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Abstract. In this paper, we expand the theory behind SAFIRA, a
Statistically-Assisted Fluid Registration Algorithm developed in [2] and
revisit its use through cross-population validations. SAFIRA was built
in a Lagrangian framework, which naturally incorporates two types of
statistics on shape variations - deformation vectors and tensors - in the
regularization term of the registration. This makes structural brain MRI
registrations more accurate and biologically realistic. Here, we closely
study the energetic behavior of the system through looking at its Hamil-
tonian. Furthermore, we compare SAFIRA to the widely-used fluid regis-
tration based on the Navier-Stokes equation. In addition, unlike previous
validation studies performed on this algorithm, the statistical registra-
tion uses prior information from a training set independent from the
dataset to be analyzed. Registration accuracy is measured on a pre-
labeled data set for all 3 methods, and we also compute the heritability
of brain structure using 46 twin pairs. The statistical version of SAFIRA
detected genetic effects more extensively and showed improved registra-
tion accuracy compared to the other two algorithms.

1 Introduction

Nonlinear registration, which is the warping of one object onto another, is widely
used in brain imaging for computational anatomy studies. Registration meth-
ods commonly combine two terms: a similarity measure (distance or measure of
agreement between two images) that drives the transformation and a regular-
izer that ensures its smoothness. This extra term is added to the registration
function being optimized, to enforce desirable transformation properties such
as smoothness, invertibility and inverse-consistency. For instance, the similar-
ity criterion is regarded as a body force introduced into mechanical equations
that govern linear elastic motion (Hooke’s Law) in [1] or viscous fluid equations
(Navier-Stokes equation) in [4]. Other algorithms rely on Gaussian filtering [18]
or enforce properties of the deformation, such as diffeomorphic trajectories [10].
When registering structural magnetic resonance brain images, the information
available (voxel intensity, pre-defined landmarks) is rather limited and corre-
spondence mappings are not unique. Consequently, a realistic model is needed



to achieve deformations that are closer to an independently defined ground truth.
This can be done for instance, as we chose to do here, by incorporating statisti-
cal information on the data set into the deformation. Some registration methods
have been developed to encode information on the natural variability in brain
structure [7], but none of the 14 most widely used methods incorporates statisti-
cal information, except in the form of stationary Laplacian-type priors that only
enforce smoothness [8]. However, in [5], the authors nonlinearly rescaled statis-
tics on the strain tensors to use them in a demons-like registration algorithm.
In [2], we implemented a Statistically-Assisted Fluid Registration Algorithm
(SAFIRA). The non-statistical version of it is a Riemannian fluid registration

algorithm, based on previous work by Pennec et al. [11]. The dynamics of the
system can be properly understood by formulating the algorithm using the La-
grangian formalism, which makes it clear how to include the different types of
statistics on the expected deformations [3]. In [3], the validation study showed
that the displacement-based statistical version of SAFIRA gave more accurate
registrations and better detection sensitivity in a group-wise statistical analysis.
These results were obtained on a given population using prior information ob-
tained from this very population. Here, we seek to expand the use of SAFIRA,
by computing the statistics on one population (or template population) and
re-injecting them in the statistical version of SAFIRA when registering images
from another comparable population. This allows to verify the independent ef-
fect of the prior information on the deformation and generalizes the use of the
algorithm. We also build on the theoretical work, as we look at the system in
the energy domain by closely studying the Hamiltonian of the system, to better
understand the transfer of energy between the different components of the reg-
istration equation.
An extensive validation of SAFIRA is presented here: we compare the more
advantageous statistical version of the algorithm against the standard Navier-
Stokes fluid algorithm [4] [9], and the non-statistical version of SAFIRA. Our
tests were done using two data sets: the manually-labeled LPBA40, which is one
of the standard datasets used in the field to compare the accuracy and precision
of different registration algorithms [8] and a 3D dataset consisted of 23 pairs
of identical twins and 23 pairs of same-sex fraternal twins. As both groups are
composed of healthy young adults, each of them can serve as a training set when
using the statistical version of the algorithm to register the subjects from the
other group to a given template. The vector-based statistical algorithm is shown
to perform better in terms of accuracy and detection. This conclusion is also
confirmed if we rank the algorithm by detection power.

