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Abstract—Cardiac remodelling plays a crucial role in heart
diseases. Analysing how the heart grows and remodels over
time can provide precious insights into pathological mechanisms,
eventually resulting in quantitative metrics for disease evaluation
and therapy planning. This study aims to quantify the regional
impacts of valve regurgitation and heart growth upon the end-
diastolic right ventricle (RV) in patients with tetralogy of Fallot, a
severe congenital heart defect. The ultimate goal is to determine,
among clinical variables, predictors for the RV shape from which
a statistical model that predicts RV remodelling is built. Our
approach relies on a forward model based on currents and
a diffeomorphic surface registration algorithm to estimate an
unbiased template. Local effects of RV regurgitation upon the RV
shape were assessed with Principal Component Analysis (PCA)
and cross-sectional multivariate design. A generative 3D model
of RV growth was then estimated using partial least squares
(PLS) and canonical correlation analysis (CCA). Applied on
a retrospective population of 49 patients, cross-effects between
growth and pathology could be identified. Qualitatively, the
statistical findings were found realistic by cardiologists. 10-fold
cross-validation demonstrated a promising generalisation and
stability of the growth model. Compared to PCA regression, PLS
was more compact, more precise and provided better predictions.

Index Terms—Statistical Shape Analysis, Currents Shape Rep-
resentation, Partial Least Squares, Canonical Correlation Anal-
ysis, Cardiac Remodelling, Tetralogy of Fallot

I. INTRODUCTION

A. Clinical Motivation: Cardiac Remodelling

Cardiac remodelling plays a crucial role in the course of
a heart disease and in the outcome of a therapy. Analysing
how the heart grows and remodels over time can provide
precious insights into pathological mechanisms, eventually
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resulting in quantitative metrics for disease evaluation and
therapy planning. The intricacy of the biological phenomena
involved in growth and the extreme variability in the evo-
lution of the heart anatomy make the prediction of cardiac
remodelling dauntingly complex. So far, only global cardiac
indicators, like blood pool volumes, have been used to quantify
pathological growth in clinics [1], [2]. If such approaches
greatly contributed in the understanding of the problem, they
poorly unravel the complex 3D remodeling.

In this article we investigate the long-term cardiac re-
modelling in repaired Tetralogy of Fallot (rToF). ToF is a
severe congenital heart disease of the right ventricle (RV)
and pulmonary arteries that requires surgical repair. Yet, pul-
monary valves may be damaged by the intervention, resulting
in chronic regurgitation, severe RV dilation and abnormal
cardiac electrophysiology due to injuries in the conduction
system and to the RV dilation [3]. A depolarisation time,
measured as the duration of the QRS complex in the ECG,
higher than 180ms is a major determinant for adverse clinical
events [4]. Pulmonary valve replacement (PVR) reduces the
risk of life-threatening events but choosing the right timing
of that therapy is still controversial [1], [4], [5]. Early PVR
may increase the risk of multiple re-interventions subsequent
to implant dysfunction or heart remodelling. Conversely, late
intervention may be useless as the RV is irreversibly damaged.
It is therefore fundamental to understand, quantify and predict
RV growth for the management of rToF patients

Contrary to the left ventricle (LV), RV anatomy is complex
and varies a lot among rToF patients. As a result, only few
works analysed the local 3D alterations of the RV anatomy
in rToF [6]–[8], in contrast to the numerous analyses of
more global clinical features [1], [5], [9]. In [6], the authors
identified significant differences in the RV anatomy between
rToF and controls. This study relied on 1D shape indices only
despite the availability of 3D segmentations, with the risk of
overlooking complex 3D alterations. In [7], the authors com-
pared the volumes of three distinct RV compartments between
rToF patients and controls. They identified different degrees of
dilation for each compartment, suggesting a non-homogeneous
3D remodelling of the RV. It is therefore essential to analyse
the complete 3D RV shape to characterise the morphological
changes due to the pathology. In [8], the authors proposed a
4D active appearance model of the beating heart to distinguish
patients from controls. They obtained excellent classification
but they did not relate the shape modes with clinical features
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to identify and quantify pathological shape patterns.

B. Technical Background: Studying Pathologies Through
Shape Analysis

1) Computational Shape Analysis: In the last decade, con-
sistent mathematical frameworks [10], [11] have been devel-
oped to analyse organ shapes [12] and to study their evolution
over time [13], with particular focus on neuroscience. A first
approach consists in using landmark correspondences and
model their spatial variability [14]–[17]. When correspon-
dences are not available or cannot be determined consistently,
organ shapes are analysed by studying how a representative
template of the population deforms within this population. The
idea is not to look at the shapes per se but at the deformations
that match the template to the observations [18].

Two strategies are available to create the template. The
backward strategy models the template as the average of
all the deformed observations plus some residuals, which
account for the variability in the space of shapes [19], [20].
Such a template is efficiently computed from the observations
but the parameters, especially the residuals, are difficult to
identify from the data. The forward strategy deals with this
limitation by reverting the model [21], [22]. An observation is
a deformation of the template plus some residuals that account
for features that are not captured by the template nor the de-
formations (typically topology changes, shape outliers due to
image artefacts, etc.). Estimating the template is more complex
as it requires that the shapes, deformations and residuals are
represented in a consistent way. Yet, model parameters can
be faithfully estimated from images and clinical data. The
user has better control on the shape information to analyse,
facilitating the interpretation of the statistical findings.

2) Identification of Pathological Shape Features: The major
application of the above-mentioned frameworks has been to
identify pathological shape features in populations of patients
compared to controls (see [23] and references therein for
instance). Nevertheless, that approach does not quantify how
much the shape is altered subject to the pathology. A way
to perform this task is to correlate the shapes with clinical
features that measure the degree of illness, provided that a
consistent framework for shape representation is available.
In [24], the authors use PCA on correspondences calculated
by non-linear registration to relate the modes of variation
of bone shapes to biomechanical properties simulated with
finite element methods. They could identify variations of bone
stress due to changes in bone anatomy, driving the elaboration
of patient-specific implant. In [25], the authors performed
PCA on shape descriptors of scoliotic spines. Resulting modes
were consistent with the established clinical classification. In a
preliminary study [26], we showed that the forward approach
proposed in [22] enables one to identify shape features related
to the severity of the regurgitation in rToF patients. This article
significantly expands our approach by quantifying how the RV
shape changes with the severity of regurgitation measured by
different clinical metrics.

3) Modelling of Heart Growth: The complexity of the
biological processes that give rise to cardiac growth hampers

its modelling. So far, proposed models focus on specific mech-
anisms only, like cardiac fibre realignment or myocardium
thickening under specific external stimuli [27]–[29]. A deeper
understanding of these complex biological processes is re-
quired to develop more comprehensive models.

