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Abstract. We incorporated a new Riemannian fluid registration algo-
rithm into a general MRI analysis method called tensor-based morphom-
etry to map the heritability of brain morphology in MR images from
23 monozygotic and 23 dizygotic twin pairs. All 92 3D scans were flu-
idly registered to a common template. Voxelwise Jacobian determinants
were computed from the deformation fields to assess local volumetric
differences across subjects. Heritability maps were computed from the
intraclass correlations and their significance was assessed using voxel-
wise permutation tests. Lobar volume heritability was also studied using
the ACE genetic model. The performance of this Riemannian algorithm
was compared to a more standard fluid registration algorithm: 3D maps
from both registration techniques displayed similar heritability patterns
throughout the brain. Power improvements were quantified by compar-
ing the cumulative distribution functions of the p-values generated from
both competing methods. The Riemannian algorithm outperformed the
standard fluid registration.

1 Introduction

Nonlinear registration is of particular importance in medical imaging, as it can
be used to localize regions of anatomical change in longitudinal studies and
drug trials, as well as group differences in brain structure. In particular, non
rigid warping is the first step in many brain structural analyses, such as Tensor-
Based Morphometry (TBM) [2] [9], a popular method which is increasingly used
to detect morphometric differences associated with disease [16] [6], normal and
abnormal development [27] and cognitive performance.

In TBM, two groups of images are compared, and statistical differences in
local shape and volume are determined. TBM starts with a linear registration
of a set of brain images to a common space. All scans are then nonlinearly
registered to a common template, which is typically either a single individual
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in the study or a group average template [15]. Images are driven to similarity
using common landmarks, or measures over the whole image such as the squared-
intensity difference (L2-norm), cross-correlation or more complex metrics that
can be derived from information-theory, such as the Jensen-Rényi divergence
[6]. The transformation is constrained through a regularizer to enforce desirable
properties in the deformation, such as smoothness, invertibility and inverse-
consistency [5].

Amongst the various existing techniques, some registration methods treat the
image as an elastic or fluid medium [11], deformed according to mechanical equa-
tions. At each voxel, an internal force field, derived from the similarity measure,
drives the template image toward the study, increasing anatomical correspon-
dence. In standard methods, this transformation is constrained and regularized
by restoring forces according to the Navier-Lamé equation. Statistical informa-
tion may also be included in the registration process [12] [14]. Recently, Pennec
in [22] proposed a statistical prior that regularizes the deformation tensors Σ.
Deformation tensors are symmetric-positive definite matrices and do not form
a vector space under standard algebraic operations (e.g., matrix addition and
scalar multiplication). In Arsigny et al. [1] the matrix logarithm of Σ was used to
project its value into the tangent space at the origin, and to define a vector space
structure on the manifold of positive definite tensors. Pennec et al. proposed the
log-Euclidean Riemannian elasticity regularizer RegRE in this space:

RegRE(Σ) =
1
4
dist2Eucl(log(Σ), log(Id)) =

1
4

∫
|| log(Σ)||2 (1)

This approach regularizes the full information contained in Σ, which includes
volumetric as well as local anisotropy and orientation changes. This regularizer
is thus a natural choice for TBM studies where statistics are performed on Σ or
a function of it [17].

In elastic-based models, restoring forces increase as deformations become
larger, and most models derived under small displacement assumptions can lead
to incorrect solutions with tearing or folding in the image medium. This prob-
lem can be addressed by using registration equations from fluid mechanics [8].
In this method, the velocity v is the primary variable instead of the deformation
field u. At each time-step and for each voxel, the velocity field is computed and
integrated over time to obtain the final value of u.

v(x, t) =
du(x, t)

dt
=

∂u(x, t)
∂t

+ v(x, t) · ∇u (2)

