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Abstract. Non-linear image registration is a standard approach to track
soft tissues in medical images. By estimating spatial transformations be-
tween images, visible structures can be followed over time. For clinical ap-
plications the model of transformation must be consistent with the prop-
erties of the biological tissue, such as incompressibility. LogDemons is a
fast non-linear registration algorithm that provides diffusion-like diffeo-
morphic transformations parameterised by stationary velocity fields. Yet,
its use for tissue tracking has been limited because of the ad-hoc Gaussian
regularisation that prevents implementing other transformation models.
In this paper, we propose a mathematical formulation of demons regular-
isation that fits into LogDemons framework. This formulation enables to
ensure volume-preserving deformations by minimising the energy func-
tional directly under the linear divergence-free constraint, yielding little
computational overhead. Tests on synthetic incompressible fields showed
that our approach outperforms the original logDemons in terms of incom-
pressible deformation recovery. The algorithm showed promising results
on one patient for the automatic recovery of myocardium strain from
cardiac anatomical and 3D tagged MRI.

1 Introduction

Tissue tracking in sequences of medical images is an important task in many
applications, either for therapy guidance or diagnosis. However there is no easy
way to achieve it, even interactively. A standard approach is now to use non-
linear image registration to estimate the spatial transformation between different
images, for instance brain shift [7]. However, for such clinical applications one-
to-one mapping must often be ensured and the model of transformations that is
used must be consistent with the properties of the tissue to track. In particular,
constraining the registration to be volume-preserving showed great improvement
when tracking incompressible tissues such as the heart [3, 9].

Mathematical frameworks based on diffeomorphic deformations [2, 4] have
been developed to get one-to-one mappings between the images to register.
Among them, logDemons [14] is an efficient demons-based registration algorithm
that provides diffeomorphic transformations parameterised by stationary veloc-
ity fields. However, although mathematical justifications of demons optimisation



have been provided [14], theoretical foundations of the Gaussian regularisation
still has to be consolidated [11], which makes the algorithm difficult to adapt to
other deformation models.

Several approaches for incompressible image registration have been proposed.
A first method is to constrain the Jacobian determinant of the transformations to
equal 1. However, this constraint is computationally demanding due to its non-
linearity [12]. Linear approximations have been proposed [3] but volume drifts
may appear at large deformations. Velocity fields can be made incompressible by
constraining them to be divergence-free. Thus, incompressible fluid registration
is achieved by projecting the update velocity onto the space of divergence-free
vector fields [13]. Nevertheless, the fluid model might not be appropriate for
tracking biological soft tissues like myocardium. In [9], we proposed an incom-
pressible demons algorithm where the update velocity field was made divergence-
free using Helmholtz decomposition. However, the approach was suboptimal as
the constraint did not consider demons Gauss-Newton minimisation space. Fur-
thermore, volume drifts were controlled using the linear approximation of the
condition on deformations, which does not hold on large deformations.

This paper presents an efficient and consistent framework for demons-based
incompressible registration. We first propose a mathematical justification of the
Gaussian regularisation, which enables to integrate the incompressibility con-
straint seamlessly by working on the space of divergence-free velocity fields. The
main advantages of this are: i) the constraint is linear with little computational
overhead, ii) the parameter of the deformations are constrained: no volume drifts
appear, iii) the transformation minimises a constrained energy functional: the
optimal incompressibility field according to the logDemons minimisation scheme
is found. The algorithm was validated against synthetic data and applied on clin-
ical cardiac MRI to estimate 3D myocardium motion.

2 Methods

2.1 Background: Log-Domain Diffeomorphic Demons

LogDemons algorithm estimates a dense non-linear transformation φ that best
aligns a template image T to a reference image R [14]. φ belongs to the space
generated by the one-parameter subgroups of diffeomorphisms G. They are pa-
rameterised by stationary velocity fields v through the exponential map φ =
exp(v) [1]. The images R and T are registered by minimising in the space of
velocities, called log-domain, the energy functional: E(v,vc) = 1/σ2

i ‖R − T ◦
exp(vc)‖2L2

+ 1/σ2
x ‖ log(exp(−v) ◦ exp(vc))‖2L2

+ 1/σ2
d ‖∇v‖2, where σ2

i re-
lates to the noise in the images and σ2

d controls the regularisation strength. This
equation is function of two variables: The velocity field v parameterises the trans-
formation φ to recover whereas vc parameterises an intermediate transformation
φc = exp(vc) that models the correspondences between the voxels of the two im-
ages. During the optimisation step, E(v,vc) is minimised with respect to vc. This
amounts to finding the optimal matching between R and T without considering



the regularisation. Under the diffeomorphic update rule φc ← φ◦exp(δv), the op-
timal update velocity writes δv(x) = −(R(x)−T ◦ φ(x))/(‖J(x)‖2+σ2

i /σ
2
x)J(x).

