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We present recent work at INRIA on registeringmedical images using Geometric Hashing. Here, reg-istering means determining the rigid displacementthat aligns two images to obtain the best overlap ofanatomical structures represented inside the images.We analyze two methods that perform hashing ongeometric invariants and use a voting procedure, in-side a six dimensional accumulator implemented us-ing a one dimensional hash table, to determine thebest candidate rigid displacements. The �rst methoduses mostly unary geometric invariants, with an op-tion to use binary invariants, while the second methoduses binary invariants exclusively. The �rst methoduses characteristic ridge curves extracted on the sur-face of objects for registration purposes, while thesecond method uses characteristic extremal points.We present registration results using both meth-ods, and report experimental registration accuracydata. We also analyze the computational complexityof the registration and compare with the complexityof alternate registration methods. Using data from ajoint study with an industrial partner we show thatGeometric Hashing can provide a practical, fast, andaccurate method for registering CAT scan images ofthe same patient.1 Introduction1.1 Registration of Three Dimen-sional Medical ImagesThis article develops methods for registering 3D med-ical images. By registering, we mean determining therigid displacement (combined rotation and transla-

tion) that aligns two images to obtain the best over-lap of anatomical structures from the two images.Image registration is recognized as a fundamentalproblem in Medical Imaging. Fusing and comparingmedical images is very useful, and sometimes neces-sary, for diagnosis, patient follow up, treatment plan-ning and surgical planning. Today a great varietyof medical image modalities are available, such asconventional X-ray, X-ray Fluoroscopy, X-ray Com-puted Tomography (CT), Magnetic Resonance Im-agery (MRI), Positron Emission Tomography (PET),Ultrasound (resulting images are sometimes calledSonograms), Single Photon Emission Computed To-mography (SPECT). Without an accurate geometricsuperimposition, it is hazardous to compare or fuseimages corresponding to the same anatomy.The registration can be performed for a single pa-tient, or across patients (for instance for building adigital anatomical atlas), using a single image modal-ity or multiple modalities. The registration can berigid, as studied in the present article, or non-rigid,whereby various deformations can be applied to im-ages in order to superimpose them. In general terms,the techniques that have been proposed fall into thefollowing two broad categories: (1) intensity or pixel(voxel) based techniques, and (2) feature based tech-niques. Intensity based techniques de�ne a pixel sim-ilarity measure between di�erent images ("mutual in-formation", entropy, or simply cross-correlation) andattempt to optimize registration parameters in or-der to maximize this measure. There is a priori noneed to segment the image data, i.e. extract regions,surfaces, curves or points of particular interest. Al-though the �rst intensity based algorithms were gen-erally slow, ine�ective at optimizing the registrationparameters, and used an objective function of limitedrelevance, there has been much progress recently inthese three respects. Feature based techniques rely on1
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developed later and builds upon the �rst method.One of Guéziec and Ayache's original contributionswas to exploit curve Frénet frames to directly com-pute a rotation and translation for each matching pairof curve sample points (instead of using three pairsof matching points as was traditionally done). Also,geometric invariants are computed on curve samplepoints, and are used for indexing the samples. Suchinvariants are unary they only need one sample pointand its neighborhood to be computed. Instead, Pen-nec must specify a basis feature with respect to whichbinary invariants are computed. This increases thecomputational complexity of the method but makesit more robust. The methods also di�er in the waythey quantize the invariant space (the accumulator)and determine the contribution of a particular trans-formation to various accumulator cells. Both pre-sentations are accompanied with experimental resultsand analyzes of computational complexity.The main reason for preferring Geometric Hash-ing over other matching methods is its advantageouscomputational complexity. This is an important issuein Medical Imaging because of the size and intricacyof structures of interest embedded inside three dimen-sional images. In section 2.3 we study in detail thecomplexities of various matching methods for the par-ticular problem of matching curves and motivate ourchoices: Geometric Hashing is more e�cient in gen-eral and particularly e�cient when one