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Abstract. Focal cortical dysplasia (FCD), a malformation of cortical
development, is an important cause of medically intractable epilepsy.
FCD lesions are difficult to distinguish from non-lesional cortex and
their delineation on MRI is a challenging task. This paper presents a
method to segment FCD lesions on T1-weighted MRI, based on a 3D
deformable model, implemented using the level set framework. The de-
formable model is driven by three MRI features: cortical thickness, rela-
tive intensity and gradient. These features correspond to the visual char-
acteristics of FCD and allow to differentiate lesions from normal tissues.
The proposed method was tested on 18 patients with FCD and its per-
formance was quantitatively evaluated by comparison with the manual
tracings of two trained raters. The validation showed that the similar-
ity between the level set segmentation and the manual labels is similar
to the agreement between the two human raters. This new approach
may become a useful tool for the presurgical evaluation of patients with
intractable epilepsy.

1 Introduction

Malformations of cortical development (MCD) have been increasingly recognized
as an important cause of medically intractable focal epilepsy. Focal cortical dys-
plasia (FCD) [1], a malformation due to abnormal neuroglial proliferation, is
the most frequent MCD in patients with intractable extra-temporal epilepsy [2].
Epilepsy surgery, consisting in the removal of the FCD lesion, is an effective
treatment for these patients. However, freedom from seizures after surgery is
closely related to the resection of the whole lesion [3]. The precise delineation of
lesions is thus important for surgical planning in epilepsy.

Magnetic resonance imaging (MRI) plays a pivotal role in the presurgical
evaluation of patients with intractable epilepsy. Although MRI has allowed the
recognition of FCD in an increased number of patients, standard radiological
evaluation fails to identify lesions in a large number of cases due to their subtlety
and the complexity of the cortex convolution [3]. Moreover, the spatial extension
of the lesions is difficult to define on the MRI. The segmentation of FCD is thus
a challenging image analysis application as the lesions are often subtle, difficult
to differentiate from the normal cortex, of variable size, position and shape, and
with ill-defined boundaries.
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Recently, image analysis techniques have been developed to detect FCD le-
sions automatically on MRI, relying on different types of voxel-wise analysis [4,
5]. In particular, computational models of FCD characteristics [6] and a Bayesian
classifier for lesion detection [4] were previously proposed by our group. While
these approaches successfully identify the FCD in a majority of patients, they
provide a very limited coverage of the lesion (about 20%) and thus cannot be
considered as segmentation techniques. Therefore, to our knowledge, the ques-
tion of FCD segmentation has never been addressed.

This paper presents a method for segmenting focal cortical dysplasia (FCD)
lesions on T1-weighted MRI, based on a level set deformable model driven by
MR features of these lesions. The method partly relies on our aforementioned
detection approaches [6,4]. However, our target application is FCD segmentation
and not detection. The computational models of FCD features are used to drive
a level set deformable model and the FCD classifier is used only to obtain a
starting point for the segmentation procedure.

2 Methods

Our approach relies on a 3D deformable model, based on the level set method.
Driving the deformable model with image gray levels would be inadequate as
this attribute is insufficient to distinguish the lesion from the normal cortex.
Instead, we propose a model guided by a probability map derived from FCD
features. These features correspond to the visual characteristics of FCD: cortical
thickening, a blurred transition between gray matter (GM) and white matter
(WM), and hyperintense signal within the dysplastic lesion [7].

Additionally, it is necessary to provide a starting point for the level set evolu-
tion. To this purpose, we used our previously developed FCD classifier [4], under
supervision of an expert user.

2.1 Probabilistic Modeling of FCD Features

To quantitatively evaluate the visual MR characteristics of FCD, we made use of
our previous computational models (more details can be found in [6]). A cortical
thickness map, denoted as T'h, is computed by solving Laplace’s equation over the
cortical ribbon. Hyperintense signal is represented using a relative intensity index
defined as RI(xz) = 1—|By —I(z)|/By where I(x) is the intensity at voxel z and
B, is the boundary intensity between GM and WM. Blurring of the GM/WM
transition is modeled with a gradient magnitude map, denoted as Gr. These three
characteristics define a vector-valued feature map f(x) = (Th(z), RI(x),Gr(zx))
at each point z in the image space.

We then performed a supervised learning to estimate the probability of dif-
ferent tissue classes in the brain given the feature vector f. Four different classes,
denoted as ¢, were considered: gray matter (GM), white matter (WM), cerebro-
spinal fluid (CSF) and the FCD lesion (L). Normal tissues were segmented us-
ing a histogram-based approach with automated threshold, while the FCD le-
sions were painted by trained observers (see Section 3). Conditional probabilities
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P(f(z)|c) for each class ¢ were modeled using a trivariate normal distribution
and estimated using the maximum likelihood on a learning set of patients. The
posterior probabilities P(c|f(z)) were then obtained by Bayes’ rule. As the size
of FCD lesions is variable, we assumed equal prior probabilities for the different
classes.

