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Abstract. We present a method to extract principal deformation modes
from a set of articulated models describing the human spine. The spine
was expressed as a set of rigid transforms that superpose local coordi-
nates systems of neighbouring vertebrae. To take into account the fact
that rigid transforms belong to a Riemannian manifold, the Fréchet mean
and a generalized covariance computed in the exponential chart of the
Fréchet mean were used to construct a statistical shape model. The prin-
cipal deformation modes were then extracted by performing a principal
component analysis (PCA) on the generalized covariance matrix. Princi-
pal deformations modes were computed for a large database of untreated
scoliotic patients and the obtained results indicate that combining rota-
tion and translation into a unified framework leads to an effective and
meaningful method of dimensionality reduction for articulated anatomi-
cal structures. The computed deformation modes also revealed clinically
relevant information. For instance, the first mode of deformation ap-
peared to be associated with patients’ growth, the second is a double
thoraco-lumbar curve and the third is a thoracic curve.

1 Introduction

Most of the statistical shapes models currently used to describe anatomical struc-
tures are based on point to point correspondences extracted from images ( [1,2]
for example). However, points are not always the best choice of primitives. To
deal with articulated anatomical structures a more natural choice would be to
use frames (points associated with three orthogonal axes). The main reason for
this choice is that frames enable a more natural analysis of the relative orienta-
tions and positions of the models.

The spine is one of the anatomical structures that is better described using
frames instead of points. In this context, a frame is associated to each vertebra
and the deformations of the spine are then described in terms of rigid transforms
applied to those frames.

However, conventional statistical methods usually apply only in vector spaces,
while rigid transforms naturally belong to a Lie group. Therefore, concepts as
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simple as the mean and the covariance had to be generalized because addition
and scalar multiplication are not defined in Lie groups. Probability and statistics
applied to Riemannian manifolds [3] offer an elegant way to deal with those
difficulties and variability models based on Lie groups can now be built. The
Riemannian framework was also used in the context of statistical shape modelling
to perform PGA (principal geodesic analysis) on medial axis representations (m-
reps) [4].

Thus, it is now possible to compute a variability model of the spine based on
the tools from the Riemannian geometry [5]. But a rigid transform has 6 DOF
(degrees of freedom) and there are 5 lumbar and 12 thoracic vertebrae for a total
of 102 DOF (excluding cervical vertebrae). The analysis of such large variability
model can hardly be performed by a clinician. It is therefore necessary to find
a way to reduce the dimensionality of the variability model and to extract only
the most meaningful modes of variability.

Dimensionality reduction applied to the spine or to articulated models is not a
new idea and methods were proposed in the past. As a part of a method that aim
to predict the geometry of the spine based on the geometry of the trunk, Bergeron
et al. [6] performed a principal component analysis on the 3D coordinates of
vertebrae’s center in the frequency domain. Principal components analysis was
also used to process articulated body models (see, for instance, Gonzalez et al.
[7] and Jiang and Motiai [8]). In that context, classical PCA was used on a
representation that was either only based on 3D coordinates or only based on an
angular description of the articulated body. However, using both positions and
orientations would allow a better separation of different physiological phenomena
such as pathological deformations and normal growth.

The main contributions of this paper will therefore be to propose a method
based on Riemannian geometry to perform principal components analysis on an
articulated model of the spine and to apply that method to a large database of
scoliotic patients in order to construct the first statistical atlas of 3D deformation
patterns for idiopathic scoliosis (a pathology that causes spine deformations).

2 Material and Methods

This section will be divided into four subsections. Firstly, elements of proba-
bility and statistics on Riemannian manifolds will be introduced. Secondly, a
generalization of principal component analysis on Riemannian manifolds will be
described. Then, the specialization of this method for articulated models will be
tackled in the third subsection. Finally, the fourth subsection will explain how
the extraction of articulated models is performed from spine radiographs.

2.1 Elements of Probability and Statistics on Riemannian Manifolds

Because there is no addition or scalar multiplication operations readily defined on
rigid transforms, we need a way to generalize the notions of mean and directional
dispersion. The distance is a general concept that can be used to perform those
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generalisations and Riemannian geometry offers a mathematical framework to
work with primitives when only a distance function is available.

