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ABSTRACT 
 

Magnetic resonance imaging (MRI) is commonly employed for the depiction of soft 
tissues, most notably the human brain. Computer-aided image analysis techniques lead to 
image enhancement and automatic detection of anatomical structures. However, the 
intensity information contained in images does not often offer enough contrast to robustly 
obtain a good detection of all internal brain structures, not least the deep gray matter 
nuclei. We propose digital atlases that deform to fit the image data to be analyzed. In this 
application, deformable atlases are employed for the detection and segmentation of brain 
nuclei, to allow analysis of brain structures. Our fully automatic technique is based on a 
combination of rigid, affine and non-linear registration, a priori information on key 
anatomical landmarks and propagation of the information of the atlas. The Internet Brain 
Segmentation Repository (IBSR) data provide manually segmented brain data. Using 
prior anatomical knowledge in local brain areas from a randomly chosen brain scan 
(atlas), a first estimation of the deformation fields is calculated by affine registration. The 
image alignment is refined through a non-linear transformation to correct the 
segmentation of nuclei. The local segmentation results are greatly improved. They are 
robust over the patient data and in accordance with the clinical ground truth. Validation 
of results is assessed by comparing the automatic segmentation of deep gray nuclei by the 
proposed method with manual segmentation. The technique offers the accurate 
segmentation of difficultly identifiable brain structures in conjuncture with deformable 
atlases. Such automated processes allow the study of large image databases and provide 
consistent measurements over the data. The method has a wide range of clinical 
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applications of high impact that span from size and intensity quantification to 
comprehensive (anatomical, functional, dynamic) analysis of internal brain structures. 
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1. INTRODUCTION 
 
The advent of medical imaging modalities such as X-ray, ultrasound, computed 

tomography (CT) and magnetic resonance imaging (MRI) has greatly improved the diagnosis 
of human diseases. Until recently, the most common procedure to analyze imaging data was 
visual inspection on printed support. In the last decade, computer-aided medical image 
analysis techniques have been employed to provide a better insight into the acquired image 
data [Duncan and Ayache 2000]. Such techniques allow for quantitative, reproducible 
observation of the patient condition. Furthermore, the computing power of modern machines 
can be used to combine information from several images of the same patient (i.e. image 
fusion) or add prior information from a database of images. 

In this chapter, we present a fully automated medical image analysis technique aimed at 
the detection of internal brain structures from MRI data. Such automated processes allow the 
study of large image databases and provide consistent measurements over the data. In our 
case, we employ a priori anatomical knowledge in the form of digital brain atlases. 

Relevant background information about MRI and brain anatomy is provided next. In 
Methods we describe the different components of our image processing framework, which 
segments and quantifies internal brain structures by propagating deformable models of 
internal nuclei. Finally, results are presented and the algorithm is assessed. 

 
 

1.1. Magnetic Resonance Imaging 
 
MRI has become a leading technique widely used for imaging soft human tissue. Its 

applications are extended over all parts of the human body and it represents the most common 
visualization method of human brain. Images are generated by measuring the behavior of soft 
tissue under a magnetic field. Under such conditions, water protons enter a higher energy 
state when a radio-frequency pulse is applied and this energy is re-emitted when the pulse 
stops (a property known as resonance) [Hornak]. A coil is used to measure this energy, which 
is proportional to the quantity of water protons and local biochemical conditions. Thus, 
different tissues give different intensities in the final MR image. From the brain MRI 
perspective, this quality makes possible the segmentation of the three main tissue classes 
within the human skull: gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF). 
Their accurate segmentation and sub-classification remains a challenging task in the clinical 
environment. 

The relative contrast between brain tissues is not a constant in MR imaging. In most 
medical imaging applications, little can be done about the appearance of anatomically distinct 
areas relative to their surroundings. In MRI, the choice of the strength and timing of the 
radio-frequency pulses, known as the MRI sequence [Stark et al.1999], can be employed to 
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highlight some type of tissue or image out another, according to the clinical application. 
However, the presence of artifacts due to magnetic field inhomogeneity (bias fields) and 
movement artifacts may hamper the delineation of GM versus WM and CSF and make their 
depiction difficult [Fennema-Notestine et al. 2006; Guillemaud et al.1997; Han et al. 2006; 
Sled et al.1998; Van Leemput et al. 1999]. 

