Rigid Point-Surface Registration Using an EM
Variant of ICP for Computer Guided Oral
Implantology

Sébastien Granger!-?, Xavier Pennec!, and Alexis Roche!

L INRIA, Epidaure Project, Sophia Antipolis, France
2 AREALL, Neuilly-sur-Seine, France
{Sebastien.Granger, Xavier.Pennec, Alexis.Roche}@sophia.inria.fr

Abstract. We investigate the rigid registration of a set of points onto a
surface for computer-guided oral implants surgery. We first formulate the
Iterative Closest Point (ICP) algorithm as a Maximum Likelihood (ML)
estimation of the transformation and the matches. Then, considering
matches as a hidden random variable, we show that the ML estimation
of the transformation alone leads to a criterion efficiently solved using
an Expectation-Maximisation (EM) algorithm. The experimental section
provides evidences that this new algorithm is more robust and accurate
than ICP and reaches a global accuracy of 0.2 mm with computation
times compatible with a peroperative system.

1 Introduction

Oral implantology is a domain where computer guided surgery can lead to drastic
improvements in safety and quality of the operation for the patient. The opera-
tion is planned on a preoperative CT-Scan and the purpose of such a system is
to help the dentist to drill the implant in the predefined position and orientation.
The DentalNavigator system (patent pending), developed by AREALL [5], is a
peroperative system based on surface registration. In the CT-Scan image, the
teeth and jaw bone surfaces are segmented using a Marching-Cube algorithm
resulting in about 100000 triangulated points. Points on the same structures
are measured on the patient using an ultrasound sensor mounted on a passive
robotic arm. This time we get between 50 and 1000 unstructured points. After
the registration, the US sensor is replaced by the drill on the robot arm and
the system visually guides the surgeon to the planned position and orientation
for drilling. In this article, which is a short version of research report [15], we
investigate the registration step of this system.

The registration of two sets of points is usually performed using one of the
multiple variations around the ICP algorithm [9/T4]. Many variants and improve-
ments of this algorithm have been proposed: features more complex than points,
Mahalanobis distance to take heteroscedastic (non isotropic, non-homogeneous)
noise into account, use of robust estimators for outliers rejection, etc [T4JT3/TT].
In almost all these variants, each scene point is matched with only one model
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point with an implicit constant weight. Moreover, sudden changes in the closest-
point function lead to a highly non-convex energy function, full of local minima.
An improvement consists in using multiple weighted matches for each scene
point: Rangarajan et al. introduced a probabilistic vision of the matching prob-
lem, and developed smooth point-matching models based on Gaussian weight
(SoftAssign [1]) and Mutual Information [2], leading to a smaller number of
local minima and thus presenting a better accuracy and robustness.

Starting from ICP, our main motivation was to improve the accuracy and
the robustness in scope of a real-time system. We experimentally observed that
Rangarajan’s algorithms [II2] were only efficient for registering two comparable
sets of points (e.g. landmarks or surface equally sampled). Our problem is slightly
different because the peroperative set of points is highly sub-sampled compared
to the segmented surface and scene points are sparse enough to be considered
as independent. Following Rangarajan’s probabilistic approach, we develop in
section [l a registration criterion based on EM principles. The same criterion,
inspired from [12], was independently developed in [7], but the derivation and
use of our algorithm is original. Moreover, in section B, we demonstrate new
important properties leading to an efficient implementation of the algorithm.
Finally, we discuss in section[d] the experimental results on our oral implantology
application in terms of robustness, internal and global accuracy.

2 Maximum Likelihood Estimations of the
Transformation

In this section, we model the scene as a random process, and we show that
a maximum likelihood estimation of the transformation and the matches leads
to the ICP algorithm using the Mahalanobis distance. Then, we consider the
matches as a random matrix (or the model as a mixture of Gaussians) and we
search for the ML estimate knowing only the transformation. Finally, we show
how to solve efficiently this last criterion using an EM algorithm. This framework
can be easily robustified by adding a probability to match a scene feature to
the background [12, pp.78], which amounts to thresholding the Mahalanobis
distance.

