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ABSTRACT

We defined a new statistical fluid registration method with
Lagrangian mechanics. Although several authors have sug-
gested that empirical statistics on brain variation should be in-
corporated into the registration problem, few algorithms have
included this information and instead use regularizers that
guarantee diffeomorphic mappings. Here we combine the
advantages of a large-deformation fluid matching approach
with empirical statistics on population variability in anatomy.
We reformulated the Riemannian fluid algorithm developed in
[4], and used a Lagrangian framework to incorporate 0th and
1st order statistics in the regularization process. 92 2D mid-
line corpus callosum traces from a twin MRI database were
fluidly registered using the non-statistical version of the al-
gorithm (algorithm 0), giving initial vector fields and defor-
mation tensors. Covariance matrices were computed for both
distributions and incorporated either separately (algorithm 1
and algorithm 2) or together (algorithm 3) in the registration.
We computed heritability maps and two vector and tensor-
based distances to compare the power and the robustness of
the algorithms.

Index Terms— registration, statistical prior, Riemannian
metrics, genetics

1. INTRODUCTION

Nonlinear image registration is widely used in the medi-
cal field with numerous applications ranging from real time
matching in surgical procedures, to alignment of functional
and structural images, and multi-modal atlas construction.
Depending on their use, these methods have different require-
ments in terms of efficiency and precision. For instance, a
precise registration is typically needed in computational mor-
phometry to map the influence of disease, genetics or normal
development throughout the brain, while robust methods
are needed for atlas-based segmentation in more clinically
oriented applications.
Warping one image or volume onto another requires the

definition of a similarity term (also called the cost function)
to compare information in the two images, such as a dis-

tance between common anatomical or stereotactic landmarks,
or intensity-based measures over the whole image, e.g., the
squared intensity difference (L2-norm), cross-correlation or
metrics derived from information theory [7]. If driven by a
cost function only, irregularities would appear in the deforma-
tion. A regularizer is added, to enforce desirable properties,
such as smoothness, invertibility and inverse-consistency [5].
These criteria can be enforced by using equations from elastic
or fluid mechanics [2, 8, 3, 12] or through other non-physical
regularization models, such as Gaussian filtering [22] or the
optimization of geodesic trajectories [18, 9].
As registration is guided by information in two overlaid

images, and one scalar value per voxel is used to generate
maps of 2D or 3D vectors, finding a unique solution is im-
possible. Some prior knowledge regarding the dataset can
therefore be valuable to ensure a meaningful deformation. To
incorporate empirical information, earlier studies focused on
(1) principal component analysis of intra-subject registration
fields [11], (2) estimation of covariance structures of the de-
formations from a training set of examples [6] or (3) spec-
tral methods, in which the deformations were projected onto
the eigenfunctions of the operator governing the deformation,
and statistics of the resulting coefficients were used to infer
anatomical abnormalities [13]. In all these works, one impor-
tant question is: which statistical information is most reliable
for estimating deformations, and how can they be included in
a registration algorithm?
In this paper, we used 0th- and 1st-order spatial statistics

on the deformation within a fluid algorithm, i.e., the mean
and covariance of the displacement fields and of the strain
tensors. A fluid formulation was used because elastic media
can only be deformed up to a point, after which the restoring
forces become too strong and the medium ceases to obey the
linear elastic equation. Fluid registration, however, guaran-
tees that transformations remain diffeomorphic even for large
deformations.
Statistics on the deformation tensors Σ (where Σ = JT J ,

where J = (Id + ∇u) is the Jacobian matrix and �u is the
displacement) were previously incorporated in the regular-
ization of an elastic algorithm in [20] using a Riemannian
framework. The authors proposed a regularizer, which con-
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tains the covariance of the Σ and penalizes these full defor-
mation tensors. These matrices represent anisotropic defor-
mations (i.e., ones with a preferred direction locally) as well
as volumetric excesses and deficits. As the Σ’s are symmet-
ric positive-definite matrices and form a cone in the space of
3x3 real-valued matrices, standard Euclidean operations are
not accurate in the manifold formed by the Σ. The Log-
Euclidean framework [1] solves this problem and allows sim-
ple computations to be made intrinsically on this manifold.
The isotropic version of the Riemannian regularizer was de-
rived in closed form and used for elastic registration in [20].
In [4], we extended this work to the fluid case, regularizing
the rate of strain log((∇�v + Id)T (∇�v + Id)) through the ve-
locity v (v = du

dt
) (algorithm 0) rather than u.