J(x) is the symmetric gradient J(x) = (∇R(x)+∇(T ◦φ)(x))/2. The correspon-
dence velocity vc is then updated using the first order approximation of Baker-
Campbell-Hausdorff (BCH) formula vc = Z(v, δv) = v + δv + 1/2[v, δv] +
1/12[v, [v, δv]] + O(‖δv‖2), where the Lie bracket [·, ·] is defined by [v, δv] =
(∇v)δv − (∇δv)v. This approach has experimentally shown promising results
in terms of image registration and statistics on diffeomorphisms [4, 14]. Finally,
the regularisation step estimates the optimal regularised transformation φ by
minimising E(v,vc) with respect to v, which is approximated by smoothing the
correspondence velocity vc with a Gaussian kernel Gσ. However, how Gσ relates
to E(v,vc) remains to be consolidated [11].

2.2 Revisiting Demons Gaussian Regularisation

A consistent mathematical formulation of demons regularisation is required to
integrate incompressibility in logDemons. In [10], the authors demonstrate that
Gaussian filtering solves the Tikhonov estimation problem with equal weight-
ing of the spatial derivatives in the Taylor series sense. We thus replace the
logDemons regulariser ‖∇v‖2 by the Tikhonov regulariser to get:

Ereg(v) =
1
σ2
x

‖ log(exp(−v) ◦ exp(vc))‖2L2
+
∫
Ω

+∞∑
k=1

( ∑
i1+...+ik=k

‖∂i1..ikv‖2

σ2
xσ

2k
d k!

)

In this equation, Ω is the image domain and ∂ik..il denotes the composition of
spatial derivatives ∂ik ..∂il . The parameter σ2

x has been introduced into the reg-
ulariser to simplify calculations. More importantly, the regularisation weight σ2

d

is now function of the derivative orders to preserve the shape of the impulse
response related to the regulariser [10]. The previous equation is minimised by
linearising its first term using the zeroth order approximation of BCH formula,
log(φ−1 ◦ φc) = vc−v. The resulting equation, which is exactly a Tikhonov esti-
mation problem, is minimised in the Fourier domain. The optimal velocity field
v verifies

∑∞
k=0(wTw)k/(σ2k

d k!)v̂(w) = exp(wTw/σ2
d) v̂(w) = v̂c(w), which is

exactly demons Gaussian smoothing Gσ, with σ2 = 2/σ2
d. The width of the

Gaussian kernel corresponds to the strength of the regularisation.
This formulation is built up on two key elements. First, the correspondence

field φc decouples the regularisation from the optimisation, making the minimi-
sation of the registration energy independent of the optimisation. Second, the
coupling term ‖ log(φ−1 ◦ φc)‖2 is approximated as a least-square problem to
get the Gaussian smoothing. These two elements must be ensured in any demons
algorithm to justify the Gaussian regularisation.

2.3 Incompressible LogDemons

The proposed regulariser enables to integrate the incompressibility constraint
into the algorithm. A transformation φ is locally incompressible if its Jacobian



determinant det(∇φ) = 1. In fluid dynamics, one uses the infinitesimal ver-
sion: a fluid is said incompressible if the divergence of its velocity v is null. For
diffeomorphic transformations one can show that the converse is true: integrat-
ing divergence-free velocities over time yields incompressible deformations [6].
Making LogDemons incompressible thus consists in constraining the velocity
fields v to be divergence-free. Demons optimisation step is not modified, as it
optimises vc only, but demons regularisation energy is now optimised under the
divergence-free constraint, which amounts to minimising the Lagrange function:

P(v, p) =
1
σ2
x

‖vc − v‖2L2
+

+∞∑
k=1

( ∑
i1+...+ik=k

‖∂i1..ikv‖2

σ2
xσ

2k
d k!

