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Focal cortical dysplasia (FCD) is the most frequent malformation of

cortical development in patients with medically intractable epilepsy. On

MRI, FCD lesions are not easily differentiable from the normal cortex

and defining their spatial extent is challenging. In this paper, we

introduce a method to segment FCD lesions on T1-weighted MRI. It

relies on two successive three-dimensional deformable models, whose

evolutions are based on the level set framework. The first deformable

model is driven by probability maps obtained from three MRI features:

cortical thickness, relative intensity and gradient. These features

correspond to the visual characteristics of FCD and allow discrimi-

nating lesions and normal tissues. In a second stage, the previous result

is expanded towards the underlying and overlying cortical boundaries,

throughout the whole cortical section. The method was quantitatively

evaluated by comparison with manually traced labels in 18 patients

with FCD. The automated segmentations achieved a strong agreement

with the manuals labels, demonstrating the applicability of the method

to assist the delineation of FCD lesions on MRI. This new approach

may become a useful tool for the presurgical evaluation of patients with

intractable epilepsy related to cortical dysplasia.
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Introduction

Malformations of cortical development (MCD) (Barkovich et

al., 2001) have been increasingly recognized as an important cause

of medically intractable focal epilepsy. Focal cortical dysplasia

(FCD) (Taylor et al., 1971), a malformation due to abnormal

neuroglial proliferation, is the most frequent MCD in patients with

intractable extra-temporal epilepsy (Frater et al., 2000; Sisodiya,

2000). Histopathological features of FCD include various degrees

of focal cortical thickening, blurring of the gray matter (GM)–
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white matter (WM) transition, abnormal neuroglial elements in the

underlying WM, and disruption of the normal cortical lamination

(Palmini et al., 2004; Prayson et al., 2002). Epilepsy surgery,

consisting in the resection of the FCD lesion, can be an effective

treatment for these patients. However, the prognosis is less

favorable (Sisodiya, 2000) than in patients with other causes of

intractable epilepsy such as hippocampal sclerosis (Engel, 1996).

Poor outcomes may be due to incomplete resection of the lesion

(Palmini et al., 1991; Sisodiya, 2000).

Magnetic resonance imaging (MRI) plays a pivotal role in the

presurgical evaluation of patients with intractable epilepsy and has

allowed the recognition of FCD in an increased number of cases

(Barkovich and Kuzniecky, 1996). However, the spatial extension

of FCD is difficult to define on MRI as the lesions are often subtle,

not easily differentiable from the normal cortex and with ill-defined

boundaries. The precise delineation of lesions on MRI could lead

to more complete excision and better surgical outcome (Cohen-

Gadol et al., 2004; Sisodiya, 2004).

Recently, we (Bernasconi et al., 2001; Antel et al., 2003; Colliot

et al., 2006) and others (Kassubek et al., 2002; Wilke et al., 2003)

have developed image analysis techniques to detect FCD lesions

automatically on MRI, relying on different types of voxel-wise

analysis. In particular, computational models of FCD character-

istics (Bernasconi et al., 2001; Antel et al., 2002) and a Bayesian

classifier for lesion detection (Antel et al., 2003) were previously

proposed by our group. While these approaches successfully

identify the FCD in a majority of patients, they provide a very

limited coverage of the lesions (about 20%) and cannot be used for

their delineation. To our knowledge, the question of FCD

segmentation has never been addressed.

Three-dimensional (3D) image segmentation techniques have

the potential to provide a reliable and automatic delineation of

FCD lesions on MRI. Deformable models are image processing

algorithms that make a contour or surface (in 3D) evolve from a

starting point, driven by regularization constraints and image data.

This approach has been successfully applied to a wide range of

medical imaging applications (McInerney and Terzopoulos, 1996),

including the reconstruction of the cortex (e.g., Zeng et al., 1999;

MacDonald et al., 2000), the segmentation of various subcortical
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brain structures (e.g., Kelemen et al., 1999; Shen et al., 2002) and

of brain tumors (Ho et al., 2002).

This paper presents a method for segmenting FCD lesions on

T1-weighted MRI, based on two successive deformable models.