To include 0th order spatial statistics, we rewrote algo-
rithm 0 using a Lagrangian structure. In this new framework,
the regularizer in [4] is derived from a dissipative Lagrangian,
in which we now include statistical information on the data.
This new formulation clarifies the meanings of the different
terms integrated in the equation in terms of physical entities.
We then incorporate empirical statistics, including the covari-
ance of the Σ matrices algorithm 2 and the covariance of the
displacement fields algorithm 1 in the dissipation term.
In order to validate and compare the different algorithms,

we perform a Tensor-Based Morphometry analysis (see [16])
on 2D corpus callosum traces from 23 monozygotic (MZ) and
23 same-sex dizyotic (DZ) twin pairs. P -value maps, de-
signed to detect known anatomical similarities between twins,
illustrate the difference in power between the four versions.
Effects were more powerfully detected when 1st order statis-
tics were included in the registration process. We also in-
vestigated the robustness of these methods by computing two
metrics that measure the distance between images. Depend-
ing on the definition of the distance used, both algorithms 0
and 1 were shown to be the most robust.

2. DEFINITION OF THE ALGORITHMS

2.1. Previous formulation of the Riemannian Fluid

The Riemannian fluid algorithm regularizes the transforma-
tion of one image into another by acting on the rate of strain
Σv, rather than using traditional fluid equations (Σv = (∇�v+
Id)T (∇�v+Id) and v the velocity, or time-derivative of u). In
[4], we extended the method proposed in [20] to implement
the isotropic Riemannian fluid registration. At each voxel, for
each of the time stepsΔt, the regularizer and image similarity
cost terms were optimized to find the velocity v according to
the equation:

d�v(�x, t)

dt
= ∇Cost − α∇RegRiem − v. (1)

v is then integrated over time to find the displacement u.
The image similarity criterion Cost is usually defined as the

squared intensity difference between the two images I and J ,
which gives the force:

�F (�x, �u(�x, t)) = ∇Cost(I, J, u)(x) (2)

This cost functionwill be used throughout the paper, although
alternative cost functions, e.g., based on mutual information,
could be used instead. The isotropic Riemannian regularizer
was as follows:

RegRiem(�v, t) =
∫

μ
4 Tr(log(Σ2

v) + λ
8 Tr(log(Σv))

2 (3)

An Isotropic Riemannian Elasticity model can be obtained by
replacing Σv by Σ (see [20]).

2.2. Lagrangian formulation

A Lagrangian L expresses the dynamic behavior of a system.
We generally take L = T − V where T and V represent the
kinetic and potential energy of the system, respectively. If
we call D the dissipation, qj is the position of the particle j,
and q̇j is the velocity at the corresponding position, then the
evolution equations of the system are:

d

dt
(
∂L

∂q̇j

) − (
∂L

∂qj

) + (
∂D

∂q̇j

) = 0; (4)

where the dissipation termD quantifies the loss of energy that
will allow us to stabilize around the minimum of the potential
energy.

2.3. Original algorithm

In the non-statistical version of the algorithm (algorithm 0),
we define the different terms as follows:

• Kinetic energy: T = 1
2 ||q̇j ||

2
2

• Potential Energy: V = Cost(q)

• Dissipation: D = 1
2 ||q̇j ||

2
2 + αReg(q̇)

Equation (1) thus becomes:

1. d
dt

( ∂L
∂q̇j

) =
d�v(�qj ,t)

dt
= d

dt
( ∂

∂q̇j
(1
2 ||q̇j ||

2
2))

2. ∂L
∂qj

= ∇Cost(I, J, q)

3. ∂D
∂q̇j

= q̇j + α∇q̇RegRiem(q̇j)

This Lagrangian formulation establishes a meaningful inter-
pretation of the fluid system, in which prior statistical infor-
mation can be included, in particular in the dissipation term.

