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Articulated Spine Models for 3D Reconstruction
from Partial Radiographic Data

Jonathan Boisvert, Farida Cheriet, Xavier Pennec, Hubert Labelle, Nicholas Ayache

Abstract—Three-dimensional models of the spine are extremely
important to the assessment of spinal deformities. However,
it could be difficult in practical situations to obtain enough
accurate information to reconstruct complete 3D models. This
paper presents a set of methods to rebuild complete models
either from partial 3D models or from 2D landmarks. The spine
was modeled as an articulated object to take advantage of its
natural anatomical variability. A statistical model of the vertebrae
and spine shape was first derived. Then, complete models were
computed by finding the articulated spine descriptions that were
consistent with the observations while optimizing the prior prob-
ability given by the statistical model. The observations used were
the absolute positions, orientations, and shapes of the vertebrae
when a partial 3D model was available. The reconstruction of
3D spine models from 2D landmarks identified on radiograph(s)
was performed by minimizing the Mahalanobis distance and
the landmarks re-projection error. The vertebrae estimated from
partial models were within 2 mm of the measured values (which
is comparable to the accuracy of currently used methods) if
at least 25% of the vertebrae were available. Experiments
also suggest that the reconstruction from posterior-anterior and
lateral radiographs using the proposed method is more accurate
than the conventional triangulation method.

Index Terms—Statistical shape model, 3D reconstruction,
model registration, X-ray imaging, spine, scoliosis.

I. INTRODUCTION

THREE-dimensional models of the spine are widely used
in applications related to spinal deformities. They are

necessary since spinal deformities are three-dimensional and
cannot be evaluated thoroughly using only 2D images (i.e.
radiographs). They can be used to diagnose and evaluate the
severity of those deformities. The three-dimensional nature
of the models enables analysis that would be impossible to
perform directly on radiographs. For example, clinical indices
such as the orientation of the plane of maximal curvature or the
spine torsion [1] rely on the availability of 3D spine models.
Furthermore, these 3D models are also used to plan and
evaluate outcomes of orthopedic treatments [2], [3]. Finally,
biomechanical studies of the spine also rely on personalized
properties that are extracted from 3D spine models [4], [5].

In theory, 3D spine models can be obtained from a wide
variety of imaging modalities. However, few modalities are
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flexible enough to image patients in different postures. Further-
more, spinal deformities often afflict children or adolescents
and require multiple follow-up examinations, which means
that exposure to ionizing radiation should be minimized.
For these reasons, the most commonly used modality is
roentgenography (radiographs).

Reconstructing 3D spine models from radiographs can be
done using different methods. The most common methods
generally involve identifying anatomical landmarks on more
than one calibrated radiographs and then triangulating their 3D
positions. The underlying calibration method can implicitly
compute the calibration parameters by solving a system of
linear equations [6], [7], [8], or it can explicitly optimize
the calibration parameters to minimize the re-projection error
[9]. Methods based on self-calibration algorithms were also
proposed to avoid using a calibration object [10], [11]. These
methods, however, do not cope very well with missing or
unrecognizable landmarks. The 3D positions of anatomical
landmarks not visible on at least two radiographs cannot
be computed. The resulting incomplete models are generally
useless for biomechanics or statistical studies.

However, incomplete models are common because radio-
graphs are noisy by nature and because the superposition of
structures and artifacts can be misleading. It is also common
to observe vertebrae that are partially or completely hidden
because of incorrect framing. The presence of orthopedic
instrumentation (rods, screws, and hooks used to straighten
the spine) can also occlude anatomical landmarks. Moreover,
the time required to identify the anatomical landmarks makes
the operation of reconstructing the spine in 3D time consuming
and costly.

If a large proportion of the needed data is missing, then,
most of the time, the whole experiment has to be cancelled.
Moreover, if a small proportion is missing, the authors are
faced with a difficult decision. They can either abandon
the incomplete models or make educated guesses about the
missing information. The former can reduce the statistical
power of the experiment to the point where hypothesis testing
is useless, while the precision and accuracy achieved with the
latter strategy are questionable at best.

One possible solution is to identify only a small number
of reliable landmarks that approximate the volume of the
vertebral bodies and that are easy to identify on both lateral
and posterior-anterior radiographs [12]. Another solution is to
identify anatomical landmarks only on the radiograph(s) where
they can be reliably identified. A three-dimensional mesh can
then be deformed to fit the observations of anatomical land-
marks, while minimizing the deformation energy [13] [14].
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However, this method cannot be used to estimate the shape
of a vertebra if no landmarks are available, since relationships
between adjacent vertebrae are not taken into account.