2.1 Maximum Likelihood and Standard ICP

Let s; be the features of the scene S, m; the features of the model M, p? the
Mahalanobis distance between features and T a rigid transformation from the
model to the scene. Assuming that s; is homologous to m; (a measure of T'xm,)
with an additive Gaussian noise, its density probability function is:

p(silm;j, T) = k= exp(—p?(s;, T * m;)/2) (1)

Because we deal later on with multiple and weighted matches, we use a
matrix A to represent matches estimation where A;; = 1 if s; matches m; and
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0 otherwise. Since each scene point s; is assumed to correspond exactly to one
model point with index say j*, we have A;; = d;;+ and Zj A;; =1 for all
scene index i. As o' = o and o = 1, we can write the conditional pdf of s;
as: p(s;|A, M, T) = Hj(p(si|mj,T))Aij = p(s;|m;~,T). Now, assuming that all
scene points are conditionally independent, the scene likelihood is:

P(S|A, M, T) =TT, p(sil A, M, T) = TT;; (p(silm;, T)) ()
Taking the negative log, we obtain the following criterion to be maximised:
C’(T’7 A) = % Zij Aij.,U/Q(Si, T x mj) + NS~ Ing’

One recognises here the standard ICP criterion using the Mahalanobis dis-
tance. This proves that ICP maximises the scene likelihood under a Gaussian
noise with exact correspondences. Moreover, [§] showed that this is the best (min-
imal variance) estimator. Here, the criterion is invariant w.r.t a global scaling of
the noise variance. This property will not hold for the following EM formulation.

2.2 Maximum Likelihood with Uncertain Matches

In the previous section, the transformation and the matches were both esti-
mated by directly maximising the scene likelihood knowing these variables. In
fact, we only need to determine the transformation for our application, and the
matching matrix is an auxiliary variable. Moreover, there can be ambiguities in
the matching estimation and considering multiple matches amounts to seeing
the scene points as measurements of a mixture of Gaussians around the model
points. This interpretation is specially adapted for our case since the model is a
surface and not a collection of landmarks. Thus, the idea is to take into account
these multiples matches in the criterion but weighted by their a posteriori prob-
ability. In fact, the proper way to do this is to search for the transformation that
maximises the likelihood of the scene knowing only the transformation.
Consider now a random matching matrix A. Each possible matching matrix
A has a probability p(A) = P(A = A) and verifies the previous constraints:
A;j = E(Aj;) = P(A;; =1) € 0,1] and >_;Ai; = 1. Finally, since scene points
are assumed to be independent: p(A4) = Hij/A”:l p(Ai; =1) =[], (Aij) s

Let us start from an a priori probability law given by p(4) = [],; (T4 (a

relevant choice is the uniform law 7;; = ﬁ) Using Bayes rule and Eq. 2 we
can deduce the joint scene and matching matrix likelihood:

p(S, AIM,T) = p(S|A, M, T).P(AIM,T) = [1,; (Fiz-p(silm;, T))*"

Thus, the likelihood of the scene knowing only the transformation is p(S|M, T) =
> (a3} P(S, A[M,T). Taking the negative log, we obtain the registration criterion:

C(T) = —log (p(SIM,T)) = =3, log (3. Tik-p(silmy, T)) 3)
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2.3 From the Maximum Likelihood to the EM Criterion

This criterion, like the first ICP criterion, has no closed form solution. We con-
struct in this section an auxiliary criterion, depending explicitly on the matching
matrix, and we use an alternated optimisation scheme. This construction follows
EM principles [BIT0] and the auxiliary variables framework of [4].

Designing the Auxiliary Criterion For any matching matrix A, we can write
the criterion using Bayes rule: C(T) = —logp(A,S|IM,T) + log p(A|S, M, T).
Since this is valid for any matching matrix A, it is still for the expectation w.r.t.
any random matching matrix A:

C(T) = —Ea(logp(A,S|M, T)) + Ea(logp(AlS, M, T))

To introduce an explicit dependence on the matching matrix, we add to this cri-
terion the Kullback-Leibler distance Ea (logp(A) —log p(A|S, M, T)) between
the random variable A and the random variable Ap defined by P(Ap = A) =
p(A|S, M, T). This distance is null for Ap, positive otherwise. Thus, we have:

C(T,A) = —Ea(logp(A,S|IM,T)) + Ea(logp(A)) (4)

with C(T') = mina C(T,A) = C(T, Ar). A natural optimisation scheme for this
new criterion is then to alternate an Expectation step to estimate the matching
matrix and a Minimization step to solve for the transformation.

E-Step: Estimation of Matches In this step, we want to compute the optimal
values A;;. By definition of our auxiliary criterion, the optimal A has the pdf:

= _pASIMT) _ Tgp(silm;, T) \™
i) =p e M =gy~ 1 (zk w—ik.p<si|mk,T>>

ij

Since we have p(Ar) = Hij((AT)ij)Aif, we obtain by identification:

(Ar)s = Ti;-p(silm;, T) _ iz exp(—p?(si, T *my)/2)
Y e Twp(silme, T) 3 Tk exp(—p2 (si, T xmi) /2)
Contrary to the ICP (see remark at end of 2.I)), these values are not invari-

ant w.r.t a global scaling of the noise variance. Hence, the noise variance is an
effective parameter of the EM algorithm (see section [3).

