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Abstract. Tensor-based morphometry (TBM) is an analysis approach
that can be applied to structural brain MRI scans to detect group dif-
ferences or changes in brain structure. TBM uses nonlinear image reg-
istration to align a set of images to a common template or atlas. De-
tection sensitivity is crucial for clinical applications such as drug trials,
but few studies have examined how the choice of deformation model
(regularizer or Bayesian prior) affects sensitivity. Here we tested a new
registration algorithm based on a fluid extension of Riemannian Elastic-
ity [17], which penalizes deviations from zero strain in a log-Euclidean
tensor framework, but has the desirable property of enforcing one-to-one
mappings. We compared it to a standard large-deformation continuum-
mechanical registration approach based on hyperelasticity. To compare
the sensitivity of the two models, we studied corpus callosum morphol-
ogy in 26 HIV/AIDS patients and 12 matched healthy controls. We an-
alyzed the spatial gradients of the deformation fields in a multivariate
Log-Euclidean framework [1] [12] to map the profile of systematic group
differences. In cumulative p-value plots, the Riemannian prior detected
disease-related atrophy with greater signal-to-noise than the standard
hyperelastic approach. Riemannian priors regularize the full multivari-
ate deformation tensor, yielding statistics on deformations that are unbi-
ased in the associated Log-Euclidean metrics. Compared with standard
continuum-mechanical registration, these Riemannian fluid models may
more sensitively detect disease effects on the brain.

1 Introduction

Non-rigid image registration has numerous medical applications, including align-
ment of multi-subject functional and structural images, and multi-modality atlas
construction. One increasingly popular application is tensor-based morphome-
try, which registers a set of structural brain images to a common template or
atlas, and statistically analyzes the deformations. TBM can detect morphome-
tric differences associated with disease, development or cognitive performance.



Time-dependent changes induced by treatment and disease progression may also
be localized and visualized. This method has led to a better understanding of
brain growth during normal and abnormal development [21] [6] [10] [18] as well
as neurodegenerative diseases such as HIV/AIDS [3] and semantic dementia [20].

Most nonlinear registration algorithms optimize a measure of image simi-
larity between a deforming and a target image, such as the squared intensity
differences, cross-correlation or information-theoretic measures such as normal-
ized mutual information or the Jensen-Renyi divergence [3]. A second term, the
regularizer, is optimized along with the intensity similarity to enforce desirable
properties such as smoothness, invertibility or inverse-consistency [5] [2].

Early registration models used elastic [7] or fluid [4] regularizers, in which reg-
istration forces obeyed a continuum-mechanical law. Those forces were applied
to the deforming image. Grenander’s pattern theory [9] recast these problems in
a Bayesian setting, by enforcing statistical prior distributions on the deforma-
tions using stochastic PDEs of the form Lu = e, where L is a self-adjoint 2nd
order differential operator, and w and e are the vector-valued displacement field
and driving force, respectively. Large deformation diffeomorphic mappings [15]
extend this work by constructing energies on velocity fields whose extrema are
geodesic paths on groups of diffeomorphisms [23].

Recently, Pennec [16] proposed a deformation prior based on Riemannian
elasticity. He defined a corresponding metric using the full deformation tensors
Y = JTJ = (Id + Vu)T (Id + Vu), where u is the displacement and J the
Jacobian matrix of the transformation, so the approach regularizes all the mul-
tivariate information in the tensors. Using the standard Euclidean metric here is
not ideal as the deformation tensors X' live on a conical submanifold of the vector
space of matrices with the usual operations. Instead, the log-Euclidean distance
is used (see [1]) and incorporated into an hyperelastic registration algorithm.
It is based on the distance from these symmetric positive-definite deformation
matrices to the identity (the reference point where the deformation is rigid).
The resulting method regulates the local anisotropy and orientation changes in
a deformation, on top of local expansion factors. The standard Euclidean elastic
energy based on the Saint- Venant Kirchhoff elasticity is replaced in the Rieman-
nian framework by the log-Euclidean Riemannian elasticity:

Regsvie(u) = /%Tr((ﬂ —1d)*) + %TT(Z — Id)? (1)
Regupre(u) = Jdisth,(og(2) Jog(1d) = 1 [ 1os( DI (2)

which measures differences among tensors accommodating the curvature of the
associated manifold of symmetric positive-definite matrices.