object coversa small portion of the object(s) in the database. Geo-metric Hashing is very well adapted when one wishesto register a shape against a database of shapes, asthe complexity of the algorithm is largely una�ectedby the size of the database. This capability is usedin section 2, as individual curves can be recognizedand labeled, as well as in section 3. We believe thatthe problem of registering against a database is likelyto become important in future medical imaging ap-plications using digital anatomical atlases or digitaldatabases of diagnosis images, that are currently be-ing developed as pilot projects.2 Registering 3D Medical Im-ages Using Geometric Hash-ing On Characteristic CurvesThis section presents a method for registering 3Dmedical images using characteristic curves. Details ofthis method and various experimental results can beconsulted in Ayache and Guéziec's publications [1, 3].2
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Figure 1: Example of crest lines on the brain surface(front view). Lines in red roughly correspond to sulciwhereas blue lines could be interpreted as gyri (Courtesyof G. Subsol).2.1 Extraction of Crest LinesCrest Lines (also referred to as Ridges or RidgeCurves) are, according to our practical de�nition, lo-cations of the surface where the maximum surfaceprincipal curvature in absolute value reaches a localmaximum in the principal direction of maximum cur-vature. De�nitions can vary slightly, but intuitively,such lines correspond to the surface's most salientfeatures. Sample Crest Lines are shown in Fig. 1.Prior to the late 1980s and early 1990s, the interestin Ridges (Crest Lines) was mostly theoretical, in ar-eas of mathematics related to Catastrophe Theory.Practical applications were then discovered by re-searchers in Computer Vision, Graphics and MedicalImaging together with the speci�cation of algorithmsfor extracting ridges. Several algorithms were usedto extract Crest Lines from medical images. Fullyautomatic methods were developed by Monga et aland by Thirion and Gourdon. Cutting et al devel-oped a method using a template of Ridges to assistin their extraction from image data. This methodwas extended by Dean et al (see side-bar).The approach investigated by Guéziec was to builda di�erentiable representation of the surface using aB-spline surface: by decoupling surface u and v vari-ables, by varying the surface resolution, by imposingconstraints on the image gradient, and by using sur-face regularization parameters compatible with de-coupling variables, Guéziec was able to build sur-faces with su�cient detail and to generate meaningfulRidges.Aside from the location of the Ridges, we can com-

Di�erential Geometry and de�nition of Crest Lines� M.P. do Carmo. Di�erential Geometry of Curves andSurface. Prentice Hall, Englewood Cli�s, New Jersey,1976.� I. Porteous. Geometric Di�erentiation: For the Intel-ligence of Curves and Surfaces. Cambridge UniversityPress, 1994.� J.J. Koenderink. Solid Shape. M.I.T. Press, 1990.Extraction of Crest Lines and Extremal Points� O. Monga et al. Using third order derivatives to extractridge lines in 3-D images. In Proc. CVPR'92, UrbanaChampain (Il), June 1992.� J-P. Thirion and A. Gourdon. The 3-D marching linesalgorithm. Graphical Models and Image Processing,58(6):503�509, 1996.� C.B. Cutting. Applications of computer graphics to theevaluation and treatment of major craniofacial malfor-mation. In Udupa and Herman, editors, 3-D Imaging inMedicine. CRC Press, 1989.� A. Guéziec. Surface representation with deformablesplines: Using decoupled variables. IEEE ComputationalScience and Engineering Magazine, 2(1):69�80, 1995.� J-P Thirion. New feature points based on geometric in-variants for 3-D image registration. Int. J. ComputerVision, 18(2):121�137, 1996.pute a series of intrinsic surface properties: principalcurvatures and principal directions for a point thatis not umbilic. Once Ridges have been extracted andtheir properties recorded, we can design a very e�-cient registration algorithm based on the idea of Geo-metric Hashing. Generally, there has been much moreresearch on the registration of surfaces than on theregistration of curves. Although the same techniquescould potentially be applied, developing a special pur-pose algorithm for curves can result in increased e�-ciency and speed. This is what our method does.2.2 Description of the Curve Regis-tration AlgorithmWe are given a set of model curves fMig and a scenecurve S. We wish to identify a curve Mi which hasthe largest subset of points in common with S aftera rigid transformation (matching); and specify thatrigid transformation that minimizes a measure of thedeviation between the points that were associated inthe two curves (registration). Let m denote the num-ber of model curves, and n the maximum number ofsample points in a model or scene curve.Figs. 2 and 3 illustrate our curve matching algo-rithm. In the preprocessing stage, we process eachmodel curve in turn. For each sample point, we com-3
