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Abstract. We present the fast Spherical Demons algorithm for register-
ing two spherical images. By exploiting spherical vector spline interpo-
lation theory, we show that a large class of regularizers for the modified
demons objective function can be efficiently implemented on the sphere
using convolution. Based on the one parameter subgroups of diffeomor-
phisms, the resulting registration is diffeomorphic and fast – registra-
tion of two cortical mesh models with more than 100k nodes takes less
than 5 minutes, comparable to the fastest surface registration algorithms.
Moreover, the accuracy of our method compares favorably to the popu-
lar FreeSurfer registration algorithm. We validate the technique in two
different settings: (1) parcellation in a set of in-vivo cortical surfaces and
(2) Brodmann area localization in ex-vivo cortical surfaces.

1 Introduction

Motivated by the spherical representation of the cerebral cortex, this paper deals
with the problem of registering two spherical images. Cortical folding patterns
are correlated with both cytoarchitectural [13] and functional regions [11]. In
group studies of cortical structure and function, determining corresponding folds
across subjects is therefore important. There has been much effort focused on
registering cortical surfaces in 3D [9,10,14]. Since cortical areas – both structure
and function – are arranged in a mosaic across the cortical surface, an alternative
approach is to model the surface as a 2D closed manifold in 3D and to warp the
resulting spherical coordinate system [11,18,20,21,23].

Unfortunately, many spherical warping algorithms are computationally ex-
pensive. One reason is the need for invertible deformations that preserve the
topology of structural or functional regions across subjects. Previously demon-
strated methods for cortical registration [11,18,23] rely on soft regularization
constraints to encourage invertibility. They require computationally expensive
steps of unfolding the mesh triangles or small optimization steps to achieve
invertibility [11,23]. Elegant regularization penalties to guarantee invertibility
exist [2,16] but make certain assumptions valid only in Euclidean spaces.
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An alternative approach to achieve invertibility is to work in a Lie group
of diffeomorphisms [3,4,9,15,22], the theory of which can be extended to man-
ifolds [15]. The Large Deformable Diffeomorphic Metric Mapping (LDDMM)
[4,9,15] is a popular framework under this paradigm that seeks diffeomorphisms
parametrized by time-varying velocity fields. Because LDDMM optimizes over
the entire path of the diffeomorphism, the resulting algorithm is slow.

In this paper, we take the approach, previously demonstrated in the Euclidean
space [22], of restricting the deformation space to be a composition of diffeomor-
phisms, each of which is parameterized by a stationary velocity field. In each
iteration, the algorithm greedily seeks the best diffeomorphism to be composed
with the current transformation, resulting in much faster updates.

Another challenge in registration is the tradeoff between the image similarity
measure and the regularization in the objective function. Since most regulariza-
tions favor smooth deformations, the gradient computation is complicated by
the need to take into account the deformation in neighboring regions. For Eu-
clidean images, the demons objective function [19,6,22] facilitates a fast two-step
optimization where the second step handles the warp regularization via a single
convolution with a smoothing filter.

Based on spherical vector spline interpolation theory [15] and other differen-
tial geometric tools, we show that the two-stage optimization procedure of the
demons algorithm can be efficiently applied on the sphere. The problem is not
trivial since tangent vectors at different points on the sphere are not comparable.
We also emphasize that the extension of the demons algorithm to the sphere is
independent of our choice of the space of admissible warps.

The Spherical Demons algorithm takes less than 5 minutes on a Xeon 3.2GHz
processor, comparable to other non-linear cortical surface registration algorithms
whose runtimes range from minutes [10,18] to more than an hour [11,23]. How-
ever, these fast algorithms [10,18] suffer from folding spherical triangles and
intersecting triangles in 3D since only soft constraints are used.

Unlike [9,15],we do not assume the existence of corresponding landmarks.While
landmark-free registration is harder, we demonstrate that our algorithm is accu-
rate in both cortical parcellation and cyto-architectonic localization applications.

The contributions of this paper are multi-fold. First, we show that the demons
algorithm can be efficiently applied on the sphere. Second, the use of a limited
class of diffeomorphisms yields a speed gain of more than an order of magnitude
compared with other landmark-free diffeomorphic spherical registration meth-
ods. Finally, we validate our algorithm by showing accuracy comparable to the
popular FreeSurfer algorithm [11] on two data sets.