The first deformable model is driven by feature maps representing

known characteristics of FCD and aims at separating lesions from

healthy tissues1. The second evolution step expands the result of

the first stage towards the underlying and overlying cortical

boundaries, throughout the whole cortical section, in order to better

cover the full extent of the lesion.
Methods

Subjects and image preparation

Subjects

We studied 24 patients with FCD and partial epilepsy (13

males, mean age T [standard deviation (SD)] = 24 T 8) whose

lesion had been recognized on conventional 3D MRI with multi-

planar reformatting. The Ethics Board of the Montreal Neurolog-

ical Institute and Hospital approved the study, and written informed

consent was obtained from all participants.

MRI acquisition

3D MR images were acquired on a 1.5 T scanner (Philips

Medical Systems, Best, The Netherlands) using a T1-fast field echo

sequence (TR = 18, TE = 10, 1 acquisition average pulse sequence,

flip angle = 30-, matrix size = 256 � 256, FOV = 256, thickness =

1 mm) with an isotropic voxel size of 1 mm3.

Pre-processing

All images underwent automated correction for intensity non-

uniformity and intensity standardization (Sled et al., 1998) which

produces consistent intensities for GM, WM and CSF. They were

automatically registered into a common stereotaxic space (Collins

et al., 1994) and the brain was separated from the outer layers using

the brain extraction tool (BET, Smith, 2002). Classification of

brain tissue in GM, WM and CSF was done using an histogram-

based method with automated threshold (Antel et al., 2002).

Overview of the segmentation method

Our segmentation approach relies on two successive 3D

deformable models. A flowchart of the procedure is presented in

Fig. 1.

The first deformable model, called feature-based deformable

model (FDM), aimed at separating the FCD lesion from the normal

tissues. It was driven by probability maps obtained from three MR

features of FCD. These features were represented using computa-

tional models (Antel et al., 2002) and the probabilities were

estimated on a training set of lesions. To provide a starting point for

the deformable model, we made use of our previously developed

FCD classifier (Antel et al., 2003).

The second deformable model expanded the result obtained

with the FDM towards the inner and outer cortical boundaries,

throughout the whole cortical section. To this purpose, the
1 A preliminary version of this model was presented in a conference

report (Colliot et al., 2005).
deformable model was driven by a smooth vector field, computed

using the gradient vector flow (GVF) method (Xu and Prince,

1998), pointing towards the boundaries of the cortex. We named

this second deformable model ‘‘expansion towards cortical

boundaries’’ (ECB).

Feature-based deformable model

Initialization

The FCD classifier (Antel et al., 2003) was used under

supervision of an expert user to initialize the procedure. The only

user intervention that was needed was to verify the output of the

classifier. In some cases, the output of the classifier can be

composed of several clusters, some of them being located outside

the FCD lesion. In those cases, the user selected the clusters that

co-localized with the lesion which then constituted the starting

point of the FDM. The exact nature of these extra-lesional clusters

is unknown. Diffuse changes have been previously reported in

patients with FCD (Taylor et al., 1971; Prayson et al., 2002;

Colliot et al., 2006) and there is indication that these additional

clusters may represent extra-lesional abnormalities (Antel et al.,

2003). The behavior of the deformable model when seeded with

an extra-lesional cluster would depend on the size of the cluster.

Most likely, small clusters would be shrunk due to the

regularization, large ones would be expanded. However, since

the aim of this paper is to delineate the primary lesion, the

deformable model was initialized with clusters co-localizing with

the primary lesion.

Computational models of MRI features of FCD

On T1-weighted MRI, FCD is characterized by a focal increase

of cortical thickness, the presence of hyperintense signal within the

dysplastic lesion relative to the normal cortex and a blurred

transition between gray and white matter. We previously proposed

three computational models that allow to quantitatively evaluate

these three abnormal features. In this section, we briefly recall the

underlying principles of these models. More details can be found in

(Antel et al., 2002).

Cortical thickness was measured by modeling the cortex as

an electrostatic field, as proposed by (Jones et al., 2000). A

series of isopotential surfaces are generated by solving Laplace’s

equation over the segmented GM with boundary conditions at

the GM/WM and GM/CSF transitions. Thickness at a given

voxel is then defined as the length of the path that connects the

voxel to both the GM/WM and the GM/CSF transition and is

orthogonal to all isopotential surfaces. The cortical thickness map

was denoted as Th.

Hyperintense signal was represented using a relative intensity

index defined as RI(x) = 1 � |Bg � I(x)| / Bg where I(x) is the

intensity at voxel x and Bg is the boundary intensity between GM

and WM defined using an automated histogram-based method.