In parallel, statistical approaches have been proposed to
study organ shape evolution over time. The assumption is that
modifications in organ shape reveal underlying structural and
functional dysfunctions. Most of these studies use longitudinal
data, where the patient is scanned several times [13], [30]–
[33]. Nonetheless, the very large time scale of the cardiac
growth considered in rToF makes the acquisition of longi-
tudinal data challenging. In such situations, cross-sectional
statistical designs can be preferred [34]. The shapes are
regressed with a clinical feature that represents patient growth,
like age. A major challenge related to this technique is that
the dimensionality of the shape representation hampers the
prediction power of the model. A standard solution is to
regress on the principal components, as we did in [26]. Yet,
this approach may not be optimal as the determination of the
PCA space is based on the shapes only, it does not explicitly
consider the growth variable. PCA modes with low variations,
usually considered as noise and thus discarded, can be relevant
to pathological growth. Partial Least Squares Regression (PLS)
deals with this limitation by automatically extracting the
modes that are simultaneously relevant to the shapes and
growth. Widely applied in computational chemistry [35], PLS
has been used in the functional imaging community to predict
activation patterns related to specific cognitive activities [36],
[37]. In medical imaging, PLS appeared only recently. It
has been used to predict the cardiac motion from respiratory
signals to improve cardiac image acquisition [38]. In [39], PLS
was applied on the PCA shape modes of brain structures to
predict the shape of one structure according to the shape of
another one.

C. Aim of the Study

In view of assisting the cardiologists in quantifying the
morphological changes related to rToF and in establishing the
best timing for PVR, we aim to estimate a generative model of
the heart growth in rToF. The idea is to relate the heart shapes
to clinical metrics to identify the pathological shape features
and to model how they evolve over time. Such a growth model
could provide quantitative metrics of local changes in the
cardiac anatomy and function that could predict the cardiac
remodelling in a patient.

As a first step towards this aim, we relate in this article
the RV shape at end-diastole (ED) to regurgitation severity
and model its 3D remodelling over time. The RV shapes are
analysed using the forward approach proposed by [22] and
briefly described in Sec. II-A. This framework is particularly
suited for statistical analyses as i) it does not require point
correspondences; ii) template and deformations are computed
simultaneously and consistently; and iii) model parameters are
well-defined, the shape information to analyse is controlled
by the user. Two studies are carried out in 49 retrospective
patients. No controls are included. First, the main modes of
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variations computed by PCA are related to different clinical
features that quantify RV regurgitation (Sec. II-B). We could
thus detect local effects of regurgitation on the RV shape.
Second, we estimate a generative model of RV growth using
PLS and canonical correlation analysis (CCA) (Sec. II-C). We
obtained a first clinically relevant model of RV growth in
rToF (Sec. III). 10-fold cross-validation showed a promising
generalisation and stability of our model. Finally, common
patterns between the two studies highlighted possible cross-
effects between regurgitation and growth. These results open
new ways to analyse the cardiac anatomy, as discussed in
Sec. IV.

II. METHODS

A. Unbiased Template of the Right Ventricle
The RV at end-diastole of N = 49 patients is segmented

from cine-MRI as described in Sec. III-A. The first step of the
analysis is to estimate a template of the RV surfaces, or shapes,
using the forward approach proposed in [22]1. This template
serves as reference atlas to determine the deformations towards
each individual shape. The RV surface T i of a patient i
is modelled as the sum of the template T deformed by a
diffeomorphism φi and some residuals �i that stands for the
features that are not represented by the template nor the
deformations:

T i = φi.T + �i

Currents are used to represent the variables in the same
framework. Intuitively, the current of a surface is the flux of
any 3D vector field ω ∈ W across that surface. Mathemati-
cally, currents are continuous linear mappings from a vector
space W to R. When W is generated by a Gaussian kernel
KW (x,y) = exp(−�x − y�2/λ2

W ) (W is a Reproducible
Kernel Hilbert Space, r.k.h.s. of infinite dimension and KW

defines an inner product of W ), the dual space of currents
W ∗ is the dense span of basis elements δax, called Dirac delta
currents, defined at the spatial position x and with direction
a. In that framework, we can approximate the current T i of
a triangulated surface by the sum of the Dirac delta currents
defined at the triangle barycentres xi

k and oriented along the
triangle normals aik, T i =

�
k δ

ai
k

xi
k

(Fig. 1). The residuals �i

are modelled as random Gaussian currents.
The deformation φi is estimated using the Large Defor-

mation Diffeomorphic Metric Mapping (LDDMM) algorithm
on surfaces presented in [40]. φi derives from a time-varying
velocity field that is uniquely characterised by the initial
velocity vi

0, which belongs to a Gaussian r.k.h.s. V with kernel
KV . vi

0 is parameterised by moment vectors βi
xk

centred at the
positions xk of the delta currents of the template T (Fig. 1):

vi
0(x) =

�

k

KV (xk,x)β
i
xk

The template T and the deformations φi are estimated
simultaneously with an alternate minimisation strategy based
on step-varying gradient descent and initialised with the mean

1The source code of the framework is freely available from http://www-
sop.inria.fr/asclepios/projects/Health-e-Child/ShapeAnalysis/index.php

current of the population. The reader is referred to [22] for
further details.
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Fig. 1. The Dirac delta currents δαk
xk

of a triangulated mesh are positioned
at the barycentres xk of every triangle and oriented along their normal. The
moments βi

xk
that parameterise the diffeomorphic deformation φi are defined

at the xk’s. They are not necessarily normal to the surface.

The presented shape analysis algorithm has two parameters:
the kernel width of the currents space, λ2

W , and the kernel
width of the velocity space, λ2

V . They distribute the shape
information between the deformations φi and the residuals �i.
λ2
W controls the level of shape details to study. The larger λ2

W ,
the more “blurry” the shape representation and the less details
are considered. λ2

V controls the smoothness of the velocity
fields, and thus of the transformations. Intuitively, λ2

V sets the
size of the spatial region that is deformed consistently, i.e. the
“rigidity” of the diffeomorphic transformation. Global shape
differences are investigated using large λ2

V , and vice versa.
For this study, we focused on the regional pathological

features of the RV shape. We thus considered the shape
information encoded by the deformations φi only. We do not
analyse the residuals �i, which may be more challenging as
shapes may have local inconsistencies due to the image arte-
facts often present in cine MRI. A major difficulty to address
is the large dimensionality of φi, which is parameterised by
thousands of moment vectors βi

xk
. A lot of patients would

be necessary to get statistical significance. We deal with this
difficulty by projecting the deformations φi onto subspaces
well suited for the statistical analyses to perform.

B. Characterising Deformation Modes of the RV Shape

We first relate the shape to clinical indices in order to
identify pathological shape patterns. To that end, a compact
and intrinsic shape representation is computed by projecting
the deformations onto an optimal PCA subspace. The resulting
shape representation is tested with standard statistical designs.