Another possibility is to use radiographs directly in order
to register 3D vertebral templates [15], [16]. The possible
deformations of the template, however, have to be constrained
by a statistical shape model [15], [17]. These methods depend
highly on the quality of the metric used to quantify the
similarity between the 3D model and the radiographs. Current
metrics cannot handle occlusions caused by surgical implants.
Moreover, the method relies on the presence of a good initial
estimate of the geometry, which in most cases mean a manual
identification of anatomical landmarks. A method able to
reconstruct complete 3D spine models from a small number
of vertebrae would alleviate those problems.

II. THEORETICAL BACKGROUND : ARTICULATED
MODELING OF THE SPINE

Three-dimensional spine models are usually simple col-
lections of 3D anatomical landmarks. Depending on clinical
constraints and research objectives, six to fourteen landmarks
are identified on each vertebra. This operation is performed
by a trained technician, so there is a tradeoff between the
level of detail and the cost of the study. The advantage of
only using landmarks is simplicity, since the resulting models
belong to a vector space in which all conventional statistics and
analytical methods can be applied. The articulated nature of
the spine is, however, completely discarded. No discrimination
is made between landmarks belonging to the same vertebra and
landmarks from two different vertebrae.

However, there is a fundamental distinction that should
not be ignored. Vertebrae are bony structures, which can
be considered as rigid bodies, whereas the spine is flexible.
The spine can be deformed in complex ways because it is
a collection of multiple rigid bodies (the vertebrae) linked
together by soft tissues such as joint capsules, ligaments,
intervertebral discs, and muscles. Thus, it is logical to model
the shape of the spine using relative rigid transformations
between neighboring vertebrae. This enables us to take into
account the variability of the “inter-vertebral articulations”
state.

In addition to the shape of the spine, the shapes of vertebrae
can also be modeled in the context of an articulated model by
using the local anatomical landmarks. These landmarks are
expressed in the local coordinate system of the vertebra to
which they belong. Any consistent local coordinate system can
be used. However, good guidelines to establish such consistent
local coordinate systems were provided in Stokes et al. [1]
and in Wu et al. [18]. In our case, the origin of the coordinate
system is the middle point between the centers of the upper and
lower endplates. The local Z axis passes through the centers
of the upper and lower endplates. The local Y axis is parallel
to the line joining the centers of the left and right pedicles.
Finally, the local X axis complete an orthonormal base.

In summary, the articulated description of the spine used
throughout this paper is the combination of the inter-vertebral
rigid transformations T0, T1, T2, . . . , TN (see Figure 1) and

T1

T0

T2

T3

. .
.

T5 ◦ T6 ◦ . . .

T4

Fig. 1. Inter-vertebral rigid transformations used to describe the spine shape

the local anatomical landmarks p1,1, p1,2, . . . p1,M . . . pN,M

(where N is the number of vertebrae studied and M is the
number of landmarks digitized for each vertebra). In this
paper N = 17, because thoracic and lumbar vertebrae are
considered.

Absolute rigid transformations (transformations between the
general frame of reference and a vertebra’s local reference
frame) can be easily computed by composing all the inter-
vertebral rigid transformations up to the vertebra of inter-
est. This operation is summarized by the following equation
(where ◦ is the composition operator):

T absolute
i = T0 ◦ T1 ◦ . . . ◦ Ti

Consequently, transforming the local anatomical landmarks
into absolute landmark coordinates can be performed using
the following equation (where ? is the operator that applies a
transformation to a point):

pabsolute
i,j = T absolute

i ? pi,j

Important statistical tools can be adapted to work work with
articulated models. First, the mean of a group of articulated
spine descriptions can be defined simply by averaging the
individual components of these descriptions, i.e., the local
anatomical landmarks and the inter-vertebral rigid transforma-
tions. The local anatomical landmarks are three-dimensional
vectors (<3), thus their mean is well defined. However, the
conventional mean cannot be applied to inter-vertebral rigid
transformations since scalar multiplication and addition, are
not defined on rigid transformations. Nonetheless, a left-
invariant distance (d(T1, T2) = d(T3 ◦ T1, T3 ◦ T2)) exists.
In this context, the mean is defined as the rigid transformation
that minimizes the sum of the distances to the rigid transforma-
tions that need to be averaged [19]. In practice, this mean can
be computed by performing a gradient descent on the distance
summation, which is summarized by the following equation:
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~µn+1 = ~µn ◦

(
1
N

N∑
i=0

−−−−−→
µ−1

n ◦ xi

)
(1)

The inter-vertebral rigid transformations are usually well
localized and the convergence is usually reached within five it-
erations [20]. Moreover, the starting point (µ0) can be selected
from the set of rigid transformations that are averaged. The
arrow symbol (→) indicates that the summation have to be per-
formed on a vectorial representation of rigid transformations
compatible with the selected distance. This suitable vectorial
representation is a vector containing the translation vector and
the axis of rotation scaled by the angle of rotation. (Numerical
details of the conversion to/from this representation and a
matrix representation of rigid transformations can be found
in Pennec and Thirion [19].)