2 Defining SAFIRA

2.1 Introduction

A 3D brain image volume may be regarded as embedded in a deformable continuum-
mechanical system for which each voxel is seen as a particle [4] [9]. The system



is then solved using a Newtonian mechanics equation of the form:

dq̇(x, t)

dt
= ∇qCost − α∇q̇Reg(q̇) − βq̇, (1)

where Cost = Sim(I, J ◦ q) =
∫

(I(x) − J(q(x))2dx is the similarity criterion
between two images I and J , here the sum of squared intensity differences (SSD)
and Reg is the regularizing term. q̇ is obtained from equation (1) at each time
step ∆t and integrated over time to find the displacement q. It is not immediately
clear how to include statistical information into this equation, hence the need
for the Lagrangian formalism.

2.2 Defining SAFIRA

When a dynamic system is subjected to conservative and non-conservative forces,
its equations of motion are given by the Lagrange equations:

(
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)

−
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where L(q, q̇) = T (q̇) − V (q) is the conservative Lagrangian accounting for the
kinetic and the potential energies (T (q̇) and V (q), respectively) and F is the
nonconservative force during the virtual displacement δr, q is the displacement
and q̇, the velocity. A complete derivation can be found for example in [17]. This
dynamic equation defines the motion of the non-conservative system at each
time t.

We use the Lagrangian theory to reformulate equation (1). Given the defini-
tion of the kinetic energy and acknowledging the conservative properties of the
similarity term, the different terms of equation (1) may be defined as follows:

Kinetic energy: T =
1

2
||q̇j ||

2
2 Potential Energy: V = Cost(q) (3)

Nonconservative energy: VF = αReg(q̇) +
1

2
β||q̇||22 (4)

In this case, by deriving each term of Eqs. 3&4, one can verify that Eqs. 1 and
2 correspond to each other with:

d

dt

(
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)

=
dq̇

dt

∂L

∂q
= ∇qCost(I, J, q) (5)

F

(

∂r

∂q

)

= α∇q̇Reg(q̇) + βq̇ (6)

This definition is used to find q̇ at each time step.
The two non-conservative terms in Eq. 4 can be modified to incorporate the

covariance of the displacements and deformation matrices. First, the regularizer
in our algorithm, here labeled as RegRiem(q̇) because we use its non-statistical
version, can be modified to include statistics on the deformation tensors (see [3]).



However, here we will focus only on the second non-conservative term, 1
2β||q̇||22.

The Euclidean norm ||.||2 in this term can be replaced by a Mahalanobis distance
(with covqj

= 1
N

∑

i(qi − q̄j)
T (qi − q̄j), the covariance of the displacements q at

a voxel j summed over the images i):

F

(

∂r

∂q

)

= α∇q̇RegRiem(q̇) + βq̇T
j cov−1

qj
q̇j (7)

The addition of statistical information within the non-conservative terms allows
the system to dissipate more energy when it is moving in an expected direction
(that agrees with this prior statistical information) or to keep energy when it
is moving in an unlikely direction. This makes it easier to surpass local minima
and keep moving towards a more plausible minimum.

2.3 Implementation

SAFIRA is a multi-resolution algorithm. In the implementation, we neglect sec-
ond order terms (hence, the equation used in practice is ∇qCost−α∇q̇Reg(q̇)−

β ˆ̇q = 0). Here ˆ̇q represents the solution to either statistical or non-statistical
versions (see 2.2). For each resolution:

1. Define a grid on the template and set q̇(x, t = 0) = 0. Then at each time
step ∆t:

2. Calculate ∇qCost

3. Solve the PDE to find q̇ at each point in the grid, using a gradient descent
(RK4). Here, q̇(q, t = 0) = γG ◦ F with γ = 0.3 and G a Gaussian.