1) Model Reduction on PCA Components: The initial ve-
locities vi

0 of the deformations are projected onto a subspace
computed using PCA. For computational efficiency, PCA is
performed in the space of the observations, as the number of
subjects N is usually smaller than the number of parameters
of the velocities. Let tm be the sorted principal components
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of the N ×N covariance matrix Σ = (σi,j),

σij =< vi
0 − v0,v

j
0 − v0 >V

=
�

xk,xl

(βi
xk

− βxk
)TKV (xk,xl)(β

j
xl

− βxl
)

In the previous equation, v0 is the mean initial velocity,
βxk

the average moment vector at the spatial position xk

and the superscripts i and j denote two different subjects.
By construction, the component tm belongs to the space of
the observations. Thus, the mth deformation mode, and more
precisely the moment vector pm that parameterises its initial
velocity vm

0 , is computed with the reconstruction formula
pm =

�
i t

m[i](βi − β), where βi contains all the moments
related to φi and β is the average moment vector. The first p
modes that explain at least π% of deformation variability are
selected. By projecting the deformations φi’s onto the resulting
PCA subspace, we represent a subject by a low-dimensional
shape vector f iPCA = {f i,m

PCA}m=1..p whose elements are the
KV -scalar products between vi

0 and the mth mode vm
0 .

2) Identification of Pathological Shape Features: The
f i,m
PCA’s quantify the amount of variability along the mth mode

that is present in the deformation φi. We thus investigate
the RV shape by relating the shape vector f iPCA to clinical
parameters that quantify the pathology. Ordinal clinical pa-
rameters are investigated using rank-based statistics. Kruskal-
Wallis analysis of variance is applied to find effects between
the investigated parameter and shape [41]. If an effect is
found, post-hoc two-sample Wilcoxon test is used to determine
which levels differ [41]. Continuous clinical parameters are
investigated using linear regression and Akaike Information
Criterion (AIC) model reduction [42] to detect relevant modes
and the direction of correlation. All the tests were done with
R [41]. The level of significance was set at p < 0.1. Multiple
comparisons were corrected using Bonferroni adjustment.

C. A Generative Statistical Model of the RV Growth
In the second study, we investigate the RV growth through

cross-sectional regression between observed RV shapes and
body surface area (BSA), a continuous index of patient phys-
iology computed from height and weight [43]. In paediatrics,
BSA correlates well with age. We seek a model that returns
a template corresponding to the average RV shape for a
given BSA. The underlying idea is to deform the template
T with a transformation that depends on the BSA. Directly
calculating such a model is hampered by the dimensionality
of the transformation to predict from the 1D predictor (the
BSA). We thus revert the point of view. First, we project the
deformations φi onto a subspace that i) optimises the converse
model BSA = g(β) and ii) is relevant to both deformation and
BSA. Under these requirements, PCA may not be optimal as
it does not explicitly consider the growth variable. We instead
use Partial Least Squares (PLS) regression. The relationship
is then reversed through CCA to get the generative model of
RV growth.

1) Model Reduction on PLS Components: PLS regression
combines PCA and linear regression between two sets of
variables X and Y to find bases, the PLS components, of

maximum variance and covariance [44]. If X is the matrix of
the N moment vectors βi and Y is the vector of the N BSA
values, N being the number of patients, then PLS returns the
deformation modes that have maximal variance and maximal
covariance with BSA.

Let Xc = X−X and Yc = Y−Y be the centred variables.
PLS consists in finding the latent vectors r and s that verify
max|r|=|s|=1 cov(Xcr,Ycs), with the additional conditions:

Xc = TPT + E (1)
Yc = UQT + F (2)
U = TD+G (3)

In the previous equations, T and U are the orthonormal
matrices of components, which belong to the space of the
observations; P and Q are the matrices of loadings, or modes,
defined in the space of moments; D is a diagonal weight
matrix; and E, F and G are matrices of residuals. Eq. 3 models
the linear relationship between deformation and BSA.

The latent vectors, the components and the modes are
computed iteratively with the PLS1 algorithm [44] (Algo. 1
in the Appendix). The components are automatically ordered
by decreasing variance and covariance between deformation
and BSA [44]. Therefore, the first q modes of Xc span an
optimal subspace that simultaneously explain πX% of the
population shape variance and πY % of the population BSA
variance. By projecting the deformations onto that subspace,
we represent a subject by a low-dimensional PLS shape
vector f iPLS = {fm,i

PLS}m=1...q whose elements are the scalar
products between the moments βi and the mth PLS mode.

2) A Generative Model of the RV Growth: We then estimate
the generative model of RV growth with canonical correlation
analysis (CCA) between PLS shape vectors f iPLS and BSA.
Intuitively, CCA estimates how much we should move along
each PLS mode when BSA varies. This information can thus
be used to calculate the deformation that must be applied to
the template T to get the average shape at a given BSA.

CCA generalises the notion of scalar correlation to sets of
variables to find bases, the CCA components, of maximum
correlation [45]. Let F be the N × q matrix of the PLS shape
vectors f iPLS and Y the vector of BSA. CCA components are
given by the SVD decomposition of the total covariance matrix

Γ(F,Y) = V−1/2
FF VFYV

−1/2
YY = RΩ ST

with VFF = FTF/(N − 1), VYY = YTY/(N − 1) and
VFY = FTY/(N − 1). Ω is the diagonal matrix of positive
correlation coefficients between the components. R and S are
the CCA components of the space of PLS shape vectors and
BSA respectively.

As Y is a one-column matrix, Ω has only one non-null
coefficient ω, which is the overall correlation between the PLS
shape vectors and BSA. S equals ±1, its sign determining
the direction of correlation of BSA. The elements of the
first column of R, denoted by ρ, relate to the amplitude and
direction of correlation of each PLS mode when the BSA
varies along the direction defined by S. More precisely, when
the BSA is multiplied by x, we walk by xS ω ρ[k] along the
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kth PLS mode. Thus, if the RV template T represents the
RV shape at the population mean BSA, the RV template for a
given BSA is obtained by deforming T with the deformation
Φ(BSA) parameterised by the moments:

β(BSA) = b+
BSA− BSA

BSA
S ω

�

k

ρ[k]pk (4)

where BSA is the average BSA of the population. The signif-
icance of the model is tested using Bartlett-Lawley test [46].

III. EXPERIMENTS AND RESULTS

A. Data Collection
1) Subjects and Image Preparation: 49 patients with re-

paired ToF (33 males) were selected retrospectively from
three hospitals based on their age (from 10 to 27 years) and
their pulmonary regurgitation fraction (PRF ≥ 10%), none
of which have undergone valve replacement (Table I). In
that population, BSA [43] significantly correlated with age
(R2 > 0.5, p < 5.10−4), justifying the use of that met-
rics to quantify patient growth. Steady-State Free Precession
(SSFP) cine MRI of the heart were acquired with 1.5T MR
scanners (Avanto, Siemens and Achieva, Philips) in the short-
axis view, covering entirely both ventricles (10 − 15 slices;
isotropic in-plane resolution ranging from 1.1 × 1.1mm2 to
1.7× 1.7mm2; slice thickness: 5− 10mm; 25− 40 phases).
PRF, defined as the percentage of backward pulmonary blood
flow with respect to the outward flow, was estimated using
2D+t flow MRI acquired at the proximal pulmonary artery
section. In 46 patients, end-diastole volume (EDVi), end-
systole volume (ESVi) and pulmonary regurgitant volumes
(PRVi = PRF×(EDVi−EDVi)), all indexed over BSA (values
were divided by BSA to remove the effect of growth) were
calculated from manual delineations of the RV endocardium.
Finally, one rater assessed trans-pulmonary valve (TPVReg)
and tricuspid (TriReg) regurgitation with one colour Doppler
measurement (sweep speeds: 50 − 100mm/s). 45 patients
were classified with mild (7), moderate (15) and severe (23)
TPVReg. Among them, 36 patients were classified with none
(9), trace (4) and mild (23) TriReg.