The mean inter-vertebral transformations T̄i (computed us-
ing Equation 1) and the mean local anatomical landmarks p̄i,j

can then can then be used to compute the departure from the
mean spine shape. This departure can be expressed by a vector
S such as :

δi = T̄−1
i ◦ Ti

si =
(
~δi, pi,1 − p̄i,1, pi,2 − p̄i,2, . . . , pi,M − p̄i,M

)
S = (s1, s2, . . . , sN ) (2)

Using the departure vector S, it is now possible to quantify
the dispersion of the articulated models around their mean. To
do so, one can use the covariance matrix, which is given by :

Σ =
1
N

N∑
i=1

ST
i Si

III. NOVEL 3D RECONSTRUCTION METHODS

A. Estimation from Partial 3D Spine Models

The articulated description of the spine presented in the
last section is well adapted to the estimation of 3D spine
models from incomplete data since it captures efficiently the
variability of the spine’s shape (with the inter-vertebral rigid
transformations) and of the local anatomy of the vertebrae
(with local anatomical landmarks). In many situations, re-
searchers and clinicians are confronted with incomplete 3D
spine models. Anatomical landmarks not digitized because of
a lack of resources, anatomical landmarks hidden by surgical
instrumentation, or vertebrae located outside the radiographs’
field of view are just a few examples.

The proposed approach is to estimate the most likely
articulated description of the spine that matches available 3D
measurements. This is achieved by minimizing the Maha-
lanobis distance of the estimated model in the tangent plane of
the mean articulated description. The minimization, however,
has to be constrained so that known vertebrae’s positions,
orientations, and shapes match available 3D measures.

T̄5 ◦ δ5

T̄4 ◦ δ4

T̄6 ◦ δ6

T̄3 ◦ δ3

T̄2 ◦ δ2

T̄1 ◦ δ1

T̄0 ◦ δ0

Fig. 2. Combination of the mean inter-vertebral rigid transformations T̄i and
the departures δi to produce actual inter-vertebral rigid transformations on a
partial spine model (semi-transparent vertebrae are assumed to be missing).

1) Rigid Constraints: The articulated models presented in
the last section are based on relative rigid transformations
and local anatomical landmarks. Partial spine models, how-
ever, provide us with information in absolute coordinates.
Additional precautions must therefore be taken to ensure
that the estimated model preserves the absolute poses of
known vertebrae. An elegant solution is to use constrained
optimization.

Finding the most likely articulated spine description given
a partial model can be performed by solving the following
constrained optimization problem:

S̃ = arg min
S

SΣ−1ST (3)

Subject to:
T̃ absolute

i = T absolute
i−1 ◦ T̄i ◦ δi ∀i ∈ K (4)

p̃i,j = pi,j ∀ (i, j) ∈ L, (5)

where T̃ absolute
i are known vertebrae’ absolute poses, p̃i,j

are known anatomical landmarks, K is the set of all known
vertebrae, and L is the set of known landmarks.

It is important to stress that T absolute
i depends on

δ0, δ1, . . . , δi, which are variables that must be estimated. For
example, Figure 2 depicts a situation in which K = {0, 2, 3, 6}
(unknown vertebrae are semi-transparent). In this case, the
constraints on vertebrae poses are:

T̃ absolute
0 = T̄0 ◦ δ0

T̃ absolute
2 = T̄0 ◦ δ0 ◦ T̄1 ◦ δ1 ◦ T̄2 ◦ δ2

T̃ absolute
3 = T̄0 ◦ δ0 ◦ T̄1 ◦ δ1 ◦ T̄2 ◦ δ2 ◦ T̄3 ◦ δ3

T̃ absolute
6 = T̄0 ◦ δ0 ◦ T̄1 ◦ δ1 ◦ T̄2 ◦ δ2 ◦ T̄3 ◦ δ3 ◦

T̄4 ◦ δ4 ◦ T̄5 ◦ δ5 ◦ T̄6 ◦ δ6

The number of degrees of freedom varies based on the
number of local anatomical landmarks used, the number of
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vertebrae considered, and the number of constraints. Typically,
the number of degrees of freedom ranges between 350 and
700. Analytical derivatives of the cost function and of the con-
straints can therefore substantially decrease the computational
requirements of the optimization process.