In a complete Riemannian manifold M the smallest smooth curve γ(t) such
that γ(0) = x and γ(1) = y is called a geodesic and the length of that curve
is the distance between x and y. Two important maps can be defined from the
geodesics: the exponential map Expx which maps a vector ∂x of the tangent
plane TxM to the element reached in a unit time by the geodesic that starts at
x with an initial tangent vector ∂x and the logarithmic map Logx which is the
inverse function of Expx. In other words, these two maps enable us to “unfold”
the manifold on the tangent plane (which is a vector space) and to project an
element of the tangent plane to the manifold.

With the knowledge of Expx and Logx, it is possible to compute the generali-
sations of the conventional mean and covariance. The following subsections will
introduce those generalisations in the univariate and multivariate cases.

Fréchet Mean. For a given distance, the generalization of the usual mean
can be obtained by defining the mean as the element μ of a manifold M that
minimizes the sum of the distances with a set of elements x0...N of the same
manifold M:

μ = argmin
x∈M

N∑

i=0

d(x, xi)2

This generalization of the mean is called the Fréchet mean. Since it is defined
using a minimization, it is difficult to compute it directly from the definition.
However, it can be computed using a gradient descent performed on the sum-
mation. The following recurrent equation summarizes this operation:

μn+1 = Expμn
(

1
N

N∑

i=0

Logμn
(xi)) (1)

Generalized Covariance. The variance (as it is usually defined on real vector
spaces) is the expectation of the L2 norm of the difference between the mean
and the measures. An intuitive generalization of the variance on Riemannian
manifolds is thus given by the expectation of a squared distance:

σ2 =
1
N

N∑

i=0

d(μ, xi)2 (2)

To create statistical shape models it is necessary to have a directional dis-
persion measure since the anatomical variability of the spine is anisotropic [5].
The covariance is usually defined as the expectation of the matricial product of
the vectors from the mean to the elements on which the covariance is computed.
Thus, a similar definition for Riemannian manifolds would be to compute the
expectation in the tangent plane of the mean using the log map:

Σ =
1
N

N∑

i=0

Logμ(x)Logμ(x)T (3)
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Multivariate Case. The Fréchet mean and the generalized covariance make
it possible to study the centrality and dispersion of one primitive belonging to
a Riemannian manifold. However, to build complete statistical shape models, it
would be most desirable to study multiple primitives altogether. Therefore, a
generalized cross-covariance Σfg is needed.

Σfg =
1
N

N∑

i=0

Logμf
(fi)Logμg

(gi)T

A natural extension is to create a multivariate vector f = [f1, f2, f3, . . . , fk]T

where each element corresponds to a part of a model made of several primitives.
The mean and the covariance of this multivariate vector will thus be:

μ =

⎡

⎢⎢⎢⎣

μ1
μ2
...

μk

⎤

⎥⎥⎥⎦ and Σ =

⎡

⎢⎢⎢⎣

Σf1f1 Σf1f2 . . . Σf1fk

Σf2f1 Σf2f2 . . . Σf2fk

...
...

...
Σfkf1 Σfkf2 . . . Σfkfk

⎤

⎥⎥⎥⎦ (4)

This is very similar to the conventional multivariate mean and covariance
except that the Fréchet mean and the generalized cross-covariance are used in
the computations.

2.2 Extraction of the Principal Deformations

The equation 4 allows us to compute a statistical shape model for a group of
models made of several primitives. However, the different primitives will most
likely be correlated which makes the variability analysis very difficult. Further-
more, the dimensionality of the model is also a concern and we would like to
select only a few important uncorrelated components.

Unlike the manifold itself, the tangent plane is a vector space and its ba-
sis could be changed using a simple linear transformation. Thus, we seek an
orthonormal matrix A (AAT = I) to linearly transform the tangent plane
( Logμ(g) = ALogμ(f) ) such as the generalized covariance in the transformed
tangent space is a diagonal matrix (Σgg = diag (λ1, λ2, . . . , λk)). The covariances
of the transformed tangent space and of the original tangent space are connected
by the following equation:

Σgg = diag (λ1, λ2, . . . , λk) = AΣffAT

If A is rewritten as A = [a1, a2, . . . , ak]T , then it is easy to show that:

[λ1a1, λ2a2, . . . , λkak] = [Σffa1, Σffa2, . . . , Σffak] (5)