2.4. Incorporating statistics on the displacement

Algorithm 0 is first run on a dataset to obtain a distribution of
vector fields, from which we compute the covariance of the
deformation tensors Σ, and the covariance of the displace-
ment fields, �u. We formulate algorithm 1 by inserting the
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covariance of the displacements into the velocity term in the
dissipation. We replaced the Euclidean norm ||.||2 by a Maha-
lanobis distance. The first term of the dissipationD becomes

D1 = ||q̇j ||
2 = q̇T

j cov(−1)
qj

q̇j (5)

with covqj
= 1

N

∑
i(qi − q̄j)

T (qi − q̄j), the covariance of the
displacements q at a voxel j across the images i.

2.5. Incorporating statistics on the deformation

Eq. 3 is modified by treating the Σv’s as random variables
and transforming the second term of the dissipation, the reg-
ularizer, into a Mahalanobis distance (algorithm 2):

Regstat =
1

4

∫
V ect(Wv − W̄v)Cov(−1)V ect(Wv − W̄v)

T

(6)
HereWv = log(Σv), and to avoid any bias, we choose to keep
the average rate of strain W̄v = 1

N

∑
i log(Σvi) equal to zero

at all times. Algorithm 3 combines the statistical formulations
developed in the two previous paragraphs.

3. DATA AND ANALYSIS

3.1. Data and Preprocessing

3D T 1-weighted images were acquired from 23 pairs of
monozygotic (MZ) and 23 pairs of same-sex dizygotic (DZ)
twins (11/10 male and 12/13 female pairs, respectively) us-
ing a 4T Bruker Medspec whole body scanner (MP-RAGE
sequence) at the Center for Magnetic Resonance (University
of Queensland, Australia). Another scan was identically per-
formed on a subject who was not part of the genetic study, but
whose scan was used as a template (target brain) for the reg-
istration. The age range for the subjects was 22 − 25 years.
All scans were then aligned to the ICBM53 template us-
ing 9-parameter registration (i.e., translational and rotational
alignment, allowing scaling in 3 independent directions -
FLIRT [10]). For all subjects, corpus callosum outlines were
manually traced in the mid-sagittal plane, using BrainSuite
[21] and rigidly aligned to the target corpus callosum (2
translations, 2 rotations).

3.2. Scalar values and measures of heritability

All the 92 corpora callosa were non-linearly registered to one
the target corpus callosum using the four algorithms. In each
case, vector fields, and their corresponding Jacobian matrices
J were computed at each voxel, resulting in a scalar value
det(J). The det(J)’s express the local differences in area be-
tween each subject and the target image: detJ(�u) > 1 indi-
cates a local excess in the image being studied in comparison
to the template, whereas detJ(�u) < 1 indicates a local deficit.
To measure the resemblance between twin pairs, we com-

puted the intraclass correlation coefficient (ICC) from the

scalar value det(J) at each voxel for both the MZ and the DZ
groups, according to the formula:

ICC =
σ2

b

(σ2
b + σ2

w)

σ2
b is the pooled variance between pairs and σ2

w is the variance
within pairs. The heritability is the difference in correlations
between MZ and DZ: h2 = 2(ICCMZ − ICCDZ) and ex-
presses the variation in a measurement that is attributable to
genetic differences among individuals.

3.3. Comparing the algorithms

As the corpus callosum is a highly heritable subcortical struc-
ture of the brain [15], we defined two metrics to measure the
total distance between each image and the target.