TABLE I
MEAN ± STANDARD DEVIATION OF THE MAIN CLINICAL FEATURES OF 49
RTOF PATIENTS (VALUES WITH ∗ ARE CALCULATED FROM 46 PATIENTS)

Age 17.2± 4.34 year
Body Surface Area (BSA) 1.60± 0.33 m2

Indexed End-Diastole Volume (EDVi) 155± 49mL/m2∗

Indexed End-Systole Volume (ESVi) 86± 34mL/m2∗

Pulmonary Regurgitation Fraction (PRF) 40± 12%
Indexed Pulmonary Regurgitation Volume (PRVi) 29± 14mL/m2∗

2) Surface Mesh Preparation: We studied the RV shape at
end-diastole, when the anatomical features of the pathology are
the most evident [6]. The RV endocardium was segmented on
the cine MRI cardiac sequence by fitting an anatomically accu-
rate geometrical model [47], [48]. Its position, orientation and
scale in the end-diastole image was determined automatically
using marginal space learning [47], which utilised a probabilis-
tic boosting tree (PBT [49]) for classification in combination

with Haar-like and steerable features. Then, boundaries were
estimated locally using a PBT trained on steerable features
in conjunction with a statistical shape model [14]. Manual
refinement of the fitting was done if necessary. In order to
restrict the variance across the data set to the differences
in shape morphology for our analyses, the resulting RV
meshes were rigidly aligned to a common coordinate frame. A
standard least square method [50] was employed as mesh point
correspondence among the segmentations was guaranteed with
geometrical resampling in local anatomical coordinates (Fig. 2,
left panel). Fig. 3 shows the RV components considered in the
following analyses.

Rigid-Body Alignment Non-linear registration to the template

Fig. 2. 3D RV meshes of 49 rToF patients. Left panel: The meshes were
rigidly aligned to a representative patient of the dataset. Observe the large
variability in shape. Right panel: The same meshes registered back to the
template using the diffeomorphic non-linear deformations.

�����

������

�	
���


�
���	
��������
����������������

��	���

���������

����

�	��

Fig. 3. RV anatomical components of a typical rToF patient.

B. Statistical Template of the Right Ventricle
1) Template Estimation: Estimating the RV template T

required setting the “rigidity” λ2
V of the diffeomorphic defor-

mation and the resolution of the currents representation λ2
W .

As we were mainly interested in the regional alterations of the
RV in rToF, λ2

V was set to 30mm, about the diameter of the
pulmonary annulus, and λ2

W to 10mm, to have good mesh
matching while discarding features due to image artefacts.
Lower λ2

W values would have been inappropriate anyway as
the image slice thickness was ≈ 10mm.

The template estimation algorithm iterated four times, yield-
ing a fairly well centred template in terms of velocities
(standardised mean of velocities, mean/sd = 0.4). Most
of the shape variability visible after linear registration were
captured by the diffeomorphic template-to-subject transfor-
mations (Fig. 2). Remaining differences were mostly due to
segmentation artefacts, thus not relevant for our analyses.
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Interestingly, the age of the closest patient to the template,
in terms of the current W -norm, was 16 and his BSA was
1.64m2. Both indices were fairly close to the population
averages (Table I). In this population, the mean shape was
consistent with the mean age and BSA.

2) Template Stability with Respect to the rToF Population:
10-fold cross-validation was performed to evaluate the stability
of the template with respect to the rToF population. The 49
patients were randomly split into ten different groups of five
(one with four) patients. Nine groups were used to estimate the
RV template (training patients). The remaining group was used
to test the model (test patients). That procedure resulted in ten
different templates, henceforth denoted Tk. Unfortunately, two
of them had to be discarded because the algorithm got trapped
in local minima and did not converge properly (standardised
mean of deformation velocities higher than 1.0). The other
eight templates required from 1 to 8 iterations to converge
(median = 7) and were well centred (mean/sd = 0.36±0.24).

Ideally, the Tk’s and the full-data template T should be
identical. We verified this assumption by calculating the
standard deviation of the distances dW (Tk, T ), ∀k, in the
space of currents W , which should be equal to the theoretical
value, σ/

√
N (σ is the standard deviation of the distances

between the patients and the template T , N = 49 is the
total number of patients). This simple rule provided a good
indication of how much the template varied with respect to
the population. Calculations yielded std(dW (T k, T )) = 34,
which was of the same order of magnitude than σ/

√
N = 48.

This confirmed a good stability of the template with respect
to the population, which could be verified visually (Fig. 4).
Very small differences were visible between T and T k, ∀k
(average point-to-point distance: 1.2± 0.4mm).

Fig. 4. Nine templates computed from nine different populations. The
templates were very similar, no significant differences were visible. Average
point-to-point distance: 1.2± 0.4mm.

C. Relating RV Shape to Regurgitation in rToF
Relationships between RV shape and pulmonary regurgi-

tation were investigated by relating the PCA shape vectors
f iPCA with TriReg, TPVReg and PRVi indices. 90% of the
spectral energy was explained by 18 PCA modes, resulting in
18-element PCA shape vectors.

Kruskal-Wallis analysis showed a significant effect of tri-
cuspid regurgitation (TriReg) on the deformation modes 11
(p < 0.05) and 15 (p < 0.1). According to pair-wise Wilcoxon
test, these modes could separate trace from mild TriReg levels
(p < 0.05 and p < 0.1 respectively). Visually (Fig. 5),

both modes captured an elongation of the tricuspid annulus.
Mode 11 encoded an enlargement of the apex whereas mode
15 displayed a bulging of the basal free-wall, both features
resulted in a more rectangular RV shape.

PCA modes correlated with TriReg (p < 0.05)
Mode 11 Mode 15

−0.5σ +0.5σ −0.5σ +0.5σ

Fig. 5. PCA deformation modes related to tricuspid regurgitation (TriReg).
The modes mainly captured an elongation of the tricuspid valve associated
with a more rectangular shape of the ventricle. Both modes separated trace
and mild TriReg (p < 0.05 and p < 0.1 respectively). Range of displayed
deformation amplitude set at population variability.

PCA modes correlated with TPVReg (p < 0.05)
Mode 1 Mode 10

−0.5σ +0.5σ −0.5σ +0.5σ

Fig. 6. PCA deformation modes related to transpulmonary regurgitation
(TPVReg). Mode 1 showed an RV dilation whereas mode 10 exhibited
a deformation of the RV base and bulging of the outlet. Analysis with
pulmonary regurgitation volumes (PRVi) suggested that when PRVi increases,
the RV dilates (mode 1 positively correlated) and the outlet bulges (mode
10 negatively correlated). Range of displayed deformation amplitude set at
population variability.