Several MRI sequences are used in common clinical practice. T1-weighted MRI offers 
the highest contrast between the brain soft tissues and is arguably the most popular MR 
acquisition technique used for brain diagnosis. On the contrary, T2-weighted and Proton 
Density (PD) images exhibit very low contrast between GM and WM, but high contrast 
between CSF and brain parenchyma. In other MRI sequences, like the Fluid Attenuated 
Inversion Recovery (FLAIR) sequence, the CSF is eliminated from the image in an adapted 
T1 or T2 sequence. More about these specific MRI sequences and their variations can be 
found in [Brown and Semelka 1999]. 

MR images depict a 3D volume where the organ or part of the body of interest is 
embedded. This information can be used to build a 3D representation of the structure of 
interest. This applies both to 2D sequences, where images are acquired in slices, and to the 
recently developed 3D sequences, where the data are captured in the 3D Fourier space, rather 
than each slice being captured separately in the 2D Fourier space [Brown and Semelka 1999; 
Stark et al. 1999]. 

 
 

1.2. Deep Gray Matter Nuclei 
 
The neurons that build up the human brain are composed of a cellular body and an axon. 

The latter projects its dendritic connections to other neurons in remote cerebral regions. In 
essence, gray matter corresponds to the cellular bodies, whereas the axons constitute the 
white matter. Cerebral gray matter is mainly concentrated in the outer surface of the brain 
(cortex), but several internal GM structures exist, as seen in Figure 1. These are known as 
deep gray matter nuclei and they play a central role in the intellectual capabilities of the 
human brain. Additionally, deep brain gray matter nuclei are relevant to a set of clinical 
conditions, such as Parkinson’s and Creutzfeldt-Jakob diseases [Summerfield et al. 2005; 
Linguraru et al. 2006]. The size and appearance of gray nuclei can be indicators of 
abnormality. However, their detection in MRI data sets remains a challenging task, due to 
their small size, partial volume effects [González Ballester et al.2002], anatomical variability, 
lack of white matter-gray matter contrast in some sequences and movement artifacts. A 
methodology for the robust detection of deep brain gray matter nuclei in multi-sequence MRI 
is presented in this chapter. 

 
 

1.3. Segmentation Based on Deformable Atlases 
 
Brain atlases are images that have been segmented and thus contain information about the 

position and shape of each structure. Such atlases can be binary (1 for the location of a 
structure and 0 for “outside”) or probabilistic, in which case the values correspond to the 
probability of a voxel containing the structure of interest. In order to locate such structures in 
a given patient image, the atlas image is deformed to match the shape of the patient brain 
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through registration. Depending on the number of degrees of freedom and the type of 
geometric deformation allowed, registration can be rigid, affine, or non-linear (a deformation 
field specifying the displacement applied to each point). 

 

 

Figure 1. The map of gray matter nuclei in axial view. To the left, an annotated map of deep gray matter 
internal nuclei reproduced from the Talairach and Tournoux atlas [Talairach and Tournoux 1988]: the 
caudate (C), putamen (P), globus pallidus (G) and thalamus (T). To the right, deep gray matter internal 
nuclei as seen in a normal T1 weighted axial MR image with good contrast between WM, GM and 
CSF. 

Registration to a digital atlas has become a common technique with the introduction of 
popular statistical algorithms for image processing, such as Statistical Parametric Mapping 
(SPM) [Ashburner and Friston 2000] or Expectation Maximization Segmentation (EMS) 
[Van Leemput et al. 2001]. A widely-used probabilistic atlas is the MNI Atlas from the 
Montreal Neurological Institute at McGill University [Collins et al. 1998]. It was built using 
over 300 MRI scans of healthy individuals to compute an average brain MR image, the MNI 
template, which is now the standard template of SPM and the International Consortium for 
Brain Mapping [Mazziotta et al. 2001]. However the averaging is performed on the entire 
brain and the three main tissue classes: GM, WM and CSF. More anatomical details can be 
found in manually segmented brain scans, and popular or new options are the Zubal Atlas 
from Yale University [Zubal et al. 1994], the SPL Atlas from Harvard Medical School 
[Kikinis et al. 1996], the basal ganglia atlas build from histological data from Pitié-Salpêtrière 
Hospital in Paris [Yelnik et al. 2007] and IBSR from Massachusetts General Hospital, 
Harvard Medical School, which is employed in this work. 