1. Distance on the displacements: d1 =
∫

image
||�u||2,

2. Distance on the deformation tensors (this distance is de-
fined using the log-Euclidean framework, see [17]):
d2 =

∫
image

Tr(logΣ2)dx2

For each algorithm, each monozygotic twin was fluidly reg-
istered to their twin sibling and to the rest of the population.
For each registration, a vector field u and its corresponding
deformation tensor field Σ were generated and inputted into
the two distances.

4. RESULTS

4.1. Heritability maps

Figure 1 shows voxelwise heritability maps computed from
the ICC for both MZ and DZ groups. Red colors indicate
a high heritability (h2 = 0.75) whereas blue colors indicate
regions that are not under detectable genetic control (h2 =
0). All the algorithms show a similar pattern. The splenium
(which carries fibers projecting to the occipital and inferior
temporal lobes [14]), the anterior third (fibers projecting to
prefrontal, premotor and supplementary motor areas) and the
anterior midbody (fibers projecting to motor areas) exhibited
a high heritability. The two algorithms that incorporated sta-
tistical information on the deformation tensors (A2 and A3)
gave more powerful results, in particular in the anterior mid-
body regions.

4.2. Distance

Table 1 shows the ICC and its significance for each distance
and all the algorithms (see 3.3) in the MZ group. As the cor-
pus callosum is under genetic control, we estimate the robust-
ness of our algorithm by comparing the ICC and p-value. The
higher the ICC, the lower the p-value and the more identical
the structures; registration errors tend to deplete the correla-
tion between identical twins. The more significant statistics
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were found for algorithm 1 with d1 and algorithm 0 with d2.
In Figure 2, we show the corresponding distances for the two
algorithms previously mentioned. Each integer on the x-axis
represents one MZ twin. The filled blue circles indicate the
distance to that individuals twin sibling and the other colored
circles the distance to the rest of the MZ population. In most
cases, members of a twin pair were less distant from each
other than they were from the other subjects, suggesting the
face validity of these metrics and the registrations fromwhich
they are derived.

5. CONCLUSION

In this paper, we introduced different algorithms using the La-
grangian framework, which differed in the type of statistical
information incorporated in the regularization process. We
chose to compare the power and robustness of these methods
through the study of the corpus callosum, a heritable struc-
ture of the brain. Even though heritability maps give similar
pattern, we noticed that including 1st order statistics (A2 and
A3) in the deformation gave more powerful results (higher ef-
fect sizes). However, when we measured the robustness of the
algorithms, the best results were given by the two other algo-
rithms, that include no or 0th order statistics, suggesting that
they may provide more accurate registration. Including statis-
tics on the displacement or the deformation gives promising
results for improving power and robustness of registration for
tensor-based morphometry. However, an implementation of
these methods in 3D will help us determine more precisely
the advantage of these statistical constraints on the registra-
tion process.
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[17] Leporé et al., ISBI, Paris, France, pp. 460–463, 2008
[18] Miller, NeuroImage, vol. 23(1), pp. 19–33, 2004
[19] Nichols et al., HBM, vol. 15(1), pp. 1–25, 2002
[20] Pennec et al.,MICCAI, CA, USA, pp. 943–950, 2005
[21] Shattuck,Med Image Anal, vol. 6, pp. 129–142, 2002
[22] Vercauteren et al., IPMI, The Netherlands, 2007

Fig. 1. Heritability computed from the ICC. Red: more
heritable regions h2 = 0.75 - Blue: regions with no genetic
influence h2 = 0 - Top left: A0 no statistical information -
Top right: A1, statistical information on the displacements
- Bottom left: A2, statistical information on the deformation
matrices - Bottom right: A3, both

Fig. 2. distance: left algorithm with dissipation with measure
d1 right: algorithm without any statistics with measure d2

d1 d2

A0
ICC 0.71 0.64

p-value 0.002 0.005

A1
ICC 1 0.50

p-value 0 0.013

A2
ICC 0.65 0.37

p-value 0.003 0.45

A3
ICC 0.63 0.41

p-value 0.004 0.029

Table 1. Intraclass Correlation and its significance (p-value)
computed for the two distances for each algorithm
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