The cost function (Equation 3) and the constraints presented
in Equation 5 are simple to differentiate since they are linear
or quadratic functions of S. However, the constraints that
preserve the absolute poses of known vertebrae (introduced in
Equation 4) involve the multiple compositions of rigid trans-
formations, which are non-linear functions over the rotation
and translation vectors.

By using the definition of T abs
i and the chain rule, the

derivative of Eq. 4 with respect to the jth inter-vertebral rigid
transformation can be expressed by:

∂

∂δj
T abs

i−1 ◦ µi ◦ δi =
∂

∂δj
T abs

i =
∂

∂T abs
j

T abs
i

∂

∂δj
T abs

j (6)

with:

∂

∂T abs
j

T abs
i =

∂

∂T abs
i−1

T abs
i

∂

∂T abs
i−2

T abs
i−1 . . .

∂

∂T abs
j

T abs
j+1 (7)

These equations are valid only if j < i, otherwise T abs
i does

not depend on δj , and the derivative is zero. The intermediate
values of Equation 7 can be reused in the computations of the
derivatives of multiple constraints.

The derivatives contained in Equations 6 and 7 are the
derivatives of the composition of two rigid transformations
with respect to one of the two transformations. From the
definition of the composition of two rigid transformations, the
derivatives of T2 ◦ T1 can be expressed as follows:

∂

∂T2
T2 ◦ T1 =

[ ∂
∂r2

r1 ◦ r2 0
∂

∂r2
r2 ? t1 I3

]
,

∂

∂T1
T2 ◦ T1 =

[
∂

∂r1
r1 ◦ r2 0
0 R2

]
.

The symbols r1, r2, represent the rotation vectors associated
with the rigid transformations T1 and T2. Moreover, t1 is
the translation vector associated with the rigid transformation
T1, R2 is the rotation matrix equivalent to r2 and I3 is a
3x3 identity matrix. The values of ∂

∂r1
r1 ◦ r2, ∂

∂r2
r1 ◦ r2

and ∂
∂r2

r2 ? t1 can be obtained using the Rodrigues formula
or using unit quaternions as an intermediary representation.
Detailed descriptions of those computations, as well as linear
developments around numerical instabilities, can be found in
Pennec and Thirion [19].

2) Optimization Method and Initialization: The minimiza-
tion problem presented in Equations 4 and 5 can be solved
using standard constrained optimization methods. The method
selected for the experiments presented in this paper is sequen-
tial quadratic programming [21]. This method was selected
because the cost function is quadratic and the constraints
are close to linear constraints in most solutions. Sequen-
tial quadratic programming is a generalization of Newton’s
method for unconstrained optimization that iteratively solves

a quadratic model of the problem with linear approximations
of the constraints. Like Newton’s method, it is a local op-
timization method, and it is subject to entrapments in local
minima.

A good starting point is thus necessary. Preliminary experi-
ments have shown that the most critical characteristic of a good
starting point is the satisfaction of the constraints introduced
in Equations 4 and 5. A simple method to obtain such
initial estimates is to subdivide the difference of orientation
and position between two known vertebrae into equal rigid
transformations. More precisely, the initial estimates ∆t of
the inter-vertebral rigid transformations located between two
known vertebrae (with index j and k) needs to satisfy:

(∆t)k−j =
(
T abs

j

)−1
T abs

k ,

where rigid transformations are expressed as 4x4 transfor-
mation matrices.

The initial estimates can thus be computed using the fol-
lowing equation:

∆t = exp

(
log(

(
T abs

j

)−1
T abs

k )
k − j

)
,

where exp and log represent respectively the matrix expo-
nential and the logarithm of a matrix.

B. Articulated Spine Model Reconstruction from Radio-
graph(s)

We now introduce a new general 3D reconstruction method
that let researchers (or clinicians) extract 3D spine models
from landmarks on any number of radiographs. The key
difference with current methods is that a prior knowledge of
the spine shape encoded by a statistical articulated model of
the spine is used. This permits us to restrain the search for a 3D
spine model that fits the measurements made on radiographs
to anatomically plausible configurations.

Let pi,j,k
2D be the image coordinates of an anatomical land-

mark identified in a radiograph. The index i associates a
landmark with a vertebra. The index j indicates the position of
the anatomical landmark within the set of landmarks used for
the ith vertebra. Finally, k denotes the index of the radiograph
on which the coordinates were measured. Now let I be the set
of all anatomical landmarks identified on radiographs. More
formally, we have:

I = {pi,j,k
2D |0 ≤ i < n, 0 ≤ j < m, 0 ≤ k < o}, (8)

where n is the number of vertebrae considered, m the num-
ber of anatomical landmarks by vertebra, and o the number of
radiographs used.