 
 

1.4. Gray Nuclei Segmentation 
 
The challenging nature of the problem of segmenting gray matter nuclei from MRI 

images stems from the lack of contrast, limitations of image resolution, and possible imaging 
artifacts. Few works have attempted to provide a fully automated algorithm for their 
identification and accurate delineation. [Dawant et al. 1999] propose a method for the 
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segmentation of internal brain structures based on similarity and free-form deformations to 
register one segmented image. No statistical atlas information is employed for spatial 
normalization. [Joshi et al. 2004] propose a method for unbiased diffeomorphic atlas 
construction, and they show results on the segmentation of the caudate nucleus within the 
context of a study on autism. [Pohl et al. 2006] propose a method for joint segmentation and 
registration based on the Expectation-Maximization (EM) algorithm, and apply their method 
to the segmentation of the thalamus. 

We propose digital atlases that deform to fit the image data to be analyzed. Our fully 
automatic technique is based on a combination of rigid, affine and non-linear registration. A 
priori information on key anatomical landmarks is used to propagate the information from the 
atlas employing the computed deformation field. The technique offers the robust 
segmentation and quantification of difficultly identifiable brain structures in conjuncture with 
deformable atlases. 

 
 

2. METHODS 
 

2.1. Data 
 
For the analysis of deep gray nuclei in this chapter, we used the Internet Brain 

Segmentation Repository1 (IBSR) from the Center for Morphometric Analysis, Massachusetts 
General Hospital, Harvard Medical School. Boston, MA. The database consists of 18 high-
resolution T1 MR scans of normal subjects. For each scan, 43 individual brain structures, 
including the deep gray nuclei, are manually segmented. The MR image data are T1-weighted 
3D coronal acquisitions. The image resolution is between 0.93x0.93x1.5 mm3 and 1x1x1.5 
mm3. There are 4 female and 14 male datasets with ages between juvenile and 71 years, 
covering a large variability of brain anatomies. A subject image from the IBSR database is 
shown in Figure 2. T1-weighted volumetric images from IBSR have been positionally 
normalized into the Talairach orientation (rotation only). This rigid transformation provides a 
first level of inter-subject alignment. 

 

 

Figure 2. The IBSR database. We present a case from the ISBR database: from left to right, the coronal 
MR T1 scan; the segmentation of WM (white), GM (yellow) and CSF (red); the map of the manually 
segmented 43 brain structures. 

                                                        
1 http://www.cma.mgh.harvard.edu/ibsr/ 
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2.2. Spatial Normalization 

 
The large variability inherent to human anatomy and the differences in patient positioning 

across scans leads us to consider further spatial normalization for the identification of deep 
gray nuclei. This will allow localizing the areas of interest with the help of an atlas of the 
brain. Furthermore, it will make automatic inter-patient comparisons possible. 

For the construction of the statistical atlas, we chose using the data from IBSR, as it 
contains 18 manually segmented scans; they can provide the level of necessary information to 
guide the segmentation of brain structures, but also be used for the quantitative validation of 
the segmentation method. Given that the IBSR images are already aligned rigidly to the 
Talairach space, we perform a first refinement of the rigid registration using an affine 
transform. One random image from the database is selected as atlas. The atlas selection may 
introduce a bias, as the chosen atlas is not an average morphology and the segmentation does 
not account for intra-observer variability. The atlas T1-weigthed scan is registered to each of 
the other 17 T1 scans. We employ a robust block-matching algorithm to estimate the affine 
deformation between subjects’ scans. [Ourselin 2000, Ourselin 2001]. 

The block matching strategy is a two-step iterative method. The standard assumption 
behind the algorithm is that there is a global intensity relationship between the template or 
reference image, I, and the one being registered to it or floating image, J. The result is 
reflected by the registered image J’ = J � T, with T being the registration transformation. 

In the first step, each block of I, BI, is locally translated over J and a correlation 
coefficient CC is maximized to blocks of J, BJ. We use a correlation coefficient, as the 
registration is performed between monomodal T1-weighted MR images. 
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where xi are elements of BI, yj are elements of BJ, and by µ and σ we denote the mean values 
and standard deviations. 