The analysis of TPVReg revealed a significant effect of
pulmonary regurgitation on the modes 1 (p < 0.05), 9
(p < 0.1), 10 (p < 0.05) and 12 (p < 0.1) but only the modes
1 and 10 could differentiate different levels (moderate/severe
for mode 1, p < 0.05; mild/moderate for mode 10, p < 0.1).
Visually (Fig. 6), mode 1 captured a dilation of the RV. Mode
10 exhibited a strong deformation of the valves and a localised
dilation of the RV outlet.

These findings were confirmed by analysing the indexed
pulmonary regurgitation volumes (PRVi) through linear re-
gression (PRVi = c +

�
l alfPCA[l]). The optimal linear

model returned by AIC criterion consisted of nine PCA
modes (Table II) and had a significant fit (R2 = 0.55,
p < 5.10−4). Interestingly, the modes 1 and 10 were those
with maximal significance to the linear model, suggesting a
promising stability of our analysis as the same shape features
were identified by two different parameters. The sign of the
regression coefficient of mode 1 was positive. When PRVi
increases, the 1st mode goes towards +σ, i.e. the RV dilates
(Fig. 6). In other words, the more severe the regurgitation, the
more dilated the ventricle independently of growth (as values
were indexed over BSA). Correlating the RV EDVi manually
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measured with PRVi confirmed this finding (Fig. 7, Pearson’s
correlation coefficient R = 0.67, p < 5.10−7) [5], [9]. Yet,
here we got more information. In particular, the negative
coefficient of mode 10 revealed that the outlet bulges (towards
−σ) as regurgitation increases, suggesting a localised impact
of regurgitation on the RV shape. Finally, we noticed that mode
11 was also relevant to PRVi, which may suggest possible
cross-effects between pulmonary and tricuspid regurgitation.

TABLE II
REGRESSION COEFFICIENTS al BETWEEN PCA SHAPE VECTORS AND
PRVI AFTER AIC REDUCTION (R2 = 0.55, p < 5.10−4). THE SIGN
INDICATES THE DIRECTION OF THE MODES FOR INCREASING PRVI.

c a1 a2 a4 a5
Coef. ×10−2 3130 0.23 −0.58 1.05 0.74

p-value 2.10−20 3.10−4 0.04 0.006 0.114

a7 a9 a10 a11 a18
Coef. ×10−2 1.61 −1.28 −3.27 −1.86 3.33

p-value 0.004 0.11 5.10−4 0.05 0.09
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Fig. 7. Evolution of RV EDVi with respect to PRVi (R = 0.67, p <
5.10−7). The larger the regurgitant volume, the more dilated the ventricle,
which confirmed the relevance and the positive correlation of the PCA Mode
1 with pulmonary regurgitation (Fig. 6).

D. Statistical Model of RV Growth in Repaired ToF
1) PLS Model of RV Growth: The nine first PLS modes

explained 98% of the BSA variability and 56% of the shape
variability observed in our population. By construction, the
PLS modes evolved towards +σ when BSA increased. Their
relevance to BSA was confirmed through linear regression
between the PLS shape vectors f iPLS and BSA (BSA =
gPLS(fPLS) = c+

�
l alfPLS [l]). All the modes were signifi-

cant to the linear model (p < 0.05), thus to BSA, and kept by
AIC criterion (Table III). The fit was very strong (R2 = 0.89,
p < 10−15). It has to be noted that in that experiment we were
mainly interested in the shape information that was relevant to
BSA, and not in the total shape variability. This contrasts with
the previous analyses that aimed to compare the RV shape to
different clinical metrics.

As the template T was consistent with the average BSA
(Sec. III-B1), we computed the generative model of RV
growth by deforming T with the growth deformation Φ(BSA)
parameterised by (Eq. 4). CCA confirmed the strong correla-
tion between the PLS modes and BSA (overall correlation

TABLE III
REGRESSION COEFFICIENTS al BETWEEN PLS SHAPE VECTORS AND BSA

(R2 = 0.89, p < 5.10−16). ALL THE PLS MODES WERE RELEVANT TO
BSA AND POSITIVELY CORRELATED.

c a1 a2 a3 a4
Coef. ×10−4 1595 4.3 9.4 8.6 10.8

p-value < 2.10−16 < 2.10−16 < 2.10−16 10−14 3.10−11

a5 a6 a7 a8 a9
Coef. ×10−4 9.0 12.0 9.4 6.0 2.8

p-value 1.10−9 6.10−8 2.10−5 7.10−4 0.02

ω = 0.95, p < 10−8). The individual canonical correlations
ρ[k] decreased exponentially (Fig. 8, left panel). The “time”
constant of the fitted exponential was 1.96. After six modes
the correlation with BSA was already 0.1.

PLS Model PCA Model
ω = 0.95, p < 10−8, τ = 1.96 ω = 0.80, p < 10−6, τ = 4.50
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Fig. 8. CCA correlation coefficients between BSA and PLS/PCA modes.
Black line: fitted exponential. Contrary to PCA, PLS provided better cor-
relation with BSA, the individual modes were automatically extracted by
decreasing order of correlation. The decrease of the individual canonical
correlations was much faster (lower time constant τ ), denoting a lower spread
of the shape information relevant to BSA over the modes.

The RV growth model was visually plausible (Fig. 9). As
BSA increased, RV volume increased while the free-wall, the
tricuspid valves and the outlet dilated. In proportion, the apex
dilated more and faster than the inlet and outlet (Fig. 10). That
result follows the observations reported in [7], who identified
significantly different end-diastolic volumes of the apical com-
ponents between rToF patients and controls, whereas inlet and
outlet end-diastolic volumes were not significantly different
between the two groups. The septum of our model stayed
relatively flat as BSA increased. Expected by the cardiologists
involved in the project, that behaviour could be explained by
the pressure overload often reported in rToF patients [6], [51].

2) Generalisation of the RV Growth Model: Generalising
the statistical model of RV growth is of primary importance for
patient management and therapy planning. Ideally one would
like to predict the RV shape of a patient from a BSA. However,
this challenging task would require longitudinal data, which
are challenging to obtain for rToF due to the large time scale
of the pathology. We thus tested the RV growth model by
predicting patients’ BSA from their RV shape. Although such
an application has little clinical relevance, it enables one to
evaluate the ability of the model to represent new patients.

We predicted the BSA of 39 patients from the templates
T k given by the above-mentioned 10-fold cross-validation
technique (ten patients were discarded as the respective tem-
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Fig. 9. Average RV growth computed from a population of 49 rToF patients. While BSA increases, RV globally enlarges, in particular the apical component.
Simultaneously, the valves significantly dilate, the free wall becomes rounder but the septum stay relatively flat. At high BSA, RV outlet becomes rounder.
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Fig. 10. Evolution of the indexed volumes of each RV component. The
apical component dilated faster than the other components in our model. The
outlet was the least affected component while the inlet dilated mainly because
of the bulging of the free-wall. These findings were consistent with [7].

plates did not converge). The PLS shape vectors of the training
patients related to T k were used to estimate the linear model
BSA = gPLSk(fPLS), which was then applied to predict the
BSA of the test patients. 95% prediction interval was also
calculated to assess the precision of the predictions.