Figure 1 presents an example of the three feature maps and of the posterior
probability maps in a patient with FCD.

Fig. 1. Probabilistic modeling of FCD features. Upper panels: T1-weighted MRI
where the FCD lesion is indicated by the arrow (A), cortical thickness map (B),
relative intensity map (C), gradient map (D). The lesion is characterized by
higher cortical thickness, higher relative intensity and lower gradient. Lower
panels: probability maps of the lesion class (E), GM (F), WM (G) and CSF (H).

2.2 Feature-based Deformable Model

Based on the previous features, the deformable model was designed to separate
the lesion from the non-lesional regions. The region competition approach pro-
posed by Zhu and Yuille [8] is well adapted to our purpose. It aims at segmenting
an image into several regions by moving the interfaces between them. The evo-
lution of the interfaces is driven by functions indicating the membership to each
region. In our case, these functions can be derived from the FCD features.

We intended to isolate the FCD lesion from the non-lesional region, which is
composed of three different classes (GM, WM, CSF). However, the boundaries
between these three non-lesional classes were of no interest for our application.
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Thus, region competition occurred in each point between the lesion class and
the most probable non-lesional class. The membership to the lesional region
was defined as Ry, (z) = P(L|f(z)) which is the previously computed posterior
probability of the lesion class. The non-lesional region was modeled by Ry (z) =
max{P(GM](x)), P(WM|f(z)), P(CSF|f(z))}.

The feature-based deformable model describes the evolution of the interface
(or surface in 3D) S of the lesional region, according to those membership func-
tions and a regularization term. The motion of a point u belonging to S is defined

as:
ou

ot
where n,, is the inward normal to S at point u (directed towards the interior of
the lesion), k., is the mean curvature and a and € are weighting coefficients.

In the previous equation, a[Rnr (u) — R (u)] is a feature-based term and ek,
is a regularity term producing a smooth surface. If Ry (u) > Rnr(u), meaning
that the most probable class for point w is the lesion, the surface S will be
expanded, in order to include this point. On the contrary, if Rnr,(u) > Rr(u),
meaning that this point should belong to one of the three non-lesional classes,
the surface will be shrunk.

= a[RNL (1) — Ry (u)ny, + €kyny, (1)

2.3 Level Set Evolution

The motion equation obtained for the feature-based deformable model was im-
plemented using the level set method [9,10]. The principle of this method is to
define the surface S as the zero level set of a higher dimensional function ¢,
called the implicit function:

P(S(t),t) =0 (2)

As an implicit function ¢, we chose the classical signed distance to the surface S,
with negative values in the interior of S. The evolution was then performed on
the function ¢ and the embedded surface S was deformed implicitly. Level set
deformable models present several advantages over traditional ones: no param-
eterization of the surface is necessary, topology changes are handled naturally
and the result is less sensitive to the initialization.

Using the derivation from curve motion to level set evolution [10], the feature-
based deformable model can be described by:

o9

5¢ (@) = alBine (W) = BL(u)]|Ve(u)| + x|V (u)| 3)

The previous evolution equation can be seen as a particular case of the one
proposed in [11].

This equation was implemented using the numerical scheme proposed in [10,
chap.6]. To reduce the computational complexity, we made use of the narrow-
band method [12]. A sub-voxel reinitialization of the implicit function at fixed
time steps was performed to maintain the distance function [13].
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3 Experiments and Results

3.1 Subjects and Image Preparation

We selected 24 patients (13 males, mean age = SD= 24 + 8 ) with MRI-visible
FCD. The Ethics Board of our Institution approved the study, and written in-
formed consent was obtained from all participants.

3D MR images were acquired on a 1.5T scanner using a T1-fast field echo
sequence (TR = 18, TE = 10, 1 acquisition average pulse sequence, flip angle=
30°, matrix size= 256 x 256, FOV= 256, thickness= 1mm) with an isotropic
voxel size of 1mm?>. All images underwent automated correction for intensity
non-uniformity and intensity standardization [14], automatic registration into
stereotaxic space [15] and brain extraction [16]. Classification of brain tissue in
GM, WM and CSF was done using an histogram-based method with automated
threshold [6].

3.2 Manual segmentation

Lesions were delineated independently on 3D MRI by two trained raters (VN
and DK) using a software which allows painting in each of the three directions
of the space. The corresponding manually labeled datasets are further denoted
as M; and M. Interrater agreement was assessed using the similarity index
S = 2% (where n{M} is the number of elements in set M), which
is a special case of kappa statistic since the vast majority of voxels are non-
lesional [17].