)
− 2
σ2
x

∫
Ω

p ∇ · v (1)

In this equation, the Lagrange multiplier p is a scalar function of the Sobolev
space H1

0 (Ω) that vanishes at infinity. Optima of (1) are found by solving
∂vP(v, p) = 0:

v +
∞∑
k=1

(−1)k

σ2k
d k!

∆kv = vc −∇p (2)

with p = 0 at the domain boundaries ∂Ω. The divergence of (2) under the optimal
condition ∇ · v = 0 yields ∆p = ∇ · vc with 0-Dirichlet boundary conditions,
which can be solved independently of v to get p. g = vc − ∇p is thus the L2

projection of vc onto the space of divergence-free vector fields. From Sec. 2.2,
we deduce the optimal incompressible velocity field: v← Gσ ? g.

Particular care must be taken when incompressibility is required within a
subdomain Γ ⊂ Ω only, for tracking localised incompressible organs like the
heart. This is achieved by defining p ∈ H1

0 (Γ ), p = 0 on Ω/Γ . Although Gaus-
sian smoothing theoretically preserves the divergence, in practice unconstrained
velocities close to Γ boundaries (∂Γ ) may leak inside the incompressible do-
main due to the Gaussian convolution, ultimately resulting in volume drifts.
Yet, vector derivatives and well-designed Gaussian filters, like Deriche recur-
sive filters, commute. We therefore replace the theoretical “project-and-smooth”
strategy by a “smooth-and-project” approach that preserves divergence. To limit
numerical instabilities, a smooth domain transition is implemented in a nar-
row band around Γ by diffusing the pressure field p using heat-transfer equa-
tion [6]. Algorithm 1 summarises the main steps of our method, henceforth
termed iLogDemons, which was implemented using ITK [5] and PETSc.

3 Experiments and Results

3.1 Experiments on Synthetic Datasets

iLogDemons were tested on synthetic datasets with known ground truth. Eight
3D volume-preserving whirl transformations φα were created with whirl an-
gles α = 10◦ to 80◦ [13]. Within the whirl domain, the L2-norm varied from
0.52mm to 4.78mm while the Jacobian determinant stayed close to 1 (worse



Algorithm 1 iLogDemons: Incompressible LogDemons Registration
Require: Initial stationary velocity field v0. Usually v0 = 0 (i.e. φ0 = Id).
1: loop {over n until convergence}
2: Compute update velocity δvn, given vn−1.
3: Fluid-like regularisation: δvn ← Gσf ? δv

n.

4: Update the correspondence velocity: vn ← Z(vn−1, δvn).
5: Diffusion-like regularisation: vn ← Gσ ? vn.
6: Solve: ∆p = ∇ · vn, p = 0 on the incompressible domain boundaries.
7: Project the velocity field: vn ← vn −∇p.
8: return v, φ = exp(v) and φ−1 = exp(−v).

value |∇φα=80◦ | = 1 ± 0.04 (mean ± standard deviation SD)). A 3D isotropic
Steady-State Free Precession (SSFP) MRI of the heart, cropped to focus on the
heart, was warped with the φα’s and altered with slight Gaussian noise (Fig. 1).

The 8 warped images T were registered to the test image R using LogDemons
and iLogDemons (σx = 1mm, σ2 = 1mm and σ2

f = 1mm). Relative mean
square errors in grey level intensities (RMSE = ‖R − T ◦ φ‖L2/‖R − T‖L2),
Jacobian determinant and distance to the true field φα (DTF = ‖φ − φα‖L2)
are reported in Fig. 1. Deformation fields estimated by iLogDemons were almost
incompressible. Jacobian determinants were always equal to 1 ± 0.02 indepen-
dently of the strength of the deformation to recover. Image matching accuracy
was not affected by the incompressibility constraint (0.6% decrease). But most
importantly, iLogDemons significantly improved the accuracy of the deforma-
tions. Mean and SD of DTF were systematically lower (average improvements of
29% and 36% respectively). The larger the deformation, the more significant the
improvement. This points out the importance of the choice of the deformation
model. Regions with homogeneous grey levels provided little information to ac-
curately estimate the underlying deformation (Fig. 1, yellow arrow). The incom-
pressibility constraint coped with this limitation by ensuring that the estimated
deformation was of the same type as the true field. Similar conclusions were
drawn on experiments with other parameters (σx = 2, σ2 = 2, σ2

f = {0.5, 2}).