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Figure 2: Preprocessing: after the computation of three intrinsic parameters (we have used �ve for the experimentsof Section 2.5), each curve point falls in a cell of an imaginary three dimensional accumulator. The accumulatoris implemented with a one dimensional hash table: the mapping from three dimensions to one is performed usinga hash function. At recognition time, the same point, although in a di�erent position and orientation, will fall inthe same accumulator cell.pute invariant parameters (discussion in section 2.4)and store the sample point inside an accumulator cellaccording to the parameter values. The principle ofthe method is the same independently of the numberof parameters, or dimensionality of the accumulator.In Fig.2 three parameters are represented; this shouldnot be construed as meaning that the number of pa-rameters must always be equal to three. In most ofour experiments, we have used �ve parameters.At this point, it is important to note that ac-cumulators are always implemented using a one-dimensional hash table with our approach. In a �rstpass, the parameter values are transformed to inte-gers corresponding to a bin number for each dimen-sion (quantization of the invariant space). Ratherthan constructing a high dimension table that wouldhave space allocated for each potential cell, we use ahash function that maps a tuple of integers (bin num-bers) to a single integer code. Typically the functionuses a combination of binary �shift� and �xor� opera-tions, to attempt covering the full range of the com-puter representation of an integer (role of the shift)and to distribute entries as much as possible (role ofthe xor). Such a hash function is represented with apictograph using language �C� notation for the binaryoperators in Fig (2). An ideal hash function woulddistribute entries evenly over the entire integer range.In the recognition stage, we process each sample

point of each scene curve: we compute the set ofchosen invariant parameters for each sample pointand store (a pointer to) the point inside an accu-mulator cell corresponding to the parameter values.Next, pairs of points (M;S) from a scene and a modelcurves inside the same accumulator cell are testedas potentially corresponding points. A rotation andtranslation is then computed between the two pointsand associated frames and entered in a second accu-mulator, of dimension six. Speci�cally, if we are giventhe Frénet frames (t;n;b) and (t0;n0;b0) correspond-ing to the points M and S, the rotation R whichbrings the two frames into correspondence is givensimply by the outer product: R = (t0;n0;b0)(t;n;b)t:The translational component is then easily obtained.Although in the particular implementation that isdiscussed, the quantization of the six dimensionaltransformation accumulator is determined empiri-cally, we can use statistics or methods for propagatinguncertainty measurements to determine an optimalquantization. It is important to note that there is anotion of error zone in the vicinity of a transforma-tion. The error zone is de�ned as an ellipsoid, whosesix axes lengths correspond to uncertainty measure-ments. To avoid omitting votes because a particulartransformation falls near the boundary of an accu-mulator cell, if the error zone of that transforma-tion intersects other cells, then a vote is added to4
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Figure 3: Recognition: each time a point of the scenecurves is matched with a model point in the accumula-tor, the Frénet frames allow to compute the six param-eters of a rigid displacement. This displacement falls inan imaginary six dimensional accumulator, which is rep-resented using a second hash table. Buckets of the hashtable corresponding to the most populated cells providehypotheses for the registration parameters.such cells as well. In this implementation, the er-ror zone is the same for each transformation. In theimplementation of section 3, the size and shape of un-certainty zones varies with the transformation. Forpractical purposes, once uncertainty values are deter-mined, the cell width is chosen to be a small multipleof the uncertainty, say three times the uncertainty.This guarantees that a vote is added to at most 26cells for each transformation. It is a good idea to en-force a bound on the number of cells a�ected by agiven transformation: because of the dimensionality(6) of the accumulator, very large hash tables couldbe required.Densely populated cells of this second accumula-tor are detected as hash table buckets that receive ahigh number of votes. For each such cell, we com-pute a re�ned rotation and translation, by retrievingthe pairs of points that hash to the cell and by deter-mining a new transformation that best registers suchpoints. This can be done by solving a standard least