Thus, the transformation between the two images is computed block by block and a 
displacement field is generated after removing outliers. In the second step, a parametric 
transformation, in this case affine, is estimated by regularizing the deformation field to 
explain most of the block correlations. A least trimmed squared regression approximates the 
affine transformation by minimizing the residual error 
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number of displacement vectors. 
To improve robustness, this procedure is repeated iteratively at multiple scales. Resulting 

registered data are interpolated using a linear function. More details can be found in [Ourselin 
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2001]. The alignment of the atlas to all individual scans allows a more robust inter-subject 
analysis and statistical algorithms can be applied. 

 
 

2.3. Refined Segmentation 
 
To be able to segment GM and WM in MRI data, a good contrast between these types of 

tissue in T1-weighted images is desired. Although image acquisition has radically improved 
over the last years, the variation in parameters and patient motion brings artifacts and 
variations in image appearance. Bias field inhomogeneities further contribute to the 
degradation of image quality. Hence, the segmentation of GM cannot be done reliably only 
from the patient images. 

An affine transformation provides a better level of inter-subject GM alignment than a 
rigid transformation. However, to segment small GM sub-structures a more precise 
registration is necessary. For the examples in this chapter, we will focus on the basal ganglia. 
Hence, we create a mask with the caudate, globus pallidus, thalamus and putamen, which will 
be referred as internal nuclei for the rest of this paper, from the atlas (Figure 3). We aim to 
use this mask for the segmentation of internal nuclei in the other subject images. 

Non-linear (free-form) registration is used to align the T1 scans of the affinely registered 
atlas and the corresponding T1 images of the 17 subjects. We employ a diffeomorphic non-
linear registration algorithm based on Thirion’s demons algorithm [Thirion 1998; 
Vercauteren et al. 2007a; Vercauteren et al. 2007b]. This algorithm has an open-source 
implementation [Vercauteren et al. 2007c] and is used in the free MedINRIA v 1.6.0 package2 
from the Asclepios Research Group, INRIA [Toussaint et al. 2007]. 

 

 

Figure 3. The mask of internal nuclei. We show an axial view of the T1 image chosen as atlas and the 
corresponding mask of manually segmented basal ganglia, including the caudate (orange), globus 
pallidus (yellow), putamen (white) and thalamus (red). 

It has been shown in [Pennec et al. 99] that the demons algorithm could be seen as an 
optimization of a global energy. The main idea is to introduce a hidden variable in the 
registration process: correspondences. We then consider the regularization criterion as a prior 
on the smoothness of the transformation T. Instead of requiring that point correspondences 

                                                        
2 http://www-sop.inria.fr/asclepios/software/MedINRIA/ 
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between image pixels (a vector field C) be exact realizations of the transformation, one allows 
some error at each image point. Given the template image I and the floating image J, we end 
up with the global energy 
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where �i accounts for the noise on the image intensity, �x for a spatial uncertainty on the 
correspondences, and �T controls the amount of regularization we need. We classically have 
dist(T,C) = ||C-T|| and Reg(T) = ||∇T||2, but the regularization can also be modified to handle 
fluid-like constraints [Cachier et al. 2003]. 

Within this framework, the demons registration can be explained as an alternate 
optimization over T and C. The optimization is performed within the complete space of dense 
non-linear transformations by taking a series of additive steps, T�T+u. The most 
straightforward way to adapt the demons algorithm to make it diffeomorphic is to optimize 
E(C,T) over a space of diffeomorphisms. This can be done as in [Malis 2004; Mahony et al. 
2002] by using an intrinsic update step 

 
)exp(u�TT ← , 

 
on the Lie group of diffeomorphisms. This approach requires an algorithm to compute the 
exponential for the Lie group of interest. Thanks to the scaling and squaring approach in 
[Arsigny et al. 2006], this exponential can efficiently be computed for diffeomorphisms with 
just a few compositions: 

 
Algorithm (Fast Computation of Vector Field Exponentials). 
 
· Choose N such that 2-N u is close enough to 0, e.g. maxp ||2

-N u(p)|| � 0.5; 
· Perform an explicit first order integration: v(p) � 2-N u(p) for all pixels; 
· Do N (not 2N!) recursive squarings of v: v � v � v. 
 
By plugging the Newton method tools for Lie groups within the alternate optimization 

framework of the demons, we proposed in [Vercauteren et al. 2007a] the following non-
parametric diffeomorphic image registration algorithm: 

 
Algorithm (Diffeomorphic Demons Iteration). 
 