We recently implemented a fluid version of the Riemannian elasticity (see
equation (1)) in [3] using velocity dependent tensors log((∇v + Id)T (∇v + Id)).
A 2D version of the method was tested in a TBM analysis of the corpus callosum
in HIV/AIDS patients [3]. In [4], we developed a 3D version of the algorithm.
Accuracy was verified and the algorithm was applied to a small sample of 10
monozygotic and 10 dizygotic twin pairs in order to assess brain volume differ-
ences. Here, we further validate this algorithm by performing the first genetic
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study using TBM on a large sample of 92 subjects, 23 pairs of monozygtic (MZ)
twins and 23 of same sex dizygotic (DZ) twins. For each of the two groups,
resemblances within pairs are assessed by computing the intraclass correlation
(ICC) of the determinant of the Jacobian matrices. Significance is shown using
color-coded maps of the associated p-values. We compare these maps to those
obtained after performing the same analysis with a standard fluid registration
algorithm [18]. The influence of genes and environmental factors on global lobar
volumes were also derived from the two methods using the ACE genetic model,
a standard method for variance component estimating in quantitative genetics.

Table 1. Fit of the genetic model for the volumes of the different lobes for the the
Riemmanian (R) and the Standard registration (S) methods

Lobar region χ2 p-value Lobar region χ2 p-value
R S R S R S R S

Frontal lobe (left) 0.19 0.91 0.98 0.82 Temporal lobe (left) 3.33 3.73 0.34 0.29
Frontal lobe (right) 1.36 1.85 0.72 0.60 Temporal lobe (right) 5.43 4.70 0.14 0.19
Frontal lobe (whole) 0.48 1.15 0.92 0.76 Temporal lobe (whole) 3.69 4.01 0.30 0.26

Parietal lobe (left) 4.40 4.25 0.22 0.24 Occipital lobe (left) 12.44 10.41 0.01 0.01
Parietal lobe (right) 7.74 6.01 0.05 0.11 Occipital lobe (right) 2.96 2.74 0.40 0.43
Parietal lobe (whole) 5.48 5.76 0.14 0.12 Occipital lobe (whole) 7.52 6.88 0.06 0.08

Fig. 1. Sagittal (left) and axial (right) views showing the significance of the intraclass
correlation determined within the monozygotic (MZ) and dizygotic (DZ) twin pairs for
two different registration algorithms

2 Method

2.1 Data Acquisition and Preprocessing

We analyzed 3D structural brain MRI scans of 23 monozygotic (MZ) and 23
dizygotic (DZ) same-sex twin pairs (age range: 22− 25 years), as well as that of
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Fig. 2. Cumulative distribution functions for observed p-values vs the corresponding
null p-value for monozygotic twins (MZ) and dizygotic twins (DZ) for the Riemannian
prior (magenta) and standard fluid registration method (cyan). The dotted line shows
the expected distribution of p-values under the null hypothesis.

an identically scanned healthy subject used as the common target for the fluid
registration. 3D T 1-weighted MP-RAGE sequence was used (TR = 2500ms,
TE = 3.83ms, TI = 1500ms, flip angle = 15o, coronal orientation, FOV 230mm)
on a 4 Tesla Brucker Medspec whole body scanner (Wesley Hospital, Brisbane,
Australia).

Non-brain tissue was deleted from the MRI images with Brain Surface Extrac-
tor (BSE) [25] and linearly aligned to the Colin27 template [10]. BSE was also
used to mask the different lobes of the template, providing regions of interest
for volumetric comparisons.

2.2 Registration Method

Non-linear registration was performed by warping the common template to each
individual’s 3D scan using the Riemannian fluid algorithm. Averaging images
from several study subjects to create a mean template can create a blurry image,
and affect the precision of the registration [6]. To avoid this, we choose to use a
single subject’s scan as a reference [19].

In fluid registration, the transformation is decomposed into several time-steps
Δt. At each of the Δt, the velocity v is computed and integrated in time to
obtain the displacement u at each voxel, according to the equation:

dv(x, t)
dt

= F + ∇Reg(v, t)

where F denotes the force and Reg the regularizer. Previous fluid algorithms
used fluid mechanics equations, such as the Navier-Poisson equation to define
the term Reg [8]. For instance in [18], a 3D version of the fluid equation was
implemented using a fast filter designed by Gramkow [13]. We use this algorithm
as the more standard method and compared it to our new Riemannian fluid code.
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Fig. 3. Variance due to the genetic (A), common environmental (C) and unique envi-
ronmental (E) factors determined for the Riemannian (top) and the Standard (bottom)
fluid registration methods
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The regularizer Regiso for the simplified isotropic version of (1) is ([22]):