squares problem, or by using robust least squares, orbetter by using a Kalman �lter. The re�ned trans-formation that registers the largest number of pointsfor a pre-speci�ed maximum mean squared error isretained. For better stability, it is possible to com-bine the Geometric Hashing method with methodsbased on �nding closest points. This is essentiallywhat is done in the veri�cation step of the algorithmdescribed in the second part of this article.The complexity of the recognition stage is be-tween O(n) and O(mn2), depending on the level ofquantization of the parameter space. The lengthof a bucket's entry parameter space is at the worstO(mn); the method depends on the existence of pa-rameter variations along the model. The complexityof the pre-processing phase is O(mn). However, thiscomplexity number should be amortized because thehash table that was built can be re-used for a numberof registration queries.2.3 Comparison of Approaches toCurve Model MatchingThe following approaches have been proposed for reg-istering curves: Schwartz and Sharir's method [4]comprises a linear search step for the best o�set be-tween portions of curves. They also provide an in-novative and powerful method for curve smoothingwith bounded error. Ayache and Faugeras [5] hypoth-esize and then verify matching hypotheses. Theirprediction-veri�cation (or alignment) method is re-viewed next. Zhang [6] identi�es the closest pairs ofpoints between two curves, computes a transforma-tion using such pairs, and recomputes closest pointpairs once the transformation has been applied. Hismethod is similar to Besl and McKay's Iterative Clos-est Point method [7].Our method is related to the method of Kishon etal [8] who compute the curvature and torsion of thecurves and use such parameters for hashing. They usea polygonal representation of the curves, and thusvote for a model and a displacement length, repre-senting a di�erence between the arc-length locationsof the point sl and the candidate matching point mi;jmeasured relative to some reference point along eachcurve's representation. Since our representation ofthe curves includes a di�erentiable structure and thusFrénet frames, we may explicitly compute the rigidtransformation as part of the matching process.We now study the complexity of four methods forcurve matching. Our study is related to the com-parative study reported in Lamdan and Wolfson [9],with the following di�erences: each method, except5



Complexity / Method Alignment Accumulation Geometric Hashing ICPlower bound O(mln) O(mn logn) O(n) O(mn logn)upper bound O(mln2) O(mn2) O(mn2) O(imn2)Table 1: Lower and upper complexity bounds for the four di�erent methods of curve recognition: Alignment,Accumulation, Geometric Hashing and ICP.the Iterative Closest Point method, uses unary invari-ant parameter values to select pairs of correspondingpoints, and computes a rigid transformation for eachpair of points using Frénet frames.In the Alignment method, l signi�cant points ofthe curve S are selected. In the prediction stage, wematch each point with a model Mi and a point alongMi having a similar set of invariant parameters. Eachsuch matching constitutes a hypothesis for which wecan compute a rigid transformation. This transfor-mation is used to superimpose the model onto thescene and verify the number of correspondences. Onecan stop as soon as a su�ciently good hypothesis isfound or explore all hypotheses and keep the bestones. The computational complexity of the predic-tion stage is between O(ml logn) and O(mln), de-pending upon the level of discrimination of the in-variant parameters. The complexity of the veri�ca-tion stage is O(n). Since the number of hypothesesgenerated is between O(ml) and O(mln), the overallcomplexity is between O(mln) and O(mln2).In the Accumulation Method, for each point on thecurve S and every point on a modelMi having similarinvariant parameters, we compute the rigid transfor-mation that registers them using the correspondingFrénet frames. We register a vote in a quantized six-dimensional rigid transformation accumulator. Wethen locate the buckets in the accumulator receivinga lot of votes. For each model, the complexity is be-tween O(n logn) and O(n2), depending on the degreeof discrimination introduced by the invariant param-eters. The di�erence with Geometric Hashing is thata binary search is used in parameter space as opposedto hashing into buckets.In the Iterative Closest Point method (ICP), foreach n points on the scene curve, the closest point ona particular model is determined in O(logn) time inaverage and in O(n) in the worst case. Once closestpoints are determined, a transformation is computedin O(n) that registers the corresponding points. Theentire operation is then repeated a suitable numberof times i. The complexity is between O(mn logn)and O(imn2). It is also proportional to the numberof initial positions.The complexity results are summarized in table 1.