A simple but effective way to combine the similarity be-
tween I and S with prior knowledge of possible spine shapes
is to sum the Mahalanobis distance and the quadratic error on
the anatomical landmarks. The following equation summarizes
this operation:

C(S, I) = SΣ−1ST +α

n∑
i=0

m∑
j=0

o∑
k=0

‖pi,j,k
2D (S)−p̂i,j,k

2D ‖2, (9)
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where α is the relative weight of the landmark error with
respect to the prior spine shape knowledge.

If one assumes that S follows a normal distribution, then
the cost function C(S, I) leads to a maximum a posteriori
estimation. This assumption is generally justified since the
Ricci curvature of manifold to which S belongs is inconse-
quential, given the level of dispersion of the inter-vertebral
rigid transformations.

The image coordinates of the anatomical landmarks
pi,j,k
2D (S) are computed by first computing the absolute 3D

coordinates of all given anatomical landmarks. This is done by
composing the inter-vertebral rigid transformations to obtain
the absolute pose of the vertebrae and then by applying
the associated rigid transformation to the local anatomical
landmark.

[Xabs, Yabs, Zabs]
T = T̄0 ◦δ0 ◦ T̄1 ◦δ1 ◦ . . .◦ T̄i ◦δi ∗pi,j

3D (10)

Then the 3D absolute coordinates of the anatomical land-
mark can be projected on the radiograph image plane by a
simple linear transformation in homogenous coordinates.

[x, y, z]T = M [Xabs, Yabs, Zabs, 1]T

p2D = [x/z y/z]T (11)

This linear projection model assumes that the measured co-
ordinates p̂i,j,k

2D were already corrected for geometric distortion
(if necessary). The projection matrix M is computed from a
calibration object visible on the radiographs using a linear
method [6].

The cost function presented in Equation 9 can be analyt-
ically differentiated using the equations introduced in Sec-
tion III-A1 to differentiate rigid constraints. These analytical
derivatives lead to significant improvements in computational
requirements in comparison to numerical derivatives because
of the scale of the optimization problem. The Mahalanobis
distance regularizes the cost function and reduces the number
of local minima. Theoretically, there is no guarantee that the
optimization will not be trapped by a local minimum. One
could choose a robust optimization method, such as simulated
annealing, because of the local minima. In practice, however,
a simple gradient descent procedure was sufficient.

The proposed method has only one free parameter, α, which
controls the relative weight of the Mahalanobis distance and
the re-projection error. If one assumes identical independent
normal distributions for the landmark localization errors and a
normal distribution for the articulated description of the spine,
then the optimal value would be α = 1

σ2
pix

(where σ2
pix is the

variance of the landmark localization errors). Unfortunately,
the distribution of the noise is rarely known and the actual
value of α has to be adjusted manually (α = 1

σ2
pixels

can
however be used as an initial guess).

IV. EXPERIMENTS AND RESULTS

The validation of anatomical model estimation methods is
challenging since two important but contradicting factors must
be managed. First, the ground truth against which the results

are compared must be as accurate and precise as possible.
Second, the realism of the experiments is also very important.
Realism is even more important when the estimation method
relies on statistical models of the anatomy, since those models
are sensitive to posture and pathologies.

Simulation studies can be appealing since the ground truth
is known with absolute certainty. Such studies are very useful
to investigate intrinsic limitations of the method and to test the
sensitivity of the method to different error sources. However,
the realism of simulation studies is limited since it is not
possible to take into account all error sources.

Highly accurate, three-dimensional measures of the spine
(sub-millimeter accuracy) cannot generally be achieved on
living patients, and the shape of spine phantoms are unlikely
to follow the same statistical distribution as the spines of
living patients, because ligaments, discs, joint capsules and
neuromuscular tonus may influence the 3D-shape of the spine.
Moreover, the patients’ postures have to mirror closely the
posture used in real clinical applications because two postures
(e.g., standing up and lying down) will be associated with two
different statistical distributions.

The de-facto standard in three-dimensional evaluation of
scoliosis is stereo-radiography. It can be performed on living
patients and its accuracy is more than adequate for a wide
variety of applications (diagnostic, surgical planning, braces
design, biomechanics research, etc.).