Blurring of the GM/WM transition was modeled with a gradient

magnitude map, denoted as Gr. Prior to computing the gradient,

the MRI was convolved with a 3D Gaussian kernel of FWHM = 3

mm (Full Width at Half Maximum). Areas of blurred GM/WM

transition have lower gradient values than areas of normal

transition.

These three characteristics defined a vector-valued feature map

f(x) = (Th(x), RI(x), Gr(x)) at each point x in the image space. Fig.

2 (panels B, C and D) presents an example of these feature maps in

a patient with FCD.
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Fig. 1. Flowchart summarizing the different stages of the segmentation procedure. Our previously developed FCD classifier is used to provide an initialization

to the first deformable model. This feature-based deformable model (FDM) is driven by probability maps of FCD features which are estimated from a training

set of patients. The intermediate result obtained with the FDM is then expanded towards the cortical boundaries by using a gradient vector flow (GVF).
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Probabilistic modeling of FCD features

We then performed a supervised learning to estimate the

probability of different tissue classes in the brain given the feature

vector f. Six tissue classes were considered: gray matter (GM),

white matter (WM), cerebro-spinal fluid (CSF), the transition
Fig. 2. Probabilistic modeling of FCD features. The upper row shows: the T1-wei

thickness map (B), the relative intensity map (C) and the gradient map (D). The les

lower gradient. The two lower rows show the probability maps of the lesion class (

the transition between GM and CSF (J).
classes GM/WM and GM/CSF, and the FCD lesion (L). GM, WM

and CSF were segmented using a histogram-based approach with

automated threshold (Antel et al., 2002) and the FCD lesions were

segmented manually on the T1-weighted MRI by a trained

observer. The transition between GM and WM was defined by
ghted MRI where the FCD lesion is indicated by the arrow (A), the cortical

ion is characterized by higher cortical thickness, higher relative intensity and

E), GM (F), WM (G), CSF (H), the transition between GM and WM (I) and
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selecting voxels which had a 3 � 3 � 3 neighborhood composed of

at least 30% of GM and 30% of WM, as in the FCD classifier

(Antel et al., 2003). The GM/CSF transition was computed using a

similar process.

Conditional probabilities P( f(x)|c) for each class c were

modeled using a trivariate normal distribution whose parameters

were estimated using the maximum likelihood on a learning set of

patients. The posterior probabilities P(c|f(x)) were then obtained

by Bayes’ rule. In order to bias the segmentation process towards

increased lesion coverage, we assumed equal prior probabilities for

the different classes. This empirical choice was supported by our

segmentation results which demonstrated that the feature-based

deformable model produced very few false positives.

Fig. 2 (panels E–J) presents an example of posterior probability

maps in a patient with FCD.

Deformable model design

The feature-based deformable model was designed to separate

the lesion from the healthy tissues. The region competition

approach proposed by (Zhu and Yuille, 1996) is well adapted to

our purpose. This method aims at segmenting an image into several

regions by moving the interfaces between them. The evolution of

the interfaces is driven by functions indicating the membership of a

given voxel to each region. In our case, these functions were

derived from the FCD features.

We intended to isolate the FCD lesion from the non-lesional

region, which is composed of five different classes (GM, WM,

CSF, GM/WM, GM/CSF). However, the boundaries between these

five non-lesional classes were of no interest for our application.

Thus, region competition occurred in each point between the lesion

class and the most probable non-lesional class. The membership to

the lesional region was defined as RL(x)=P(L|f(x)) which is the

previously computed posterior probability of the lesion class. The

non-lesional region was modeled by RNL(x) = max{P(c|f(x)),

c e {GM, WM, CSF, GM/WM, GM/CSF}}.

The feature-based deformable model describes the evolution of

the interface (or surface in 3D) S of the lesional region, according

to those membership functions and a regularization term. The

motion of a point u belonging to S was defined as:

flu

flt
¼ a1 RNL uð Þ � RL uð Þ½ �nu þ E1junu ð1Þ

where nu is the inward normal to S at point u (directed towards the

interior of the lesion), ju is the mean curvature and a1 and e1 are

weighting coefficients.

In the previous equation, a1 [RNL(u) � RL(u)] is a feature-

based term and e1ju is a regularity term producing a smooth

surface. If RL(u) > RNL(u), meaning that the most probable class

for point u is the lesion, the surface S is expanded, in order to

include this point. On the contrary, if RNL(u) > RL(u), meaning that

this point should belong to one of the non-lesional classes, the

surface is collapsed.