4. Find the time step using the user defined maximal flow allowed.
5. Integrate q̇ to find the displacement q, within this time step.
6. Compute the Jacobian of the displacements. If the Jacobian determinant

falls below 0.5, then re-grid the template and return to Step 4.
7. Obtain the new displacement field once the Jacobian value is acceptable.

Here, we do not use a traditional gradient descent but an explicit iterative
method (RK4, [12]). This was chosen so that the resolution is less sensitive
to local minima than a first-order method.

3 Hamiltonian mechanics: conservation of energy?

Using a Lagrangian structure makes each term easier to interpret. However,
computing the corresponding Hamiltonian H is crucial to understand and char-
acterize the interaction between the different energy terms. While the energy
of conservative systems is maintained with t, this is no longer the case when
non-conservative forces are added. In the context of registration, summarizing
the transfers between the different types of energies is of considerable interest,
as it can allow tuning of the local speed of registration.

The Hamiltonian H represents the energy of the conservative system and
may be derived from the conservative Lagrangian L as



H = pq̇ − L with p =

(
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∂q

)

qq̇

(8)

where p is the momentum of the system and q is the displacement. For non-
conservative systems, we have
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Consequently,
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As in our case,
∂L
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= 0,

dH

dt
= ṗq̇ −
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∂q
q̇, we obtain :

dH

dt
= F

(
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)

q̇ (9)

For our system, H = α∇q̇Reg(q̇) + β ˆ̇q − 1
2 ||q̇||

2 + Cost(q), so the kinetic and
cost energies lost are transferred to the regularizer and dissipation terms over
time. Hence, changing the weights of the different terms in the regularizer and
the dissipation can change the speed at which the registration converges at each
voxel.

4 Data and Analysis

4.1 Data Acquisition and preprocessing

The first dataset is composed of 3D structural brain MRI scans of 23 monozy-
gotic (MZ) and 23 dizygotic (DZ) same-sex twin pairs (age range: 22−25 years),
as well as one scan from an identically scanned healthy subject used as the com-
mon target for the fluid registration. We collected 3D T 1-weighted MP-RAGE

images (with parameters TR = 2500ms, TE = 3.83ms, TI = 1500ms, flip an-
gle = 15o, coronal orientation, FOV 230mm) on a 4 Tesla Brucker Medspec
whole body scanner (Wesley Hospital, Brisbane, Australia). Non-brain tissue
was deleted from the MRI images using the Brain Surface Extraction Software
(BSE) [14] and linearly aligned to the Colin27 template. All scans were then
aligned to the ICBM53 template using 9-parameter registration - FMRIB’s Lin-
ear Image Registration Toolbox, FLIRT, prior to the nonlinear registrations
described in this paper. Secondly, the LPBA40 dataset contains 40 images
(20 males and 20 females - average age 29.2 ± 6.3 yrs. Details can be found
at http://www.loni.ucla.edu/~shattuck/resources/lpba40/ . The volumes from
the two datasets were intensity and space-normalized and resized to a common
resolution.



4.2 Algorithms and data analysis

All subjects’ 3D scans were non-linearly registered to a common template us-
ing the three algorithms (non-statistical and vector-statistics version of SAFIRA
and traditional fluid). In each case, vector fields, and their corresponding Jaco-
bian matrices J were computed at each voxel, resulting in a scalar value for the
Jacobian determinant, det(J). The det(J)’s express the local differences in vol-
ume (3D) or area (2D) between each subject and the target image: detJ(u) > 1
indicates a local excess in the image being studied, compared to the template,
while detJ(u) < 1 indicates a local deficit.
In the case when the statistical algorithm was used, the prior information was
computed from a first round of registration on the other dataset, i.e., all the
LPBA40 volumes were registered to a common template, voxelwise displace-
ment vectors were obtained for each subject, from which a voxelwise covariance
matrix resulted. This statistical information was then incorporated in the de-
formation process when using the statistical version of the algorithm to register
the twin images to the same template (and vice versa).