2 Background - Demons Algorithm

We choose to work with the modified demons objective function, essentially
identical to [6,22], with a slightly different interpretation:

(s∗, c∗) = argmin
s,c

‖F − M ◦ c‖2 +
1
σ2

x

dist(s, c) +
1

σ2
T

Reg(s) (1)
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where F is the fixed image, M is the moving image, c is the desired registration
and s is a hidden transformation that acts as a prior on c. The fixed image
F and warped moving image M ◦ c are treated as N × 1 vectors. Typically,
dist(s, c) = ‖s − c‖2, encouraging the resulting transformation c to be close
to the hidden transformation s and Reg(s) = ‖∇s‖2, i.e., the regularization
penalizes the gradient magnitude of the hidden transformation s. σx and σT

provide a tradeoff among the different terms of the objective function.
This formulation facilitates a two-step optimization procedure that alternately

optimizes the first two and last two terms of Eq. (1). Starting from an initial
displacement field s0, the demons algorithm iteratively seeks an update trans-
formation to be composed with the current estimate.

Algorithm: Demons

Step 1. Given s(t), minimize the first two terms of Eq. (1)

u(t) = argmin
u

‖F − M ◦ {s(t) ◦ u}‖2+
1
σ2

x

dist(s(t), {s(t) ◦ u}) (2)

where u is any admissible transformation. Compute c(t) = s(t) ◦ u(t).
Step 2. Given c(t), minimize the last two terms of Eq. (1):

s(t+1) = argmin
s

1
σ2

x

dist(s, c(t)) +
1

σ2
T

Reg(s) (3)

In the original demons algorithm [19], the space of admissible warps include all
displacement fields: u, s and c are 3D displacement fields, and the composition
operator ◦ corresponds to the addition of displacement fields. In the Diffeomor-
phic Demons algorithm [22], u is a diffeomorphism from R

3 to R
3 parameterized

by a stationary velocity field v. Under certain smoothness conditions, a sta-
tionary velocity field v is related to a diffeomorphism through the exponential
mapping u = exp(v). In this case, exp(v) is the solution at time 1 of the sta-
tionary ODE ∂x(t)/∂t = v(x(t)), with x(0) ∈ R

3. Deformation exp(v)(·) maps
point x(0) to point x(1).

The demons algorithm and its variants are fast because for certain forms of
dist(s, c) and Reg(s), step 1 reduces to a non-linear least-squares problem that
can be efficiently minimized via Gauss-Newton optimization and step 2 can be
solved by a single convolution of the displacement field c with a smoothing filter.

3 Spherical Demons

In this section, we show that suitable choices of dist(s, c) and Reg(s) lead to
efficient optimization on the sphere S2. We work with updates u that are dif-
feomorphisms parameterized by a stationary velocity field v. We emphasize that
unlike [22], v is tangent to the sphere and not an arbitrary 3D vector. It is also
easy to extend our results to other transformations, e.g., spherical splines.
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Choice of dist(s, c). Suppose the transformation c maps a point xn ∈ S2 to a
point c(xn) ∈ S2. Let TxnS2 be the tangent space at xn. We define �cn ∈ TxnS2

to be the tangent vector at xn, pointing along the great circle connecting xn to
c(xn), with length equal to the sine of the angle between xn and c(xn). There is
a 1-to-1 correspondence between c(xn) and �cn, assuming the angle is less than
π/2, which is reasonable even for relatively large deformations. On a unit sphere,
�cn = −xn × (xn × c(xn)) = −D2

nc(xn), where Dn is the 3 × 3 skew-symmetric
matrix representing the cross-product of xn with another vector.

For a mesh of N vertices {xn}N
n=1, the set of transformed points {c(xn)}N

n=1
(or equivalently tangent vectors {�cn}N

n=1), together with a choice of an interpo-
lation function, define the transformation c completely. Similarly, we can define
s through {�sn}N

n=1. We emphasize that these tangent vector fields are just conve-
nient representations of the transformations s and c and should not be confused
with the velocity vector field v. We define dist(s, c) =

∑N
n=1 ‖�sn − �cn‖2, which

is well-defined since both �cn and �sn belong to TxnS2.