Expansion towards cortical boundaries

Histological studies have shown that FCD affects all cortical

layers (Tassi et al., 2002; Palmini et al., 2004). This indicates that

FCD lesions extend from the GM/WM junction, which is the

location of the most obvious abnormality on T1-weighted MRI,

towards the GM/CSF boundary, over the entire cortical section.

This region is not fully covered by the FDM. For this reason, the
second deformable model was designed to expand the result of the

first stage towards the cortical boundaries, throughout the whole

cortical section. On the contrary, intra-cortical motion in the lateral

direction was prevented in order to avoid progressing into the

neighboring healthy cortex.

Expansion with the gradient vector flow

To drive the deformable model towards the boundaries of the

cortex, we relied on a gradient vector flow (GVF) (Xu and Prince,

1998). In brief, the GVF is computed by diffusion of the gradient

vector and provides a smooth vector field which is approximately

orthogonal to the GM boundaries. We computed the GVF from the

GM segmentation and not directly from the MRI because FCD are

characterized by a blurring of the GM/WM transition. Thus, a

gradient computed directly from the original image would have a

too small magnitude to adequately drive the deformable model. The

GM segmentation was first slightly smoothed with a 3D Gaussian

kernel (FWHM = 2 mm). An edge map f was then obtained by

computing the norm of the gradient of the previous result. The GVF

was defined as the equilibrium solution of the following equation:

flv

flt
¼ g jjlf jjð Þl2v� h jjlf jjð Þ v�lfð Þ

v x; 0ð Þ ¼ lf xð Þ

(
ð2Þ

where l
2 is the Laplacian operator, g(r) and h(r) are weighting

functions defined as g(r) = e�(r/K) and h(r) = 1 � g(r), and K is a

positive constant which controls the amount of smoothing. If K is

high, the diffusion term l
2v prevails and the resulting vector field

is smoother. Conversely, low values of K produce a GVF closer to

the original gradient. Finally, the GVF was normalized: v̂(u) = v(u) /

||v(u)||. An example of GVF is shown in Fig. 3.

The following force was then used to drive the deformable

model towards the cortical boundaries using the GVF:

FGVF ¼ v̂v uð Þ I nu½ �nu ð3Þ

where nu is the inward normal to the surface at point u, v̂(u) is the

normalized GVF and I is the scalar product.

This force enables the model to progress in a direction

orthogonal to the cortical boundaries while avoiding lateral

motion. When the normal to the surface is oriented along the

GVF, F = ||FGVF|| > 0 and the surface is attracted towards

the boundaries of GM. Conversely, when the normal is

orthogonal to the GVF, F = 0 which prevents the model

from expanding laterally into the neighboring cortex. This is

illustrated in Fig. 4.

Deformable model design

The second deformable model, which is called ‘‘expansion

towards cortical boundaries’’ (ECB), combines FCD features with

the GVF motion. The GVF is used to expand the result obtained

with the previous FDM, towards the boundaries of the cortex.

The MR features restrict the GVF motion, to prevent the

deformable model from progressing into healthy regions. More-

over, the GVF is not taken into account in points which possess

MR features of FCD. This ensures that lesional regions

segmented by the FDM will not be shrunk by the second

deformable model.

The motion of a point u of the interface S was then defined as:

flu

flt
¼ a2 RNL uð Þ � RL uð Þ½ �nu þ b2d uð Þ v̂v uð ÞInu½ �nu þ E2junu; ð4Þ
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Fig. 3. Computation of the gradient vector flow (GVF) in a patient with FCD. (A) GVF computed from the edge map. (B) Detail of the normalized GVF.
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where d(u) = 1 if RNL(u) > RL(u) and d(u) = 0 if RNL(u) 
 RL(u),

a2, b2 and e2 are weighting coefficients and ju, nu and v̂(u) are

defined as in Eqs. (1) and (3).

[RNL (u)�RL(u)]nu is the feature-based term. d(u)[v̂(u) I nu]nu
is the GVF-based force defined in Eq. (3) and is canceled if

RL(u) � RNL(u), i.e., if point u possesses the MR features of FCD.

Fig. 5 presents an example of the different steps of the evolution.