The validation of the proposed method was thus conducted
using a group of 291 patients from the Sainte-Justine Hospi-
tal (Montreal, Canada) diagnosed with adolescent idiopathic
scoliosis (AIS). The mean age of the patients was 13.5
years old (with a standard deviation 1.8 years) and 89 %
were females (AIS mainly afflicts young adolescent women).
These patients were selected because they had a stereo-
radiographic examination where a standardized posture and
imaging protocol were used. Vertebrae from L5 to T1 were
digitized using six anatomical landmarks. For each experiment,
5
6 (242) of the patients were randomly selected to compute
the statistical distribution of articulated spine description. The
remaining 1

6 (49 patients) was then used to compute articulated
spine description using the proposed methods. In other words,
no patient was ever used both for the estimation of the
statistical distribution of the articulated spine descriptions
and for validation. Leave-one-out cross-validation could be
used to increase the number of patients used to estimate the
mean and covariance. However, the distribution estimation and
validation sets are large enough for practical purposes and the
computational requirements of cross-validation outweigh its
benefits in our application. The errors were always measured
in absolute coordinates (with respect to a global frame of
reference).

A. Estimation from Partial 3D Spine Models

The estimation of complete 3D spine models from partial
models can be influenced by two important factors: the dis-
tribution of the missing vertebrae in the input partial model
and the sensitivity of the method to the accuracy of the known
vertebral shapes.
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Fig. 3. Error on the estimated vertebrae with respect to the number
of vertebrae missing (uniformly distributed along the spine). The largest
gap between two known vertebrae for each considered missing vertebrae
configuration is also provided on top of the graph.

1) Distribution of the Missing Vertebrae: The number of
possible configurations for the placement of missing vertebrae
is too large to test every possibility. However, it is possible
to select a smaller number of representative configurations
for validation purposes. In this case, we chose to study
configurations with one to fourteen missing vertebrae that are
evenly spread across the spinal column.

The 49 randomly selected 3D spine models were thus
successively altered to remove a given number of vertebrae.
Then, the missing vertebrae were estimated using the method
presented in section III-A. The resulting complete 3D spine
models were compared to the original reconstructions. The
obtained error with respect to the number of missing vertebrae
is presented in Figure 3.

The mean difference range from 0.8mm with a single
missing vertebrae to 3.25mm with fourteen missing vertebrae
(out of seventeen vertebrae). The 95th percentile of the error
follows a curve similar to the mean error but ranges from
1.5mm to 7.5mm. The error appears to be linearly dependent
on the number of missing vertebrae until the proportion of
missing vertebrae reaches about 75 % ; the performances de-
graded more rapidly after this point. This behavior is explained
by the fact that the shapes and poses of the vertebrae are
statistically related, thus a complete 3D spine model implicitly
contains redundancies. These redundancies are used to rebuild
a complete model when parts are missing. However, if the
proportion of missing vertebrae is too great, then redundancy
cannot counterbalance the missing data, which leads to a
precipitous increase in the reconstruction error.

2) 3D Error Effect: An important concern with the esti-
mation from partial models is whether errors on the partial
models result in dramatic errors on the estimated vertebrae.
In order to test the effect of errors in input data on the
proposed method, we added artificially generated noise to
the partial models before using them to estimate complete
models. Artificially generated noise was added to the absolute
landmarks coordinates. Standard deviations from 0 to 5 mm
with 0.5 mm increments were tested. In this experiment, one
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Fig. 4. Effect of simulated noise applied to known 3D coordinates on the
estimated vertebrae.

out of two vertebrae starting from L5 were present in the
partial model.

The results of this experiment are summarized in Figure
4. The mean error without noise was about 1 mm (same
as Figure 3) and progressed linearly to 3.5 mm, when the
standard deviation of the noise was 5 mm. This shows that
the proposed method is tolerant of variations in input data.

B. Reconstruction from Radiograph(s)

We first compared the sensitivity to identification errors of
the proposed method and of the standard linear triangulation
algorithm used in previous 3D reconstruction methods [7]. In
order to do so, the same 49 randomly selected 3D spine models
were projected using known projection matrices and artificially
generated noise was added to the obtained pixel coordinates.
The projection matrices emulate a posterior-anterior and a
lateral radiograph, which is the most common acquisition setup
used in spinal deformity studies.

The resulting 2D coordinates were then used to reconstruct
the 3D spine models. The mean differences between the orig-
inal 3D models and the reconstructed models are illustrated
by Figure 5. It can be observed that the proposed method is
associated with smaller errors when the standard deviation of
the noise is greater than 1 pixel and that the errors associated
to both methods are similar when the noise standard deviation
is less than 1 pixel.