The line vectors of the matrix A are therefore the eigenvectors of the original
covariance matrix and the elements of the covariance matrix in the transformed
space are the eigenvalues of the original covariance. This is the exact same pro-
cedure that is used to perform PCA in real vector spaces. Like for real vector
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spaces, the variance is left unchanged since σ2 = Tr(Σff ) = Tr(Σgg) and the
cumulative fraction of the variance explained by the first n components is:

p =
1
σ2

∑

i=1...n

λi

A shape model can be re-created from coordinates of the transformed tangent
space simply by going back to the original tangent space and projecting the
model on the manifold using the exponential map. So if αi is the coordinate
associated with the ith principal component, the following equation can be used
to re-create a shape model:

S = Expμ(
k∑

i=1

αiai)

2.3 Application to Articulated Models of the Spine

x

z
x’

y’

z’

y

t

θ

n

Fig. 1. Rigid transform
expressed by an axis of
rotation n, an angle of
rotation θ and a transla-
tion vector t

In this paper, the spine is modelled as a set of frames as-
sociated to local coordinates systems of vertebrae. The
modifications of the spine geometry are thus modelled
as rigid transforms that are applied to those frames.
In order to compute the principal deformations modes
(from equation 5), the exponential and logarithmic
maps associated with a distance function on rigid trans-
forms are needed.

A rigid transform is the combination of a rotation
and a translation. Defining a suitable distance on the
translational part is not difficult since 3D translations
belong to a real vector space. However, the choice of a
distance function between rotations is more complex.

To define a suitable distance function between rigid
transforms, another representation of the rotations
called the rotation vector is needed. This representa-
tion is based on the fact that a 3D rotation can be
fully described by an axis of rotation supported by a unit vector n and an angle
of rotation θ (see figure 1). The rotation vector r is then defined as the product
of n and θ.

The conversion from the rotation vector to the rotation matrix is performed
using the Rodrigues equation:

R = I + sin(θ).S(n) + (1 − cos(θ)).S(n)2 with S(n) =

⎡

⎣
0 −nz ny

nz 0 nx

−ny nx 0

⎤

⎦

And the inverse map (from a rotation matrix to a rotation vector) is given by
the following equations:

θ = arccos(
Tr(R) − 1

2
) and S(n) =

R − RT

2 sin(θ)
(6)
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Using the rotation vector representation, a left-invariant distance (d(T3 ◦
T1, T3 ◦ T2) = d(T1, T2)) between two rigid transformations can easily be de-
fined:

d(T1, T2) = Nω(T−1
2 ◦ T1) with Nω(T )2 = Nω({r, t})2 = ‖r‖2 + ‖ωt‖2 (7)

Where ω is used to weight the relative effect of rotation and translation, r is
the rotation vector and t the translation vector. Because the selected distance
function is left-invariant, we have Expμ(T ) = ExpId(μ

−1 ◦ T ) and Logμ(T ) =
LogId(μ−1 ◦ T ). Furthermore, it can be demonstrated that the exponential and
log map associated with the distance of equation 7 are the mappings (up to a
scale) between the combination of the translation vector and rotation vector and
the combination of the rotation matrix and the translation vector [9].

ExpId(T ) =
R(r)
ω−1t

and LogId(T ) =
r(R)
ωt

2.4 Extraction of Articulated Model of the Spine from Radiographs

Fig. 2. Frames and transforms
used to express the spine as a
articulated model

The 3D geometry of the spine is digitized us-
ing a posterior-anterior and a lateral radiograph.
Radiographs are used because it allows the pa-
tients to stand up during the acquisition (which
is important since a large proportion of the
spine deformation is hidden when patients lie
down). Six anatomical landmarks are identified
on the two radiographs. The 3D coordinates of
the landmarks are computed using a triangula-
tion algorithm and the deformation of a high-
resolution template using dual kriging yields 16
additional reconstructed landmarks. The accu-
racy of this method was previously established
to 2.6mm [10].

Once the landmarks are reconstructed in 3D,
each vertebra is rigidly registered to its first
upper neighbour and the resulting rigid trans-
forms are recorded. By doing so, the spine is
represented by a set of rigid transforms (see the
figure 2). This set of inter-vertebral transforms
will be used to compute the mean and covariance
of the spine shape.

3 Results and Discussion

The method described in the previous sections was applied to a group of 307
scoliotic patients. The patients selected for this study had not been treated with



352 J. Boisvert et al.

(a) (b)

(c) (d)

Fig. 3. First principal deformation mode (reconstructions for −3
√

λ1, −
√

λ1,
√

λ1,

3
√

λ1), posterior-anterior view (a) and lateral view (c). Second principal deformation
mode (reconstructions for −3

√
λ2, −

√
λ2,

√
λ2, 3

√
λ2), posterior-anterior view (b) and

lateral view (d).

any kind of orthopaedic treatment when radiographs were taken. Therefore, the
inter-patients variability observed was mainly caused by anatomical differences
and not by any treatments. The ω constant was set to 0.05 because this value
leads to approximatively equal contributions of the rotation and the translation
to the variance.