· Compute the correspondence update field u using a regular demons step; 
· If a fluid-like regularization is used, let u � Kfluid * u; 
· Let C � T�exp(u), where exp(u) is computed using the above fast algorithm; 
· If a diffusion-like regularization is used, let T � Id + Kdiff * (C-Id) (else let T � C). 
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Having the deformation fields computed, we apply them to the mask of internal nuclei of 
the atlas, deforming the mask according to the position and size of the internal nuclei in each 
subject image. A diagram of the algorithm is shown in Figure 4. The deformed mask is used 
to segment the internal nuclei of the patient, namely the caudate, globus pallidus putamen, 
putamen and thalamus. 

 

 

Figure 4. Diagram of the algorithm for segmentation and quantification of the brain deep gray matter 
nuclei. 

In order to preserve the correct values of the segmentation labels posterior to the 
application of the transformation, nearest-neighbor interpolation is performed, as opposed to 
the case of patient image registration, which employed linear interpolation. 

 
 

2.4. Quantification 
 
For each internal nucleus, we compute a segmentation overlap between the automatic and 

the manual segmentations as a quantifiable measure of the success of the algorithm. The 
metric for validation is based on the Dice Coefficient (DC) 
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where SA is the segmented region of the automatic method, and SM is the manually segmented 
region by an expert.  

The volume estimation between manual and automatic volume measurement is computed 
for each type of internal nucleus. To correlate the manual and automatic estimates, we use the 
R-squared (R2) value of the best linear fit of data correlation 
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where cov represents the covariance between the manual (VM) and automatic (VA) estimates of 
nucleus volume and σ the standard deviation. 
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3. RESULTS 
 
You will note that we present our results alternating between coronal and axial views. 

Images in the IBSR database are acquired in a coronal view, but for visualization we show 
them in radiological convention view as well. 

We compared registration results at three levels of deformation: rigid, affine and non-
linear. Figure 5 presents one subject scan and the atlas being deformed to best match the 
subject. The rigid registration on the Thalairach space provides a good alignment, but does 
not handle any anatomical differences. The affine transformation is better suited for the 
registration, but still insufficient to align small structures, such as the internal nuclei. Finally, 
the non-linear refinement provides the best fit between the two 3D images. Note the 
adaptation of size and shape of the ventricles and thalamus. 

Checkerboard comparative images for the three levels of registration are presented in 
Figure 6 for a better visual assessment. Note the better correspondence between brain 
structures after non-linear registration. Hence, we save the non-linear transformation field 
presented in Figure 7 and apply it to the mask of internal nuclei (Figure 3). 

 

 

Figure 5. Inter-patient registration: (a) the target image; (b) the source image after rigid registration; (c) 
the source image after affine registration; (d) the deformed source using non-linear registration. 

 

 

Figure 6. Comparative registration results using checkerboards: (a) after rigid registration (b) after 
affine registration; and (c) using non-linear transformations; 

Segmentation results for the group of deep gray matte nuclei (caudate, globus pallidus, 
putamen and thalamus) are illustrated in Figure 8. For visual assessment of the impact of the 
registration on segmentation, the results are shown after rigid, affine and non-linear 
registration and compared to the manual segmentation of nuclei. Segmented nuclei mask are 
overlaid on the T1 scans of the subject. Once more, we observe the superior segmentation 
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provided after non-linear registration. In Figure 9 we present difference images between 
nuclei mask using automatic and manual segmentations. The error in volume estimation using 
non-linear registration is significantly smaller than using transformations with fewer degrees 
of freedom. 

 

 

Figure 7. Deformation fields. We present the source image (atlas) used in the registration and the 
deformation filed resulting from the non-linear registration to the target image. 

 

 

Figure 8. Segmentation of gray nuclei: (a) the manual segmentation; (b) after rigid registration; (c) 
using affine registration; and (d) using the non-linear transformation fields. 

 

 

Figure 9. Segmentation overlap with the manual segmentation: (a) the difference image after rigid 
registration; (b) after affine registration; and (c) using non-linear registration. 



Marius George Linguraru, Tom Vercauteren, Mauricio Reyes-Aguirre et al. 12 

More segmentation results using non-linear registration are shown in Figure 10 and 11. 
 

 

Figure 10. Segmentation of gray nuclei in radiological convention. We present segmentation results in 
axial (a), sagittal (b) and coronal (c) views. The bottom row shows the MR image for the visual 
evaluation of the automatic segmentation results. 