In conclusion, the Geometric Hashing method o�erscomputational advantages, especially in terms of itssub-linear complexity growth in the number of mod-els.2.4 Choice of Invariant ParametersWe �rst considered curvature and torsion as onlyinvariant parameters. Curvature and torsion mea-sured on a smooth curve are invariant to rigid dis-placements. Then the method was extended to semi-di�erential invariants, combining distance and anglesmeasured with respect to a reference point. Statis-tical studies indicated that such semi-di�erential in-variants could be more stable than curvature and tor-sion alone. This approach was later exploited by Pa-jdla and van Gool [10].A few points on the curves called basis points mustbe selected and used to compute the parameters ofthe other curve points. For instance, we can com-pute angles, a Euclidean distance or an arc-lengthmeasure between any given curve point and a basispoint. Choosing such basis points can be di�cult;an interesting possibility is to use maxima of curva-ture. Also, since the parameters that are used forrecognition involve pairs of points, the complexity ofthe algorithm is increased, and is in principle O(n2)or higher, where n is the number of points in thecurves.Exploiting the property that our curves are em-bedded on surfaces, we discovered additional intrin-sic parameters, di�erent than curvature and torsion.The algorithm extracting Ridges computes the sur-face normal N, the maximum and minimum surfaceprincipal curvatures k1 and k2 as well as the asso-ciated directions e1 and e2 (or their opposite). Foreach point of a curve that we consider, two framesare available (Fig.4), (1) a surface frame (e1; e2;N)and a curve Frénet frame (t;n;b) where t is the curvetangent, n the curve normal and b the binormal. Areview of these notions can be found in a good text-book on Di�erential Geometry. We expect that n andN will be di�erent as well as t and e1. Otherwise,the ridge would be a line of curvature, which is notexpected in general.6
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Figure 4: Surface ribbon centered around a space curve.For each curve point we can compute the Frénet frame(t;n;b) where t is the curve tangent, n the curve nor-mal and b the binormal and the local surface frame(e1; e2;N), where e1 and e2 are the principal direc-tions of curvature in the surface tangent plane and Nis the surface normal.Our assumption is that we can choose curve samplepoints that are di�erent from surface umbilic points,where e1 and e2 would not be de�ned, and where k1and k2 would be equal. Various angles and param-eters can be computed using both frames, the curvecurvature and torsion and the surface principal cur-vatures. Not all the parameters that can be extractedare independent. We have identi�ed a few combina-tions of �ve parameters. One of such combinationsof parameters is the following: (1) curvature of thecurve k, (2) torsion of the curve � , (3) geodesic tor-sion of the curve with respect to the surface �g , and(4,5) two angles measured between the surface frameand the curve Frénet frame:( � = (dn;N)� = (dt; e1)The two invariants k and �g can be substituted withthe principal curvatures k1 and k2 using the relations:� k cos � = k1 cos2 �+ k2 sin2 ��g = (k2 � k1) cos� sin�thus providing other combinations of invariants.This raises the interesting question of whether theinvariant parameters that we use are indeed indepen-dent: we observe that several surfaces can be locallydi�erent and have locally the exact same ridge (ex-cluding obvious global di�erences). A very simpleexample is given by an ellipsoid E1 of axes lengths(a > b > c > 0) and an ellipsoid E2 of axes lengths(a > b > c=2 > 0). The longest (and sharpest) ridge

will be precisely the same for E1 and E2 but the un-derlying ellipsoids will have quite di�erent principalcurvatures. Armed with this observation, we arguethat in general the surface frame (e1; e2;N) and theridge Frénet frame (t;n;b) should not be related, andthat the curvature and torsion of the curve shouldnot explain the surface curvature entirely. Considera surface ridge on an arbitrary smooth surface: whilekeeping the ridge in its exact same position, by anal-ogy with the ellipsoid example, we can start �pinch-ing� the surface and changing the local curvature andprincipal directions for various locations on the ridge.Since the curvature and torsion of the curve alonecannot explain the local surface geometry, angles re-lating the surface and curve frames must be speci-�ed, as well as the portion of the surface curvaturenot explained by the curve curvature, providing �veindependent invariant parameters.In all cases, the curve Frénet frame must be com-puted independently from the algorithm that extractsridges, by di�erentiating the curve. In order to com-pute the di�erential parameters of the curve, we builda di�erentiable representation using B-splines. Thisis a standard procedure for which we have added a fewimprovements. In particular, we have constrained thecurve to be embedded in the surface by minimizingthe sum of square products between curve tangentand surface normal. An additional bene�t of thismethod is to apply a certain amount of smoothing tothe parameters k1, k2 and �g as well as to the