Good detection power is crucial for clinical applications, but few studies
have examined how the deformation model depending on the regularizer affects
disease detection sensitivity in TBM. Most TBM studies create a spatial map
of the deformation measures. Statistics are performed on a voxel-by-voxel basis
by examining the determinant of .J, or more recently, the square root of the



deformation tensors v/X [12]. These depend on the regularizer, but the effects
of different regularizers on the sensitivity of the statistics is not well known
in real empirical cases. For instance, [11] found that some deformation priors
drawn from information theory can remove several sources of statistical bias
(e.g., skewness). [12] showed that HIV/AIDS-related atrophy was detected more
powerfully by examining multivariate statistics of the deformation tensors in
a log-Euclidean space as compared to the commonly used univariate statistics
on detJ. A statistical prior on the logarithm of the deformation tensors (rather
than the scalar logarithm of their determinants) may therefore improve detection
power and reduce bias in morphometric studies.

Here, we aim to demonstrate the empirical advantages of the Riemannian
elasticity prior proposed in [16] over the standard Euclidean elastic one. The
Riemannian prior penalizes deformations directly in the log-Euclidean space of
the log-transformed deformation tensors (see [17]), where we later compute our
statistics. As a novel contribution, we also extended both of these image registra-
tion models to a large-deformation (fluid) approach by applying the priors to the
deformation velocity field v, i.e. the derivative of u. In [4], it was shown that this
achieves large image deformations, while guaranteeing a smooth invertible map-
ping. To better emphasize the role of the regularizer, we focus on binary images
as the information is only located at the edges. The similarity criterion we choose
is the sum-of-squared intensity differences, which is reasonable for binary images
(we do not consider the intensity cost further in this work, but the formulation
here could readily accommodate others as only the body force term would be
affected). We compared the results of the Riemannian and Euclidean registra-
tions for the morphometric analysis of 26 HIV/AIDS patients and 12 matched
healthy controls. To avoid bias in comparing approaches due to segmentation
errors, the corpus callosum of each subject was manually segmented and treated
as a binary image that was then nonlinearly registered to one of the controls. We
use a single-subject as the target rather than the minimum mean-squared tem-
plate estimation, as the latter depends on the deformation prior, complicating
the interpretation of the results (because the templates would not be the same
for different registration methods). To analyze the deformation fields, we used a
multivariate statistical method based on the Log-Euclidean metric (see [12]).

2 Methods

2.1 Subjects and Image Acquisition

Twenty-six HIV/AIDS patients (age: 47.2+9.8 yr; 25M/1F; CD4™" T-cell count:
299.5 4+ 175.7/ul; logy viral load: 2.57 £ 1.28 RNA copies/ml of blood plasma)
and twelve HIV-seronegative controls (age: 37.6 £ 12.2 yr; 8M/6F) underwent
3D T1-weighted MRI scanning; the same scans were analyzed in a prior cortical
thickness study [22], which also presents the subjects’ neuropsychiatric data. All
patients met Center for Disease Control criteria for AIDS, stage C and/or 3 and
none had HIV-associated dementia. AIDS patients with recent traumatic brain
injury, CNS opportunistic infections, lymphoma, or stroke were excluded.



All subjects received 3D spoiled gradient echo (SPGR) anatomical brain MRI
scans (256x256x124 matrix, TR = 25 ms, TE = 5ms; 24-cm field of view; 1.5-mm
slices, zero gap; flip angle = 40°) as part of a comprehensive neurobehavioral
evaluation. Each subject’s brain MRI was co-registered with scaling (9-parameter
transformation) to the ICBM53 average brain template, after removing extrac-
erebral tissues (e.g., scalp, meninges, brainstem and cerebellum).