Figure 10 shows typical segmentation results in a subject scan. We separate the nuclei 
using a color code: orange for caudate, yellow for globus pallidus, white for putamen and red 
for thalamus. Axial, sagittal and coronal views are presented for 3D assessment. In Figure 11 
we browse through the 3D coronal space of the subject and compare the manual and 
automatic segmentation of the four internal nuclei. Finally, a 3D map of the segmented nuclei 
is illustrated in Figure 12 using 3D rendering. 

To quantify the quality of the segmentation for the 17 subject data, the overlap ratios and 
errors in volume estimation between the manual and automatic segmentations were 
computed. Values were calculated for each type of nuclei (caudate, globus pallidus, putamen 
and thalamus) and for all nuclei together, as denominated by gray nuclei. Numerical figures 
are presented in Table 1. As expected, numbers look better for the larger nuclei, as they are 
correlated with the structure size. The charts of the overlap ratio and error of volume 
estimation are seen in Figure 13 and Figure 14 respectively. 

The correlations between manual and automatic segmentation is presented in Figures 15 
and 16. Figure 15 shows the best linear fit of the correlated data and the R-squared (R2) value 
for each category of nuclei (caudate, globus pallidus, putamen and thalamus). In Figure 16 we 
present the correlation for all internal nuclei together. 
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Figure 11. 3D segmentation of nuclei. We present comparative results between the manual and 
automatic segmentations of deep gray nuclei at six coronal locations along the 3D volume of the brain. 

 

 

Figure 12. A 3D map of the segmented gray nuclei. 

 
Table 1. Segmentation error. The rows present the overlap ratio and volume estimation 

error for four categories of gray nuclei (caudate, globus pallidus, putamen and 
thalamus) and the total volume of the nuclei (gray nuclei) 

 
 Caudate Globus Pallidus Putamen Thalamus Gray Nuclei 
Overlap ratio 0.824±0.038 0.788±0.045 0.855±0.023 0.883±0.033 0.855±0.018 
Volume error (%) 9.59±4.268 11.112±7.02 4.387±2.348 3.299±2.078 2.613±2.058 
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Figure 13. The computed overlap between manual and automatic segmentation of deep nuclei of the 
brain. The bar corresponding to “gray nuclei” refers to the combined volume of caudate, globus 
pallidus, putamen and thalamus. 

 

 

Figure 14. The computed error in volume estimation between manual and automatic segmentation of 
deep nuclei of the brain. 

It has been shown that the error induced by MRI partial volume effects in small structures 
can be in the range 20-60 % of the volume [González Ballester et al. 2000]. Taking into 
account the size of grey matter nuclei and the good correlation with manual segmentations, 
our results show the suitability of our approach for neuroanatomical studies. 
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Figure 15. The best linear fits and R-squared values for correlated volume estimations of the four 
categories of gray nuclei. The horizontal axes correspond to the manual segmentation, and the 
automatic segmentation estimates are shown on the vertical axes. 

 

 

Figure 16. The best linear fit and R-squared value for correlated volume estimations of the total volume 
of the segmented gray nuclei: caudate, globus pallidus, putamen and thalamus. 



Marius George Linguraru, Tom Vercauteren, Mauricio Reyes-Aguirre et al. 16 

Given the high resolution and good contrast in the IBSR images, the inter-subject 
registration of T1-weighted MR images is sufficiently robust to govern the segmentation of 
small internal nuclei. However, in clinical practice data quality is variable and the intensity 
information from MRI may be inadequate to find an accurate alignment between scans. In 
these situations, it is desirable to use anatomical landmarks for the definition of more precise 
transformations. We proposed to employ easily identifiable anatomical structures in the brain, 
such as the lateral ventricles and cortex boundary. For more detail please refer to [Linguraru 
et al. 2006; Linguraru et al. 2007]. 

 
 

CONCLUSION 
 
We proposed digital atlases that deform to fit the image data to be analyzed. Our fully 

automatic technique is based on a combination of rigid, affine and non-linear registration. A 
priori information on anatomical landmarks was used to propagate the information from the 
atlas employing the computed deformation field. The technique offers the robust 
segmentation and quantification of difficultly identifiable brain structures in conjuncture with 
deformable atlases. 

In this chapter, we focused on the segmentation of the basal ganglia to present our 
algorithm for the segmentation of deep gray matter nuclei. An identical approach can be used 
for other inner brain structures to accurately segment them in patient images. 
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