()

M-Step: Registration Now that we have an estimation of the matching ma-
trix, we can optimize the criterion w.r.t. the transformation. In Eq. [, only
the first term depends on the transformation. Therefore we have to minimise
—Ea(logp(A,SIM,T)) = fzijA_ijlog (7;.p(si|m;,T)) Discarding constant
and normalisation factors, we are left with the minimization of:

ZijA_ij-ﬂz(SivT*mj) :ZUA_U ||5i*T*mj||2/U§ (6)
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Fig.1. Criterion vs Z-translation for ICP (on the left) and for EM (on the
right). There are two relevant minima for ICP (0, where the algorithm stopped,
and 0.25, where criterion is minimum) and irrelevant ones (e.g. 0.1 and 0.3).
The EM algorithm has a much smoother shape. For an under-estimated variance
(0.1 mm) the irrelevant minima have disappeared. For the approximative noise
variance (0.2 mm), even the first minima has disappeared. For a larger (over-
estimated) variance (1 mm), the criterion is almost quadratic, but the global
minimum has been shifted.

Actually, this is the expectation of the standard ICP criterion w.r.t. the random
matching matrix, as suggested in the beginning of section [Z2l For the practical
optimisation, the only differences with the ICP criterion are the non-binary
weights. In the rigid case, this leads to a straightforward adaptation of the SVD
or the unit quaternion methods [6].

3 Practical Use of the EM Algorithm

In this section, we analyse the role of the variance parameter and its influence on
the criterion shape. We investigate different technics to choose this parameter
and the impact on the convergence of the algorithm.

Asymptotic Criteria Let us see first how the criterion behaves for asymptotic
values of the variance parameter. If the variance goes to zero, it is easy to show
[15] that the limit of equation B is: (Ar);; = 1 for the closest point and 0
otherwise. Thus, the ICP algorithm is the limit of the EM algorithm for very
small variance parameter. On the contrary, when the variance goes to infinity, the
EM algorithm aligns the barycentre and inertia moments [15], generally leading
to a shifted result (see Fig.[I]). Since under-estimating the variance leads to less
accurate results (see section H]) while over-estimating it enlarges the convergence
basin, it is logical to start with a large variance, and decrease it to reach the real
noise variance.

Setting the Variance Parameter One could think to directly compute the
variance after each step of the EM algorithm: considering the variance as an ad-
ditional parameter and optimising it at fixed transformation and weights leads
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to: 0% = gatmz > Aij- [lsi — T %m;]||”. Experiments showed that this estima-
tion is not robust because the decrease is too fast: the algorithm cannot escape
the local minima. A slight and regular decrease facilitates the convergence to the
global minimum. This can be realised using a deterministic annealing [I] where
the variance is multiplied by an annealing coefficient (usually between 0.9 and
0.95) after each iteration until the real noise variance has been reached. This
technique allows to avoid local minima to finally reach a very accurate result,
but requires a good estimation of the noise variance.

Convergence Since ICP and EM minimise a global criterion alternatively along
subsets of the parameters, the criterion always decrease and convergence to a
local minimum is ensured. In practice, the algorithm is stopped when the vari-
ations of the parameters are small (threshold on the residual transformation).
However, the annealing scheme on the variance is not a minimisation step. Thus,
the convergence of the algorithm should only be tested after the end of the an-
nealing, when the variance is minimal.

4 Experiments on Real Teeth Data

We evaluate in this section the comparative robustness and accuracy of the
ICP and EM algorithms on our data. For the robustness, we estimate the size
of the convergence basin where an initial transformation leads to the correct
global minimum. For the accuracy, we analyse the internal accuracy, due to the
presence of local minima in the immediate vicinity of the global minimum, and
the global accuracy, due to the noise on the data, the sampling of the surface
and possible approximations in our problem modelling.

Algorithm Setup: For all the experiments, we used an annealing coefficient
a = 0.9 with initial variance equal to 16 times the real noise variance o2 and a
simple outlier rejection using a threshold on the Mahalanobis distance at 12, ,, =
3.dim. The real variance was estimated once on a reliable dataset using the direct
variance computation.

Robustness and Internal Accuracy The robustness can be characterised
by the size of the attraction basin of the global minimum. However, even if
the algorithm converges towards the global minimum, it may be trapped in
some small local minima in its immediate vicinity due to errors in the matches
estimation. We call internal accuracy this intrinsic variability of the results. The
problem is to choose a limit that distinguishes between internal accuracy errors
and “uniformly distributed” erroneous convergences outside the attraction basin.