2.2 Elastic versus Fluid Registration

There are two primary classes of methods for registering one image to another.
In standard elastic registration (which remains diffeomorphic only for small im-
age deformations), the deformation energy between two images is given by the
sum of a similarity measure and a regularization measure that each depend on
the displacement u. The Navier-Lamé equation was initially used for anatomi-
cal image registration. By contrast, fluid registration algorithms regularize the
velocity field v rather than the displacement u, and this guarantees one-to-one
mappings when the velocity field is integrated in time to generate the displace-
ment. [4] [8] considered the deforming image as embedded in a Navier-Poisson
fluid:

F + uV%(x,t) + A+ p)VV T v(x,t) = 0 (3)

F' is the body force that drives the transformation, p and A are viscosity coeffi-
cients chosen by the user, and

du(x,t ou(x,t
vie,t) = Elt ) - f?t)

+v(x,t) - Vu (4)

Here we use a cost function that minimizes the squared intensity difference be-
tween the two images. Its gradient yields the body force:

F(z,u(x,t) = —[T(z - u(z,1)) = S@)VT|e—u. (5)

2.3 Regularizer

Instead of the Navier-Poisson fluid formulation, here we directly regularize the
deformation tensors, as they are ultimately the measures that are analyzed in
TBM. We build on [17], where a regularizer is defined in a Riemannian framework
on the X’s to quantify the amount of deformation. This penalty (2) can be
made more complex either by considering the anisotropic (non-homogeneous)
case or by requiring that the norm be globally inverse-consistent. Here, we do
not consider these variants, and evaluate the new regularizer in the isotropic
case. Using ||X||? = Tr(X?), the formula for the regularizer takes the simple
form

RegILERE(U) = /%Tr((log(E)z) + %TT(]Og(E))2 (6)



In the fluid case, we regularize v rather than w during the registration. Thus we
implemented the term log((Vv + Id)” (Vv + Id)) instead of log(X) in our fluid
registration algorithm. Eq. (6) becomes

Rengm v, t = f% Vv—i—Id) (VU+ICZ))2)
+ATy (1 ((Vv+Id) (Vo +1d)))® (7)

Thus, our final fluid equation is

dv(x,t)
dt

= F + VReg(v,t) (8)

Here Reg is Regriem(v,t) or the standard Euclidean hyperelastic regularizer
Regpua(v,t) = [&Tr((Vv + I1d)?) + 3Tr(Vv + 1d)2.

2.4 Numerical Solution

Registration aims to find a displacement field mapping the study onto the tem-
plate. As our regularizing functionals contain nonlinear terms depending on both
u and v, computing w is not straightforward. First, a multiresolution algorithm
is used to solve the Partial Differential Equation (PDE). The computed veloc-
ity field is considered as a Lagrangian velocity given that the time steps are
infinitesimal. At each time ¢, a force is calculated depending upon the previous
displacement. The velocity is then found using a gradient-descent method based
on Levenberg-Marquardt optimization, and integrated to find the displacement.
This approach is termed a ’greedy’ algorithm; other regularizers could be used
instead that generate geodesics on the space of diffeomorphisms by defining en-
ergies on the full space-time path of the deformation. A supplementary step is
needed to prevent singularities. If the Jacobian falls below a threshold (here 0.5),
a regriding step is performed [4]. The algorithm is as follow:

1. Define a grid on the template and an initial resolution; initialize ¢ = 0 and
u(x,t =0) =

2. Calculate the force, i.e. the gradient of the mean square difference eqn. 5 at
this given resolution.

3. Solve the PDE to find the velocity at the same resolution, at each point in
the grid, using gradient descent. We chose vy = nG o F' with n = 0.1 and
G is a Gaussian function. vy4+1 = v — €(vy, — F + aV Regriem) (« is the
weight given to the regularizer)

4. Find a time step that is consistent with the maximal flow allowed in defor-
mation.

5. Integrate v to find u, with this time step.

6. Compute the Jacobian of the displacements. If the Jacobian determinant
falls below 0.5, then re-grid the template and return to Step 4.