Regiso(u) =
∫

μ

4
Tr((log(Σ)2) +

λ

8
Tr(log(Σ))2 (3)

Here, we integrate this Riemannian prior into the fluid equation, by replacing Σ
with its fluid equivalent log((∇v + Id)T (∇v + Id)):

RegRiem(v, t) =
∫

μ

4
Tr(log((∇v + Id)T (∇v + Id))2) +

λ

8
Tr(log((∇v + Id)T (∇v + Id)))2

The force is derived from an intensity-based similarity measure:

F (x, u(x, t)) = −[T (x− u(x, t)) − S(x)]∇T |x−u(x,t)

The algorithm is further detailed in [3].

2.3 Statistics and Genetic Modeling

The registration code generates vector fields u at each voxel, for each subject.
Jacobian matrices J = ∇(x − u) and their determinants detJ(u) are computed
from those fields. A value of detJ(u) > 1 indicates a local volumetric expansion
of the studied image in comparison to the template whereas detJ(u) < 1 is asso-
ciated with a local volume shrinkage (see [17]). We created statistical maps from
these Jacobians using the Intraclass Correlation Coefficient (ICC) computed in-
dependently for the MZ and DZ groups. ICC is a measure of the resemblance
between twin pairs, and can be computed for different types of twins (MZ and
DZ) with different degrees of genetic similarity [24]:

ICC = σ2
b /(σ2

b + σ2
w). (4)

σ2
b is the pooled variance between pairs and σ2

w is the variance within pairs.
A voxelwise permutation test was used to assess the significance of the ICC
values, under the null hypothesis of ICC = 0. The heritability of the differ-
ent lobe volumes was determined using structural equation models implemented
in the genetic modeling program, Mx (version 1.7.03). In this method, the ob-
served measures arise as a linear function of three latent factors: additive genetic
variance (A), common environmental variance (C), and unique environmental
variance (E) specific to each individual [20].

3 Results

Figure 1 shows statistical maps representing the significance of the ICC at each
voxel (under the null hypothesis of no difference) for monozygotic and dizygotic
twin pairs for both the Riemannian prior and the standard fluid registration
method. Sagittal and axial views are shown. In Figure 2, cumulative distribu-
tion functions are plotted for the p-values observed for the two algorithms and
compared to the p-values that would correspond to the null hypothesis (along the
line x=y). A significant signal is characterized by a upward large deviation from
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this line. Here, the Riemannian prior gives greater effect sizes in the two cases.
Figure 3 displays the percentile measures of a2, c2 and e2 derived from the ACE
model applied to lobar volumes. Results from the Log-Euclidean method and
the Standard one are shown and are consistent with each other. The model pa-
rameters (goodness-of-fit χ2 and p-values) are illustrated in table 1. This model
is adapted to the data for a low χ2 and p-value > 0.05. These conditions are not
respected in the left occipital lobe in both cases but are particularly well verified
in the frontal lobes.

4 Conclusion

We applied a novel Riemannian fluid image registration model to a relatively
large twin MRI dataset, and compared regional brain morphometry in individ-
uals who share 100% and 50% of their genetic polymorphisms. In computing
heritability maps, our Riemannian code largely agreed with the standard fluid
registration but gave greater effect sizes, perhaps due to improved regularization
and concomitant noise suppression. For both methods, the volumetric correlation
was higher, as expected, in the MZ twins than DZ twins, both subcortically and
in the corpus callosum. These regions have previously been shown to be herita-
ble ([7] [26] [23]). We found that the parietal lobe volumes are relatively highly
susceptible to shared environmental influences (exhibiting a high c2 variance
component), at least compared to occipital lobe volumes, which were predomi-
nantly under genetic control (exhibiting a high value for a2, the genetic variance
component). This is consistent with the neurodevelopmental hypotheses that
environmental influences may be relatively greater in brain regions with a more
protracted maturational course, while brain regions that mature earliest tend to
be more hard-wired according to a common genetic program.
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