3.2 Application to Cardiac Deformation Recovery

iLogDemons were then used to estimate the 3D left-ventricular myocardium
strain from standard anatomical cine MRI of the heart. Such images have good
in-plane and temporal resolutions but large slice thickness, which hampers the
accurate estimation of cardiac through-plane motion (Fig. 2). As the volume of
the heart is almost constant during the cardiac cycle, incompressible registration
is believed to improve the estimation of the cardiac deformation.

Anatomical short axis cine SSFP MRI (cMRI) of a patient with heart failure
were acquired with multiple breath-holds (Achieva, Philips Medical System, 30
frames, 1.5mm2 isotropic in-plane resolution, 10mm slice thickness). 3D tagged
MRI (tMRI) were also acquired during the same exam (CSPAMM, 23 frames,
0.9mm isotropic resolution, tag size≈ 3mm). No manual tracking of the tag grids
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Fig. 1. Top row : Results on images warped by 3D synthetic volume-preserving whirls
with increasing whirl angle. Bottom row : Streamlines of true and estimated whirl de-
formations (whirl angle α = 60◦). iLogDemons provided incompressible deformations
and outperformed LogDemons in terms of deformation field accuracy (yellow arrow).

was available since this task is extremely difficult due to the 3D motion. All the
images fully covered both ventricles and no slice misalignments were detected.
The cMRI were linearly resampled to get isotropic voxel sizes. The tMRI were
spatially and temporally aligned to the cMRI using DICOM information. Be-
cause the transformations provided by demons algorithm are resampling fields,
myocardium deformation was estimated by recursively registering all the frames
of the cardiac sequence to the end-diastole (ED) time frame, as in [9]. Registra-
tion parameters were σx = 1mm, σ2 = 2mm, σ2

f = 0.5mm (the smoothing was
increased to accommodate the lower image quality). A 2-level multi-resolution
scheme was used and registration was stopped as soon as RMSE stopped de-
creasing. Incompressibility constraint was applied only within the myocardium
as volume of surrounding structures like blood pools vary.

First, we estimated the myocardium motion by tracking the heart in the 3D
tMRI using iLogDemons. For visual assessment, the deformations were applied
to virtual planes manually positioned at ED (Fig. 2, bottom panel). Realistic
deformations consistent with the tag grids were obtained, which was further con-
firmed by the temporal variation of the radial, circumferiential and longitudinal
myocardium strains (Fig. 2, green curve). These results were similar to those ob-
tained with logDemons, as the tag grids provided enough texture information in
the myocardium to guide the registration. Hence, as no ground truth was avail-
able, we considered the iLogDemons estimation as reference. We then estimated
the 3D motion of the heart from the cMRI and compared the results with the
reference tMRI motion (Fig. 2, blue and red curves). Visually, the warped virtual
planes showed that incompressibility constraint did help to recover the longitudi-
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Fig. 2. Top panels: Myocardium strains computed from short-axis cine MRI and tMRI.
Mean and standard deviation computed over the entire left ventricle. Bottom pan-
els: Close-up of the tMRI at end-systole with warped tag planes overlaid. iLogDemons
better estimates longitudinal and circumferential motion and strain.

nal motion despite the large slice thickness of the cMRI. Estimated longitudinal
and circumferential strains confirmed this finding. iLogDemons was closer to the
reference than the logDemons (59% of improvement for radial strain, 84% for
circumferential strain and 42% for longitudinal strain). Radial strain amplitude
was more reasonable and the variations of the circumferential and longitudinal
strains presented realistic patterns [15], where logDemons estimated an abnormal
lengthening at the beginning of the cardiac contraction.

4 Discussion and Future Works

We have adapted logDemons algorithm to provide incompressible deformations.
This has been possible by showing that demons Gaussian smoothing minimises
an infinite order Tikhonov regulariser. This framework opens the way to new
regularisers, such as elastic regularisation. As a result, incompressibility could
be ensured by constraining the velocities to be divergence-free. The proposed in-
compressibility constraint does not introduce any new parameter. Those listed in
this paper are present in any recent demons algorithm [14]. One could constrain
the correspondence velocity to find the optimal incompressible update defor-
mation. Yet, non-reported experiments showed that this does not significantly
improve the results compared to iLogDemons: The updates are usually small
and thus near-incompressible. The next step is to modify the demons energy
to automatically handle incompressibility in subdomains of the image. From a



clinical point of view, we are currently validating this method for the automatic
estimation of 3D myocardium strain from standard cardiac images.
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