Ridgeposition, thereby removing some of the noise. Thedetails of the curve �tting method can be consultedin [1].2.5 Experimental ResultsWe consider two CT scan images of a skull phantomat a resolution of 256 by 256. The skull phantomwas scanned in two di�erent positions and orienta-tions. Such images were processed by the algorithmof Thirion and Gourdon, resulting in the the sets ofridges displayed in Fig.5.a. The algorithm describedin this section was then used to register the lines(Fig.5.b).We performed registration experiments using twoCT images of a vertebra scanned in two di�erent po-sitions and orientations. The result of ridge extrac-tion is shown in Fig.6.a. The result of registering theridges using our algorithm is shown in Fig.6.b.Within the framework of a joint study with G.E.Medical Systems France, our goal was to assess regis-tration accuracy for the particular application of sin-gle modality, single patient registration. This partic-7



Figure 5: (a) Left: Crest lines on two 3D CT images of a skull obtained with the algorithm of Thirion andGourdon. (b) Right: Superimposition of the lines of a. with our software in 7.7 seconds CPU on a DEC 5900.8 curves are matched out of 15 and 32 curves. 53 points are matched out of 666 and 1124. Note that theseexperiments were performed before the DEC alpha architecture was available. CPU timings would be signi�cantlydecreased today.

Figure 6: (a) Left: Crest lines on two 3D CT images of a vertebra. (b) Right: Superimposition of the lines ofa. with our software in 8.9 seconds CPU on a DEC 5900. 12 curves were identi�ed out of 28 and 33. 82 pointswere identi�ed among these curves out of 1250 and 1213 points respectively in the two di�erent sets of curves.ular problem has several important real world appli-cations. This technology applies for post-operativeor post-treatment assessment and patient follow-upstudies. Another potential application consists offusing data-sets acquired in di�erent orientations, tocompensate for the anisotropy of the process of build-ing 3D volume data by stacking scanned 2D slices.We used a calibration phantom speci�cally de-signed for the study. The phantom was built using askull phantom and an a�xed pair of �N� shaped tubu-lar markers. The phantom was imaged (CT scanned)in two di�erent positions and orientations (256 x 256
x 30 images with 1mm slices). The second positionwas registered to the �rst position using our methodof ridge curve matching. We then computed thedistance between points sampled on the �N� shapedmarkers in the �rst view and corresponding pointson the second view after registration. Such distanceswere found to be between 0.05 mm at the �N� shapedmarker centers and 0.85 mm at the marker periph-eries. Most of the areas of clinical interest were situ-ated in the vicinity of the �N� shaped marker centers,indicating that the 0.05 mm registration error wouldmore likely apply. The registration technology that8



was described in the present article was transferred tothe company Aleph Medical in Grenoble (currently:Focus Medical).3 Substructure Matching withGeometric Hashing on FrameFeaturesIn the previous section, we have �rst modeled ob-jects (anatomical structures) using surfaces and thenusing curves embedded on the surfaces. In order tosimplify the matching and registration process, it isoften necessary to go one step further and extract iso-lated landmarks. Indeed, if we could select on eachline a mean number of l features that are supposed tobe well conserved, we could focus on these l featuresonly instead of the n points of the whole line. Thecomplexity of the previous algorithm would then bereduced from a lower bound of O(n) to O(l). More-over, isolated features, or landmarks, could appeareven in the absence of curves, as with the modelingof proteins in section 3.2.However, the increase in the number of lines fromthe previous section and the increase of the noise withreal patient images drastically augments the densityof invariants in the hash table. This could lead toan important number of false positives that over-whelm the correct matches. The maximum complex-ity would then be reached and the algorithm couldeven provide a wrong answer.In order to have a correct algorithm, we show inthis section how to keep a highly selective hash ta-ble by using binary invariants instead of just unaryones. This approach is related to the semi-di�erentialinvariants methods previously discussed. The draw-back is an increase of the complexity from O(n) toO(l2) (in practice, we observe that the lower boundis respected and the correct solution is always found).3.1 Registering Medical Images withFramesTo obtain precisely located features, Thirion intro-duced new feature points called extremal points,which are points of locally maximal curvature in bothprincipal directions of the surface. These points arespeci�c points on the crest lines and can be seen as thegeneralization of corner points for smooth surfaces in3D. Another way to view such points is to considerextremal lines instead of just crest lines. Extremallines are de�ned as the loci on the surface where atleast one of the principal curvatures is extremum in

the associated principal direction. Extremal pointsare at the intersection of these lines.