We also used the same number of randomly selected patients
to reconstruct 3D spine models from raw landmark coordinates
recorded from radiographs (posterior-anterior and lateral) by
a qualified technician. We compared the 3D spine models
obtained using the proposed method to the 3D spine models
obtained with the conventional stereo-radiographic method
[7] and the mean difference between the reconstructions was
1.1mm.

V. DISCUSSION

A. Estimation from Partial 3D Spine Models

The proposed method takes advantage of a strong prior
knowledge of the inter-vertebral rigid transformations. This
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Fig. 5. Simulation of the noise effect on the 3D reconstruction of spine
models from two radiographs (a lateral and a posterior-anterior) using the
proposed method (articulated reconstruction) and using triangulation.

prior knowledge has to be completed by constraints on abso-
lute positions and orientations. Otherwise, the accumulation
of small errors on relative inter-vertebral estimations would
result in an articulated spine description inconsistent with the
known absolute coordinates of the vertebrae.

This combination of strong prior knowledge and constraints
resulted in a method that was resistant to a reasonable amount
of noise on the known vertebrae, as suggested by the experi-
mental results presented in Figure 4. Thus, the method is likely
to withstand the noise present in clinical data without dramatic
failures.

The accuracy of the method with respect to the number of
missing vertebrae is also very interesting (results illustrated by
Figure 3). The difference between the estimated landmarks and
the coordinates measured from stereo-radiography is below
the accuracy of the stereo-radiographic reconstruction method
when less than 13 vertebrae are unknown. We cannot conclude
that the estimated landmarks are more accurate than the stereo-
radiographically reconstructed landmarks in those cases, since
we lack a more accurate (and realistic) ground truth. However,
we can conclude that the accuracy of the estimated landmarks
is close to the accuracy of a conventional stereo-radiographic
reconstruction method when more than 25% of the vertebrae
are available and uniformly spread along the spine.

These results were obtained with uniformly distributed
missing vertebrae. In the case of different distributions, the
disposition of the missing vertebrae might be even more
important than their number. Thus, if one is not interested
in uniformly distributed missing vertebrae, then the Figure 3
should be considered with caution. The largest gap between
two known vertebrae might provide more guidance and enable
a more conservative estimation of the expected reconstruction
error. In any case, the results presented in Figure 3 show that
gaps of different sizes and positioned in different locations can
be successfully filled. Thus, we are confident that the proposed
method can be used with a large variety of missing vertebrae
dispositions.

From a practical perspective, the obtained results indicate
that the method can be used to fill the small gaps that are
the result of radiographic artifacts or surgical instrumentation.

These results also demonstrate that it would be possible to use
this method to digitize complete models from a small number
of vertebrae, thus saving physicians and researchers a lot of
time and money. The resulting complete spine models can be
used in applications such as: diagnostic, surgical planning, and
biomedical research.

Statistical studies based on the resulting complete models
should, however, be undertaken with caution. The variability
of the resulting models is likely to underestimate the true
variability of the shapes of patients’ spines since their esti-
mation is not based on actual measurements for all vertebrae.
This underestimation, if uncorrected, could bias statistical
hypothesis tests (see [22] for more details).

B. Estimation from 2D Landmarks

Reconstruction of articulated descriptions from radiographs
serves a different purpose than the estimation of complete
models from partial ones. The latter is a general procedure to
complete a 3D spine model regardless of imaging source used
to build this partial model. The reconstruction of articulated
spine descriptions from radiographs specializes in cases where
projections of the anatomy are available.

The overall mean difference when two radiographs were
used is 1.1mm (with real data). This difference is too close to
the precision of the stereo-radiographic method [8] used for
comparison to make strong claims about it. Furthermore, both
stereo-radiographic reconstruction and the proposed method
share the same calibration procedure, thus the errors of both
methods are not independent. However, the calibration is per-
formed using two grids of lead pellets, which can be accurately
and precisely identified on radiographs. The anatomical land-
marks are much more difficult to identify reliably. Landmarks
identification is thus probably a greater source of error than
the calibration process. Synthetic results (presented in Figure
5 ) indicate that the proposed method might be more accurate
than the stereo-radiographic method currently used.

C. General Remarks

Articulated models of the spine are very versatile. They
could be used to solve 3D reconstruction problems in many
clinical applications with different constraints. We presented
in this paper the most common and most important situations
related to spinal deformities studies. However, there are other
possibilities.