7. Obtain the new displacement field once the Jacobian value is acceptable.



3 Results

Figures 1 a. and b. show different registrations with O- and C- shaped geome-
tries and gray scale phantoms. Boundaries are accurately matched by both reg-
istration methods even when large deformations and gray scale modification are
required. Fig 1c. shows thresholded statistical maps of local differences in the
corpus callosum between the HIV/AIDS group and controls. These are based on
multivariate (Hotelling’s T-squared) statistics on the full deformation tensors,
which incorporate information on local orientations, directional scaling and areal
differences. Green colors show regions for which p < 0.05 locally. The Rieman-
nian prior arguably outperforms the Euclidean one as it can detect significant
differences that are undetected with the Euclidean prior. This makes sense as
the Riemannian prior regularizes the tensor-valued quantity used to compute
the statistics. To emphasize the difference between the distributions, in each
case we plotted the cumulative distribution function of the p-values against the
corresponding p-value that would be expected under the null hypothesis (of no
group difference). For a null distribution, this plot falls along the line z = y,
as represented by the dotted line. Steeper upward inflections of this curve are
associated with significant signal and greater effect sizes (Fig 1.c.) (see [14]).
This CDF approach has been used in [13] to compare effect sizes in TBM, and is
based on the False Discovery Rate concept used in imaging statistics for multiple
comparison correction [19].

4 Discussion

Using two different registration methods to warp the images, and the same mul-
tivariate statistical analysis, we showed that the deformation model (regularizer)
greatly influences the sensitivity for detecting anatomical findings in TBM. In
HIV/AIDS, previous studies using parametric mesh methods showed an anatom-
ically distributed profile of differential atrophy (reduced thickness) in the corpus
callosum [22]. The Riemannian fluid prior confirmed these results, while the
Euclidean hyperelastic prior showed a subtle and more anatomically restricted
alteration in the corpus callosum. Although the prior obviously has an impact on
the statistical analysis, this study is one of surprisingly few TBM studies that
have examined its effect. There are two caveats regarding our analysis. First,
the extent of atrophy in HIV is strictly speaking unknown, although patholog-
ical studies support the notion of regional atrophy. Future studies will aim to
find the optimal prior in a predictive statistical design (e.g. predicting future
clinical deterioration), where ground truth is known, and the relative power of
any detected signal can be independently established. Second, our current dis-
ease sample could not be matched precisely for age or sex with the controls, who
were slightly younger on average, so we cannot rule out that age effects might
contribute to the effects mapped here. Future studies will address the etiology of
the signals, but it is clear now that different priors detect tensor differences with
different levels of power, motivating future empirically-driven and theoretical
work on priors in deformation morphometry.
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Fig.1. Top left: C-shaped and O-shaped phantoms (left); difference between the
target and the deformed template after fluid registration based on the Riemannian
(left) and Euclidean prior (right) (fixed image: C, moving image: O (top) and vice
versa (right) Top right: gray scale phantoms (deforming image (left) fixed target
image (right)) difference between the template and the registered image using the fluid
registration based on the Riemannian (left) and Euclidean prior (right). Here, = 1.5
and A = 0.5 Bottom left: p-values obtained after registration with the two different
priors. Green regions show morphometric differences where p < 0.05. Left: map based
on registration with the Riemannian prior Right: map based on registration with the
Euclidean prior Bottom right: Cumulative distribution functions of observed p-values
vs the corresponding null p-value for each of the multivariate statistics: Euclidean prior
(cyan), Riemannian prior (magenta). The dotted line shows the expected distribution
of p-values under the null hypothesis.