Level set evolution

The motion Eq. (1) and (4) of the two deformable models were

both implemented using the level set method (Osher and Sethian,

1988; Sethian, 1999). The principle of this method is to define the

surface S as the zero level set of a higher dimensional function /,

called the implicit function:

/ S tð Þ; tð Þ ¼ 0 ð5Þ

As an implicit function /, we chose the classical signed distance to

the surface S, with negative values in the interior of S. The

evolution was then performed on the function / and the embedded
Fig. 4. Expansion towards the boundaries of the cortex using the GVF.

When the normal to the surface is oriented along the GVF (indicated by the

gray arrows), F > 0 and the deformable model is expanded towards the

GM/WM and GM/CSF interfaces. On the contrary, when the normal is

orthogonal to the GVF, F = 0 which prevents lateral motion into the

neighboring cortex.
surface S was deformed implicitly. Level sets offer several

advantages over traditional deformable models: no parameteriza-

tion of the surface is necessary, topology changes are handled

naturally and the result is less sensitive to the initialization.

Using the derivation from curve motion to level set evolution

(Sethian, 1999), the feature-based deformable model was described

by:

fl/
flt

xð Þ ¼ a1 RNL xð Þ � RL xð Þ½ �jl/ xð Þj þ E1jxjl/ xð Þj ð6Þ

Similarly, the evolution towards cortical boundaries was performed

according to:

fl/
flt

xð Þ ¼ a2 RNL xð Þ � RL xð Þ½ �jl/ xð Þj

� b2d xð Þ v̂v xð Þ I l/ xð Þ½ � þ E2jxjl/ xð Þj ð7Þ

The two previous equations were implemented using the

numerical scheme proposed in (Sethian, 1999, chap. 6). To reduce

the computational complexity, we made use of the narrow-band

method (Adalsteinsson and Sethian, 1995). A sub-voxel reinitial-

ization of the implicit function was performed at fixed time steps to

maintain the distance function (Krissian and Westin, 2005).

Evaluation

Manual segmentations

Lesions were delineated independently on 3D MRI by two

trained raters (VN and DK) using the interactive software package

DISPLAY developed at the Brain Imaging Center of the Montreal

Neurological Institute. This program allows simultaneous viewing

of MR images in coronal, sagittal and horizontal orientations. The

corresponding manually labeled datasets are further denoted as M1

and M2. Inter-rater agreement was assessed using the similarity

index S = 2|M17M2| / (|M1| + |M2|) (where |M| is the number of

elements in set M), which is a special case of kappa statistic since

the vast majority of voxels are non-lesional (Zijdenbos et al.,

1994).

However, the evaluation of the automated segmentation is

limited by the differences between the two manual labels. To

overcome this difficulty, we proposed to build ‘‘consensus’’ manual
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Fig. 5. Example of FCD lesion segmentation using the two successive deformable models. (A) T1-weighted MRI where the FCD lesion is indicated by an

arrow. (B) Final result shown together with the gradient vector flow (GVF). (C) Initialization with the FCD classifier. (D) Intermediate result of the feature-

based deformable model (FDM). (E) Final result using the expansion towards cortical boundaries (ECB).
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labels, denoted as MC. To this purpose, two other observers (NB

and AB) jointly inspected the tracings M1 and M2 of the two raters

and provided a decision for all ambiguous regions (i.e., regions

defined as lesional by one rater but not by the other).

Level set segmentations

The level set segmentations were obtained as follows. First, the

FCD classifier was used to obtain an initialization for the FDM.

The intermediate result obtained with the FDM then constituted the

starting point of the ECB whose output defined the final FCD

segmentation. We used the following segmentation parameters:

a1 = 0.8 and e1 = 0.2 for the FDM; a2 = 0.2, b2 = 0.8 and e2 = 0.1

in the ECB. No fine tuning of the parameters was necessary and the

same values were used for all subjects.

The evaluation was performed using a leave-one-out approach:

for the segmentation of a given patient, this patient was excluded

from the learning set. This approach avoids the introduction of bias

in the result.

The performance of each of step of the procedure (classifier,

FDM and ECB) was assessed by comparison with the ‘‘consensus

labels’’ MC, using the following metrics:

& the aforementioned similarity index S ¼ 2
jA7MC j
jAjþjMC j (where A is

the automated segmentation);

& a coverage index C = 100 � |A 7 MC|/|MC| which indicates the

percentage of voxels in the manual label that were successfully

classified as lesional by the level set;

& a false positive index FP = 100 �| A \ MC |/|A | (where \ denotes

the set subtraction), which indicates the percentage of voxels

that were wrongly classified as lesional by the level set.
The probabilistic modeling of FCD features is based on a

training on manually labeled lesions. To assess the influence of the

training dataset on the segmentation, we compared the similarity

indices obtained using a learning on labels M1 to those obtained

using labels M2.
Results

Initialization

The FCD classifier (Antel et al., 2003) was used to initialize the

FDM. It successfully identified the lesion in 18 (18/24 = 75%)

patients. The evaluation was thus done on the 18 detected lesions.