Choice of Reg(s). With a slight abuse of notation, we use s to denote both the
transformation and its equivalent tangent vector field representation. We assume
s belongs to the Hilbert space V of vector fields obtained by the closure of the
space of smooth vector fields on S2 via a choice of the so-called energetic norm
denoted by ‖ · ‖V [15]. We define Reg(s) = ‖s‖V . With a proper choice of the
energetic norm, a smaller value of ‖s‖V corresponds to a smoother vector field.
As we will see, the exact choice of the norm is unimportant for our purposes.

Step 1. With our choice of dist(s, c), Step 1 of the demons algorithm is a
minimization with respect to the velocity field v defined by {�vn ∈ TxnS2}N

n=1:

{�v(t)
n }=argmin

{�vn}
‖F − M ◦ {s(t) ◦ exp(v)}‖2+

1
σ2

x

N∑

n=1

‖�s(t)
n + D2

n{s(t) ◦ exp(v)}(xn)‖2 (4)

�vn is a 3 × 1 tangent vector on the sphere. Let �e1,�e2 be 3 × 1 orthogonal basis
vectors of the tangent space TxnS2. We can write �vn = [�e1�e2]�v′n where �v′n is
a 2 × 1 vector. We can thus optimize Eq. (4) with respect to {�v′n}. The above
non-linear least-squares form can be optimized efficiently with the Gauss-Newton
method, which requires finding the gradient of both terms with respect to {�v′n} at
{�v′n = 0} and solving a linearized least-squares problem. By switching back and
forth between the tangent representation �v′n and embedding space representation
�vn, we construct an update rule independent of the choice of coordinate frames.

To see that, let M be a 3D image defined to be any smooth extension of
M ◦ s(t). For example, for all x ∈ R

3\0, M(x) = M ◦ s(t)(x/‖x‖). Similarly,
we extend s(t) to s. Let �mT

n = ∇M(xn) be the 1x3 gradient of M at xn and
BT

n = ∇s(xn) be the 3×3 gradient of s. Since the differential of exp(v′) at v′ = 0
is the identity, the derivative of the entries corresponding to vertex n in both
terms of Eq. (4) with respect to �v′k is 0 if n �= k. With some algebra, we get:

∂

∂�vn

[
F (xn) − M ◦ {s(t) ◦ exp(�v)}(xn)

]

�v=0
= −�mT

n

[
�e1�e

T
1 + �e2�e

T
2

]
(5)

∂

∂�vn

[
�s(t)

n + D2
n{s(t) ◦ exp(�v)}(xn)

]

�v=0
= D2

nBT
n

[
�e1�e

T
1 + �e2�e

T
2

]
(6)
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The above equations involve the projection of the spatial gradients of M and
s onto the tangent space TxnS2 and are therefore independent of the choices
of �e1, �e2 or the extension mechanism for M and s. This leads to the following
Gauss-Newton update for velocity vector �v′n:

�v′(t)
n = (F (xn) − M ◦ s(t)(xn))×

×
([

�eT
1

�eT
2

] [

�mn �mT
n +

1
σ2

x

Bn(D2
n)T D2

nBT
n

]

[�e1 �e2]
)−1 [

�eT
1

�eT
2

]

�mn (7)

Eq. (7) is used to compute �v
′(t)
n for each vertex n independently and is therefore

fast. We can then compute �v
(t)
n = [�e1 �e2]�v

′(t)
n and use scaling and squaring to

estimate exp(v(t)) [1], which is then composed with the current transformation
estimate s(t) to form c(t) = s(t) ◦exp(v(t)). It is less obvious here, but the update
is independent of the choice of basis vectors �e1, �e2 and extensions s(t) and Ms.

