curve matching. We then computed the
distance between points sampled on the “N” shaped
markers in the first view and corresponding points
on the second view after registration. Such distances
were found to be between 0.05 mm at the “N” shaped
marker centers and 0.85 mm at the marker periph-
eries. Most of the areas of clinical interest were situ-
ated in the vicinity of the “N” shaped marker centers,
indicating that the 0.05 mm registration error would
more likely apply. The registration technology that



was described in the present article was transferred to
the company Aleph Medical in Grenoble (currently:
Focus Medical).

3 Substructure Matching with
Geometric Hashing on Frame
Features

In the previous section, we have first modeled ob-
jects (anatomical structures) using surfaces and then
using curves embedded on the surfaces. In order to
simplify the matching and registration process, it is
often necessary to go one step further and extract iso-
lated landmarks. Indeed, if we could select on each
line a mean number of [ features that are supposed to
be well conserved, we could focus on these [ features
only instead of the n points of the whole line. The
complexity of the previous algorithm would then be
reduced from a lower bound of O(n) to O(l). More-
over, isolated features, or landmarks, could appear
even in the absence of curves, as with the modeling
of proteins in section 3.2.

However, the increase in the number of lines from
the previous section and the increase of the noise with
real patient images drastically augments the density
of invariants in the hash table. This could lead to
an important number of false positives that over-
whelm the correct matches. The maximum complex-
ity would then be reached and the algorithm could
even provide a wrong answer.

In order to have a correct algorithm, we show in
this section how to keep a highly selective hash ta-
ble by using binary invariants instead of just unary
ones. This approach is related to the semi-differential
invariants methods previously discussed. The draw-
back is an increase of the complexity from O(n) to
O(1?) (in practice, we observe that the lower bound
is respected and the correct solution is always found).

3.1 Registering Medical Images with

Frames

To obtain precisely located features, Thirion intro-
duced new feature points called extremal points,
which are points of locally maximal curvature in both
principal directions of the surface. These points are
specific points on the crest lines and can be seen as the
generalization of corner points for smooth surfaces in
3D. Another way to view such points is to consider
extremal lines instead of just crest lines. Extremal
lines are defined as the loci on the surface where at
least one of the principal curvatures is extremum in

the associated principal direction. Extremal points
are at the intersection of these lines.

Extremal point

Crest line

Figure 7: Crest line with an extremal point, modeled
using a frame.

To the position of the point, we can add the normal
vector N and the two principal directions e; and eq
of the surface to constitute a local coordinate system
or a frame (Fig. 7). In this context, each medical im-
age is modeled by a set of frames and the matching
problem is to find correspondences between a subset
of these frame sets in different images. We have de-
veloped in [11] methods to solve the dual problem of
registration of matched frames (i.e. finding the rigid
transformation).

Preprocessing Step To obtain an invariant repre-
sentation with respect to the global position and ori-
entation of the considered structure, we can express
the configuration of all frames relative to one frame
(the basis). For efficiency, we store this representa-
tion in a hash table and, for correctness, we include
the uncertainty of each invariant. As only part of the
frames are in the same configuration in the two im-
ages, the one chosen as the basis may not be present
in the other image. The preprocessing step is thus
repeated with each frame as the basis.

Recognition Step We choose a frame of the sec-
ond structure (the scene) to be the basis for comput-
ing the invariant representation and retrieve, thanks
to the hash table, what are the compatible model
frame couples. If the basis belongs to a common sub-
structure, then a significant number of frames are in
the same configuration with respect to it. We then
match the model and scene bases (Fig. 8).

This process is repeated for every amino acid as
the basis to find its possible matches in the model
and we only keep the matches that are above a given
threshold (typically 4 or 5 in our applications).

Clustering Compatible Matches and Verifica-
tion. For each individual match, we maintain dur-



Indexing theinvariant space: Hash table
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Figure 8: Preprocessing: the 6D invariant vector associated with every couple of model frames is computed
with its error zone and used as an index for the couple in the hash table. Recognition: for each scene frame
couple, we compute the 6D invariant vector and retrieve through the hash table every compatible model frame
couple. For each such couple, we tally a vote for the matching of the reference frames (here the match (F'm;,

F's;) scores 2).

ing the recognition step an estimation of the associ-
ated transformation by fusing the transformations be-
tween confirming frames. To group matches belong-
ing to the same (rigid) substructure, we run a very
simple clustering algorithm on the associated trans-
formation. Indeed, up to measurement errors, frames
should undergo a similar transformation within a sin-
gle substructure. Each cluster is then refined by an
iterative closest neighbor technique where we enforce
symmetry of the matches and verify their validity
with a x? test.

In the case of medical images, matching model and
scene crest lines is not sufficient since different line
matches can correspond to different transformations.
Thus, we run once again our clustering algorithm
on transformations to find out the compatible line
matches and we obtain a single transformation from
the model to the scene image.

Registration of CT images of the skull We
present in Fig. 9 an example of the registration of
two CT images of the skull of the same patient ac-
quired in different positions. About 75 crest lines are
matched with more than 4 extremal points among the
550 in each image leading to a total of 550 matched
extremal points (only on the 75 matched lines). Us-
ing the techniques described in [12], we have com-
puted that the registration accuracy (the expected
standard RMS on image super-imposition in the area
of matched features) is 0.04 mm.

Registration of MR images of the head Fig.10
is an example of registration of two MR images of the
same patient. In this case, 80 crest lines are matched
among the (about) 620 in each image, for a total of
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350 matched extremal points. The accuracy of the
registration is 0.06 mm. In this case, we have 24
images of the same patient, which allow us to run the
statistical validation method we developed in [12]. It
confirms our accuracy estimation.