4.3 Genetic influence on brain structures

The detection power of the different algorithms, for use in a morphometry study,
was compared by computing genetic measures from the twin dataset. To measure
the resemblance between twin pairs, we first computed the intraclass correlation
coefficient (ICC) for both the MZ and DZ groups in the cerebrum according

to the equation: ICC =
σ2

b

(σ2

b
+σ2

w)
. σ2

b is the pooled variance between pairs and

σ2
w is the variance within pairs [13]. From there, we computed the heritability

h2 = 2(r(MZ)−r(DZ)), where r(MZ) and r(DZ) are the intraclass correlation
values for the MZ and DZ groups, respectively. Heritability is an estimate of the
proportion of the observed variation in a measurement that is attributable to
genetic differences among individuals.

4.4 Accuracy of volume quantification

As SAFIRA was primarily developed to study volume and shape differences
between subjects as in TBM analyses, we estimated the accuracy of the three
algorithms by measuring the volume differences in the 53 structures defined in
the LPBA40 database. The differences were computed between one (randomly
chosen) subject from the 40 subjects that was used as template, and each of the
other 39 images registered to it. Briefly, the deformation field obtained from the
registration of one subject’s sMRI to the template is applied to the corresponding
subject’s labeled image and the labels of it are compared to the template’s
labeled image (the ground truth) (see [8] for more details).

5 Results

The heritability is displayed as a set of 3D maps for the whole cerebrum in
the figure (left). The anatomical pattern is consistent overall for the 3 methods:



subcortical structures are shown to be influenced by genetic differences across
individuals. However, the vector-based algorithm performs better compared to
the traditional fluid and non-statistical version of SAFIRA. This is particularly
notable in the occipital lobes, which have been found to be highly genetically
influenced, perhaps as they mature early in life according to a consistent ge-
netic program (white arrow). This can also be noticed in the prefrontal areas,
where a high heritability is found by the statistical code only. These regions were
previously shown to be related to IQ [15], which was shown to be partly herita-
ble, according to the American Psychological Association. The heritability maps
obtained with the statistical version also show less blurriness. On the right of
the figure, we show the volume quantification error for all ROIs. Incorporating
vector-based statistics on the deformation field during the registration improves
volumetric matching for most delineated structures, and makes volume quan-
tification more accurate. This is the especially clear for subcortical gray matter
structures, such as the caudate and putamen.

6 Conclusion

Here, we developed the theoretical interpretation of the Statistically-Assisted
Fluid Image Registration Algorithm, by determining the energetic behavior of
the dynamic system (i.e., the deforming image). This was done by computing the
Hamiltonian of the system, which is crucial to understand the exchange of energy,
and thus how the incorporation of statistics influences the deformation pattern.
We also thoroughly validated the vector-statistics version of SAFIRA, which
showed advantages in accuracy and sensitivity compared to the non-statistical
version, and the Navier-Stokes fluid registration, a traditional fluid method com-
monly used in tensor-based morphometry, an application for which SAFIRA was
primarily designed. More extensive genetic effects were detected with the statisti-
cal algorithm together with less noisy findings, maybe related to an improvement
of the accuracy of the registration. The results confirmed the preliminary find-
ings of [3]. In addition, for the first time, we computed the prior information
from a training set that was different from the data set to be registered, hence
making it attractive for machine learning applications.
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Fig. 1. Left: maps of heritability coefficients. Blue colors: h
2 = 0 no genetic influence

- red colors: h
2 = 0.75 high heritability. White arrows indicate regions that are shown

to be highly heritable only when using the statistical version of the algorithm. Right:

Volume Quantification Error. Blue shows a better registration accuracy.