Manual segmentations

For the 18 manual labels, the mean inter-rater similarity index

was 0.62 T 0.19 (range = 0.22 to 0.84).

Level set segmentation

The similarity, coverage, and false positive indices obtained at

each step of the procedure (final result with the ECB, intermediate

result of the FDM and initialization with the classifier) compared to

the consensus manual labels MC, in the 18 detected cases, are

reported in Table 1. Segmentation results in five patients with FCD

are shown in Fig. 6. Some examples of 3D renderings of the lesion

segmentation are presented in Fig. 7.

The similarity indices obtained with a training based on labels

M1 were: 0.73 T 0.08 (range = 0.60 to 0.86) (the values are the
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Table 1

Quantitative evaluation of the automated segmentation

S C (%) FP (%)

ECB 0.73 T 0.08

(0.60 to 0.86)

72 T 16

(44 to 94)

20 T 15

(0.4 to 48)

FDM 0.57 T 0.17

(0.22 to 0.77)

45 T 18

(12 to 71)

9 T 10

(0 to 31)

Classifier 0.26 T 0.14

(0.05 to 0.46)

16 T 10

(3 to 30)

0.3 T 0.8

(0 to 3.1)

The table presents the evaluation of the final result (ECB) and of the different

steps in the procedure (FDM, classifier). For each step, the similarity index S,

the coverage index C and the false positive index FP were computed with

respect to the consensus labelsMC. Each cell is shown as mean T SD with the

range in parentheses.
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same as in Table 1 where all results were obtained using M1 as a

learning set). Those obtained with M2 were: 0.72 T 0.09 (range =

0.56 to 0.85). All similarities were computed using MC as a

reference.
Fig. 6. Results of the lesion segmentation in five different subjects. Columns show

initialization with the classifier (yellow contour), (B) intermediate result with the

ECB (red contour), (D) consensus manual label MC (blue contour).
Discussion

In this study, we proposed and evaluated a method to segment

FCD lesions on T1-weighted MRI, relying on two successive

deformable models. We first introduced a feature-based level set,

driven by knownMR characteristics of FCD, which separates lesions

from non-lesional tissue. The second deformable model was designed

to expand the previous result towards the cortical boundaries while

preventing lateral intra-cortical motion into healthy tissues.

Segmentation results

The level set segmentations achieved a degree of similarity of

0.73 with the consensus manual labels, which constitutes a strong

agreement (Zijdenbos et al., 1994). The mean false positive index

was 20%, which constitutes a low value when dealing with small

structures such as FCD lesions. Indeed, small objects are penalized

by this measure since a minor segmentation error can lead to a

substantial percentage of false positives. For example, if we
the different steps of the procedure and the corresponding manual label: (A)

FDM (red contour), (C) final result of the automated segmentation with the
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Fig. 7. 3D renderings of the automated lesion segmentation in three patients with FCD, shown together with the cortical surface. Visualization was done using

the BrainVISA/Anatomist software (http://www.brainvisa.info).
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consider as reference object a sphere with a volume equal to the

mean volume of FCD lesions in our patients (16.8 cm3), and as

segmentation result a sphere whose radius is one voxel longer, we

obtain FP = 17%. In some cases, we noted that a narrow sulcus,

located near the boundary of the lesion, was not correctly classified

as CSF and, as a consequence, part of the neighboring healthy

gyrus was included in the lesion segmentation (an example is

presented in Fig. 8). Nevertheless, the generated false positives

were generally small and easily identifiable. They did not penalize

the overall performance of the automated segmentation. These

results demonstrated good accuracy of our segmentation approach

which, when combined with additional manually traced correc-

tions, could be a useful tool to assess the extent of FCD lesions on

MRI. By being objective and reproducible, this technique can

overcome the limits of manual tracing and provide more reliable

delineation. Moreover, since this method operates in 3D, it has the

potential to unveil lesional areas that could be overlooked due to

the complexity of the cortex convolution.