To illustrate the different deformation modes retrieved using the proposed
method, four models were reconstructed for each of the first four principal de-
formation modes. Those models were reconstructed by setting αk to −3

√
λk,

−
√

λk,
√

λk and 3
√

λk for k = 1 . . . 4 while all others components (αi with
i �= k) were set to zero (see figures 3 and 4).

A visual inspection reveals that the first four principal deformation modes
have clinical meanings. The first appears to be associated with the patient growth
because it is mainly characterized by an elongation of the spine and also includes
a mild thoracic curve. The second principal deformation mode could be described
as a double thoraco-lumbar curve, because there are two curves: one in the
thoracic segment (upper spine) and another in the lumbar segment (lower spine).
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Fig. 4. Third principal deformation mode (reconstructions for −3
√

λ3, −
√

λ3,
√

λ3,

3
√

λ3), posterior-anterior view (a) and lateral view (c). Fourth principal deformation
mode (reconstructions for −3

√
λ4, −

√
λ4,

√
λ4, 3

√
λ4), posterior-anterior view (b) and

lateral view (d).

The third principal mode of deformation is a simple thoracic curve (the apex
of the curve is in the thoracic spine), but it is longer than the thoracic curve
observed in the first principal component. It is also interesting to note that,
in addition to the curves visible on the posterior-anterior view, the second and
third principal deformation modes are also associated with the development of
a kyphosis (back hump) on the lateral view. Finally, the fourth component is a
lumbar lordosis (lateral curve of the lumbar spine).

Those curve patterns are routinely used in different clinical classifications of
scoliosis (used to plan surgeries). For instance, the reconstructions built from the
first principal deformation mode would be classified using King’s classification
[11] as a type II or III (depending on which reconstruction is evaluated), the
second deformation mode would be associated to King’s type I or III and the
third principal deformation could be associated to King’s type IV.

Previouly those patterns were derived from surgeons’ intuition using 2D im-
ages and clinical indices, whereas it is now possible to automatically compute
those patterns from statistics based only on 3D geometries. This also makes
it possible, for example, to compare principal deformation modes of different
subgroups of scoliotic patients.
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Fig. 5. Fraction of the variance explained by the nth most important principal defor-
mation modes

Furthermore, the cumulative variance explained by an increasing number of
principal deformations modes (illustrated at figure 5) shows the capacity of the
proposed method to reduce the dimensionality of the model while keeping a large
part of the original variance.

Finally, the algorithm is not very sensitive to the exact value of ω (values
between 0.01 and 0.25 were tried and yielded similar results with our database),
but setting a value considerably too high or too low would discard either the
rotation or translation part of the rigid transforms from the analysis.

4 Conclusion

A method to extract the principal modes of deformation from articulated mod-
els was described. The method consists in performing a principal component
analysis in the tangent space of a Riemannian manifold (the Lie group of rigid
transforms equipped with a metric). We applied this method to a database of sco-
liotic patients reconstructed in 3D using stereo radiographs. Clinically relevant
patterns of deformations were extracted from that database and dimensionality
reduction was successfully achieved. Results also suggest that PCA applied to a
suitable representation of the spine, namely a set of rigid transforms, leads to an
algorithm that can expose natural modes of deformation of the spine. However,
it might be interesting to validate the method using an high accuracy imaging
apparus and a deformable spine phantom.

One of the reasons to perform dimensionality reduction on statistical shape
models is to reduce the number of DOF that needs to be optimized during
model registration. The proposed method will therefore be integrated to a spine
registration algorithm in the future. It might also be useful for the integration
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of a large number of rigid structures in non-rigid registration procedures [12] of
the whole human torso.

Also, the current method takes only into account the shape of the spine and
not the shape of the individual vertebrae. But the deformations of individual
vertebrae are connected to the deformations of the whole spine (see, for example,
the vicious cycle described by Stokes et al. [13]). Thus, future developments
might include the construction of hybrid models where the global shape of the
spine would be modelled using inter-vertebral rigid transforms and the shape of
individual vertebrae would be taken into account using spherical harmonics or
medial axis representations (for instance).
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