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Figure 7: Crest line with an extremal point, modeledusing a frame.To the position of the point, we can add the normalvector N and the two principal directions e1 and e2of the surface to constitute a local coordinate systemor a frame (Fig. 7). In this context, each medical im-age is modeled by a set of frames and the matchingproblem is to �nd correspondences between a subsetof these frame sets in di�erent images. We have de-veloped in [11] methods to solve the dual problem ofregistration of matched frames (i.e. �nding the rigidtransformation).Preprocessing Step To obtain an invariant repre-sentation with respect to the global position and ori-entation of the considered structure, we can expressthe con�guration of all frames relative to one frame(the basis). For e�ciency, we store this representa-tion in a hash table and, for correctness, we includethe uncertainty of each invariant. As only part of theframes are in the same con�guration in the two im-ages, the one chosen as the basis may not be presentin the other image. The preprocessing step is thusrepeated with each frame as the basis.Recognition Step We choose a frame of the sec-ond structure (the scene) to be the basis for comput-ing the invariant representation and retrieve, thanksto the hash table, what are the compatible modelframe couples. If the basis belongs to a common sub-structure, then a signi�cant number of frames are inthe same con�guration with respect to it. We thenmatch the model and scene bases (Fig. 8).This process is repeated for every amino acid asthe basis to �nd its possible matches in the modeland we only keep the matches that are above a giventhreshold (typically 4 or 5 in our applications).Clustering Compatible Matches and Veri�ca-tion. For each individual match, we maintain dur-9
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Figure 8: Preprocessing: the 6D invariant vector associated with every couple of model frames is computedwith its error zone and used as an index for the couple in the hash table. Recognition: for each scene framecouple, we compute the 6D invariant vector and retrieve through the hash table every compatible model framecouple. For each such couple, we tally a vote for the matching of the reference frames (here the match (Fmi,Fsj) scores 2).ing the recognition step an estimation of the associ-ated transformation by fusing the transformations be-tween con�rming frames. To group matches belong-ing to the same (rigid) substructure, we run a verysimple clustering algorithm on the associated trans-formation. Indeed, up to measurement errors, framesshould undergo a similar transformation within a sin-gle substructure. Each cluster is then re�ned by aniterative closest neighbor technique where we enforcesymmetry of the matches and verify their validitywith a �2 test.In the case of medical images, matching model andscene crest lines is not su�cient since di�erent linematches can correspond to di�erent transformations.Thus, we run once again our clustering algorithmon transformations to �nd out the compatible linematches and we obtain a single transformation fromthe model to the scene image.Registration of CT images of the skull Wepresent in Fig. 9 an example of the registration oftwo CT images of the skull of the same patient ac-quired in di�erent positions. About 75 crest lines arematched with more than 4 extremal points among the550 in each image leading to a total of 550 matchedextremal points (only on the 75 matched lines). Us-ing the techniques described in [12], we have com-puted that the registration accuracy (the expectedstandard RMS on image super-imposition in the areaof matched features) is 0.04 mm.Registration of MR images of the head Fig.10is an example of registration of two MR images of thesame patient. In this case, 80 crest lines are matchedamong the (about) 620 in each image, for a total of

350 matched extremal points. The accuracy of theregistration is 0.06 mm. In this case, we have 24images of the same patient, which allow us to run thestatistical validation method we developed in [12]. Itcon�rms our accuracy estimation.3.2 Application to Molecular BiologyThe recognition algorithm presented is this sectionwas originally developed to �nd common substruc-tures between proteins [2]. We show very brie�y howthis problem can be put in the same framework andshow an application example.Non-related proteins can have very di�erent struc-tures, but when they share a common biological func-tion, often they share a common 3D substructure thatrealizes this function: this is a motif. Binding mo-tifs can be widely distributed in the protein sequenceand involve only few, if any, consecutive amino acids.Thus we cannot really use the sequence and we haveto focus on the pure 3D structure. Moreover, thenature of amino acids themselves can vary since onlypart of the residues are used to bind. The only mean-ingful information is thus the geometric con�gurationof the amino acids in space. This observation leadsFischer et al [13] to apply the geometric hashing tech-nique to this problem.Each amino acid has 4 atoms participating to thebackbone of the protein, 3 of them always being in thesame geometric con�guration. We use these 3 atomsto de�ne the con�guration of the amino acid in space(Fig. 12). Each amino acid is thus modeled as a frame(as were extremal points in medical images), and aprotein is modeled by an unordered set of frames (aswere crest lines before). To �nd similar substructures10
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Figure 9: Example of registered crest lines between two CT skull images of the same patient. Extremal pointsare represented by a color change from yellow to blue on the lines. (a) Left: Front view with all crest lines fromthe two skulls. (b) Middle: Left view of the matched crest lines. (c) Right: Closeup on the occipital foramenon the right. In this last image, the width of a line is a tenth of a voxel, which shows the very precise registrationof these extremal points. One can also see that the trihedron part of the matched frames is very well conserved.