Table 1 also shows the improvement of the second deformable

model over the FDM. It provided a substantial enhancement of the

lesion coverage with only a small increase of false positives,

resulting in a stronger overall similarity.

When using two different sets of manual labels for the training

step, the results of the automated segmentation were almost

identical. This shows the robustness of our method with respect to

the learning dataset. Moreover, no fine-tuning of the level set

parameters was necessary and the same parameters were used for

all patients. Furthermore, the method is fast thanks to the use of the

narrow-band and the subvoxel reinitialization approaches (the

mean computation time for the level set evolution was 14 min on a

PC 1.6 GHz).
Fig. 8. Example of a narrow sulcus which was not correctly extracted. (A) T1-w

inferior boundary of the FCD lesion. (B) Segmentation result. The deformable mo

Manually traced lesion label MC.
Comparison with other image analysis techniques

So far, image analysis methods in FCD have mostly relied on

voxel-wise techniques (Wilke et al., 2003; Antel et al., 2003; Colliot

et al., 2006). A Bayesian classifier based on computational models

and texture features was previously proposed by our group (Antel et

al., 2003). We recently introduced an individual VBM analysis that

was able to detect both primary lesions and extra-lesional

abnormalities (Colliot et al., in press). These techniques allow the

identification of subtle FCD lesions and are therefore useful to assist

the clinical diagnosis. However, they recover only a small fraction

of the lesional area (between 15% and 30%). By using an image

segmentation approach based on deformable models, we were able

to automatically detect over 70% of lesional voxels. To our

knowledge, this is the first quantitative method that can be used

to assess the spatial extent of FCD lesions.

Evaluation methodology

There is no available gold standard for evaluating the

delineation of FCD lesions. On MRI, these lesions possess ill-

defined contours and are not easily differentiable from normal

cortex. Their tracing by experts necessarily suffers from subjec-

tivity. For these reasons, we aimed at pooling the knowledge of

several raters to provide a more objective reference than if separate

manual labels were used. First, manual tracings were done

separately by two raters. The inter-rater similarity was 0.62 which

corresponds to a substantial agreement, in particular when keeping

in mind the difficulty of FCD segmentation. To reduce the

remaining variability, ‘‘consensus’’ labels were designed with the

help of two additional experts.
eighted MRI where the sulcus (indicated by the arrow) is located near the

del has progressed beyond the sulcus resulting in a false positive area. (C)

http://www.brainvisa.info
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Initialization

To provide a starting point for the segmentation procedure, we

relied on our previously developed Bayesian FCD classifier (Antel

et al., 2003), under supervision of an expert user. This semi-

automated initialization allows keeping user intervention to a

minimal level and reducing subjectivity. However, the classifier

failed to detect six FCD lesions. When providing a manual

initialization to the FDM in those six cases, the deformable surface

shrunk and the segmentation failed. The inspection of the feature

maps and the probability maps revealed that the three features were

not discriminating enough to adequately drive the deformable

model. Nevertheless, FCD lesions are difficult to detect and our

detection rate is similar to those reported for other methods (Wilke

et al., 2003). Moreover, our segmentation approach was applicable

in 75% of cases and can thus be a useful tool for the presurgical

evaluation of a large number of patients with FCD.

Clinical considerations

For our experiments, we selected patients with FCD whose

lesion had been recognized preoperatively on 3D MRI with multi-

planar reformatting. We thus excluded patients whose lesion could

not be recognized prior to surgery. The rationale for this criterion

was that, in a presurgical setting, the assessment of the lesion extent

is done after the FCD has been seen on the MRI. The aim of this

paper was to assist the delineation of the lesional area once the FCD

has been diagnosed. Thus, in its present form, the segmentation

algorithm should only be applied to MRI-visible FCDs.

The patient group included FCDs of various sizes, with volumes

spanning from 1.3 cm3 to 94.6 cm3 (as defined by the ’’consensus’’

manual labels). The segmentation algorithm behaved similarly with

small and large lesions, indicating that potential difficulties in

delineating FCD lesions are not necessarily linked to their size.

Moreover we did not observe any difference in terms of segmen-

tation accuracy depending on the region of the brain where the lesion

was located.

In terms of image quality, our segmentation algorithm has

requisites similar to those of other quantitative image analysis

techniques. The MRI sequence should offer a strong gray–white

contrast and thin slices, to be able to determine precisely the

cortical boundaries. In our previous work, we evaluated the images

generated by our protocol and found a high signal-to-noise ratio

(Antel et al., 2002). We also verified that all our MRIs were free of

visible motion artefacts. In this study, all the MR images were

acquired on a 1.5 T scanner using a standard T1-fast field echo

sequence. Our segmentation approach is thus applicable in a real

world context since this type of MRI acquisition is available in a

clinical context.