In average, BSA was successfully predicted. The mean error
(0.26 ± 0.22m2) and median error (0.20m2) were below
population SD (0.33m2). 95% prediction interval was also
satisfying (0.23 ± 0.03m2), considering the large variability
of RV shapes in rToF patients. Fig. 11 reports the individual
predictions. If for the majority of patients the prediction error
is below population SD, the BSA of 12 patients could not
be predicted. By comparing their RV end-diastolic volume
with their BSA, we found that six of these patients were
clear outliers (Fig. 11, right panel). Their RV was larger or
smaller than in average. This difference may suggest a fast
deterioration of the RV or, conversely, a protection to the
disease. The model could therefore be used to distinguish

patients that deviate from the “average” rToF growth. BSA
prediction also failed for patients with low BSA, although they
were relatively close to the average trend. A possible reason
for that is the few number of subjects in that range of BSA.

3) Comparison with PCA Regression: In [26], we built
the growth model by applying CCA on the PCA modes
that were found relevant to the linear regression BSA =
c +

�
l alfPCA[l]. In our population, six PCA deformation

modes were found relevant to BSA, with good fit (R2 =
0.64, p < 5.10−8 ) (Table IV). Less modes were required to
generate the growth model than with PLS, but only 47% of
shape variability was captured (56% by the PLS modes).

TABLE IV
REGRESSION COEFFICIENTS al BETWEEN PCA SHAPE VECTORS AND BSA

AFTER AIC MODEL REDUCTION (R2 = 0.64, p < 5.10−8). SIX MODES
WERE KEPT. THE SIGN INDICATES THE DIRECTION OF CORRELATION FOR

INCREASING BSA.

c a1 a3 a9 a11 a14 a15
Coef. ×10−4 1595 0.7 −1.5 3.3 3.8 3.3 7.6

p-value < 2.10−16 7.10−8 0.007 0.01 0.02 0.12 0.003

CCA returned a less correlated model with PCA (ωPCA =
0.80). Moreover, as theoretically expected, the individual
correlations ρ[k] between the PCA modes with BSA did not
depend on their variance (Fig. 8, right panel). Some modes
with low variance (e.g. mode 15) were more correlated with
BSA than first modes, (e.g. mode 3). Artificial cut-off on the
cumulated variance can discard PCA modes with low variance
but highly related to the clinical parameter of interest. In
addition to that, the ρ[k], ordered by decreasing correlation,
did not decrease as fast as the PLS coefficients. As shown in
Fig. 8, four PCA modes were similarly correlated with BSA.
The shape information relevant to growth were equally spread
over these modes. In contrast, PLS automatically extracted
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BSA Prediction Errors of the PLS Model Pearson’s Correlation R = 0.61, p < 10−5
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Fig. 11. Left panel: Errors of the predicted BSA calculated from the RV shapes of the tested patients using the PLS model. In average, the errors compared
fairly well with population BSA (error = 0.26m2, std(BSA) = 0.33m2), with a 95% prediction interval (0.23m2) below population SD. Right panel: non-
indexed RV EDV with respect to BSA. Patients for which BSA prediction failed are in red triangles. Except one patient for which the model failed without
clear explanation, most of them are outliers (RV size significantly larger or smaller than the average) or small patients. For the later cases, the prediction
failed probably because of the small number of patients with similar BSA (See text for details)

modes whose correlation with BSA decreased exponentially,
automatically ordered by covariance and correlation.

Finally, we evaluated the prediction power of the PCA
model by calculating the BSA of the test patients from their
PCA shape vector. Like the PLS model, predicted BSA were
satisfying in average (error = 0.23 ± 0.19m2, median =
0.18m2). However, the 95%-prediction interval was twice as
large as the PLS one (0.46±0.04m2), higher than population
SD. Predicted values were therefore much less precise. The
PLS model could therefore better represent new patients.

E. Cross-Effects Between Regurgitation and Growth

We finally investigated the cross-effects between growth
and pulmonary regurgitation on the RV shape by correlating
the PLS shape vectors with TPVReg and PRV. Non-indexed
measures were used as growth is now part of the analysis.
A significant effect was found between TPVReg and the 1th

and 2nd PLS modes (Fig. 12). These modes were also found
relevant to PRV, with positive and significant (p < 0.05)
regression coefficients. The 1th PLS mode was strikingly
similar to the 1th PCA mode. It encoded a global dilation of
the RV. The 2nd PLS mode showed some features common to
the 10th PCA mode (Fig. 6), especially the progressive bulging
of the RV outlet. This analysis suggested a link between
growth, dilation and severity of pulmonary regurgitation.

IV. DISCUSSION AND CONCLUSION

We have presented in this article a new way to investigate
the 3D changes of the heart shape related to rToF. We related
clinical parameters to the RV shape at end-diastole, when
the effects of the pathology on the anatomy are the most
evident, to identify pathological shape patterns and quantify
the RV remodelling in 49 rToF patients. Contrary to pre-
vious clinical studies that rely on global parameters such
as blood pool volume, we quantify in this work regional,
localised anatomical changes and their evolution over time.
An ideal template was estimated from the population using

PLS Modes correlated with TPVReg (p < 0.05)
PLS Mode 1 PLS Mode 2

−0.5σ +0.5σ −0.5σ +0.5σ

Fig. 12. PLS modes related to pulmonary regurgitation (TPVReg). Correla-
tion with PRV showed that these modes evolve towards +σ, in the direction
of increasing BSA, when PRV increases. The RV dilates and the outlet bulges.
They were similar to PCA modes 1 and 10, also found relevant to PRV. These
trends may highlight cross-effects between growth and regurgitation on the RV
shape. Range of displayed deformation amplitude set at population variability.

currents shape representation and LDDMM registration al-
gorithm. Multivariate statistical analyses on the deformations
highlighted global and regional shape features related to the
severity of regurgitation and provided a generative model of
the observed RV growth. The findings were clinically relevant
as they exhibited realistic changes in RV anatomy previously
reported in the literature [6], [7]. To the best of our knowledge,
the present study constitutes a first attempt at combining
currents-based shape analysis methods with statistical designs
like PLS to quantify the pathological 3D RV shape in rToF
and to estimate a generative model of RV growth in that
population. These analyses may yield quantitative image-based
indices about RV anatomy and remodelling in ToF.

We first estimated an RV template from the observed shapes.
That template was well centred and stable with respect to the
population of reference. 10-fold cross validation showed that
the template did not change significantly when the dataset
varies. Non-reported 3-fold cross validation resulted in similar
conclusions (average point-to-point distance: 1.4 ± 0.5mm).
This encouraging result suggests a promising generalisation of
the statistical findings. Our template could be used for other
analyses, on other rToF patients, without re-estimating it.