In this experiment, we used a surface segmented from a CT-Scan and a set of
50 points measured on the real jaw. We perturbed 2000 times the results of an
“exact” registration by adding uniform translations up to 2 cm (on these data,
we observed that both algorithms were almost insensitive to rotations up to 10
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degrees), used it as initialisation of the ICP and EM algorithms and plot in figure
(top) the distance of the estimated to the “exact” transformation. For ICP,
(upper left), we observe many local minima, and it is difficult to differentiate a
clear structure around 0 from a uniform distribution elsewhere. As rotation and
translation are well correlated under 1 mm and 1 deg, we arbitrarily decided that
these transformations were representative of the internal accuracy. For the EM
algorithm (upper right), the number of local minima has significantly decreased
and there is a clear separation between transformations very close to zero and
other local minima. Propagating the transformation covariance on test points in
the area of interest (the jaw) gives us a measure of the internal accuracy: 0.2 mm
for ICP, and 0.007 mm for EM.

Now, to determine the size of the attraction basin, we have to look for the
smallest initial translation for which the result is classified as bad. We plot in
Fig. 2 (bottom left) the percentage of convergence to the global minimum w.r.t.
the initial transformation: an initial translation of 2 mm can lead to bad results
with ICP, whereas this limit is shifted to 9 mm for the EM. Last but not least,
we present in Fig. [2] (bottom right) the distributions of the criterion values for
both algorithms: there is a clear threshold distinguishing good from bad results
with EM, whereas there is no such clustering for ICP. Numerous experiments
with various number of points and surface shapes showed that this threshold on
EM strongly depends on the noise variance but only slightly on the data shape.
Thus, it can be estimated only once for a given application.
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Fig. 2. Top: Final transformations distribution for ICP (on the left) and EM
(right). Bottom: probability of convergence to the global minimum with respect
to the norm of the initial translation (left), and distribution of the criterion value

(right).
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Fig. 3. Left: global and internal accuracy of the EM with respect to the vari-
ance. ICP (at o = 0) exhibits internal and global accuracies of 0.22 mm and
0.31 mm,while EM presents at the optimal variance internal and global accura-
cies of 0.007 mm and 0.22 mm. Right: A view a the points-surface registration
for the optimal variance.

Global Accuracy Evaluation To evaluate the global accuracy (i.e. the dif-
ference between the “exact” and estimated transformation) of the algorithms in
real conditions, ten sets of 50 scene points, each time randomly placed on the
fixed jaw, were acquired and registered onto the same model, segmented from a
CT-Scan. Thus, the model variability was not taken into account, but all other
sources of errors (segmentation error, scene points measurement error, and es-
pecially effect of surface sampling) were realistic. The “exact” registration was
determined by the registration of all sets of points together to the model surface:
this transformation should have a variance 10 times smaller than individual reg-
istrations, but hides a possible bias. Figure[3 presents the standard deviation of
test points on the jaw for different values of the variance in the EM algorithm:
underestimating this parameter appears to be much more penalising in terms of
accuracy than overestimating it.

Registration Time In scope of a peroperative system, the computation time is
a key parameter. In both algorithms, this time depends strongly on the number
of scene points and iterations, and the distance threshold. Thanks to efficient
space-partitioning structures, it only slightly depends on the number of model
points. For each iteration (with the same data and distance threshold), EM only
adds a 30% overhead to the ICP time, but it usually needs much more iterations
to converge. Typically, it took 50 iterations (including 20 for deterministic an-
nealing) on the above experiment, against 20 for ICP. The final time comparison
is four to one in favour of ICP. However, the total computation time of EM is
about 30 s in our case, which is still reasonable for our peroperative system.



760 S. Granger, X. Pennec, and A. Roche

5 Conclusion

We present in this article a maximum likelihood approach of the point matching
problem and show that looking for both the transformation and the matches
leads to the ICP algorithm, while considering the matches as hidden variables
gives a new criterion, efficiently solved using an EM method. In this new algo-
rithm, the variance on the data points is an important parameter that allow the
EM algorithm to range from a global (alignment of the barycenters and inertia
tensors) to a purely local behaviour (ICP). This property is exploited in a de-
terministic annealing method to avoid local minima while reaching an optimal
accuracy.

Experimental results show that ICP has a very small attraction basin (a few
millimetres in translation), an important internal error and a global accuracy of
0.31 mm in the jaw area. The EM algorithm exhibits a much wider attraction
basin (around 1 ¢m) with a negligible internal error and a better global accu-
racy (0.22 mm). This gain in robustness and accuracy is counterbalanced by a
larger computation time (a factor 4), which remains however compatible with
our peroperative system.

Future work will include the parallelisation of the algorithm, the study of the
surface sampling influence on the accuracy, the use of oriented points (position +
normal to the surface) and the online prediction of the registration uncertainty.
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