For example, we studied the case of missing vertebrae
in section III-A but the method could be extended to also
accommodate missing anatomical landmarks. Moreover, some
anatomical landmarks are easy to identify on posterior-anterior
radiographs, but are difficult to locate on lateral radiographs
since ribs and lungs often hide parts of the thoracic vertebrae.
This situation could be handled by the proposed method by
allowing some anatomical landmarks to be reconstructed from
one view and other from two views.

The reconstruction based on radiographs is not limited to
the case in which a posterior-anterior and a lateral radiograph
are available. The same method could be used with a different
pair of radiographs or with a single radiograph. This could be
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especially useful in clinical tests where it is difficult to acquire
more than one radiograph (for example, during bending tests).

The accuracy will however always be function of the quality
and completeness of the input data. For instance, a reconstruc-
tion based on a single radiograph will be associated with an
important error along the projection axis of the radiograph
since no information is provided by the radiograph along that
axis.

Clinical applications often depend on indices computed
from 3D reconstructions. These indices can be local measures
such as the shifts between adjacent vertebrae, or global mea-
sures such as the Cobb angle. The effect of the reconstruction
errors on those clinical indices is not always linear and will
therefore have to be quantitatively evaluated in the future.
The proposed methods should yield acceptable results since
they implicitly smooth the 3D reconstructions, which reduce
the effect of noise. For comparable reconstruction errors, the
proposed methods should be associated with equal or better
estimates of the clinical indices than conventional reconstruc-
tion methods. However, for cases in which a large portion
of information is missing, the resulting 3D spine models will
be biased toward the mean. This situation might trend toward
an unacceptable bias in some clinical indices (for example, if
one wants to compute the lateral Cobb angle when only one
posterior-anterior radiograph is available).

VI. FUTURE WORK AND CONCLUSION

In this paper, we proposed methods to estimate 3D models
based on an articulated description of the spine. A statisti-
cal model of the spine was proposed and used to leverage
the implicit redundancy contained in three-dimensional spine
models. This statistical model enabled us to reconstruct 3D
models of the spine in cases where conventional methods could
not be applied because of missing information.

The articulated description used includes inter-vertebral
rigid transformations as well as 3D positions of anatomical
landmarks measured with respect to vertebrae’s local frame of
reference. This description naturally captures the deformations
of the spine shape, which are described by rigid transforma-
tions between adjacent vertebrae, and the variability of verte-
brae’s anatomy, which is characterized by landmark positions.
Two different reconstruction problems were discussed.

First, the reconstruction of complete 3D spine models from
partial 3D models was considered. These reconstructions were
performed by minimizing the Mahalanobis distance of the
estimated articulated spine model while constraining the ab-
solute positions, orientations, and shapes of known vertebrae.
The anatomical landmark estimates obtained by using partial
models were within 1 mm of measured values if at least 50%
of the vertebrae were available in the initial partial model.
Moreover, the estimates were within 2 mm of measured values
(i.e. equivalent to the conventional method with complete
models) if at least 25% of the vertebrae were available.

The second reconstruction problem is the estimation of 3D
spine models from radiographs. Three-dimensional reconstruc-
tion of the spine from two or more radiographs can be solved
by using calibration and triangulation methods borrowed from

the computer vision field. The proposed statistical shape model
enables more accurate 3D reconstructions and is very flexible
since it could be applied in spite of missing landmarks or
missing vertebrae.

The proposed methods could be used in a large number of
clinical applications, such as diagnosing problems, follow up,
and surgical planning. More importantly, three-dimensional
reconstructions of the spine will be available in situations
where they were formerly impossible to compute.

The ideas discussed in this paper could be integrated in
an automated or semi-automated reconstruction system. This
could be accomplished by using an automated method for the
detection of landmarks, such as the one previously proposed
by Deschênes et al. [23]. Another possible approach would
be to integrate an image-based metric, but the main challenge
of this approach would be to efficiently generate simulated
radiographs from articulated spine descriptions and to compare
those with actual radiographs.

Registration of soft-tissues surrounding rigid structures by
combining multiple rigid transformations, using methods sim-
ilar to the method previously proposed by Little et al. [24] or
to the more recent method proposed by Arsigny et al. [25],
will also be considered in the future. Registration of structures
such as the spinal cord and the inter-vertebral discs could be
greatly improved with applications ranging from the correction
of spinal deformities to epidural injections of steroids in the
treatment of back pain.

Finally, although the proposed methods are extraordinarily
well suited for research on spinal deformities, they could also
be applied to any other anatomical structures that can be
divided into multiple parts. The added value of the articulated
description will depend on the strength of the statistical
relationships that exist between the positions, orientations
and shapes of the individual parts. Articulations are ideal
candidates, but statistical relationships also exist between the
positions, orientations and shapes of softer structures.
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