The effects of regurgitation severity measured from colour
Doppler ultrasound were analysed on a component-by-
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component basis to preserve the statistical power of the tests
due to the ordinal nature of the information obtained from
ultrasound. The groups were not sufficiently populated to
apply more comprehensive statistics. Despite this limitation,
selected PCA deformation modes were clinically relevant and
consistent with the modes exhibited by multivariate regression
between RV shape and pulmonary regurgitation volumes,
which considers all the modes at the same time and provides
the direction of correlation. We could thus identify that the RV
dilates, the outlet bulges and the apex deforms as regurgitation
becomes worse and the child grows. These findings were
consistent with reported observations in the literature and
our previous studies [26], [52]. Indeed, despite the different
ordering of the PCA modes, which depends on the population,
the modes that were statistically related to the clinical features
were fairly consistent between the studies (we refer the reader
to the figures reported in [26], [52]). One could quantify the
similarity between PCA subspace (using cosine betwen modes
or bootstrapping approaches [53]) but the interpretation of the
results is not straightforward.

The effects of growth on the RV shape were investigated
using partial least squares (PLS) on the deformation moments.
Contrary to PCA, PLS automatically finds the minimal yet
optimal number of deformation modes that were simulta-
neously relevant to shape and BSA. PLS thus prevents the
risk of discarding shape information relevant to growth but
with low variance. Our model was realistic, with promising
generalisation. It showed a progressive dilation of the RV, in
particular at the free-wall and at the apex. The outlet dilates
as the valves deform. Compared to PCA regression, the PLS
model provided a more precise prediction, although all the
patients could not be predicted by the model due to the large
variability in RV anatomy. Those cases showed that the model
could also be used to detect patients that deviate from the
average rToF growth. Hence, patients that get worse with
respect to the average rToF population could be detected and
a PVR planned.

49 patients were used in this study. This number of subjects
is sufficient for rank-based statistical tests, which can be
performed on very small databases, as they do not assume
any distribution. Moreover, according to the central limit
theorem [54], 49 subjects should also be enough to fulfil
the theoretical assumptions of PCA and linear regressions.
This was confirmed by the very good statistical powers of
our tests [55]. That said, 49 patients might not be enough in
practice to represent the large anatomical variability in rToF.
Although reported trends were consistent with previous works
on smaller populations [26], [52], studies on larger multi-
centric databases would be necessary to confirm these findings.

Our work opens several technical and clinical questions.
From a technical point of view, the PLS model could be
improved by considering the kernel properties of the space
of velocity. We applied the PLS method on the moments
although theoretically the L2 scalar product between moments
is ill-defined. Furthermore, the non orthogonality of the PLS
loadings may yield multi-collinear shape vectors, which can
hamper the prediction power of the model. A possible solution
would be to perform PLS directly in the kernel space of

velocities. The linear model may also be too restrictive. It
is indeed acknowledged that the growth in teenagers follows
a “sigmoidal” trend. A straightforward extension of our work
is to fit polynomial or sigmoidal models to the data but a
more elegant way to cope with this would be to perform
kernel regression and kernel canonical correlation analysis in
the space of velocities.

Another technical research direction is to apply the statisti-
cal model of RV growth to predict the RV shape of a specific
patient, from group-wise analyses to patient-specific predic-
tions. This can be achieved by “transporting” the deformation
associated to the growth model to the patient RV anatomy [56].
However, this task is not trivial as it requires parallel transport
algorithms tailored to the Riemannian manifold of diffeomor-
phisms [31], [57].

From a clinical point of view, relating RV shape with clin-
ical features opens new ways to study key clinical questions
related to rToF and other cardiac pathologies. First, it would
be interesting to extend the current 3D framework to time
series, to correlate the changes in shape and function with
pathology and growth. A first approach would be to consider
the shapes at ED and ES simultaneously, yielding a 2-column
shape matrix instead of the shape vector used in this paper.
Multivariate analyses would then be applied to highlight the
pathological changes in cardiac morpho-dynamics. PLS can
be applied directly as this method is also suitable for two sets
of variables. Unfortunately, although the proposed framework
enables it, we could not perform such a study because of the
lack of the segmentations at ES. More sophisticated spatio-
temporal approaches [30], [33], [56] could also be employed.

The LV-RV interactions such as septal deformation could
also be investigated by creating models of the bi-ventricular
myocardium. Our framework can be easily adapted to multi-
label templates by co-registering the LV and the RV con-
sistently such that the anatomical correspondence is pre-
served [22]. This could not be done in the population of
that paper, as the LV segmentations were not available, but
preliminary results in a different and much smaller population
were promising.

In that article, we considered all the rToF patients who were
available to maximise the power of the statistical analyses.
Nonetheless, the type of initial repair may lead to different
RV remodelling [9], [58]. It would be interesting to investigate
how that repair influences the RV growth and pathology evo-
lution by differentiating different groups of patients. Yet, this
question is extremely difficult to tackle as surgical techniques
vary amoung clinical centres and, above all, improve over time.

Recently, direct computational models of heart electrome-
chanics and fluid dynamics have been investigated to simulate,
in-silico, the postoperative effects of pulmonary valve replace-
ment [59], [60]. These approaches showed promising results
and could assist, in the future, the surgeon to plan the optimal
intervention for a specific patient. However, they do not model
the cardiac remodelling that follows the therapy, which can be
as crucial as the therapy itself. A statistical approach like ours
could go with these models to predict the long-term surgical
outcomes. For a given PVR strategy, one would collect follow-
up data and build the statistical model, which could then be
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applied to the simulated postoperative heart to predict the long-
term remodelling.

Other interesting clinical questions related to rToF could
be investigated using our approach. For instance, there is
nowadays a clinical consensus that a longer QRS duration
correlates with RV dilation [3], [4]. Correlating this parameter
with the RV shape could reveal how the abnormal conduction
system impacts the RV anatomy and function. Similarly,
studying body-mass index (BMI) jointly with BSA could
provide a more comprehensive representation of the patient
growth. One could apply the PLS method between two sets of
multivariate variables (BMI, BSA and QRS on the one hand,
the shape vectors on the other hand) and get a growth model
that explains both features. Unfortunately, QRS durations and
BMI were not available for all the patients as the population
was retrospective, keeping these questions for future work.

The effect of genetic factors that regulate myocardium
stiffness on the long-term RV remodelling could also be
analysed. Patients with stiffer myocardium are known to be
more protected against RV dilation. These patients may be the
outliers of the model with “abnormally” smaller RV than the
average. The decision for valve implant may be delayed and
based on different features for these patients. Finally, group-
wise analyses between patients and controls would further help
in identifying pathological shape patterns. Unfortunately we
could not do that, no healthy subjects were available.

In conclusion, we have presented in this article a method
to quantitatively relate shapes to clinical features and model
their evolution over time. The results on the RV shape in
rToF patient encourages us to extrapolate the approach to the
numerous clinical questions we discussed and to other cardiac
pathologies involving cardiac remodelling.

APPENDIX

Algo. 1 summarises the main steps of the PLS1 algorithm,
used to estimate the PLS shape components [44].

Algorithm 1 Partial Least Squares Regression (PLS1)
Require: Variables X and Y, Nb of components p ≤ N − 1.