3.2 Application to Molecular Biology

The recognition algorithm presented is this section
was originally developed to find common substruc-
tures between proteins [2]. We show very briefly how
this problem can be put in the same framework and
show an application example.

Non-related proteins can have very different struc-
tures, but when they share a common biological func-
tion, often they share a common 3D substructure that
realizes this function: this is a motif. Binding mo-
tifs can be widely distributed in the protein sequence
and involve only few, if any, consecutive amino acids.
Thus we cannot really use the sequence and we have
to focus on the pure 3D structure. Moreover, the
nature of amino acids themselves can vary since only
part of the residues are used to bind. The only mean-
ingful information is thus the geometric configuration
of the amino acids in space. This observation leads
Fischer et al [13] to apply the geometric hashing tech-
nique to this problem.

Each amino acid has 4 atoms participating to the
backbone of the protein, 3 of them always being in the
same geometric configuration. We use these 3 atoms
to define the configuration of the amino acid in space
(Fig. 12). Each amino acid is thus modeled as a frame
(as were extremal points in medical images), and a
protein is modeled by an unordered set of frames (as
were crest lines before). To find similar substructures



Figure 9: Example of registered crest lines between two CT skull images of the same patient. Extremal points
are represented by a color change from yellow to blue on the lines. (a) Left: Front view with all crest lines from
the two skulls. (b) Middle: Left view of the matched crest lines. (c) Right: Closeup on the occipital foramen
on the right. In this last image, the width of a line is a tenth of a voxel, which shows the very precise registration
of these extremal points. One can also see that the trihedron part of the matched frames is very well conserved.

Figure 10: Example of registered crest lines between two MR images of the brain (same patient). Extremal points
are represented by a color change from yellow to blue on the lines. (a) Left: View of matched crest lines from
the top. (b) Middle: view from the right of the head. (c¢) Right: closeup to show the quality of the frame
matches.
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Figure 11: (a) Left: The CRO protein (2CRO) of phage 434. (b) Middle: The tryptophan repressor of E.
Coli (2WRP). The matched part is displayed in yellow. (c) Right: Registered matches found between 2CRO
and 2WRP: the HTH motif. We can see that not only the backbone is very well matched, but also collateral

chains are pretty well conserved.

in two proteins, we now have to find two subsets of 4 Discussion

frames that are in the same configuration, up to a
global rigid transformation. Since this is exactly the
problem we address previously for medical images, we
can use exactly the same algorithm.
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Figure 12: Modeling an amino acid by a frame.

We next study two proteins known to bind to the
DNA in two different organisms: the tryptophan re-
pressor of E. Coli and CRO protein of phage 434.
These two proteins bind tightly to the DNA at a
gene’s promoter, thus preventing RNA polymerase
from fixing and hence blocking the initiation of the
transcription (they are repressors). They should thus
have a common substructure that realizes this biolog-
ical function.

The comparison of the two previous proteins gives
one principal common substructure which is, as ex-
pected, the Helix-Turn-Helix motif, responsible for
the binding to the DNA. The registration of the HTH
motifs in the two proteins shows that not only the
backbone is very well matched, but collateral chains
are also well conserved. The use of frames instead
of just points allows the algorithm to discard several
false matches of amino acids (4 in the HTH case).
Moreover, it makes the algorithm robust with respect
to parameters that tune the quality of the matches
(uncertainty attached to frames on input).
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In the first part, we have build upon previous meth-
ods for registering curves to incorporate geometric
invariants associated to a ribbon, or strip, of surface.
Following the indexing step of Geometric Hashing in
the space of invariants, we have introduced a six di-
mensional accumulator to efficiently select the rigid
transformation that register the maximum number
of curve points. Our algorithm thus acts as a com-
bination of two filtering procedures for isolating the
best candidate transformations. The computational
complexity is somewhere between O(n) and O(n?),
where n is the number of sample points chosen on
the curves to be registered. Experimental results us-
ing data from a joint study with a Medical Imaging
manufacturer indicate that the method is suitable for
registering same-patient CAT scans because of its re-
peatability, speed, and accuracy. In the second part,
we have developed a new extension of geometric hash-
ing based on frame features. We show that Geometric
Hashing can be successfully applied to very different
problems such as substructure matching of proteins
and matching of medical images.

The examples shown in this article indicate that
Geometric Hashing can provide a powerful method
for registering highly detailed three dimensional med-
ical images of the same modality (CT registered
against CT or MR against MR). The levels of reg-
istration accuracy that can be obtained are compat-
ible with clinical requirements; also, the computa-
tional performance is very good, which allows to per-
form numerous registration attempts and favors ex-
perimentation. Aside from registration, Geometric
Hashing also works for recognition: we believe that
Geometric Hashing is a promising method for regis-
tering against a database of images, and for automati-



cally recognizing a feature, such as a specific anatomic
structure, or the absence thereof, inside an image.
Also, Geometric Hashing provides useful statistics on
the number of features that were paired and on how
well they could be registered; this information, which
is unbiased by a user-specified initialization, can be
used for evaluating the registration.

Our experience with the method has taught us a
few limitations: a primary requirement is to isolate
corresponding geometric features: low level of detail
imaging modalities, such as SPECT and PET lack
geometric features that Geometric Hashing uses; gen-
erally, it is difficult to extract reproducible features
for multi-modality registration; for the case of de-
formable registration, the difficulty of finding invari-
ant parameters hampers the method. As discussed
in Section 3, when there are few corresponding fea-
tures, or when there is significant noise corrupting the
features, the method can break down unless serious
uncertainty handling techniques are implemented.
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