Step 2. The optimization in Step 2 of the demons algorithm

s(t+1) = argmin
s

1
σ2

x

N∑

n=1

‖�sn − �c(t)
n ‖2 +

1
σ2

T

‖s‖V (8)

seeks a smooth vector field s that approximates the tangent vectors {�c(t)
n }N

n=1.
The optimum s(t+1) is unique and is computed by solving a large system of linear
equations [15]. We extend the results in [15], proving that the optimum vector
field s(t+1) at xn always has the form

�s(t+1)
n =

N∑

i=1

λ(xi, xn)T (xi, xn)�c(t)
i (9)

where T (xi, xn)�ci is a linear transformation that parallel transports �ci along the
great circle from TxiS

2 to TxnS2 and λ(xi, xn) is a non-negative scalar function
that monotonically decreases as a function of the distance between xi and xn.
We omit the proof due to space constraints.

In contrast to [15], Eq. (9) implies that we can avoid solving a large system
of equations. The optimal tangent vector �s

(t+1)
n ∈ TxnS2 is given by a linear

combination of �c
(t)
i ∈ TxiS

2 parallel transported to TxnS2, where the tangent
vectors of closer points are given more weights via λ. One can interpret Eq. (9)
as a spherical convolution of vector fields. This is the exact analogue of the
convolution method of optimizing Step 2 in the demons algorithm [6,19,22] and
is also similar to the convolution-based fast fluid registration in the Euclidean
space [7].

The exact form of λ(·, ·) is determined by the choice of the energetic norm, the
relative locations of all the mesh points and the constant σ2

x/σ2
T . In particular,

increasing σ2
x/σ2

T increases the “width” of λ. Rather than picking the energetic
norm, we can simply choose a convenient λ. In practice, we replace the convo-
lution operation with iterative smoothing: at each iteration, for each vertex xn,
tangent vectors of neighboring vertices are parallel transported to TxnS2 and
linearly combined in a weighted fashion with the current estimate of �sn. Using
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more iterations of this process is equivalent to increasing the width of λ. Techni-
cally, the resulting λ might not correspond to any choice of the energetic norm.
However, in practice, this does not appear to be a problem.

4 Experiments and Discussion

We use two sets of experiments to compare the accuracy of Spherical Demons and
FreeSurfer [11]. The FreeSurfer registration algorithm uses the same similarity
measure as Spherical Demons, but penalizes for metric and areal distortion. As
mentioned earlier, its runtime is more than an hour while our runtime is less
than 5 minutes.

Parcellation of In-Vivo Cortical Surfaces. We consider a set of 39 left
and right cortical surface models extracted from in-vivo MRI. Each surface is
spherically parameterized and represented as a spherical image with geometric
features at each vertex (e.g., sulcal depth and curvature). Both hemispheres
are manually parcellated by a neuroanatomist into 35 major sulci and gyri. We
validate our algorithm in the context of automatic cortical parcellation.

We co-register all 39 spherical images of cortical geometry with Spherical
Demons by iteratively building an atlas and registering the surfaces to the atlas.
The atlas consists of the mean and variance of cortical geometry. One can easily
modify the demons objective function (Eq. (1)) to use an atlas.

We then perform cross-validation parcellation 4 times, by leaving out subjects
1 to 10, training a classifier [8,12] using the remaining subjects, and using it to
classify subjects 1 to 10. We repeat with subjects 11-20, 21-30 and 31-39.

We also perform registration and cross-validation with the FreeSurfer algo-
rithm [11] using the same features and parcellation algorithm [8,12]. Once again,
the atlas consists of the mean and variance of cortical geometry.

The average Dice measure (defined as the ratio of cortical surface area with
correct labels to the total surface area averaged over the test set) on the left
hemisphere is 88.9 for FreeSurfer and 89.6 for Spherical Demons. While the
improvement is not big, the difference is statistically significant for a one-sided
t-test with the Dice measure of each subject treated as an independent sample
(p = 2 × 10−6). On the right hemisphere, FreeSurfer obtains a Dice of 88.8
and Spherical Demons achieves 89.1. Here, the improvement is smaller, but still
statistically significant (p = 0.01).

Because the average Dice can be deceiving by suppressing small structures, we
analyze the segmentation accuracy per structure. On the left (right) hemisphere,
the segmentations of 16 (8) structures are statistically significantly improved
by Spherical Demons with respect to FreeSurfer, while no structure got worse
(False Discovery Rate = 0.05 [5]). Fig. 1 shows the percentage improvement of
individual structures. Parcellation results suggest that our registration is at least
as accurate as FreeSurfer.