1: X0
c = X−X, Y0

c = Y −Y
2: for n = 1 to p do
3: rn ← first eigenvector of XnT

c Yn
c Y

nT

c Xn
c

4: tn ← Xn
c r

n/�rn� {nth PLS component of X}
5: sn ← YnT

c tn/(tn
T
tn)

6: un ← Yn
c s

n/�sn� {nth PLS component of Y}
7: pn ← XnT

c tn/(tn
T
tn) {nth loading of X}

8: qn ← YnT

c un/(unT
un) {nth loading of Y}

9: Xn+1
c ← Xn

c − tnpnT {deflation of Xc}
10: Yn+1

c ← Yn
c − tn[tn

T
Yn/(tn

T
tn)] {deflation of Yc}

11: end for
12: return T = (tn)n=1...p, P = (pn)n=1...p, U = (un)n=1...p,

Q = (qn)n=1...p

ACKNOWLEDGMENT

This work has been partly funded by the European Commis-
sion, IST-2004-027749 Health-e-Child Integrated Project. The
authors warmly thank Boris Bernhardt, Neuroimaging Labora-
tory of Epilepsy, Montreal Neurological Institute, for his help-
ful comments about the statistical designs, and the reviewers
for their constructive comments about this manuscript.

REFERENCES

[1] J. Therrien, Y. Provost, N. Merchant, W. Williams, J. Colman, and
G. Webb, “Optimal timing for pulmonary valve replacement in adults
after tetralogy of Fallot repair,” The American journal of cardiology,
vol. 95, no. 6, pp. 779–782, 2005.

[2] T. Oosterhof, “Cardiovascular magnetic resonance in patients with cor-
rected Tetralogy of Fallot,” Ph.D. dissertation, Unversity of Amsterdam,
2006.

[3] M. A. Gatzoulis, J. A. Till, J. Somerville, and A. N. Redington, “Mecha-
noelectrical interaction in tetralogy of Fallot : QRS prolongation relates
to right ventricular size and predicts malignant ventricular arrhythmias
and sudden death,” Circulation, vol. 92, no. 2, pp. 231–237, 1995.

[4] R. Scherptong, M. Hazekamp, B. Mulder, O. Wijers, C. Swenne,
E. van der Wall, M. Schalij, and H. Vliegen, “Follow-Up After
Pulmonary Valve Replacement in Adults With Tetralogy of Fallot::
Association Between QRS Duration and Outcome,” Journal of the
American College of Cardiology, vol. 56, no. 18, pp. 1486–1492, 2010.

[5] T. Geva, “Indications and timing of pulmonary valve replacement after
tetralogy of Fallot repair,” in Seminars in Thoracic and Cardiovascular
Surgery: Pediatric Cardiac Surgery Annual, vol. 9. Elsevier, 2006, pp.
11–22.

[6] F. Sheehan, S. Ge, G. Vick III, K. Urnes, W. Kerwin, E. Bolson,
T. Chung, J. Kovalchin, D. Sahn, M. Jerosch-Herold et al., “Three-
Dimensional Shape Analysis of Right Ventricular Remodeling in Re-
paired Tetralogy of Fallot,” The American Journal of Cardiology, 2007.

[7] N. Bodhey, P. Beerbaum, S. Sarikouch, S. Kropf, P. Lange, F. Berger,
R. Anderson, and T. Kuehne, “Functional Analysis of the Components
of the Right Ventricle in the Setting of Tetralogy of Fallot,” Circulation:
Cardiovascular Imaging, vol. 1, no. 2, p. 141, 2008.

[8] H. Zhang, A. Wahle, R. Johnson, T. Scholz, and M. Sonka, “4D
Cardiac MR Image Analysis: Left and Right Ventricular Morphology
and Function.” IEEE Transactions on Medical Imaging, vol. 29, no. 2,
pp. 350–364, February 2010.

[9] M. Samyn, A. Powell, R. Garg, L. Sena, and T. Geva, “Range of
ventricular dimensions and function by steady-state free precession cine
MRI in repaired tetralogy of Fallot: right ventricular outflow tract patch
vs. conduit repair,” Journal of Magnetic Resonance Imaging, vol. 26,
no. 4, pp. 934–940, 2007.

[10] U. Grenander and M. Miller, “Computational anatomy: An emerging
discipline,” Quarterly of applied mathematics, vol. 56, no. 4, pp. 617–
694, 1998.

[11] X. Pennec, “Statistical computing on manifolds: from Riemannian
geometry to computational anatomy,” in Emerging Trends in Visual
Computing, ser. Lecture Notes in Computer Science. Springer, 2008,
vol. 5416, pp. 347–386.

[12] J. Ashburner, C. Hutton, R. Frackowiak, I. Johnsrude, C. Price, and
K. Friston, “Identifying global anatomical differences: deformation-
based morphometry,” Human Brain Mapping, vol. 6, no. 5-6, pp. 348–
357, 1998.

[13] P. Thompson, J. Giedd, R. Woods, D. MacDonald, A. Evans, and
A. Toga, “Growth patterns in the developing brain detected by using
continuum mechanical tensor maps,” Nature, vol. 404, no. 6774, pp.
190–193, 2000.

[14] T. Cootes, C. Taylor, D. Cooper, J. Graham et al., “Active shape
models-their training and application,” Computer vision and image
understanding, vol. 61, no. 1, pp. 38–59, 1995.

[15] A. Frangi, D. Rueckert, J. Schnabel, and W. Niessen, “Automatic
construction of multiple-object three-dimensional statistical shape mod-
els: Application to cardiac modeling,” IEEE Transactions on Medical
Imaging, vol. 21, no. 9, pp. 1151–1166, 2002.

[16] M. Styner, J. Lieberman, D. Pantazis, and G. Gerig, “Boundary and
medial shape analysis of the hippocampus in schizophrenia,” Medical
Image Analysis, vol. 8, no. 3, pp. 197–203, 2004.

[17] H. C. van Assen, M. G. Danilouchkine, A. F. Frangi, S. Ordas, J. J.
Westenberg, J. H. Reiber, and B. P. Lelieveldt, “SPASM: A 3D-ASM
for segmentation of sparse and arbitrarily oriented cardiac MRI data,”
Medical Image Analysis, vol. 10, no. 2, pp. 286–303, April 2006.

[18] D. Thompson, On Form and Growth. Cambridge University Press,
1917.

[19] A. Guimond, J. Meunier, and J.-P. Thirion, “Average brain models: A
convergence study,” Computer Vision and Image Understanding, vol. 77,
no. 2, pp. 192–210, 2000.

[20] S. Joshi, B. Davis, M. Jomier, and G. Gerig, “Unbiased diffeomorphic
atlas construction for computational anatomy,” NeuroImage, vol. 23, pp.
151–160, 2004.



IEEE TRANSACTIONS ON MEDICAL IMAGING, IN PRESS 12

[21] S. Allassonniere, Y. Amit, and A. Trouve, “Towards a coherent statistical
framework for dense deformable template estimation,” Journal of the
Royal Statistical Society: Series B (Statistical Methodology), vol. 69,
no. 1, pp. 3–29, 2007.

[22] S. Durrleman, X. Pennec, A. Trouvé, and N. Ayache, “Statistical models
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