3.3 Results

Initialization The FCD classifier [4] is used to initialize the deformable model.
It successfully identified the lesion in 18 (18/24=75%) patients. We assessed the
possibility of segmenting the six undetected lesions with a manual initialization
of the procedure. However, the segmentation failed in these cases because their
features where not sufficiently discriminant. The evaluation was thus done on
the 18 detected lesions.

Manual segmentation For the 18 manual labels, the mean interrater similarity
index was 0.62 £ 0.19 (range=0.22 to 0.84).

Level set segmentation We compared the automated segmentations to the
sets of manual labels using the similarity index S presented above. The evalu-
ation was performed using a leave-one-out approach: for the segmentation of a
given patient, this patient was excluded from the learning set (Section 2.1). This
approach avoids the introduction of bias in the result. All results were obtained
with & = 0.8 and € = 0.2 in Equation 3. Moreover, we computed the similarity
obtained with the FCD classifier [4] to evaluate the added value of the level
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Fig. 2. Results of FCD segmentation: level set segmentation (A), initializa-
tion (B), manual tracing M, (C), manual tracing My (D).

set. Results are reported in Table 1. Figures 2 and 3 present the segmentations
obtained in two patients with FCD.

To assess the robustness of our method with respect to the choice of the
learning dataset, the procedure was also evaluated using a learning on the labels
M, (in Table 1 the results are obtained using the labels M; as a learning set).
Similarity indices for the level set (LS) were: LS vs. M1=0.62+0.16 (range=0.33
to 0.82) and LS vs. M2=0.62 £+ 0.11 (range=0.43 to 0.77).

Table 1. The table presents the similarity indices for the level set and the
FCD classifier with respect to the two manual tracings, as well as the interrater
similarity. Results are reported as mean+SD with the range in parentheses.

M1 M2

Level set 0.62 + 0.16 (0.32 to 0.84) 0.63 £ 0.12 (0.43 to 0.79)

Classifier 0.30 £ 0.17 (0.11 to 0.64) 0.31 £ 0.17 (0.07 to 0.59)

Interrater (M; vs. M)  0.62£0.19 (0.22 to 0.84)

4 Discussion

In this study, we proposed and evaluated a method for segmenting FCD lesions
on MRI. We introduced a feature-based level set, driven by known MR charac-
teristics of FCD. Probability maps of these features corresponding to FCD and
normal tissue classes were estimated in order to guide the level set evolution.
On MRI, FCD lesions possess ill-defined contours and are not easily differ-
entiable from normal cortex. Moreover, there is no available gold standard for
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Fig. 3. Results of FCD segmentation. Left panels: level set segmentation (A),
initialization (B), manual tracing M» (C), manual tracing M; (D). Right panel:
3D rendering of the FCD lesion segmentation together with the cortical surface.

evaluating the delineation of these lesions. For this reason, we compared the level
set segmentation to the manual tracings of two trained observers. The interrater
similarity was 0.62 which corresponds to a substantial agreement, in particular
when keeping in mind the difficulty of FCD segmentation. The level set seg-
mentations achieved a degree of similarity of 0.63 and 0.62 with the two sets of
manual labels, which again constitutes a good agreement.

The similarities achieved by the level set are also very close to the interrater
agreement (both were computed on the 18 detected lesions). A significant portion
of the remaining differences between automated and manual labels is probably
due to the interrater variability rather than to the unability of the level set to
recover the full extension of lesions. This can be seen in Figure 3 where the two
raters decided to exclude different parts of the lesion (Panels C and D) while
these parts were included in the automated segmentation (Panel A).

To our knowledge, there is no other published work on FCD segmentation
that could be used for comparison to our results. Nevertheless, compared to the
FCD classifier, our method achieved a similarity twice as large and therefore
constitutes a significant improvement. However, it should be noted that this
classifier was designed for FCD detection and not segmentation.

The results of the automated segmentation did not depend on the manual
tracings (by one rater or the other) used for the learning step. This shows the
robustness of our method with respect to the learning dataset. Moreover, no
fine-tuning of the level set parameters was necessary and the same parameters
were used for all patients. Furthermore, the method is fast thanks to the use of
the narrow-band and the subvoxel reinitialization approaches (the mean compu-
tation time for the level set evolution was 4 minutes on a PC 1.6GHz).
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In conclusion, this paper demonstrates the effectiveness of a feature-based

level set approach for the segmentation of FCD lesions. We do not advocate
that the level set segmentation should be used in place of manual delineation
but rather that it is a complementary tool. It has the potential to reduce user
subjectivity and, more importantly, to unveil lesional areas that could be over-
looked by visual inspection. This new method may become a useful tool for sur-
gical planning in epilepsy. Future work includes further validation using other
metrics, comparison with other image segmentation techniques and a detailed
study of cases that were not detected by the classifier.
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