Brodmann Areas Localization on Ex-vivo Cortical Surfaces. In this ex-
periment, we evaluate the registration accuracy on ten human brains analyzed
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(a) Lateral View (b) Medial View

Fig. 1. Percentage dice improvement over FreeSurfer. Yellow regions indicate struc-
tures scoring better than FreeSurfer. Blue regions correspond to decrease in accuracy.
We note that no structure is statistically worse than FreeSurfer (see text).

Table 1. Average alignment errors of Brodmann areas in mm for the two registration
methods. Lowest errors are shown in SD: Spherical Demons. FS: FreeSurfer.

Left Hemisphere Right Hemisphere
V1 BA4a BA4p BA2 V2 BA6 BA44 BA45 V1 BA4a BA4p BA2 V2 BA6 BA44 BA45

SD10 3.1 3.3 3.3 5.4 3.7 6.4 7.7 6.4 3.2 3.4 2.8 5.4 3.5 6.4 10.4 8.6
FS10 3.8 4.4 3.8 6.3 4.6 7.0 7.4 6.8 3.8 3.8 3.1 5.9 4.0 6.5 11.5 9.9

histologically postmortem [17]. The histological sections were aligned to post-
mortem MR with nonlinear warps to build a 3D volume. Eight manually labeled
Brodmann areas from histology were sampled onto each hemispheric surface
model and sampling errors were manually corrected [13]. Brodmann areas are
cyto-architectonically defined regions closely related to cortical function.

It has been shown that nonlinear surface registration of cortical folds can
significantly improve Brodmann area overlap across different subjects [13,24].
Registering the ex-vivo surfaces is more difficult than in-vivo surfaces because the
reconstructed volumes are extremely noisy, resulting in noisy geometric features.

We co-register the ten surfaces to each other by iteratively building an atlas
and registering the surfaces to the atlas. We compute the average distance be-
tween the boundaries of the Brodmann areas for each pair of registered subjects.
For future reference, we call this experiment SD10. We repeat this process using
FreeSurfer, referred to as FS10 in the remainder of this section.

Table 1 presents the summary of the results. We see that SD10 outperforms
FS10. We perform a permutation test to test for statistical significance. Com-
pared with FS10, SD10 improves the alignment of 5 (2) Brodmann areas on the
left (right) hemisphere (False Discovery Rate = 0.05 [5]) and no structure gets
worse. These results suggest that the Spherical Demons algorithm is at least as
accurate as FreeSurfer in aligning Brodmann areas. Another experiment (not
shown) which involves registering the ex-vivo surfaces to an in-vivo atlas also
results in comparable performance between Spherical Demons and FreeSurfer.

5 Conclusion

In this paper, we presented the fast Spherical Demons algorithm for registering
spherical images. We showed that the characteristic two-step optimization of the
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Demons algorithm can also be applied on the sphere. A clear future challenge
is to take into account the original metric properties of the cortical surface in
the registration process [11,20]. We tested the algorithm extensively on two data
sets and show that the accuracy of the algorithm compares favorably with the
widely used FreeSurfer registration algorithm [11], while offering more than one
order of magnitude speedup.

Acknowledgments. We would like to thank Hartmut Mohlberg, Katrin Amunts
and Karl Zilles for the histological dataset. Support for this research is provided in
part by the NAMIC (NIH NIBIB NAMIC U54-EB005149), the NAC (NIT CRR
NAC P41-RR13218), the mBIRN (NIH NCRR mBIRN U24-RR021382), the NIH
NINDS R01-NS051826 grant, the NSF CAREER 0642971 grant, NCRR (P41-
RR14075, R01 RR16594-01A1), the NIBIB (R01 EB001550, R01EB006758), the
NINDS (R01 NS052585-01) and the MIND Institute. Additional support was pro-
vided by The Autism & Dyslexia Project funded by the Ellison Medical Founda-
tion. B.T. Thomas Yeo is funded by the A*STAR, Singapore.