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Figure 10: Example of registered crest lines between two MR images of the brain (same patient). Extremal pointsare represented by a color change from yellow to blue on the lines. (a) Left: View of matched crest lines fromthe top. (b) Middle: view from the right of the head. (c) Right: closeup to show the quality of the framematches.
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Figure 11: (a) Left: The CRO protein (2CRO) of phage 434. (b) Middle: The tryptophan repressor of E.Coli (2WRP). The matched part is displayed in yellow. (c) Right: Registered matches found between 2CROand 2WRP: the HTH motif. We can see that not only the backbone is very well matched, but also collateralchains are pretty well conserved.in two proteins, we now have to �nd two subsets offrames that are in the same con�guration, up to aglobal rigid transformation. Since this is exactly theproblem we address previously for medical images, wecan use exactly the same algorithm.
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Figure 12: Modeling an amino acid by a frame.We next study two proteins known to bind to theDNA in two di�erent organisms: the tryptophan re-pressor of E. Coli and CRO protein of phage 434.These two proteins bind tightly to the DNA at agene's promoter, thus preventing RNA polymerasefrom �xing and hence blocking the initiation of thetranscription (they are repressors). They should thushave a common substructure that realizes this biolog-ical function.The comparison of the two previous proteins givesone principal common substructure which is, as ex-pected, the Helix-Turn-Helix motif, responsible forthe binding to the DNA. The registration of the HTHmotifs in the two proteins shows that not only thebackbone is very well matched, but collateral chainsare also well conserved. The use of frames insteadof just points allows the algorithm to discard severalfalse matches of amino acids (4 in the HTH case).Moreover, it makes the algorithm robust with respectto parameters that tune the quality of the matches(uncertainty attached to frames on input).

4 DiscussionIn the �rst part, we have build upon previous meth-ods for registering curves to incorporate geometricinvariants associated to a ribbon, or strip, of surface.Following the indexing step of Geometric Hashing inthe space of invariants, we have introduced a six di-mensional accumulator to e�ciently select the rigidtransformation that register the maximum numberof curve points. Our algorithm thus acts as a com-bination of two �ltering procedures for isolating thebest candidate transformations. The computationalcomplexity is somewhere between O(n) and O(n2),where n is the number of sample points chosen onthe curves to be registered. Experimental results us-ing data from a joint study with a Medical Imagingmanufacturer indicate that the method is suitable forregistering same-patient CAT scans because of its re-peatability, speed, and accuracy. In the second part,we have developed a new extension of geometric hash-ing based on frame features. We show that GeometricHashing can be successfully applied to very di�erentproblems such as substructure matching of proteinsand matching of medical images.The examples shown in this article indicate thatGeometric Hashing can provide a powerful methodfor registering highly detailed three dimensional med-ical images of the same modality (CT registeredagainst CT or MR against MR). The levels of reg-istration accuracy that can be obtained are compat-ible with clinical requirements; also, the computa-tional performance is very good, which allows to per-form numerous registration attempts and favors ex-perimentation. Aside from registration, GeometricHashing also works for recognition: we believe thatGeometric Hashing is a promising method for regis-tering against a database of images, and for automati-12
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