In conclusion, this paper demonstrates the effectiveness of a

deformable model approach for the segmentation of FCD lesions.

This new method can be used to help assessing the spatial extent of

FCD lesions on MRI and has the potential to unveil lesional areas

that could be overlooked by visual inspection. It may become a

useful tool for surgical planning in patients with cortical dysplasia.
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Schæfer, N., Jackson, G., Lüders, H., Prayson, R., Spreafico, R.,

Vinters, H., 2004. Terminology and classification of the cortical

dysplasias. Neurology 62, S2–S8.

Prayson, R., Spreafico, R., Vinters, H., 2002. Pathologic characteristics of

the cortical dysplasias. Neurosurg. Clin. N Am. 13 (1), 17–25.

Sethian, J., 1999. Level-Set Methods and Fast Marching Methods, 2nd edR

Cambridge University Press.

Shen, D., Moffat, S., Resnick, S., Davatzikos, C., 2002. Measuring size and

shape of the hippocampus in MR images using a deformable shape

model. NeuroImage 15, 422–434.

Sisodiya, S., 2000. Surgery for malformations of cortical development

causing epilepsy. Brain 123, 1075–1091.

Sisodiya, S., 2004. Surgery for focal cortical dysplasia. Brain 127, 2383–2384.

Sled, J., Zijdenbos, A., Evans, A., 1998. A nonparametric method for
automatic correction of intensity nonuniformity in MRI data. IEEE

Trans. Med. Imag. 17 (1), 87–97.

Smith, S., Nov. 2002. Fast robust automated brain extraction. Hum. Brain

Mapp. 17 (3), 143–155.

Tassi, L., Colombo, N., Garbelli, R., Francione, S., Lo Russo, G., Mai, R.,

Cardinale, F., Cossu, M., Ferrario, A., Galli, C., Bramerio, M., Citterio,

A., Spreafico, R., 2002. Focal cortical dysplasia: neuropathological

subtypes, EEG, neuroimaging and surgical outcome. Brain 125 (Pt 8),

1719–1732.

Taylor, D., Falconer, M., Bruton, C., Corsellis, J., 1971. Focal dysplasia of

the cerebral cortex in epilepsy. J. Neurol. Neurosurg. Psychiatry 34,

369–387.

Wilke, M., Kassubek, J., Ziyeh, S., Schulze-Bonhage, A., Huppertz, H.,

2003. Automated detection of gray matter malformations using

optimized voxel-based morphometry: a systematic approach. Neuro-

Image 20 (1), 330–343.

Xu, C., Prince, J., 1998. Snakes, shapes and gradient vector flow. IEEE

Trans. Image Process. 7 (3), 359–369.

Zeng, X., Staib, L., Schultz, R., Duncan, J., 1999. Segmentation and

measurement of the cortex from 3-D MR images using coupled-surfaces

propagation. IEEE Trans. Med. Imag. 18 (10), 927–937.

Zhu, S., Yuille, A., 1996. Region competition: unifying snakes, region

growing, and Bayes/MDL for multiband image segmentation. IEEE

Trans. Pattern Anal. Mach. Intell. 18 (9), 884–900.

Zijdenbos, A., Dawant, B., Margolin, R., Palmer, A., 1994. Morphometric

analysis of white matter lesions in MR images: method and validation.

IEEE Trans. Med. Imag. 13 (4), 716–724.


	Segmentation of focal cortical dysplasia lesions on MRI using level set evolution
	Introduction
	Methods
	Subjects and image preparation
	Subjects
	MRI acquisition
	Pre-processing

	Overview of the segmentation method
	Feature-based deformable model
	Initialization
	Computational models of MRI features of FCD
	Probabilistic modeling of FCD features
	Deformable model design

	Expansion towards cortical boundaries
	Expansion with the gradient vector flow
	Deformable model design

	Level set evolution
	Evaluation
	Manual segmentations
	Level set segmentations


	Results
	Initialization
	Manual segmentations
	Level set segmentation

	Discussion
	Segmentation results
	Comparison with other image analysis techniques
	Evaluation methodology
	Initialization
	Clinical considerations

	Acknowledgments
	References