References

1. Arsigny, V., et al.: A Log-Euclidean Framework for Statistics on Diffeomorphisms.
In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp.
924–931. Springer, Heidelberg (2006)

2. Ashburner, J., Andersson, J., Friston, K.: High-dimensional Image Registration
using Symmetric Priors. NeuroImage 9, 619–628 (1999)

3. Ashburner, J.: A Fast Diffeomorphic Image Registration Algorithm. NeuroIm-
age 38, 95–113 (2007)

4. Beg, M., et al.: Computing Large Deformation Metric Mapping via Geodesic Flows
of Diffeomorphisms. International Journal of Computer Vision 61(2), 139–157
(2005)

5. Benjamini, Y., Hochberg, Y.: Controlling the False Discovery Rate: A Practical
and Powerful Approach to Mult. Testing. J. Roy. Stats. Soc. 57(1), 289–300 (1995)

6. Cachier, P.: Iconic Feature Based Non-rigid Registration: The PASHA Algorithm.
CVIU 89(2-3), 272–298 (2003)

7. Bro-Nielsen, M., Gramkow, C.: Fast Fluid Registration of Medical Images Visual-
ization in Biomedical Computing, 267–276 (1996)

8. Desikan, R., et al.: An automated labeling system for subdividing the human cere-
bral cortex on MRI scans into gyral based regions of interest. NeuroImage (2006)

9. Durrleman, S., et al.: Measuring Brain Variability via Sulcal Lines Registration: a
Diffeomorphic Approach. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI
2007, Part I. LNCS, vol. 4791, pp. 675–682. Springer, Heidelberg (2007)

10. Eckstein, I., et al.: Generalized Surface Flows for Deformable Registration and
Cortical Matching. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007,
Part I. LNCS, vol. 4791, pp. 692–700. Springer, Heidelberg (2007)

11. Fischl, B., et al.: High-resolution intersubject averaging and a coordinate system
for the cortical surface. HBM 8(4), 272–284 (1999)

12. Fischl, B., et al.: Automatically Parcellating the Human cerebral Cortex. Cerebral
Cortex 14, 11–22 (2004)



Spherical Demons: Fast Surface Registration 753

13. Fischl, B., et al.: Cortical Folding Patterns and Predicting Cytoarchictecture. Cere-
bral Cortex (2007)

14. Geng, X., et al.: Transitive Inverse-Consistent Manifold Registration. In: Chris-
tensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 468–479. Springer,
Heidelberg (2005)

15. Glaunès, J., et al.: Landmark Matching via Large Deformation Diffeomorphisms
on the Sphere. Journal of Mathematical Imaging and Vision 20, 179–200 (2004)

16. Nielsen, M., et al.: Brownian Warps: A Least Committed Prior for Non-rigid Reg-
istration. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2489, pp.
557–564. Springer, Heidelberg (2002)

17. Schleicher, A., et al.: Observer independent method for microstructural parcellation
of cerebral cortex: a quantitative approach to cytoarchitectonics. NeuroImage 9,
165–177 (1999)

18. Tosun, D., Prince, J.: Cortical Surface Alignment Using Geometry Driven Multi-
spectral Optical Flow. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS,
vol. 3565, pp. 480–492. Springer, Heidelberg (2005)

19. Thirion, J.: Image Matching as a Diffusion Process: an Analogy with Maxwell’s
Demons. Medical Image Analysis 2(3), 243–260 (1998)

20. Thompson, P., et al.: Mathematical/Computational Challenges in Creating De-
formable and Probabilistic Atlases of the Human Brain. HBM 9(2), 81–92 (2000)

21. Van Essen, D., et al.: Functional and structural mapping of human cerebral cortex:
solutions are in the surfaces. PNAS 95(3), 788–795 (1996)

22. Vercauteren, T., et al.: Non-parameteric Diffeomorphic Image Registration with
the Demons Algorithm. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI
2007, Part II. LNCS, vol. 4792, pp. 319–326. Springer, Heidelberg (2007)

23. Yeo, B.T.T., et al.: Effects of Registration Regularization and Atlas Sharpness on
Segmentation Accuracy. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI
2007, Part I. LNCS, vol. 4791, pp. 683–691. Springer, Heidelberg (2007)

24. Yeo, B.T.T., et al.: What Data to Co-register for Computing Atlases. In: MMBIA,
Proc. ICCV, pp. 1–8 (2007)


	Introduction
	Background - Demons Algorithm
	Spherical Demons
	Experiments and Discussion
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


